4.1.2 点、线、面、体-2020-2021学年七年级数学上册课时同步练(人教版)(解析版)

合集下载

4.1.1 立体图形与平面图形-2020-2021学年七年级数学上册课时同步练(人教版)(解析版)

4.1.1 立体图形与平面图形-2020-2021学年七年级数学上册课时同步练(人教版)(解析版)

第四章几何图形初步4.1.1 立体图形与平面图形一、选择题:1.(2020-2021·陕西·期中试卷)在下列立体图形中,只要两个面就能围成的是()A. B. C. D.【答案】D【解答】解:A,球只要一个面就能围成,故错误;B,正方体要六个面才能围成,故错误;C,圆柱需要三个面才能围成,故错误;D,圆锥只要两个面就能围成,故正确.故选D.2.(2020-2021·江西·月考试卷)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与点字所在面相对的面上的汉字是()A.青B.春C.梦D.想【答案】B【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“点”与“春”是相对面.故选B.3.(2020-2021·广东·月考试卷)正方体的六个面分别标有1,2,3,4,5,6六个数字,如图是其三种不同的放置方式,与数字“3”相对的面上的数字是()A.1B.3C.4D.5【答案】A【解答】解:由图可得与3相邻的数字有2,4,5,6,所以与数字“3”相对的面上的数字是1.故选A.4.(2020-2021·安徽·月考试卷)下列图形中,不是立体图形的是()A.圆锥B.圆柱C.圆D.球【答案】C【解答】解:圆是平面图形,而球,圆柱,圆锥都是立体图形,只有C选项符合题意.故选C.5.(2020-2021·江西·月考试卷)图1和图2中所有的正方形都完全相同,将图1的正方形放在图2中的①①①①某一位置,则所组成的图形不能围成正方体的位置是()A.①B.①C.①D.①【答案】D【解答】解:图1中的正方形放在图2中的①①①的位置,组成的图形能围成正方体,放在①的位置,不能围成正方体.故选D.6.(2020-2021·山东·月考试卷)下面平面图形不能折成正方体的是()A. B. C. D.【答案】D【解答】解:由正方体四个侧面和上下两个底面的特征可知:A,B,C选项能拼成一个正方体.故选D.7.(2020-2021·山东·月考试卷)如图是一个正方体的表面展开图,已知正方体的每个面都有一个有理数,且相对面上的两个数互为相反数,那么代数式a−b+c的值是()A.−4B.0C.2D.4【答案】B【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,① a与3是相对面,b与1是相对面,c与−2是相对面.① 折成正方体后相对的面上的两个数互为相反数,① a=−3,b=−1,c=2,① a−b+c=0.故选B.8.(2020-2021·山东·月考试卷)李明为好友制作一个如图所示的正方体礼品盒,六面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是()A. B. C. D.【答案】C【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,A,“预”的对面是“考”,“成”的对面是“祝”,故本选项错误;B,“预”的对面是“功”,“成”的对面是“中”,故本选项错误;C,“预”的对面是“中”,“成”的对面是“功”,故本选项正确;D,不是正方体展开图,故本选项错误.故选C.9.(2020-2021·河北·月考试卷)图2是图1所示正方体的平面展开图,若正方体上的A点在平面展开图上对应位置如图2所示,则正方体上B点在平面展开图上的位置是()A. B. C. D.【答案】B【解答】解:由图1可知,点A,点B在斜对角的顶点上.A.折叠后,点A和点B不在斜对角的顶点上,故选项A错误;B.折叠后,点A和点B的位置符合题意,故选项B正确;C.折叠后,点A和点B不在斜对角的顶点上,故选项C错误;D.折叠后,点A和点B不在斜对角的顶点上,故选项D错误.故选B.10.(2020·江苏·中考真卷)把如图所示的纸片沿着虚线折叠,可以得到的几何体是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥【答案】A【解答】观察展开图可知,几何体是三棱柱.11.(2020-2021·安徽·月考试卷)如图所示的立方体,如果把它展开,可以得到()A. B. C. D.【答案】D【解答】解:选项A,C中折叠后带图案的三个面不能相交于同一个点,与原立方体不符;选项B中折叠后三角形和圆的位置不符,所以正确的是D.故选D.12.(2020-2021·贵州·月考试卷)下列说法错误的是()A.柱体的上、下两个底面一样大B.棱柱至少由5个面围成C.圆锥由两个面围成,且这两个面都是曲面D.长方体属于棱柱【答案】C【解答】解:A,柱体的上、下两个底面一样大,故本选项正确;B,棱柱至少由5个面围成,故本选项正确;C,圆锥由两个面围成,且这两个面都一个是曲面,一个是平面,故本选项错误;D,长方体属于棱柱,故本选项正确.故选C.二、填空题:13.(2020-2021·福建·月考试卷)把小正方体的6个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色和花的朵数情况如表:现将上述大小相等、颜色花朵分布完全一样的四个立方体拼成一个水平放置的长方体(如图),那么长方体下底面有________朵花.【答案】12【解答】解:由题意可得,右一的立方体下侧为白色,右二的立方体的下侧为绿色,右三的为黄色,左一的为紫色,那么长方体的下底面共有花数4+1+2+5=12朵.故答案为:12.14.(2020-2021·山东·月考试卷)已知一个正棱柱有18条棱,它的底面边长都是4厘米,侧棱长为5厘米,则其侧面积为________平方厘米.【答案】120【解答】解:① 一个正棱柱有18条棱,① 它是正六棱柱.又其底面边长都是4厘米,① 它有六个相同的侧面,且都是长为5厘米,宽为4厘米的长方形,=6×5×4=120(平方厘米).故答案为:120.① S侧15.(2020-2021·山东·月考试卷)下列图形是一些多面体的平面展开图,说出这些多面体的名称.________________________________【答案】三棱锥,三棱柱,四棱锥,四棱柱【解答】解:观察图形可知:观察第一张图,四个三角形能围成三棱锥;观察第二张图,三个长方形和两个三角形能围成一个三棱柱;观察第三张图,四个三角形和一个长方形能围成四棱锥;观察第四张图,四个长方形和上下两个长方形能围成是四棱柱.故答案为:三棱锥;三棱柱;四棱锥;四棱柱.16.(2020-2021·山东·月考试卷)用小正方体搭一个几何体,从正面和左面看到的图形如图所示,那么搭成这样的几何体至少需要________个小正方体,最多需要________个小正方体.【答案】5,13【解答】解:综合从正面和左面看到的图形,这个几何体的底层最多有3×3=9个小正方体,最少有3个小正方体,第二层最多有4个小正方体,最少有2个小正方体,那么搭成这样的几何体至少需要3+2=5个小正方体,最多需要4+9=13个小正方体.故答案为:5;13.17.(2019-2020·重庆·期末试卷)已知10个棱长为m的小正方体组成如图所示的几何体,则这个几何体的表面积是________.【答案】36【解答】该几何体的主视图的面积为6,左视图的面积为6,俯视图的面积为6,因此这个几何体的表面积为(6+6+6)×2=36,18.(2019-2020·江苏·期末试卷)如图是一个正方体的表面展开图,若正方体中相对的面上的数互为相反数,则2x−y的值为________.【答案】−3【解答】① “5”与“2x−3”是对面,“x”与“y”是对面,① 2x−3=−5,y=−x,解得x=−1,y=1,① 2x−y=−2−1=−3.19.(2020·贵州·中考真卷)在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是________.【答案】16.【解答】在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是1620.(2019-2020·山西·期末试卷)钻石原石看起来并不起眼,但经过精心设计、切割、打磨,就会成为璀璨夺目的钻石.钻石切割是多面体截面在实际生活中的一个应用.将已经加工成三棱柱形状的钻石原石进行切割,只切一刀,切截面的形状可能是________.(填一种情况即可)【答案】三角形、四边形、五边形【解答】三棱柱的截面可能是三角形、四边形或五边形,不能是六边形,因为三棱柱有五个面,如图所示:故答案为:三角形、四边形、五边形.三、解答题:21.(2020-2021·陕西·期中试卷)如图是正方体的一种表面展开图,各面都标有数字,那么在正方体的六个面中,相对两个面的两个数字的和分别是多少?其中和最大是多少?和最小是多少?【答案】解:因为图形是正方体的表面展开图,所以“−3”与“2”是相对面,和是−3+2=−1,“−1”与“6”是相对面,和是−1+6=5,“−2”与“−4”是相对面,和是−2+(−4)=−6,其中和最大是5,和最小是−6.22.(2020-2021·江西·月考试卷)已知图1为一个正方体,图2为图1的表面展开图,请根据要求回答问题:(1)若正方体相对面上的数互为相反数,则x−y=________.(2)点N在图1中的位置如图所示,请在图2中标出对应的N的位置.【答案】−8(2)如图:【解答】解:(1)由图可知:x为2的相反数,y为−6的相反数,所以x=−2,y=6,所以x−y=−2−6=−8.故答案为:−8.(2)如图:23.(2020-2021·陕西·月考试卷)如图是某种产品包装盒的展开图,高为3cm.(1)分别求出这个包装盒的长和宽;(2)求这个包装盒的表面积.【答案】解:(1)经过折叠可得,这个包装盒是长方体,① 长方体的高为3cm,① 长方形的宽为:12−2×3=6(cm);长为:(25−3−6)÷2=8(cm).(2)这个包装盒的表面积为:2×(3×6+3×8+6×8)=180(cm2).24.(2019-2020·甘肃·期中试卷)如图,若图中平面展开图折叠成正方体后,相对面上的两个数字之和为5,求x+y+z的值.【答案】由题意得:与x相对的是−1,所以−1+x=5,x=6,与y相对的是8,所以8+y=5,y=−3,与2z相对的是3,所以3+2z=5,z=1,所以x+y+z=6+(−3)+1=4,25.(2020·同步练习)长方体纸盒的长、宽、高分别是10cm,8cm,5cm,若将它沿棱剪开,展成一个平面图形那么这个平面图形的周长的最小值是92cm.【答案】这个平面图形的周长的最小值是:5×8+8×4+10×2=92(cm).故答案为:9226.(2020·同步练习)将一个棱长为整数的正方体木块的表面涂红色,然后分割成棱长为1的小正方体,若各个面未染色的小正方体有2197个,则只有两个面染色的小正方体有________个.【答案】156【解答】① 133=2197,① 在大正方体中未染色的部分是棱长为13的小立方体,因此大正方体的棱长为13+2=15,棱长为15的大正方体的每一条棱上有15−2=13个只有两个面染色的小正方体,因此共有13×12=156个只有两个面染色的小正方体,27.(2019-2020·河南·期末试卷)如图,三个大小相同的球恰好放在一个圆柱形盒子里(球的半径为R时,球的体积为V=43πR3),若圆柱的容积为300π,则三个球的体积之和为________.(结果保留π)【答案】200π【解答】设球的半径为r,根据题意得:三个球的体积之和=3×43πr3=4πr3,圆柱体盒子容积=πr2⋅6r=6πr3,4πr36πr3=23,300π×23=200π.答:三个球的体积之和是200π.故答案为:200π.28.(2019-2020·浙江·期中试卷)仓库里有以下四种规格数量足够多的长方形、正方形的铁片(尺寸单位:分米):从中选5块铁片,焊接成一个无盖的长方体(或正方体)铁盒(不浪费材料),甲型盒是由2块规格①、1块规格①和2块规格①焊接而成的铁盒,乙型盒是容积最小的铁盒.(1)甲型盒的容积为:________分米3;乙型盒的容积为:________分米3;(直接写出答案)(2)现取两个装满水的乙型盒,再将其内部所有的水都倒入一个水平放置的甲型盒,求甲型盒中水的高度是多少分米?【答案】40,8;甲型盒中水的高度是2分米【解答】① 甲型盒是由2块规格①、1块规格①和2块规格①焊接而成的,① 甲盒的长为2分米,宽为4分米,高为5分米,① 甲型盒容积为2×4×5=40分米3;乙型盒容积最小,即长、宽、高最小,因此乙盒为长、宽、高均为2分米的正方体,体积为2×2×2=8立方分米,故答案为40,8.甲盒的底面积为:2×4=8平方分米,两个乙盒的水的体积为8×2=16立方分米,甲盒内水的高度为:16÷8=2分米,答:甲型盒中水的高度是2分米.1.(2020·重庆·中考真卷)围成下列立体图形的各个面中,每个面都是平的是()A.长方体B.圆柱体C.球体D.圆锥体【答案】A【解答】A、六个面都是平面,故本选项正确;B、侧面不是平面,故本选项错误;C、球面不是平面,故本选项错误;D、侧面不是平面,故本选项错误;2.(2020·四川·中考真卷)下列正方体的展开图上每个面上都有一个汉字.其中,手的对面是口的是()A. B. C. D.【答案】B【解答】A、手的对面是勤,不符合题意;B、手的对面是口,符合题意;C、手的对面是罩,不符合题意;D、手的对面是罩,不符合题意;3.(2020·四川·中考真卷)如图,正方体的每条棱上放置相同数目的小球,设每条棱上的小球数为m,下列代数式表示正方体上小球总数,则表达错误的是()A.12(m−1)B.4m+8( m−2)C.12( m−2)+8D.12m−16【答案】A【解答】由题意得,当每条棱上的小球数为m时,正方体上的所有小球数为12m−8×2=12m−16.而12(m−1)=12m−12≠12m−16,4m+8( m−2)=12m−16,12( m−2)+8=12m−16,所以A选项表达错误,符合题意;B、C、D选项表达正确,不符合题意;4.(2019·贵州·中考真卷)由下面正方体的平面展开图可知,原正方体“中”字所在面的对面的汉字是()A.国B.的C.中D.梦【答案】B【解答】根据正方体相对的面的特点,“中”字所在的面的对面的汉字是“的”,5.(2019·四川·中考真卷)如图是正方体的展开图,每个面都标注了字母,如果b在下面,c在左面,那么d在()A.前面B.后面C.上面D.下面【答案】C【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“a”与“f”是相对面,“b”与“d”是相对面,“d”在上面,“c”与“e”是相对面,“c”在左面,“e”在右面.故选C.6.(2019·中考真卷)图1的直角柱由2个正三角形底面和3个矩形侧面组成,其中正三角形面积为a,矩形面积为b.若将4个图1的直角柱紧密堆叠成图2的直角柱,则图2中直角柱的表面积为何?()A.4a+2bB.4a+4bC.8a+6bD.8a+12b【答案】C【解答】① 正三角形面积为a,矩形面积为b,① 图2中直角柱的表面积=2×4a+6b=8a+6b,7.(2019·内蒙古·中考真卷)下面四个图形中,经过折叠能围成如图所示的几何图形的是()A. B. C. D.【答案】B【解答】三角形图案的顶点应与圆形的图案相对,而选项A与此不符,所以错误;三角形图案所在的面应与正方形的图案所在的面相邻,而选项C与此也不符,三角形图案所在的面应与圆形的图案所在的面相邻,而选项D与此也不符,正确的是B.。

七年级数学上册课堂同步小练习全册合集(含答案)

七年级数学上册课堂同步小练习全册合集(含答案)

七年级数学上册课堂同步小练习全册合集(含答案)第一章有理数1.1 正数和负数1.下列各数是负数的是( )A.23B.-4C.0D.10%2.放风筝是民间传统游戏之一.在放风筝的过程中,如果风筝上升10米记作+10米,那么风筝下降6米应记作( )A.-4米B.+16米C.-6米D.+6米3.下列说法正确的是( )A.气温为0℃就是没有温度B.收入+300元表示收入增加了300元C.向东骑行-500米表示向北骑行500米D.增长率为-20%等同于增长率为20%4.我们的梦想:2022年中国足球挺进世界杯!如果小组赛中中国队胜3场记为+3场,那么-1场表示.5.课间休息时,李明和小伙伴们做游戏,部分场景如下:刘阳提问:“从F出发前进3下.”李强回答:“F遇到+3就变成了L.”余英提问:“从L出发前进2下.”……依此规律,当李明回答“Q遇到-4就变成了M”时,赵燕刚刚提出的问题应该是.6.把下列各数按要求分类:-18,227,2.7183,0,2020,-0.333…,-259,480.正数有;负数有;既不是正数,也不是负数的有.1.2.1 有理数1.在0,14,-3,+10.2,15中,整数的个数是( )A.1B.2C.3D.42.下列各数中是负分数的是( )A.-12B.1 7C.-0.444…D.1.53.对于-0.125的说法正确的是( )A.是负数,但不是分数B.不是分数,是有理数C.是分数,不是有理数D.是分数,也是负数4.在1,-0.3,+13,0,-3.3这五个数中,整数有,正分数有,非正有理数有.5.把下列有理数填入它属于的集合的大括号内:+4,-7,-54,0,3.85,-49%,-80,+3.1415…,13,-4.95.正整数集合:{ …};负整数集合:{ …};正分数集合:{ …};负分数集合:{ …};非负有理数集合:{ …};非正有理数集合:{ …}.1.下列所画数轴中正确的是( )2.如图,点M表示的数可能是( )A.1.5B.-1.5C.2.5D.-2.53.如图,点A表示的有理数是3,将点A向左移动2个单位长度,这时A点表示的有理数是( )A.-3B.1C.-1D.54.在数轴上,与表示数-1的点的距离为1的点表示的数是.5.如图,数轴的一部分被墨水污染,被污染的部分内含有的整数是.6.在数轴上表示下列各数:1.8,-1,52,3.1,-2.6,0,1.1.-3的相反数是( )A.-3B.3C.-13D.132.下列各组数中互为相反数的是( )A.4和-(-4)B.-3和1 3C.-2和-12D.0和03.若一个数的相反数是1,则这个数是.4.化简:(1)+(-1)=;(2)-(-3)=;(3)+(+2)=.5.求出下列各数的相反数:(1)-3.5;(2)35;(3)0;(4)28;(5)-2018.6.画出数轴表示出下列各数和它们的相反数:1,-5,-3.5.1.2.4 绝对值第1课时绝对值1.-14的绝对值是( )A.4B.-4C.14D.-142.化简-|-5|的结果是( )A.5B.-5C.0D.不确定3.某生产厂家检测4个篮球的质量,结果如图所示.超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )4.若一个负有理数的绝对值是310,则这个数是.5.写出下列各数的绝对值:7,-58,5.4,-3.5,0.6.已知|x+1|+|y-2|=0,求x,y的值.第2课时有理数大小的比较1.在3,-9,412,-2四个有理数中,最大的是( )A.3B.-9C.412D.-22.有理数a在数轴上的位置如图所示,则( )A.a>2B.a>-2C.a<0D.-1>a3.比较大小:(1)0 -0.5;(2)-5 -2;(3)-12-23.4.小明通过科普读物了解到:在同一天世界各地的气温差别很大,若某时刻海南的气温是15℃,北京的气温为0℃,哈尔滨的气温为-5℃,莫斯科的气温是-17℃,则这四个气温中最低的是℃.5.在数轴上表示下列各数,并比较它们的大小:-35,0,1.5,-6,2,-514.1.3 有理数的加减法1.3.1 有理数的加法第1课时有理数的加法法则1.计算(-5)+3的结果是( )A.-8B.-2C.2D.82.计算(-2)+(-3)的结果是( ) A.-1 B.-5 C.-6 D.53.静静家冰箱冷冻室的温度为-4℃,调高5℃后的温度为( )A.-1℃B.1℃C.-9℃D.9℃4.下列计算正确的是()A.-112+0.5=-1 B.(-2)+(-2)=4C.(-1.5)+-212=-3 D.(-71)+0=715.如图,每袋大米以50kg 为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际质量是kg.6.计算:(1)(-5)+(-21); (2)17+(-23);(3)(-2019)+0; (4)(-3.2)+315;(5)(-1.25)+5.25; (6)-718+-16.第2课时有理数加法的运算律及运用1.计算7+(-3)+(-4)+18+(-11)=(7+18)+[(-3)+(-4)+(-11)]是应用了( )A.加法交换律B.加法结合律C.分配律D.加法交换律与加法结合律2.填空:(-12)+(+2)+(-5)+(+13)+(+4)=(-12)+(-5)+(+2)+(+13)+(+4)(加法律)=[(-12)+(-5)]+[(+2)+(+13)+(+4)](加法律)=( )+( )=.3.简便计算:(1)(—6)+8+(—4)+12; (2)147+-213+37+13;(3)0.36+(-7.4)+0.3+(-0.6)+0.64.4.某村有10块小麦田,今年收成与去年相比(增产为正,减产为负)的情况如下:55kg,77kg,-40kg,-25kg,10kg,-16kg,27kg,-5kg,25kg,10kg.今年小麦的总产量与去年相比是增产还是减产?增(减)产多少?1.3.2 有理数的减法第1课时有理数的减法法则1.计算4-(-5)的结果是( )A.9B.1C.-1D.-92.计算(-9)-(-3)的结果是( )A.-12B.-6C.+6D.123.下列计算中,错误的是( )A.-7-(-2)=-5B.+5-(-4)=1C.-3-(-3)=0D.+3-(-2)=54.计算:(1)9-(-6); (2)-5-2;(3)0-9; (4)-23-112--14.5.某地连续五天内每天的最高气温与最低气温记录如下表所示,哪一天的温差(最高气温与最低气温的差)最大?哪一天的温差最小?第一天第二天第三天第四天第五天最高气温(℃) -1 5 6 8 11最低气温(℃) -7 -3 -4 -4 2第2课时有理数的加减混合运算1.把7-(-3)+(-5)-(+2)写成省略加号和的形式为()A.7+3-5-2B.7-3-5-2C.7+3+5-2D.7+3-5+22.算式“-3+5-7+2-9”的读法正确的是()A.3、5、7、2、9的和B.减3正5负7加2减9C.负3,正5,减7,正2,减9的和D.负3,正5,负7,正2,负9的和3.计算8+(-3)-1所得的结果是( )A.4B.-4C.2D.-2 4.计算:(1)-3.5-(-1.7)+2.8-5.3; (2)-312--523+713;(3)-0.5+-14-(-2.75)-12; (4)314+-718+534+718.5.某地的温度从清晨到中午时上升了8℃,到傍晚时温度又下降了5℃.若傍晚温度为-2℃,求该地清晨的温度.1.4 有理数的乘除法1.4.1 有理数的乘法第1课时有理数的乘法法则1.计算-3×2的结果为( )A.-1B.-5C.-6D.12.下列运算中错误的是( )A.(+3)×(+4)=12B.-13×(-6)=-2C.(-5)×0=0D.(-2)×(-4)=83.(1)6的倒数是;(2)-12的倒数是.4.填表(想法则,写结果):因数因数积的符号积的绝对值积+8 -6-10 +8-9 -420 85.计算:(1)(-15)×13; (2)-218×0;(3)334×-1625; (4)(-2.5)×-213.第2课时多个有理数相乘1.下列计算结果是负数的是( )A.(-3)×4×(-5)B.(-3)×4×0C.(-3)×4×(-5)×(-1)D.3×(-4)×(-5)2.计算-3×2×27的结果是( )A.127B.-127C.27D.-273.某件商品原价100元,先涨价20%,然后降价20%出售,则现在的价格是元.4.计算:(1)(-2)×7×(-4)×(-2.5); (2)23×-97×(-24)×+134;(3)(-4)×499.7×57×0×(-1); (4)(-3)×-79×(-0.8).第3课时有理数乘法的运算律1.简便计算2.25×(-7)×4×-37时,应运用的运算律是( )A.加法交换律B.加法结合律C.乘法交换律和结合律D.乘法分配律2.计算(-4)×37×0.25的结果是( )A.-37B.37C.73D.-733.下列计算正确的是( )A.-5×(-4)×(-2)×(-2)=80B.-9×(-5)×(-4)×0=-180C.(-12)×13-14-1=(-4)+3+1=0D.-2×(-5)+2×(-1)=(-2)×(-5-1)=124.计算(-2)×3-12,用分配律计算正确的是( )A.(-2)×3+(-2)×-12B.(-2)×3-(-2)×-12C.2×3-(-2)×-12D.(-2)×3+2×-125.填空:(1)21×-45×-621×(-10)=21×( )×( )×(-10)(利用乘法交换律)=[21×( )]×-45×( )(利用乘法结合律)=( )×( )=;(2)14+18+12×(-16)=14×+18×+12×(分配律)==.1.4.2 有理数的除法第1课时有理数的除法法则1计算(-18)÷6的结果是( )A.-3B.3C.-13 D.132.计算(-8)÷-18的结果是() A.-64 B.64 C.1 D.-1 3.下列运算错误的是()A.13÷(-3)=3×(-3) B.-5÷-12=-5×(-2)C.8÷(-2)=-8×12 D.0÷3=04.下列说法不正确的是()A.0可以作被除数B.0可以作除数C.0的相反数是它本身D.两数的商为1,则这两数相等5.若▽×-45=2,则“▽”表示的有理数应是()A.-52 B.-58 C.52 D.586.计算:(1)(-6)÷14; (2)0÷(-3.14);(3)-123÷-212; (4)-34÷-37÷-116.第2课时分数的化简及有理数的乘除混合运算1.化简:(1)-162=; (2)12-48=;(3)-56-6=.2.计算(-2)×3÷(-2)的结果是( )A.12B.3C.-3D.-123.计算43÷-13×(-3)的结果是()A.12B.43C.-43 D.-124.计算:(1)36÷(-3)×-16;(2)27÷(-9)×527;(3)30÷334×38÷(-12).第3课时有理数的加、减、乘、除混合运算1.计算12×(-3)+3的结果是( )A.0B.12C.-33D.392.计算3×13-12的结果是.3.计算:(1)2-7×(-3)+10÷(-2); (2)916÷12-2×524;(3)5÷-87-5×98; (4)1011×1213×1112-1÷-132.4.已知室温是32℃,小明开空调后,温度下降了6℃,关掉空调1小时后,室温回升了2℃,求关掉空调2小时后的室温.1.5 有理数的乘方1.5.1 乘方第1课时乘方1.-24表示( )A.4个-2相乘B.4个2相乘的相反数C.2个-4相乘D.2个4相乘的相反数2.计算(-3)2的结果是( )A.-6B.6C.-9D.93.下列运算正确的是( )A.-(-2)2=4B.--232=49C.(-3)4=34D.(-0.1)2=0.14.下列各组中两个式子的值相等的是( )A.32与-32B.(-2)2与-22C.|-2|与-|+2|D.(-2)3与-235.把34×34×34×34写成乘方的形式为,读作.6.计算:(1)(-1)5=; (2)-34=;(3)07=; (4)523=.7.计算:(1)(-2)3; (2)-4 52;(3)--372; (4)-233.第2课时有理数的混合运算1.计算2÷3×(5-32)时,下列步骤最开始出现错误的是( )解:原式=2÷3×(5-9)…①=2÷3×(-4)…②=2÷(-12)…③=-6.…④A.①B.②C.③D.④2.计算(-8)×3÷(-2)2的结果是( )A.-6B.6C.-12D.123.按照下图所示的操作步骤,若输入x的值为-3,则输出的值为. 输入x→平方→乘以2→减去5→输出4.计算:(1)9×(-1)12+(-8);(2)-9÷3+12-23×12+32;(3)8-2×32-(-2×3)2;(4)-14÷-122+2×3-0÷2243.1.5.2 科学记数法1.下列各数是用科学记数法表示的是( )A.65×106B.0.05×104C.-1.560×107D.a×10n2.据报道,2018年某市有关部门将在市区完成130万平方米老住宅小区综合整治工作,130万(即1300000)用科学记数法可表示为( )A.1.3×104B.1.3×105C.1.3×106D.1.3×1073.长江三峡工程电站的总装机容量用科学记数法表示为 1.82×107千瓦,把它写成原数是( )A.182000千瓦B.182000000千瓦C.18200000千瓦D.1820000千瓦4.(1)南京青奥会期间,约有1020000人次参加了青奥文化教育运动,将1020000用科学记数法表示为;(2)若12300000=1.23×10n,则n的值为;(3)若一个数用科学记数法表示为 2.99×108,则这个数是.5.用科学记数法表示下列各数:(1)地球的半径约为6400000m;(2)赤道的总长度约为40000000m.1.5.3 近似数1.下列四个数据中,是精确数的是( )A.小明的身高 1.55mB.小明的体重38kgC.小明家离校 1.5kmD.小明班里有23名女生2.用四舍五入法对0.7982取近似值,精确到百分位,正确的是( )A.0.8B.0.79C.0.80D.0.7903.近似数 5.0精确到( )A.个位B.十分位C.百分位D.以上都不对4.数据 2.7×103万精确到了位,它的大小是.5.求下列各数的近似数:(1)23.45(精确到十分位); (2)0.2579(精确到百分位);(3)0.50505(精确到十分位); (4)5.36×105(精确到万位).第二章整式的加减2.1 整式第1课时用字母表示数1.下列代数式书写格式正确的是( )A.x5B.4m÷nC.x(x+1)34D.-12ab2.某种品牌的计算机,进价为m元,加价n元作为定价出售.如果“五一”期间按定价的八折销售,那么售价为( )A.(m+0.8n)元B.0.8n元C.(m+n+0.8)元D.0.8(m+n)元3.若买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要( )A.(4m+7n)元B.28mn元C.(7m+4n)元D.11mn元4.某超市的苹果价格如图所示,则代数式100-9.8x可表示的实际意义是.5.每台电脑售价x元,降价10%后每台售价为元.6.用字母表示图中阴影部分的面积.1.下列各式中不是单项式的是( )A.a3B.-15C.0D.3 a2.单项式-2x2y3的系数和次数分别是( )A.-2,3B.-2,2C.-23,3 D.-23,23.在代数式a+b,37x2,5a,-m,0,a+b3a-b,3x-y2中,单项式的个数是个.4.小亮家有一箱矿泉水,若每一瓶装0.5升矿泉水,则x瓶装升矿泉水.5.在某次篮球赛上,李刚平均每分钟投篮n次,则他10分钟投篮的次数是次.6.填表:单项式 a -x2y -\f(5xy2z 2) πx2y -23a2b3系数次数7.如果关于x,y的单项式(m+1)x3y n的系数是3,次数是6,求m,n的值.1.在下列代数式中,整式的个数是( )A.5个B.4个C.3个D.2个2.多项式3x2-2x-1的各项分别是( )A.3x2,2x,1B.3x2,-2x,1C.-3x2,2x,-1D.3x2,-2x,-13.多项式1+2xy-3xy2的次数是( )A.1B.2C.3D.44.多项式3x3y+2x2y-4xy2+2y-1是次项式,它的最高次项的系数是.5.写出一个关于x,y的三次二项式,你写的是(写出一个即可).6.下列代数式中哪些是单项式?哪些是多项式?7.小明的体重是a千克,爸爸的体重比他的3倍少10千克,爸爸的体重是多少千克(用含a的整式表示)?这个整式是多项式还是单项式?指出其次数.2.2 整式的加减第1课时合并同类项1.在下列单项式中与2xy是同类项的是( )A.2x2y2B.3yC.xyD.4x2.下列选项中的两个单项式能合并的是( )A.4和4xB.3x2y3和-y2x3C.2ab2和100ab2cD.m和3.整式4-m+3m2n3-5m3是( )A.按m的升幂排列B.按n的升幂排列C.按m的降幂排列D.按n的降幂排列4.计算2m2n-3nm2的结果为( )A.-1B.-5m2nC.-m2nD.2m2n-3nm25.合并同类项:(1)3a-5a+6a; (2)2x2-7-x-3x-4x2;(3)-3mn2+8m2n-7mn2+m2n.6.当x=-2,y=3时,求代数式4x2+3xy-x2-2xy-9的值.第2课时去括号1.化简-2(m-n)的结果为( )A.-2m-nB.-2m+nC.2m-2nD.-2m+2n2.下列去括号错误的是( )A.a-(b+c)=a-b-cB.a+(b-c)=a+b-cC.2(a-b)=2a-bD.-(a-2b)=-a+2b3.-(2x-y)+(-y+3)化简后的结果为( )A.-2x-y-y+3B.-2x+3C.2x+3D.-2x-2y+34.数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2【】,其中空格的地方被钢笔水弄污了,那么空格中的项是( )A.-7xyB.7xyC.-xyD.xy5.去掉下列各式中的括号:(1)(a+b)-(c+d)=; (2)(a-b)-(c-d)=;(3)(a+b)-(-c+d)=; (4)-[a-(b-c)]=.6.化简下列各式:(1)3a-(5a-6); (2)(3x4+2x-3)+(-5x4+7x+2);(3)(2x-7y)-3(3x-10y);第3课时整式的加减1.化简x+y-(x-y)的结果是( )A.2x+2yB.2yC.2xD.02.已知A=5a-3b,B=-6a+4b,则A-B为( )A.-a+bB.11a+bC.11a-7bD.-a-7b3.已知多项式x3-4x2+1与关于x的多项式2x3+mx2+2相加后不含x的二次项,则m的值是( )4.若某个长方形的周长为4a,一边长为(a-b),则另一边长为( )A.(3a+b)B.(2a+2b)C.(a+b)D.(a+3b)5.化简:(1)(-x2+5x+4)+(5x-4+2x2);(2)-2(3y2-5x2)+(-4y2+7xy).第三章一元一次方程3.1 从算式到方程3.1.1 一元一次方程1.下列各方程是一元一次方程的是( )2.方程x+3=-1的解是( )A.x=2B.x=-4C.x=4D.x=-23.若关于x的方程2x+a-4=0的解是x=-2,则a的值是( )A.-8B.0C.8D.44.把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本.设这个班有x名学生,则由题意可列方程为.5.商店出售一种文具,单价 3.5元,若用100元买了x件,找零30元,则依题意可列方程为.6.七(2)班有50名学生,男生人数是女生人数的倍.若设女生人数为x名,请写出等量关系,并列出方程.3.1.2 等式的性质1.若a=b,则下列变形一定正确的是( )2.下列变形符合等式的基本性质的是( )A.若2x-3=7,则2x=7-3B.若3x-2=x+1,则3x-x=1-2C.若-2x=5,则x=5+2D.3.解方程- x=12时,应在方程两边( )A.同时乘-B.同时乘 4C.同时除以D.同时除以-4.由2x-16=5得2x=5+16,此变形是根据等式的性质在原方程的两边同时加上了.5.利用等式的性质解下列方程:(1)x+1=6; (2)3-x=7;(3)-3x=21;3.2 解一元一次方程(一)——合并同类项与移项第1课时利用合并同类项解一元一次方程1.方程-x=3-2的解是( )A.x=1B.x=-1C.x=-5D.x=52.方程4x-3x=6的解是( )A.x=6B.x=3C.x=2D.x=13.方程5x-2x=-9的解是.4.若两个数的比为2∶3,和为100,则这两个数分别是.5.解下列方程:第2课时利用移项解一元一次方程1.下列变形属于移项且正确的是( )A.由3x=5+2得到3x+2=5B.由-x=2x-1得到-1=2x+xC.由5x=15得到x=D.由1-7x=-6x得到1=7x-6x2.解方程-3x+4=x-8时,移项正确的是( )A.-3x-x=-8-4B.-3x-x=-8+4C.-3x+x=-8-4D.-3x+x=-8+43.一元一次方程3x-1=5的解为( )A.x=1B.x=2C.x=3D.x=44.解下列方程:5.小英买了一本《唐诗宋词选读》,她发现唐诗的数目比宋词的数目多24首,并且唐诗的数目是宋词的数目的3倍,求这本《唐诗宋词选读》中唐诗的数目?3.3 解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程1.方程3-(x+2)=1去括号正确的是( )A.3-x+2=1B.3+x+2=1C.3+x-2=1D.3-x-2=12.方程1-(2x-3)=6的解是( )A.x=-1B.x=1C.x=2D.x=03.当x=时,代数式-2(x+3)-5的值等于-9.4.解下列方程:(1)5(x-8)=-10; (2)8y-6(y-2)=0;(3)4x-3(20-x)=-4; (4)-6-3(8-x)=-2(15-2x).5.李强是学校的篮球明星,在一场比赛中,他一人得了23分.如果他投进的2分球比3分球多4个(规定只有2分球与3分球),那么他一共投进了多少个2分球,多少个3分球?第2课时利用去分母解一元一次方程3.4 实际问题与一元一次方程第1课时产品配套问题和工程问题1.挖一条1210m的水渠,由甲、乙两队从两头同时施工,甲队每天挖130m,乙队每天挖90m,需几天才能挖好?设需用x天才能挖好,则下列方程正确的是( )A.130x+90x=1210B.130+90x=1210C.130x+90=1210D.(130-90)x=12102.甲、乙两个工程队合作完成一项工程,甲队一个月可以完成总工程的,乙队的工效是甲队的2倍.两队合作多长时间后,可以完成总工程的?3.有33名学生参加社会实践劳动,做一种配套儿童玩具.已知每个学生平均每小时可以做甲元件8个或乙元件3个或丙元件3个,而2个甲元件,1个乙元件和1个丙元件正好配成一套.问应该安排做甲、乙、丙三种元件的学生各多少名,才能使生产的三种元件正好配套?第2课时销售中的盈亏1.如图所示是某超市中某品牌洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚.请你帮忙算一算,该洗发水的原价为( )A.22元B.23元C.24元D.26元2.某商品的售价比原售价降低了15%,如果现在的售价是51元,那么原来的售价是( )A.28元B.62元C.36元D.60元3.某商品进价是200元,标价是300元,要使该商品的利润率为20%,则该商品销售时应打( )A.7折B.8折C.9折D.6折4.一件商品在进价基础上提价20%后,又以9折销售,获利20元,则进价是多少元?5.一件商品的标价为1100元,进价为600元,为了保证利润率不低于10%,最多可打几折销售?第3课时球赛积分问题与单位对比问题1.某次足球联赛的积分规则:胜一场得3分,平一场得1分,负一场得0分.一个队进行了14场比赛,其中负5场,共得19分,则这个队共胜了( )A.3场B.4场C.5场D.6场2.某班级乒乓球比赛的积分规则:胜一场得2分,负一场得-1分.一个选手进行了20场比赛,共得28分,则这名选手胜了多少场(说明:比赛均要分出胜负)?3.某校进行环保知识竞赛,试卷共有20道选择题,满分100分,答对1题得5分,答错或不答倒扣2分.如答对12道,最后得分为44分.小茗准备参加比赛.(1)如果他答对15道题,那么他的成绩为多少?(2)他的分数有可能是90分吗?为什么?第4课时电话分段计费问题1.某市出租车收费标准为3公里内起步价10元,每超过1公里加收2元,那么乘车多远恰好付车费16元?2.某超市推出如下优惠方案:①一次性购物不超过100元不享受优惠;②一次性购物超过100元但不超过300元一律九折;③一次性购物超过300元一律八折.王林两次购物分别付款80元,252元,如果王林一次性购买与上两次相同的商品,那么应付款多少元?3.请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和20个水杯,请问选择哪家商场购买更合算,并说明理由(必须在同一家购买).4.根据下表的两种移动电话计费方式,回答下列问题:计费方式全球通神州行月租费25元/月0本地通话费0.2元/min 0.3元/min(1)一个月内本地通话多少时长时,两种通讯方式的费用相同?(2)若某人预计一个月内使用本地通话花费90元,则应该选择哪种通讯方式较合算?第四章几何图形初步4.1 几何图形4.1.1 立体图形与平面图形第1课时立体图形与平面图形1.从下列物体抽象出来的几何图形可以看成圆柱的是( )2.下列图形不是立体图形的是( )A.球B.圆柱C.圆锥D.圆3.下列图形属于棱柱的有( )A.2个B.3个C.4个D.5个4.将下列几何体分类:其中柱体有,锥体有,球体有(填序号).5.如图所示是用简单的平面图形画出三位携手同行的好朋友,请你仔细观察,图中共有三角形个,圆个.6.把下列图形与对应的名称用线连起来:圆柱四棱锥正方体三角形圆第2课时从不同的方向看立体图形和立体图形的展开图1.如图所示是由5个相同的小正方体搭成的几何体,从正面看得到的图形是( )2.下列常见的几何图形中,从侧面看得到的图形是一个三角形的是( )3.如图所示是由三个相同的小正方体组成的几何体从上面看得到的图形,则这个几何体可以是( )4.下面图形中是正方体的展开图的是( )5.如图所示是正方体的一种展开图,其中每个面上都有一个数字,则在原正方体中,与数字6相对的数字是( )A.1B.4C.5D.26.指出下列图形分别是什么几何体的展开图(将对应的几何体名称写在下方的横线上).4.1.2 点、线、面、体1.围成圆柱的面有( )A.1个B.2个C.3个D.4个2.汽车的雨刷把玻璃上的雨水刷干净所属的实际应用是( )A.点动成线B.线动成面C.面动成体D.以上答案都不对3.结合生活实际,可以帮我们更快地掌握新知识.(1)飞机穿过云朵后留下痕迹表明;(2)用棉线“切”豆腐表明;(3)旋转壹元硬币时看到“小球”表明.4.图中的立体图形是由哪个平面图形旋转后得到的?请用线连起来.5.如图所示的立体图形是由几个面围成的?它们是平面还是曲面?4.2 直线、射线、线段第1课时直线、射线、线段1.向两边延伸的笔直铁轨给我们的形象似( )A.直线B.射线C.线段D.以上都不对2.如图,下列说法错误的是( )A.直线MN过点OB.线段MN过点OC.线段MN是直线MN的一部分D.射线MN过点O3.当需要画一条5厘米的线段时,我们常常在纸上正对零刻度线和“5厘米”刻度线处打上两点,再连接即可,这样做的道理是.4.如图,平面内有四点,画出通过其中任意两点的直线,并直接写出直线条数.5.如图,按要求完成下列小题:(1)作直线BC与直线l交于点D;(2)作射线CA;(3)作线段AB.第2课时线段的长短比较与运算1.如图所示的两条线段的关系是( )A.a=bB.a<bC.a>bD.无法确定第1题图第2题图2.如图,已知点B在线段AC上,则下列等式一定成立的是( )A.AB+BC>ACB.AB+BC=ACC.AB+BC<ACD.AB-BC=BC3.如图,已知D是线段AB的延长线上一点,C为线段BD的中点,则下列等式一定成立的是( )A.AB+2BC=ADB.AB+BC=ADC.AD-AC=BDD.AD-BD=CD4.有些日常现象可用几何知识解释,如在足球场上玩耍的两位同学,需要到一处会合时,常常沿着正对彼此的方向行进,其中的道理是.5.如图,已知线段AB=20,C是线段AB上一点,D为线段AC的中点.若BC=AD+8,求AD的长.4.3 角4.3.1 角1.图中∠AOC的表示正确的还有( )A.∠OB.∠1C.∠AOBD.∠BOC第1题图第2题图2.如图,直线AB,CD交于点O,则以O为顶点的角(只计算180°以内的)的个数是( )A.1个B.2个C.3个D.4个3.小茗早上6:30起床,这时候挂钟的时针和分针的夹角是°.4.把下列角度大小用度分秒表示:(1)50.7°; (2)15.37°.5.把下列角度大小用度表示:(1)70°15′; (2)30°30′36″.4.3.2 角的比较与运算1.如图,其中最大的角是( )A.∠AOCB.∠BODC.∠AODD.∠COB第1题图第2题图2.如图,OC为∠AOB内的一条射线,且∠AOB=70°,∠BOC=30°,则∠AOC的度数为°.3.计算:(1)23°34′+50°17′; (2)85°26′-32°42′.4.如图,已知OC为∠AOB内的一条射线,OM,ON分别平分∠AOC,∠COB.若∠AOM=30°,∠NOB=35°,求∠AOB的度数.4.3.3 余角和补角1.如图,点O在直线AB上,∠BOC为直角,则∠AOD的余角是( )A.∠BODB.∠CODC.∠BOCD.不能确定第1题图第4题图2.若∠A=50°,则∠A的余角的度数为( )A.50°B.100°C.40°D.80°3.若∠MON的补角为80°,则∠MON的度数为( )A.100°B.10°C.20°D.90°4.如图,已知射线OA表示北偏西25°方向,写出下列方位角的度数:(1)射线OB表示北偏西方向;(2)射线OC表示北偏东方向.5.如图,直线AB上有一点O,射线OC,OD在其同侧.若∠AOC∶∠COD∶∠DOB=2∶5∶3.(1)求出∠AOC的度数;(2)计算说明∠AOC与∠DOB互余.4.4 课题学习——设计制作长方体形状的包装纸盒1.现需要制作一个无盖的长方体纸盒,下列图形不符合要求的是( )2.如图,现设计用一个大长方形制作一个长方体纸盒,要求纸盒的长、宽、高分别为4,3,1,则这个大长方形的长为( )A.14B.10C.8D.73.如图,该几何体的展开图可能是( )4.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示).第一章有理数1.1正数和负数1.B2.C3.B4.输1场5.从Q出发后退4下6.227,2.7183,2020,480-18,-0.333…,-2591.2有理数1.2.1有理数1.C2.C3.D4.0,1+13-0.3,0,-3.35.正整数集合:{+4,13,…};负整数集合:{-7,-80,…};正分数集合:{3.85,…};负分数集合:{-54,-49%,-4.95,…};非负有理数集合:{+4,0,3.85,13,…};非正有理数集合:{-7,0,-80,-54,-49%,-4.95,…}.1.2.2数轴1.C2.D3.B4.-2或05.-1,0,1,26.解:在数轴上表示如下.1.2.3相反数1.B 2.D 3.-1 4.(1)-1(2)3(3)25.解:(1)-3.5的相反数是 3.5.(2)35的相反数是-35.(3)0的相反数是0.(4)28的相反数是-28.(5)-2018的相反数是2018.6.解:如图所示.1.2.4绝对值第1课时绝对值1.C2.B3.B4.-3 105.解:|7|=7,-58=58,|5.4|=5.4,|-3.5|=3.5,|0|=0.6.解:因为|x+1|+|y-2|=0,且|x+1|≥0,|y-2|≥0,所以x+1=0,y-2=0,所以x=-1,y=2.第2课时有理数的大小比较1.C2.B3.(1)>(2)<(3)>4.-175.解:如图所示:由数轴可知,它们从小到大排列如下:-6<-514<-35<0<1.5<2.1.3有理数的加减法1.3.1有理数的加法第1课时有理数的加法法则1.B2.B3.B4.A5.49.36.解:(1)原式=-26.(2)原式=-6.(3)原式=-2019. (4)原式=0.(5)原式=4.(6)原式=-59.第2课时有理数加法的运算律及运用1.D2.交换结合-17+1923.解:(1)原式=[(-6)+(-4)]+(8+12)=-10+20=10. (2)原式=147+37+-213+13=2+(-2)=0.(3)原式=(0.36+0.64)+[(-7.4)+(-0.6)]+0.3=1+(-8)+0.3=-6.7. 4.解:根据题意得55+77+(-40)+(-25)+10+(-16)+27+(-5)+25+10=(55+77+10+27+10)+[(-25)+25]+[(-40)+(-16)+(-5)]=179+(-61)=118(kg).所以今年小麦的总产量与去年相比是增产的,增产118kg.1.3.2有理数的减法第1课时有理数的减法法则1.A2.B3.B4.解:(1)原式=9+(+6)=9+6=15. (2)原式=-5+(-2)=-7. (3)原式=0+(-9)=-9. (4)原式=-812-112+312=-12. 5.解:五天的温差分别如下:第一天:(-1)-(-7)=(-1)+7=6(℃);第二天:5-(-3)=5+3=8(℃);第三天:6-(-4)=6+4=10(℃);第四天:8-(-4)=8+4=12(℃);第五天:11-2=9(℃).由此看出,第四天的温差最大,第一天的温差最小.第2课时有理数的加减混合运算1.A2.D3.A4.解:(1)原式=- 3.5+1.7+2.8-5.3=-4.3. (2)原式=-312+523+713=912. (3)原式=-12+-12+-14+234=112. (4)原式=314+534+-718+718=9.5.解:-2+5-8=-5(℃).答:该地清晨的温度为-5℃.1.4有理数的乘除法1.4.1有理数的乘法第1课时有理数的乘法法则1.C2.B3.(1)16(2)-24.-48-48-80-80+3636+1601605.解:(1)原式=- 5.(2)原式=0.(3)原式=-125.(4)原式=356.第2课时多个有理数相乘1.C2.B3.964.解:(1)原式=-(2×7×4×2.5)=-140.(2)原式=23×97×24×74=36.(3)原式=0.(4)原式=73×-45=-2815.第3课时有理数乘法的运算律1.C2.A3.A4.A5.(1)-621-45-621-10-68-48(2)(-16)(-16)(-16)-4-2-8-141.4.2有理数的除法第1课时有理数的除法法则1.A 2.B 3.A 4.B 5.A6.解:(1)原式=(-6)×4=-24.(2)原式=0.(3)原式=-53÷-52=53×25=23.(4)原式=-34×73×67=-32.第2课时分数的化简及有理数的乘除混合运算1.(1)-8(2)-14(3)2832.B3.A4.解:(1)原式=-12×-16=2.(2)原式=-27×19×527=-59.(3)原式=-30×415×38×112=-14.第3课时有理数的加、减、乘、除混合运算1.C2.-123.解:(1)原式=2+21-5=18.(2)原式=916÷-32×524=-916×23×524=-38×524=-564. (3)原式=5×-78-5×98=5×-78-98=5×(-2)=-10. (4)原式=1011×1112×1213-1×-213=1012×1213+213=1013+213=1213.4.解:32-6+2×2=30(℃). 答:关掉空调2小时后的室温为30℃.1.5有理数的乘方1.5.1乘方第1课时乘方1.B2.D3.C4.D5.34434的4次方或34的4次幂6.(1)-1(2)-81(3)0(4)12587.解:(1)原式=-8.(2)原式=-425.(3)原式=-949.(4)原式=-827.第2课时有理数的混合运算1.C2.A3.134.解:(1)原式=9×1-8=1.(2)原式=-3+12×12-23×12+9=-3+6-8+9=4.(3)原式=8-2×9-(-6)2=8-18-36=-10-36=-46. (4)原式=-1÷14+6-0=-1×4+6=-4+6=2. 1.5.2科学记数法1.C2.C3.C4.(1)1.02×106(2)7(3)299000000。

人教版七年级上册数学点、线、面、体课时练习(含答案)

人教版七年级上册数学点、线、面、体课时练习(含答案)

4.1.2点、线、面、体能力提升1.如左下图,绕虚线旋转得到的实物图是()2.下列几何体中,有6个面的几何图形有()①长方体;②圆柱;③四棱柱;④正方体;⑤三棱柱.A.1个B.2个C.3个D.4个3.如果一个直棱柱有12个顶点,那么它的面的个数是()A.10B.9C.8D.74.下列说法正确的有()①四面体的各个面都是三角形;②圆柱、圆锥的底面都是圆;③圆柱是由两个面围成的;④长方体的面不可能是正方形.A.1个B.2个C.3个D.4个5.观察下图,把左边的图形绕着给定的直线旋转一周后可能形成的立体图形是()6.薄薄的硬币在桌面上转动时,看上去像球,这说明了.7.航天飞机拖着“长长的火焰”,我们用数学知识可解释为点动成线.用数学知识解释下列现象:(1)一只小蚂蚁爬行留下的路线可解释为.(2)电动车车辐条运动形成的图形可解释为.8.如图,正方形ABCD的边长为3 cm,以直线AB为轴,将正方形旋转一周,所得几何体从正面看的图形的面积是 cm2.9.观察如图所示的图形,写出下列问题的结果:(1)这个图形的名称是;(2)这个几何体有个面,有个底面,有个侧面,底面是形,侧面是形.(3)侧面的个数与底面多边形的边数有什么关系?10.用数学的眼光去观察问题,你会发现很多图形都能看成是动静结合,舒展自如的.下面所给的三排图形都存在着某种联系,用线将它们连起来.11.观察下列多面体,并把下表补充完整.名称三棱柱四棱柱五棱柱六棱柱图形顶点数a 6 10 12观察上表中的结果,你能发现a,b,c之间有什么关系吗?请写出关系式.★12.如图所示,长方形绕虚线旋转一周后,形成的图形是什么?旋转半周呢?创新应用★13.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是.(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是.(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,求x+y的值.参考答案能力提升1.D要能想象到它转动后的形状,面动成体.一个梯形以底所在直线为轴旋转,上、下两部分形成圆锥,中间形成圆柱,是由两个圆锥和一个圆柱组合而成,故应选D.2.C3.C直棱柱有12个顶点,一定是六棱柱,所以它的面的个数是8.4.B①②正确;圆柱是由三个面围成的,所以③错误;长方体的面可能是正方形,所以④错误.5.D由图形可以看出,左边的长方形的竖直的两个边与已知的直线平行,因而这两条边旋转形成两个柱形表面,旋转一周后可能形成的立体图形是一个管状的物体.6.面动成体从运动的观点可知,薄薄的硬币在桌面上转动时,看上去像球,这种现象说明面转动成体.7.(1)点动成线(2)线动成面8.18将正方形旋转一周所形成的图形是圆柱,从正面看圆柱是一个长方形,长方形的一边长为3cm,另一边长为6cm.所以面积为18cm2.9.解:(1)六棱柱(2)826六边长方(3)侧面的个数与底面多边形的边数相等.10.解:从第一行的平面图形绕某一边旋转或沿某一方向平移可得到第二行的立体图形,从第二行的立体图形的上面看可得到第三行的平面图形.(1)→(三)→(D);(2)→(二)→(C);(3)→(四)→(B);(4)→(一)→(A).11.解:填表为:名称三棱柱四棱柱五棱柱六棱柱图形顶点数a 6 8 10 12棱数b9 12 15 18面数c 5 6 7 8根据表中结果,发现a,b,c之间的关系为a+c-b=2.12.解:长方形绕图示虚线旋转一周后形成的图形是圆柱,旋转半周所形成的图形也是圆柱.创新应用13.解:(1)四面体的棱数为6;正八面体的顶点数为6;关系式为V+F-E=2.(2)由题意得,F-8+F-30=2,解得F=20.(3)因为有24个顶点,每个顶点处都有3条棱,两点确定一条直线,所以共有24×3÷2=36条棱.那么24+F-36=2,解得F=14,所以x+y=14.先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。

2020-2021学年度人教版七年级数学上册4.1.2点、线、面、体课时练习(含答案解析)

2020-2021学年度人教版七年级数学上册4.1.2点、线、面、体课时练习(含答案解析)

2020-2021学年度人教版七年级数学上册4.1.2点、线、面、体课时练习一、选择题1.将下面的平面图形绕轴旋转一周,可以得到的立体图形是()A.B.C.D.2.用平面截圆锥,所得的截面图形不可能是()A.圆B.长方形C.椭圆D.三角形3.用一个平面去截正方体,截面的形状不可能是()A.四边形B.五边形C.六边形D.七边形4.如图,将直角三角形绕其一条直角边所在直线l旋转一周,得到的几何体是()A.B.C.D.5.如图,一正方体截去一角后,剩下的几何体的面数和棱数分别为()A.6,14 B.7,15 C.7,14 D.6,156.如图,CD是直角三角形ABC的高,将直角三角形ABC按以下方式旋转一周可以得到右侧几何体的是().A.绕着AC旋转B.绕着AB旋转C.绕着CD旋转D.绕着BC旋转7.下面几何体的截面图不可能是圆的是()A.圆柱B.圆锥C.球D.棱柱8.如图所示的沙漏,可以看作是由下列所给的哪个平面图形绕虚线旋转一周而成的()A.B.C.D.9.用一个平面去截一个正方体,截面不可能是()A.三角形B.正方形C.五边形D.八边形10.下列说法不正确的是()A.相反数等于本身的数只有0B.绝对值等于本身的数只有0C.用一个平面去截正方体得到的截面可能是三角形;四边形;五边形或六边形.D.圆锥的表面展开图中扇形的弧长等于圆的周长二、填空题11.用一个平面去截一个圆柱体,截面的形状可以是_____.(填一个即可)12.用一个平面截三棱柱,最多可以截得________边形;用一个平面截四棱柱,最多可以截得________边形;用一个平面截五棱柱,最多可以截得________边形.试根据以上结论,猜测用一个平面去截n棱柱,最多可以截得________边形.13.用一个平面分别截棱柱、圆锥,都能截出的一个图形是________.14.用一个平面截长方体、五棱柱、圆柱和圆锥,不能截出三角形的是________.15.长方形的两条边长分别为3cm和4cm,以其中一条边所在的直线为轴旋转一周后得到几何体的底面积是_________________________.16.夜晚的流星划过天空时留下一道明亮的光线,由此说明了________的数学事实.17.直角三角形绕它的直角边旋转一周,形成了一个圆锥体,这说明了_____.18.笔尖在纸上快速滑动写出一个又一个字,用数学知识可以理解为___________. 19.用一平面去截一几何体所得截面是长方形,则这个几何体可能是________________(写出两种即可).20.一块长方体的木块,从左面和右面分别裁去长为2厘米和5厘米的长方体,成为一个正方体后,表面积减少了84平方厘米,那么原来长方体的体积为_______.三、解答题21.用平面去截正方体.(1)截面形状能是三角形吗?如果能,请画出一种截法.(2)截面形状能是长方形吗?如果能,请画出一种截法.(3)截面形状能是梯形吗?如果能,请画出一种截法.(4)截面形状能是五边形吗?如果能,请画出一种截法.(5)截面形状能是六边形吗?如果能,请画出一种截法.(6)截面形状能是圆吗?为什么?22.说出图中几何体截面的形状.①②③④23.一个圆柱的底面半径是6cm,高是12cm,如果用一个平面去截这个圆柱,截面能是正方形吗?如果能,请画图说明你的截法,并求这个正方形的面积;如果不能,请说明理由.24.如图,以AB所在直线为轴,旋转一周,得到的几何体的体积是多少?(π取3.14)25.如图是一个长为8cm,宽为6cm的长方形纸片,该长方形纸片分别绕长、宽所在直线旋转一周(如图1,图2),会得到两个几何体,请你通过计算说明哪种方式得到的几。

4.1生活中的立体图形 (解析版)-2020-2021学年七年级数学上册课时同步练(华师大版)

4.1生活中的立体图形 (解析版)-2020-2021学年七年级数学上册课时同步练(华师大版)

第4章图形的初步认识4.1 生活中的立体图形一、选择题:1.下列几何体中截面不可能是长方形的是()A.B.C.D.【答案】C【解析】解:A、长方体的截面可以为长方形,不符合题意,本选项错误;B、圆柱的轴截面可以为长方形,不符合题意,本选项错误;C、圆的截面不可能是长方形,符合题意,故本选项正确;D、三棱柱的截面可以是长方形,不符合题意,本选项错误.故选:C.【点睛】本题考查了截一个几何体.截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.2.下列几何体中,是棱锥的为()A.B.C.D.【解析】解:A选项是圆柱;B选项是圆锥;C选项是四棱柱;D选项是四棱锥.故选:D.【点睛】本题考查几何体的识别,解题的关键是要认识不同的几何图形.3.如图所示的平面图形绕轴旋转一周,可得到的立体图形是()A.圆锥B.圆柱C.三棱锥D.棱柱【答案】A【解析】解:直角三角形绕其一条直角边旋转一周所得图形是一个圆锥体.故选:A.【点睛】本题考查了点、线、面、体,熟悉常见图形的旋转得到立体图形是解题的关键.4.如图是一个常见的道路警示反光锥实物图,与它类似的几何图形是()A.长方体B.正方体C.球D.圆锥【答案】D解:与常见的道路警示反光锥实物图类似的几何图形是圆锥,故选:D.【点睛】本题考查了认识立体图形,熟悉常见立体图形的特点是解决此题的关键.5.下列图形,不是柱体的是()A.B.C.D.【答案】D【解析】锥体必有一个顶点和一个底面,一个曲面;柱体必有两个底面(上底和下底),其他部分可能是平面,也可能是曲面,有两个面互相平行且大小相同,余下的每个相邻两个面的交线互相平行.故选D.二、填空题:6.在一个六棱柱中,共____条棱,一个六棱锥共有____个面【答案】18 7【解析】解:六棱柱共有棱:6×3=18(条),一个六棱锥共有7个面;故答案为:18,7.【点睛】本题考查的是立体图形的认识,六棱锥共有6的3倍条棱,六棱锥共有7个面.7.将下列几何体分类(用序号填空):(1)按有无曲面分类:有曲面的是______,没有曲面的是______;(2)按柱体、锥体、球体分类:柱体的是______,锥体的是______,球体的是______.【答案】②③④①⑤⑥①③⑤④⑥②【解析】(1)按有无曲面分类:有曲面的是②③④,没有曲面的是①⑤⑥,故答案为:②③④;①⑤⑥;(2)按柱体,锥体,球体分类:柱体的是①③⑤,锥体的是④⑥,球体的是②.故答案为:①③⑤;④⑥;②.【点睛】本题主要考查了几何体的分类的有关知识.正确把握相关定义是解题关键.8.已知三棱柱有5个面6个顶点9条棱,四棱柱有6个面8个顶点12条棱,五棱柱有7个面10个顶点15条棱,…,由此可以推测n棱柱有_______个面,_______个顶点,棱有______条.【答案】n+2 2n 3n【解析】解:n棱柱有(n+2)个面,2n个顶点,3n条棱.故答案为:n+2,2n,3n.【点睛】本题考查了棱柱的性质,熟记常见棱柱的特征,可以总结一般规律:n棱柱有(n+2)个面,2n个顶点和3n条棱.9.在几何图形“线段、圆、圆锥、正方体、角、棱锥”中,属于立体图形的共有_____个.【答案】3【解析】在几何图形“线段、圆、圆锥、正方体、角、棱锥”中,属于立体图形的有:圆锥、正方体、棱锥共3个.故答案为:3.【点睛】本题考查了认识立体图形,立体图形是图形的各部分不在同一个平面内.10.在如图所示的正方体中,如果经过虚线切去一个角,可以得到一多面体.这个多面体有_______个面,有_______条棱,有_______个顶点.【答案】7 15 10 【解析】根据题意可知切去一个角,比原来多了一个面,多了3条棱,多了2个顶点,所以现在的多面体有7个面,15条棱,10个顶点. 故答案为7,15,10 【点睛】本题主要考查几何体的面,棱和顶点的个数,掌握正方体的面,棱和顶点的个数是解题的关键.三、解答题:11.如图,将一个长方形沿它的长或宽所在的直线旋转一周,回答下列问题:(1)得到什么几何体?(2)长方形的长和宽分别为6cm 和4cm ,分别绕它的长和宽所在直线旋转一周,得到不同的几何体,它们的体积分别为多少?(结果保留π)【答案】(1)圆柱;(2)它们的体积分别为3144cm π,396cm π 【解析】 解:(1)圆柱(2) 绕宽旋转得到圆柱底面半径为6cm ,高为4cm ,21V r h π=264π=⨯⨯144π=绕长旋转得到的圆柱的底面半径为4cm ,高为6cm ,2246V π=⨯⨯96π=∴它们的体积分别为3144cm π,396cm π 【点睛】本题主要考查的是圆柱的体积,熟记圆柱的体积公式是解题的关键. 12.如图所示是一个圆柱体,它的底面半径为3cm ,高为6cm .(1)请求出该圆柱体的表面积;(2)用一个平面去截该圆柱体,你能截出截面最大的长方形吗?截得的长方形面积的最大值为多少? 【答案】(1)()254πcm ;(2)能截出截面最大的长方形,长方形面积的最大值为:()236cm 【解析】解:(1)圆柱体的表面积为:232236ππ⨯⨯+⨯⨯1836ππ=+; ()254π=cm ;(2)能截出截面最大的长方形.该长方形面积的最大值为:()2(32)636⨯⨯=cm .【点睛】本题考查了圆柱表面积的求法和截几何体,根据截面的形状既与被截的几何体有关,还与截面的角度和方向有关,得出这个圆柱体的截面面积最大是长方形是本题的关键.13.用数学的眼光观察问题,你会发现很多图形都能看成是动静结合,舒展自如的.下面所给的三排图形(如图),都存在着某种联系.用线将存在联系的图形连接起来.【答案】答案见解析【解析】一个三角形绕一边旋转一周,得到的几何体是圆锥,俯视图为(D),即→→;直角梯形绕直角边旋转一周,得到的几何体是圆台,俯视图为(C),即→→;长方形绕一边旋转一周,得到的几何体是圆柱,俯视图为(B),即→→;三角形向上平移,得到的几何体是三棱柱,俯视图为(A),即→→.【点睛】本题考查了平面图形和立体图形的联系,长方形绕一边旋转一周,得到的几何体是圆柱,一个三角形绕一边旋转一周,得到的几何体是圆锥.14.在日常生活中,我们看到的物体:如①易拉罐;②饮水机;③金字塔;④自来水管;⑤八角亭;⑥西红柿;⑦小喇叭;⑧气球;⑨课本等。

2023-2024学年人教部编版初中数学七年级上册课时练《4.1.2 点、线、面、体》02(含答案)

2023-2024学年人教部编版初中数学七年级上册课时练《4.1.2 点、线、面、体》02(含答案)

人教版七年级数学上册第四章几何图形初步《4.1.2 点、线、面、体》课时练1.填空题(1)长方体、正方体都有个面,长方体的6个面可能都是形,也有可能都有2个面是形,它的面完成相同。

(2)正方体的6个面都是形,6个面的面积是。

(3)圆柱的上、下底面是。

(4)圆锥的底面是。

(5)三棱柱的上、下底面是;侧面是。

(6)四棱柱的上、下底面是;侧面是。

2.一个三棱柱的底面边长为acm,侧棱长为bcm。

(1)这个三棱柱共有几个面?它们分别是什么形状?哪些面的形状、面积完全相同?(2)这个三棱柱共有多少条棱,它们的长度分别是多少?3.图中的两个图形经过折叠能否围成棱柱?先想一想,再试一试。

4.将一个正方体的表面沿某些棱剪开,展成一个平面图形,把你展开后的不同平面图形都画出来,看看有几种。

5.两位同学用图形画出的小动物中,哪个图形是用立体图形组成的?用了哪些立体图形?哪个图形是用平面图形组成的?用了哪些平面图形?6.判断正误(1)圆柱的上下两个面一样大()(2)圆柱、圆锥的底面都是圆()(3)棱柱的底面是四边形()(4)棱锥的侧面都是三角形()(5)棱柱的侧面可能是三角形()(6)圆柱的侧面是长方形()(7)球体不是多面体()(8)圆锥是多面体()(9)棱柱、棱锥都是多面体()(10)柱体都是多面体()7.一个四棱柱被一刀切去一部分,试举例说明剩下的部分是否可能还是四棱柱。

8.一个长方形的长是宽的两倍,把这长方形剪成:(1)两部分,使得他们能够构成一个有两条边相等的三角形;(2)三部分,使得能由它们构成一个正方形。

9.把一个正方形用两条线分成大小、形状完全相同的四块,你能有几种方法?10.请说出分别与下列展开图对应的立体图形的名称。

11.哪种几何体的表面能展成下面的图形?12.图中的两个图形经过折叠能否围成棱柱?先想一想,再试一试。

13.看图回答下列问题:(1)这个几何体的名称(2)这个几何体有几个面,底面、侧面分别都是什么图形?(3)侧面的个数与底面多边形的边数有什么关系?(4)这个几何体有几条侧棱,它们的长度之间有什么关系?14.将一个正方体的表面沿某些棱剪开,展成一个平面图形,把你展开后的不同平面图形都画出来,看看有几种.参考答案1.填空题(1)6个面,长方形,正方形,对(2)正方形,相等(3)圆(4)圆(5)三角形,四边形(6)四边形四边形2.(1)5个面,其中3个侧面是长方形,两个底面是三角形,两个底面形状完全相同,三个侧面形状完全相同。

新人教版七年级数学上册4.1.2点、线、面、体同步练习1

新人教版七年级数学上册4.1.2点、线、面、体同步练习1

新人教版七年级数学上册点、线、面、体同步练习1一、填空题1.如图,察看图形,填空:包围着体的是_________;面与面订交的地方形成_________;线与线订交的地方是_________.2.笔尖在纸上迅速滑动写出了一个又一个字,这说了然_________;车轮旋转时,看起来像一个整体的圆面,这说了然_________;直角三角形绕它的直角边旋转一周,形成了一圆锥体,这说了然_________.3.如图,三棱锥有_________个面,它们订交形成了_________条棱,这些棱订交形成了_________个点.4.如图,各图中的暗影图形绕着直线I 旋转 360°,各能形成如何的立体图形?_________二、选择题5.如图,小慧用如图的胶滚沿从左到右的方向将图案滚涂到墙上,以下给出的四个图形中,切合胶滔滔出的图案是()A.B.C.D.三、解答题6.生活中常常看到由一些简单的平面图形构成的优美图案,你能说出下边图中的神奇图案是由哪些平面图形构成的吗?7.将如图左侧的图形折成一个立方体,判断右侧的四个立方体哪个是由左侧的图形折成的.8.用 6 根火柴能摆成含有 4 个三角形的图形吗?有几种方法?参照答案与试题分析一、填空题1.如图,察看图形,填空:包围着体的是面;面与面订交的地方形成线;线与线订交的地方是点.考点:点、线、面、体。

剖析:依据点、线、面、体的特色,而后察看图形即可得出答案.解答:解:依据图形可得:包围着体的是面;面与面订交的地方形成线;线与线订交的地方是点.故答案为:面、线、点.评论:此题考察点、线、面、体的知识,属于基础题,注意认真察看图形联合定义得出答案.2.笔尖在纸上迅速滑动写出了一个又一个字,这说了然点动成线;车轮旋转时,看起来像一个整体的圆面,这说了然线动成面;直角三角形绕它的直角边旋转一周,形成了一圆锥体,这说了然面动成体.考点:点、线、面、体。

剖析:线是由无数点构成,字是由线构成的,所以点动成线;车轮上有线,看起来像一个整体的圆面,因此是动成面;直角三角形是一个面,形成圆锥体,因此是面动成体.解答:解:笔尖在纸上迅速滑动写出了一个又一个字,这说了然点动成线;车轮旋转时,看起来像一个整体的圆这说了然线动成面;直角三角形绕它的直角边旋转一周,形成了一圆锥体,这说了然面动成体.评论:此题考察点,面,线,体的构成.3.如图,三棱锥有4个面,它们订交形成了6条棱,这些棱订交形成了4个点.考点:欧拉公式剖析:依据三棱锥的极点、棱及面的特色作答.解答:解:三棱锥有 4 个面,它们订交形成了评论:将多面体的极点数用V 表示,面数用6 条棱,这些棱订交形成了F 表示,棱数用 E 表示,则4 个点.故答案为4、 6、 4.V 、 F、E 之间的数目关系可用一个公式表示,这就是有名的欧拉公式:V+F ﹣E=2 .4.如图,各图中的暗影图形绕着直线 I 旋转 360°,各能形成如何的立体图形?圆柱;圆锥;球考点:点、线、面、体。

人教版七年级数学上册同步练习题及答案全套(课课练)

人教版七年级数学上册同步练习题及答案全套(课课练)

第一章 有理数1.1 正数和负数基础检测 1.521,76,106,14.3,732.1,34,5.2,0,1----+-中,正数有 ,负数有 。

2.如果水位升高5m 时水位变化记作+5m ,那么水位下降3m 时水位变化记作 m ,水位不升不降时水位变化记作 m 。

3.在同一个问题中,分别用正数与负数表示的量具有 的意义。

4.2010年我国全年平均降水量比上年减少24㎜.2009年比上年增长8㎜.2008年比上年减少20㎜。

用正数和负数表示这三年我国全年平均降水量比上年的增长量。

拓展提高5.下列说法正确的是( )A.零是正数不是负数B.零既不是正数也不是负数C.零既是正数也是负数D.不是正数的数一定是负数,不是负数的数一定是正数6.向东行进-30米表示的意义是( )A.向东行进30米B.向东行进-30米C.向西行进30米D.向西行进-30米7.甲、乙两人同时从A 地出发,如果向南走48m,记作+48m ,则乙向北走32m ,记为 这时甲乙两人相距 m.8.某种药品的说明书上标明保存温度是(20±2)℃,由此可知在 ℃至 ℃范围内保存才合适。

9.如果把一个物体向右移动5m 记作移动-5m ,那么这个物体又移动+5m 是什么意思?这时物体离它两次移动前的位置多远?1.2.1有理数测试基础检测1、_____、______和______统称为整数; _ ___和__ ___统称为分数;______、______、______、______和______统称为有理数;______和______统称为非负数;______和______统称为非正数;______和______统称为非正整数;______和______统称为非负整数.2、下列不是正有理数的是( )A 、-3.14B 、0C 、37 D 、3 3、既是分数又是正数的是( )A 、+2B 、-314 C 、0 D 、2.3 拓展提高4、下列说法正确的是( )A 、正数、0、负数统称为有理数B 、分数和整数统称为有理数C 、正有理数、负有理数统称为有理数D 、以上都不对5、-a 一定是( )A 、正数B 、负数C 、正数或负数D 、正数或零或负数6、下列说法中,错误的有( ) ①742-是负分数;②1.5不是整数;③非负有理数不包括0; ④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数。

七年级上册数学人教版课时练《4.1.2 点、线、面、体》01(含答案解析)

七年级上册数学人教版课时练《4.1.2 点、线、面、体》01(含答案解析)

人教版七年级数学上册第四章几何图形初步《4.1.2 点、线、面、体》课时练1.在下列立体图形中,只需要一个面就能围成的是()A.正方体B.圆锥C.圆柱D.球2.在球、圆锥、圆柱、棱柱中,由曲面和平面围成的是()A.球和圆锥B.球和圆柱C.圆锥和圆柱D.圆柱和棱柱3.看到飞行中的萤火虫,可以说明()A.点动成线B.线动成面C.面动成体D.不能说明什么问题4.下雨时,司机会打开雨刷器,雨刷器在运动时会形成一个扇面,这是因为()A.点动成线B.线动成面C.面动成体D.面面相交形成线5.下列现象能说明“面动成体”的是()A.时钟的钟摆摆动留下的痕迹B.旋转一扇门,门在空中运动的轨迹C.扔出一块小石子,石子在天空中飞行的路线D.一根舞动的荧光棒6.如图,绕虚线旋转一周可以得到哪个花瓶?()第6题图7.将如图所示的一个直角三角形ABC(∠C=90°)绕斜边AB旋转一周,所得到的几何体从正面看到的图形是()第7题图8.笔尖在纸上快速滑动写出了一个又一个的英文字母,这说明了______________;车轮旋转时,看起来像一个整体的圆面,这说明了______________;直角三角形绕它的直角边旋转一周,形成了一个圆锥体,这说明了__________________.9.小燕子在和朋友做游戏的时候,把硬币竖立在桌面上,然后用手指一弹,我们可以看到在桌面上有个旋转的球,这说明________________.10.长方体有__________个面,__________条棱,__________个顶点;圆柱有__________个面,其中有__________个平面,__________个曲面.11.如图所示,观察如图的图形,写出下列问题的结果.第11题图(1)这个图形的名称是__________;(2)围成这个几何体的各面是______________形;(3)侧面的个数与底面多边形的边数的关系是____________.12.如图,这个立体图形是由几个面组成的?面与面相交成几条线?其中有几条线是曲的?第12题图13.下列立体图形中,面数最多的是()A.四棱锥B.长方体C.五棱柱D.六面体14.如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们都有12条棱.下列棱柱中和九棱锥的棱数相等的是()第14题图A.五棱柱B.六棱柱C.七棱柱D.八棱柱15.观察如图中圆柱和棱柱,回答下列问题:(1)圆柱和棱柱各由几个面组成?它们都是平面吗?(2)圆柱的侧面与底面相交成几条线?它们都是直线吗?(3)这个棱柱有几条棱,几个顶点,经过每个顶点有几条棱?第15题图16.用数学的眼光去观察问题,你会发现很多图形都能看成是动静结合,舒展自如的.如图所给的三排图形都存在着某种联系,用线将它们连起来.第16题图17.已知有一个长为5cm,宽为3cm的长方形,若以这个长方形的一边所在的直线为轴,将它旋转一周,你能求出所得到的几何体的表面积吗?18.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察如图几种简单多面体模型,解答下列问题:第18题图(1)根据上面多面体模型,完成表格中的空格:多面体顶点数(V)面数(F)棱数(E)四面体长方体正八面体正十二面体你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是________________;(2)一个多面体的面数比顶点数多8,且有30条棱,则这个多面体的面数是____________;(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,求x+y的值.参考答案1—5.DCABB6—7.AC8.点动成线线动成面面动成体9.面动成体10.612832 111.(1)正六棱柱(2)长方形和正六边(3)相等12.这个立体图形是由5个面组成的,面与面相交成9条线,其中有2条线是曲的.13—14.CB15.(1)圆柱由三个面组成,上、下两个底面是平面,侧面是曲面;棱柱由8个面组成,都是平面;(2)两条,不是直线;(3)这个棱柱有18条棱,12个顶点,经过每个顶点有3条棱.16.略17.①以长为5cm的边所在的直线为轴,旋转一周时,表面积为π×32×2+5×2π×3=48π(cm2);②以长为3cm的边所在直线为轴,旋转一周时,表面积为π×52×2+3×2π×5=80π(cm2).故所得几何体的表面积为48πcm2或80πcm2.18.(1)V+F-2=E(2)20(3)E=24×3÷2=36,x+y=F=E-V+2=36-24+2=14.。

2021-2022学年人教版七年级数学上册 4.1.2 点、线、面、体 同步提高课时练习

2021-2022学年人教版七年级数学上册 4.1.2 点、线、面、体 同步提高课时练习

4.1.2:点、线、面、体-2021-2022学年七年级数学上册同步提高课时练习(人教版)1.汽车的雨刷把玻璃上的雨水刷干净属于的实际应用是( )A.点动成线B.线动成面C.面动成体D.以上答案都不对2.用一个平面取截一个几何体,得到的截面是四边形,这个几何体可能是()A.圆柱B.球体C.圆锥D.以上都有可能3.下图中的图形绕虚线旋转一周,可得到的几何体是()A.B.C.D.4.一个正方体锯掉一个角后,顶点的个数是()A.7个B.8个C.9个D.7个或8个或9个或10个5.如图,矩形绕它的一条边MN所在的直线旋转一周形成的几何体是()A.B.C.D.6.一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱7.在球、圆锥、圆柱、棱柱中,由曲面和平面围成的是( )A.球和圆锥B.球和圆柱C.圆锥和圆柱D.圆柱和棱柱8.下列几何体的所有面都不是平面图形的是()A.正方体B.圆锥C.圆柱D.球9.将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为()A.B.C.D.10.一个直棱柱有12个顶点,那么它的面的个数是()A.10个B.9个C.8个D.7个11.下列现象不能体现线动成面的是()A.用平口铲子铲去墙面上的大片污渍B.用一条拉直的细线切一块豆腐C.流星划过天空留下运动轨迹D.用木板的边缘将沙坑里的沙推平12.下列立体图形中面数相同的是()①圆柱;②圆锥;③正方体;④四棱柱A.①④B.①②C.②③D.③④13.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是()A.B.C.D.14.若一个棱柱有10个顶点,则下列说法正确的是( )A.这个棱柱有4个侧面B.这个棱柱有5个侧面C.这个棱柱的底面是十边形D.这个棱柱是一个十棱柱15.如图所示,用经过A、B、C三点的平面截去正方体的一角,变成一个新的多面体,这个多面体的面数是()A.8 B.7 C.6 D.516.下面说法,错误的是()A.一个平面截一个球,得到的截面一定是圆B.一个平面截一个正方体,得到的截面可以是五边形C.棱柱的截面不可能是圆D.甲、乙两图中,只有乙才能折成正方体17.如图,下列叙述不正确的是( )A.四个几何体中,平面数最多的是图④B.图②有四个面是平面C.图①由两个面围成,其中一个面是曲面D.图中只有一个顶点的几何体是图③18.如图的立体图形可以看作直角三角形ABC( )A.绕AC旋转一周得到B.绕AB旋转一周得到C.绕BC旋转一周得到D.绕CD旋转一周得到19.长方体有________个面,有________条棱,有________个顶点;圆柱有________个面,其中有________个平面,有________个曲面.20.中国武术中有“枪扎一条线,棍扫一大片”这样的说法,这句话给我们以_____的形象.21.用一个平面去截几何体,若截面是三角形,这个几何体可能是__,__和__.22.如图的几何体有_______个面,________条棱,________个顶点,它是由简单的几何体________和________组成的.23.在棱柱中,相邻两个面的交线叫做________,相邻两个侧面的交线叫做________.棱柱的所有侧棱长都________,棱柱上、下底面的形状,侧面的形状________都是________.24.下面几何体的截面分别是什么?__________ ____________ __________ ________25.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积为_______.26.如图所示,观察下列图形,在横线上写出几何体的名称及截面形状.(1)①的名称是________,截面形状________;(2)②的名称是________,截面形状是________;(3)③的名称是________,截面形状是________;(4)④的名称是________,截面形状是________;27.用一个平面截下列几何体:①长方体,②六棱柱,③球,④圆柱,⑤圆锥,截面能得到三角形的是__________(填写序号即可)28.硬币在桌面上快速地转动时,看上去象球,这说明了_________________.29.航天飞机拖着“长长的火焰”,我们用数学知识可解释为点动成线.用数学知识解释下列现象:(1)一只小蚂蚁爬行留下的路线可解释为.(2)电动车车辐条运动形成的图形可解释为.30.一个棱柱有10个顶点,所有的侧棱长之和为,则每条侧棱的长为_____.31.用一个平面截三棱柱,最多可以截得________边形;用一个平面截四棱柱,最多可以截得________边形;用一个平面截五棱柱,最多可以截得________边形.试根据以上结论,猜测用一个平面去截n棱柱,最多可以截得________边形.32.笔尖在纸上快速滑动写出了一个又一个字,这说明了________;车轮旋转时,看起来像一个整体的圆面,这说明了________;直角三角形绕它的直角边旋转一周形成了一圆锥体,这说明了________.33.如图,长方形硬纸板以其中任意一边为轴旋转都可得到一个圆柱,你认为以____cm长的边为轴旋转得到的圆柱体积较大.34.将一个长为6厘米,宽为4厘米的长方形绕它的一边所在的直线旋转一周,得到的几何体的体积是_____ 立方厘米.(结果保留π)35.新年晚会是我们最快乐的时候.会场上,悬挂着五彩缤纷的小装饰,其中有各种各样的立体图形,多面体是其中的一部分,多面体中围成立体图形的每一个面都是平面,没有曲面,如棱柱、棱锥等多面体,如图.请你数一下图中每一个多面体具有的顶点数(V)、棱数(E)和面数(F),并把结果记入下表中,你会发现什么规律?+-多面体顶点数(V)面数(F)棱数(E)V F E正四面体正方体正八面体正十二面体36.如图,第二行的图形绕虚线旋转一周,便能得到第一行的某个几何体.用线连一连.37.如图是一个长为8cm,宽为6cm的长方形纸片,该长方形纸片分别绕长、宽所在直线旋转一周(如图1,图2),会得到两个几何体,请你通过计算说明哪种方式得到的几何体的体积大.(结果保留π)38.把长方形剪去一个角,它可能是几边形?39.如图,下列图形绕着虚线旋转一周得到的几何体分别是:(1)________;(2)__________;(3)__________.40.如图,把下列平面图形(1)~(6)绕虚线旋转一周,便能形成A~F的某个几何体,请找出来.41.观察如图所示的棱锥,回答下列问题:(1)这个图形是平面图形还是立体图形?(2)图中有多少个顶点?多少条线段?多少个平面?(3)图中有哪些平面图形?42.如图,第二行的图形绕点划线旋转一周,便形成第一行的某个图形(几何体),将对应的两个图形用线联结起来.43.如果用平面截掉一个长方体的一个角,剩下的几何体有几个顶点、几条棱、几个面?44.一个表面涂满色的正方体,现将棱三等分,再把它切开变成若干个小正方体.问:其中三面都涂色的小正方体有多少个?两面都涂色的小正方体有多少个?只有一面涂色的小正方体有多少个?各面都没有涂色的小正方体有多少个?45.如图,从一个多边形的某一条边上的一点(不与端点重合)出发,分别连接这个点与其他所有顶点,可以把这个多边形分割成若干个三角形,由三角形、四边形、五边形为例,你能总结出什么规律?n边形呢?参考答案1.B【分析】从运动的观点来看,点动成线,线动成面,面动成体.点、线、面、体组成几何图形.【详解】汽车的雨刷实际上是一条线,通过运动把玻璃上的雨水刷干净,所以应是线动成面,故选B.【点评】主要考察对点、线、面、体的理解及其实际应用.2.A【分析】根据圆柱、球体、圆锥的几何特征,分别分析出用一个平面去截该几何体时,可能得到的截面的形状,逐一比照后,即可得到答案.【详解】解:A、用一个平面去截一个圆柱,得到的图形可能是四边形,故A选项符合题意;B、用一个平面去截一个球体,得到的图形可能是圆,故B选项不合题意;C、用一个平面去截一个圆锥,得到的图形可能是圆、椭圆、抛物线、三角形,不可能是四边形,故C选项不符合题意;D、因为A选项符合题意,故D选项不合题意;故选A.【点评】本题考查了截一个几何体,截面的形状随截法的不同而改变,一般为多边形或圆,也可能是不规则图形,一般的截面与几何体的几个面相交就得到几条交线,截面就是几边形,因此,若一个几何体有几个面,则截面最多为几边形.3.C【分析】根据面动成体的原理:上面的长方形旋转一周后是一个圆柱,下面的直角三角形旋转一周后是一个圆锥,所以应是圆锥和圆柱的组合体.【详解】解:∵上面的长方形旋转一周后是一个圆柱,下面的直角三角形旋转一周后是一个圆锥,∴根据以上分析应是圆锥和圆柱的组合体.故选C.【点评】此题主要考查了平面图形与立体图形的联系,可把较复杂的图象进行分解旋转,然后再组合,学生应注意培养空间想象能力.4.D【分析】截去正方体一角变成一个多面体,有三种情况:变成的多面体顶点的个数减少1;不变;增加1或2.【详解】解:如图所示:将一个正方体截去一个角,则其顶点的个数减少1;不变;增加1或2.即顶点的个数是7个或8个或9个或10个.故选D.【点评】本题结合截面考查正方体的相关知识,对于一个正方体:截去一个角,则其顶点的个数有三种情况:减少1;不变;增加1或2.5.C【详解】解:矩形绕一边所在的直线旋转一周得到的是圆柱.故选C6.A【详解】根据四棱锥的侧面展开图得出答案.试题解析:如图所示:这个几何体是四棱锥.故选A.考点:几何体的展开图.7.C【解析】球是一个曲面组成,圆锥是一个曲面和一个平面组成,圆柱是一个曲面和2个平面组成,棱柱都是由平面组成,所以在球、圆锥、圆柱、棱柱中,由曲面和平面围成的是圆锥和圆柱,故选C.8.D【解析】球是一个曲面组成的,不可能为平面,故选D.9.D【解析】如图旋转,想象下,可得到D.10.C【详解】直棱柱有12个顶点,一定是六棱柱,所以它的面的个数是8个.故选C.11.C【解析】选项A,用平口铲子铲去墙面上的大片污渍,说明“线动成面”;选项B,用一条拉直的细线切一块豆腐,说明“线动成面”;选项C,流星划过天空留下运动轨迹说明“点动成线”;选项D,用木板的边缘将沙坑里的沙推平,说明“线动成面”.故选C.点评:本题考查了点、线、面、体的知识,主要是考查学生立体图形的空间想象能力及分析问题,解决问题的能力.12.D【详解】①圆柱,由一个曲面和两个平面共3个面组成;②圆锥,由一个平面和一个曲面组成;③正方体,由六个面组成;④四棱柱,由六个面组成,所以面数相同的是③④,故选D.13.A【分析】分别根据各选项分析得出几何体的形状进而得出答案.【详解】A.可以通过旋转得到两个圆柱,故本选项正确;B.可以通过旋转得到一个圆柱,一个圆筒,故本选项错误;C.可以通过旋转得到一个圆柱,两个圆筒,故本选项错误;D.可以通过旋转得到三个圆柱,故本选项错误.故选: A.【点评】此题主要考查了点、线、面、体,根据基本图形旋转得出几何体需要同学们较好的空间想象能力. 14.B【解析】已知一个棱柱有10个顶点,可知它是五棱柱,五棱柱有5个侧面,有5条侧棱,底面是五边形.故选B.点评:根据n棱柱,一定有2n个顶点,有n条侧棱,n个侧面进行判断即可.熟记n棱柱的特征,即棱数与侧棱、与侧面、与底面的边数之间的关系,是解决此类问题的关键.15.B【分析】截去正方体一角变成一个多面体,这个多面体多了一个面,棱数不变,少了一个顶点.【详解】解:由图可得,多面体的面数是7.故选B.【点评】本题考查了正方体的截面,关键是明确正方体的面数,顶点数,棱的条数,形数结合,求出截去一个角后得到的几何体的面数,顶点数,棱的条数.16.D【解析】选项A,B,C均正确,D选项中,甲乙都可以折成正方体.所以选D.17.C【解析】①为球,由一个曲面围成,图②由四个平面和一个曲面围成;图③由一个平面和一个曲面围成,图④由五个平面围成,据此进行判断即可得出答案.【详解】选项A,平面最多的是图④,有5个平面,A选项正确;选项B,图2有四个平面,B选项正确;选项C,图①由一个曲面围成,C选项错误;选项D,图③有一个顶点,D选项正确,综上可知答案为C.故选:C.【点评】本题考查对几何体的认识,由几何面围成. 球由一个面围成,圆锥由一个曲面和一个平面围成,三棱柱由三个长方形和两个三角形围成.18.B【解析】根据题意可得立体图形是两个三角锥的组合,由此可得出答案.【详解】解:根据绕三角形的斜边旋转一周可得两个三角锥可得:立体图形是绕AB旋转一周得到的.故选B.【点评】本题考查线动成面的知识,难度不大,关键是掌握绕三角形的斜边旋转一周可得两个三角锥.19.6128321【解析】长方体有6个面,有12条棱,有8个顶点;圆柱有3个面,其中有2个平面(上下底面),有1个曲面(侧面).20.点动成线、线动成面【详解】分析:根据几何图形中的点、线、面的关系即可求得答案.详解:枪尖可看成是点,棍可看成一条线,∴可以看成是点动成线、线动成面,故答案为点动成线、线动成面.点评:本题主要考查点、线、面、体的关系,掌握点动成线、线动成面、面动成体是解题的关键.21.圆锥正方体长方体【解析】用一个平面去截几何体,若截面是三角形,这个几何体可能是圆锥,正方体和长方体.22.9 16 9 四棱锥四棱柱【解析】观察这个几何体可知,它有9个面,16条棱,9个顶点,它是由简单的几何体四棱锥和四棱柱组成的.23.棱,侧棱,相等,相同,平行四边形.【解析】根据棱柱的定义即可求解.【详解】在棱柱中,相邻两个面的交线叫做棱,相邻两个侧面的交线叫做侧棱.棱柱的所有侧棱长都相等,棱柱上、下底面的形状,侧面的形状相同都是平行四边形.故填:棱;侧棱;相等;相同;平行四边形【点评】此题主要考查棱柱的定义与性质,解题的关键是熟知棱柱的特征.24.长方形圆长方形圆【详解】试题解析:由图可知:截面分别是:(1). 长方形(2). 圆(3). 长方形(4). 圆.故答案为(1). 长方形(2). 圆(3). 长方形(4). 圆.25.24.【详解】挖去一个棱长为1cm的小正方体,得到的图形与原图形表面积相等,则表面积是2×2×6=24.26.(1)①正方体,长方形;(2)②圆锥,等腰三角形;(3)③圆柱,圆;(4)④正方体,长方形. 【解析】首先观察图形,先判断出各个几何体的名称,然后根据平面截几何体的方向和角度,判断出截面的形状.【详解】(1)图中几何体是正方体,截面垂直正方体底面,故截面是长方形;(2)图中几何体是圆锥,截面垂直圆锥底面,故截面是等腰三角形;(3)图中几何体是圆柱,截面平行圆柱底面,故截面是圆;(4)图中几何体是正方体,截面垂直正方体底面,故截面是长方形.故答案为:(1)①正方体,长方形;(2)②圆锥,等腰三角形;(3)③圆柱,圆;(4)④正方体,长方形.【点评】此题考查判断几何体的名称以及截面形状,需要利用常见几何体的特征和截面的知识进行解答. 27.①②⑤【解析】①②上面取一个顶点,底面取两个顶点,截取,⑤沿顶点截取到底面.所以选①②⑤.28.面动成体【分析】本题是面动成体的原理在现实中的具体表现,根据面动成体原理解答即可.【详解】硬币在桌面上快速地转动时,看上去象球,这说明了面动成体,故答案为面动成体.【点评】本题考查了点、线、面、体,掌握面动成体原理是解题的关键.29.(1)点动成线;(2)线动成面【解析】(1)小蚂蚁近似的看成一个点,一只小蚂蚁爬行留下的路线可解释为点动成线;(2)电动车车辐条近似的看成一条线,电动车车辐条运动形成的图形可解释为线动成面.30.12【解析】根据顶点个数可知棱柱为5棱柱,含有5条侧棱,从而得出答案.【详解】∵棱柱有10个顶点,∴棱柱为5棱柱,共有5条侧棱,∵棱柱的侧棱长都相等,∴每条侧棱长为=12.故答案为:12.【点评】本题考查了棱柱的结构特征,属于基础题.n .31.五,六,七,2【分析】三棱柱有五个面,用平面去截三棱柱时最多与五个面相交得五边形.因此最多可以截得五边形;四棱柱有六个面,用平面去截三棱柱时最多与六个面相交得六边形.因此最多可以截得六边;五棱柱有七个面,用平面去截三棱柱时最多与七个面相交得七边形.因此最多可以截得七边形;n棱柱有n+2个面,用平面去截三棱柱时最多与n+2个面相交得n+2边形.因此最多可以截得n+2边形.【详解】用一个平面去截三棱柱最多可以截得5边形,用一个平面去截四棱柱最多可以截得6边形,用一个平面去截五棱柱最多可以截得7边形,试根据以上结论,用一个平面去截n棱柱,最多可以截得n+2边形.故答案为五;六;七; n+2.【点评】此题考查截一个几何体,解题关键在于熟练掌握常见几何体的截面图形.32.点动成线线动成面面动成体【分析】本题是点、线、面、体间的动态关系在实际生活中理解.理论联系实际,深刻的理解点、线、面、体的概念,给出.合理的解释.【详解】笔尖在纸上快速滑动写出了一个又一个字,这说明了点动成线;车轮旋转时,看起来像一个整体的圆面,这说明了线动成面;直角三角形绕它的直角边旋转一周,形成了一圆锥体,这说明了面动成体,故答案为点动成线;线动成面;面动成体.33.3【解析】圆柱的体积公式是:V=sh=πr2h,分别计算以3cm和4cm长的边为轴旋转得到的圆柱体积,进相比较即可.【详解】以3cm长的边为轴旋转得到的圆柱体积=π×42×3=48π,以4cm长的边为轴旋转得到的圆柱体积=π×32×4=36π,∵36π<48π,∴以3厘米长的边为轴旋转得到的圆柱体积较大.故答案为:3.【点评】本题主要考查了圆柱体体积的计算公式的运用,解决问题的关键是掌握圆柱的体积公式:V=πr2h.34.96π或144π【详解】分析:圆柱体的体积=底面积×高,注意底面半径和高互换得圆柱体的两种情况.详解:绕长所在的直线旋转一周得到圆柱体积为:π×42×6=96π(立方厘米);绕宽所在的直线旋转一周得到圆柱体积:π×62×4=144π(立方厘米).故得到的几何体的体积是96π或144π.故答案为96π或144π.点评:本题考查圆柱体的体积的求法,注意分情况探讨.35.见解析.【解析】根据实际图形即可填表,然后根据所填的数据即可写出规律.【详解】解:填表如下:规律:顶点数+面数-棱数=2.【点评】此题主要考查正几何体的特点,解题的关键是根据图形写出顶点数,面数,棱数,再发现规律. 36.见解析.【解析】根据几何体的形成特点即可判断.【详解】解:如图所示.【点评】此题主要考查几何体的旋转构成特点,解题的关键是熟知简单几何体的特点.37.见解析【分析】绕长旋转得到的圆柱的底面半径为6cm ,高为8cm ,从而计算体积即可;绕宽旋转得到的圆柱底面半径为8cm ,高为6cm ,从而计算体积即可.【详解】解:图1方式旋转得到几何体的体积:26888π2π⨯⨯=(3cm )图2方式旋转得到几何体的体积:286384ππ⨯⨯=(3cm ).因为384π288π>,所以图2方式得到的几何体的体积大.【点评】本题考查了面动成体及圆柱体体积计算公式,掌握将长方形围绕着长与宽旋转所得的圆柱体的底面半径及高来计算体积是解题的关键.38.三边形,四边形,五边形【分析】剪掉一个角以后,多边形的边数可能增加了1条,也可能减少了1条,或者不变,通过分析即可解答.【详解】解:如图,∴把长方形剪去一个角,它可能是三边形,四边形,五边形.【点评】本题考查了剪掉多边形的一个角的含义,正确画图是解题的关键.39.(1)球体 (2)圆柱体 (3)圆锥体【解析】本题是一个平面图形绕中心对称轴旋转一周,根据面动成体的原理即可解.【详解】解:(1)绕虚线旋转可得球;(2)绕虚线旋转可得圆柱;(3)绕虚线旋转可得圆锥.故答案为球;圆柱;圆锥.【点评】本题考查学生立体图形的空间想象能力及分析问题,解决问题的能力.40.答案见解析【解析】试题分析:由几何图形基本特征入手,且根据面动成体的特性和生活中的常识即可得解.试题解析:(1)~(6)分别对应C,D,B,A,F,E.【点评】解决本题的关键是掌握各种面动成体的特征.41.(1)立体图形;(2) 5个顶点,8条线段,5个平面;(3)点、线段、角、三角形、长方形【解析】试题分析:(1)观察图形即可得;(2)仔细观察即可得到有多少个顶点,多少条线段,多少个平面;(3)通过观察可得到有哪些平面图形.试题解析:通过观察可得:(1)这个图形是立体图形;(2)图中有5个顶点,8条线段,5个平面;(3)平面图形有:点、线段、角、三角形、长方形.42.【解析】根据旋转的特点和各几何图形的特性判断即可.【详解】如图,【点评】考查了旋转体的结构特征,解题的关键是熟练掌握点、线、面、体的关系.43.答案不惟一.【解析】试题分析:当截面截取由三个顶点组成的面时可以得到三角形,剩下的几何体有7个顶点、12条棱、7个面;当截面截取一棱上的一点和两顶点组成的面时可剩下几何体有8个顶点、13条棱、7个面;当截面截取由2条棱上的点和一顶点组成的面时剩下几何体有9个顶点、14条棱、7个面;当截面截取由三棱上的点组成的面时,剩余几何体有10个顶点、15条棱、7个面.试题解析:解:剩下的几何体可能有:7个顶点、12条棱、7个面;或8个顶点、13条棱、7个面;或9个顶点、14条棱、7个面;或10个顶点、15条棱、7个面.如图所示:点评:本题考查了截一个长方体一个角的问题,注意分情况讨论,做到不重复不遗漏,有一定的难度.44.8,12,6,1【详解】在大正方体的顶点处的小正方体的三面都有色;有一条棱在大正方体的棱上的小正方体的两面有色,与大正方体没有公共棱的小正方体有一面有色,在大正方体的中心的小正方体各面都无色.试题解析:解:由题意知,各顶点处的小正方体的三面都涂色,共有8个;有一条边在棱上的小正方体有12个,是两面涂色;每个面的正中间有一个只有一面涂色的,有6个;正方体正中心处有1个小正方体,它的各面都没有涂色.因此三面涂色的小正方体有8个,两面涂色的小正方体有12个,只有一面涂色的小正方体有6个,各面都没有涂色的小正方体有1个.45.n边形被分为(n﹣1)个三角形.【详解】分别列举出以三角形,四边形,五边形为例时图形中三角形的个数,再由此总结出规律.试题解析:由图中可以看出三角形被分为2个三角形;四边形被分为3个三角形,五边形被分为4个三角形,那么n 边形被分为(n﹣1)个三角形.点评:这是一个与图形相关的规律问题,基本的方法是,分别列举出几个图形中的三角形的个数,从三角形的个数的变化与图形的边数的变化中找出规律,从有限到无限,写出相应的代数式.。

七年级数学上册《4.1.2 点、线、面、体》同步练习 新人教版(2021年整理)

七年级数学上册《4.1.2 点、线、面、体》同步练习 新人教版(2021年整理)

七年级数学上册《4.1.2 点、线、面、体》同步练习(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学上册《4.1.2 点、线、面、体》同步练习(新版)新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学上册《4.1.2 点、线、面、体》同步练习(新版)新人教版的全部内容。

4.1.2 点、线、面、体1.下面几何体中,全是由曲面围成的是( )A.圆锥B.正方体C.圆柱 D.球2.下列立体图形中面数相同的是( )①圆柱;②圆锥;③正方体;④四棱柱A.①④ B.①②C.②③ D.③④3.观察如图所示的棱锥,回答下列问题:(1)这个图形是平面图形还是立体图形?(2)图中有多少个顶点?多少条线段?多少个平面?(3)图中有哪些平面图形?4.如图,把长方形纸片沿图中虚线剪开得两个形状、大小相同的三角形,将这两个三角形拼在一起,使得有一条相等的边是共有的,能拼出多少种不同的几何图形(平面)?请你尝试画出来.(不包括原长方形的拼法)5. 图绕虚线旋转得到的实物图是()6. 如图,右边的几何体是由左边的哪个图形绕虚线旋转一周形成的( )7. 如图,长方形绕它的一条边MN所在的直线旋转一周形成的几何体是()8.下列有六个面的几何体的个数是()①长方体;②圆柱;③四棱柱;④正方体;⑤三棱柱A.1个B.2个C.3个D.4个9.天空中的流星划过后留下的光线,给我们以什么样的形象()A.点 B.线 C.面 D.体10.在以下四个几何体中,其侧面展开图不是平面图形的是()A.圆柱 B.棱柱 C.球 D.圆锥11.将如图所示放置的一个直角三角形ABC(∠C=90°)绕斜边AB旋转一周,所得到的几何体从正面看是()12.(8分)如图,把下列平面图形(1)~(6)绕虚线旋转一周,便能形成A~F的某个几何体,请找出来.参考答案1、D2、D3、解:(1)立体图形(2)图中有5个顶点,8条线段,5个平面(3)平面图形有:点、线段、角、三角形、长方形4、解:五种,分别是:5、D6、A7、C8、C9、B10、C11、B12、解:(1)~(6)分别对应C,D,B,A,F,E。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章几何图形初步4.1.2 点、线、面、体一、选择题:1.(2020-2021·河北·月考试卷)“枪挑一条线,棍扫一大片”,从数学的角度解释为()A.点动成线,线动成面B.线动成面,面动成体C.点动成线,面动成体D.点动成面,面动成线【答案】A【解答】解:“枪挑一条线,棍扫一大片”,从数学的角度解释为点动成线,线动成面.故选A.2.(2020-2021·安徽·月考试卷)一个六棱柱的顶点个数、棱的条数、面的个数分别是()A.6,12,6B.12,18,8C.18,12,6D.18,18,24【答案】B【解答】解:一个六棱柱的顶点个数是12,棱的条数是18,面的个数是8.故选B.3.(2019-2020·甘肃·期中试卷)将下面四个图形绕着虚线旋转一周,能够得到如图所说的立体图形的是()A. B. C. D.【答案】A【解答】根据面动成体结合常见立体图形的形状得出只有A选项符合,4.(2019-2020·福建·期末试卷)如图所示的Rt△ABC绕直角边AC旋转一周,所得的几何体从正面看到的形状图是()A. B. C. D.【答案】A【解答】Rt△ABC绕直角边AC旋转一周,所得几何体是圆锥,圆锥的主视图是等腰三角形,5.(2019-2020·广西·期末试卷)“节日的焰火”可以说是()A.面与面交于线B.点动成线C.面动成体D.线动成面【答案】B【解答】根据节日的焰火的火的运动路线,可以认为节日的焰火的火就是一个点,可知点动即可成线.6.(2019-2020·黑龙江·期末试卷)粉刷墙壁时,粉刷工人用滚筒在墙上刷过几次后,墙壁马上换上了“新装”,在这个过程中,你认为下列判断正确的是()A.点动成线B.线动成面C.面动成体D.面与面相交得到线【答案】B【解答】滚筒是线,滚动的过程成形成面,7. 将矩形硬纸板绕它的一条边旋转180∘所形成的几何体的主视图和俯视图不可能是()A.矩形,矩形B.半圆,矩形C.圆,矩形D.矩形,半圆【答案】C【解答】解:一矩形硬纸板绕其竖直的一边旋转180∘,得到的几何体是半圆柱,它的主视图和俯视图不可能出现圆,故选:C.8. 下列说法中,正确的是()A.棱柱的侧面可以是三角形B.四棱锥由四个面组成的C.正方体的各条棱都相等D.长方形纸板绕它的一条边旋转1周可以形成棱柱【答案】C【解答】解:A、棱柱的侧面可以是三角形,说法错误;B、四棱锥由四个面组成的,说法错误;C、正方体的各条棱都相等,说法正确;D、长方形纸板绕它的一条边旋转1周可以形成棱柱,说法错误;故选:C.二、填空题:9.(2019-2020·陕西·月考试卷)长为4,宽为2的矩形绕其一边旋转构成一个圆柱的最大体积为________.(结果保留π)【答案】32π【解答】解:分两种情况:①绕长所在的直线旋转一周得到圆柱体积为:π×22×4=16π;①绕宽所在的直线旋转一周得到圆柱体积为:π×42×2=32π.① 32π>16π,① 最大体积为32π.故答案为:32π.10.(2016-2017·河南·期末试卷)如图,各图中的阴影部分绕轴旋转一周,所形成的立体图形分别是________.【答案】圆柱、圆锥、球【解答】根据分析可得:各图中的阴影部分绕轴旋转一周,所形成的立体图形分别是圆柱、圆锥、球.三、解答题:11.(2019-2020·辽宁·月考试卷)如图是一张长方形纸片,AB长为3cm,BC长为4cm.(1)若将此长方形纸片绕它的一边所在直线旋转一周,则形成的几何体是________;(2)若将这个长方形纸片绕AB边所在直线旋转一周,则形成的几何体的体积是48πcm3(结果保留π);(3)若将这个长方形纸片绕它的一边所在直线旋转一周,求形成的几何体的表面积(结果保留π).【答案】圆柱π×42×3=48π(cm3).故形成的几何体的体积是48πcm3;情况①:π×3×2×4+π×32×2=24π+18π=42π(cm2);情况①:π×4×2×3+π×42×2=24π+32π=56π(cm2).故形成的几何体的表面积是42πcm2或56πcm2.故答案为:圆柱;48π.12.(2019-2020·广东·期中试卷)如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的表面积是多少?(结果保留π)【答案】所得几何体的表面积是36πcm2【解答】正方形ABCD以直线AB为轴,将正方形旋转一周可得圆柱体,圆柱的高为3cm,底面直径为6cm,所以圆柱体的表面积为:S侧+2S底面=6π×3+2×9π=36πcm2.13.(2018·福建·期中试卷)我们经常能看到汽车的雨刷器把汽车玻璃上的雨水刷干净,说明了数学中的_______事实. (填“点动成线”、“面动成体”或“线动成面”)【答案】线动成面【解答】解:汽车的雨刷实际上是一条线,通过运动把玻璃上的雨水刷干净,所以应是线动成面.故答案为:线动成面.14.(2015-2016·陕西·月考试卷)如图,长方形的长和宽分别是7cm和3cm,分别绕着它的长和宽所在的直线旋转一周,回答下列问题:(1)如图(1),绕着它的宽所在的直线旋转一周,所得到的是什么样的几何体?得到的几何体的体积是多少?(π取3.14)(2)如图(2),绕着它的长所在的直线旋转一周,所得到的是什么样的几何体?得到的几何体的体积是多少?(π取3.14)【解答】解:(1)得到的是底面半径是7cm,高是3cm的圆柱,V=3.14×72×3=461.58(cm3),答:得到的几何体的体积是461.58cm3;(2)得到的是底面半径是3cm,高是7cm的圆柱,V=3.14×32×7=197.82(cm3),答:得到的几何体的体积是197.82cm3.15.(2019-2020·陕西·期中试卷)下列说法正确的有()①n梭柱有2n个顶点,2n条棱,(n+2)个面(n为不小于3的正整数);①点动成线,线动成面,面动成体;①圆锥的侧面展开图是一个圆;①用平面去截一个正方体,截面的形状可以是三角形、四边形、五边形、六边形.A.1个B.2个C.3个D.4个【答案】B【解答】①n梭柱有2n个顶点,3n条棱,(n+2)个面(n为不小于3的正整数),原来的说法错误;①点动成线,线动成面,面动成体是正确的;①圆锥的侧面展开图是一个扇形,原来的说法错误;①用平面去截一个正方体,截面的形状可以是三角形、四边形、五边形、六边形是正确的.故说法正确的有2个.16. 正多面体的面数、棱数、顶点数三在之间存在一个奇特的关系,若用F,E,V分别表示正多面体的面数、棱数、顶点数,则有F+V−E=2,现有一个正多面体共有12条棱,6个顶点,则它的面数F等于()A.6B.8C.12D.20【答案】B【解答】根据题意可得E,V的值,再根据公式F+V−E=2即可得到结果。

① 正多面体共有12条棱,6个顶点,① E=12,V=6,① F+V−E=2,① F+6−12=2,解得F=8,故选B.17 下列说法错误的是()A.若直棱柱的底面边长相等,则它的各个侧面积相等B.n棱柱有n条侧棱,n个面,n个顶点C.长方体、正文体都是四棱柱D.三棱柱的底面是三角形【答案】B【解答】根据直棱柱的特点进行分析即可.A、若直棱柱的底面边长都相等,则它的各个侧面面积相等,说法正确;B、n棱柱有n+2个面,n个顶点,故原题说法错误;C、长方体,正方体都是四棱柱,说法正确;D、三棱柱的底面是三角形,说法正确;故选:B.18.(2020-2021·江西·月考试卷)将一个长为4厘米,宽为2厘米的长方形绕它的一条边旋转一周得到一个几何体,该几何体的体积为________立方厘米.【答案】16π或32π【解答】解:圆柱体的体积=底面积×高,注意底面半径和高互换得圆柱体的两种情况.绕长所在的直线旋转一周得到圆柱体积为:π×22×4=16π(立方厘米);绕宽所在的直线旋转一周得到圆柱体积:π×42×2=32π(立方厘米).故得到的几何体的体积是16π或32π.故答案为:16π或32π.1.(2019·广西·中考真卷)如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()A. B. C. D.【答案】D【解答】解:面动成体,直角三角形绕直角边旋转一周可得圆锥,长方形绕一边旋转一周可得圆柱,那么所求的图形是下面是圆锥,上面是圆柱的组合图形.故选D.2.(2004·山东·中考真卷)已知矩形ABCD的一边AB=4cm,另一边BC=2cm,以直线AB为轴旋转一周,所得到的圆柱的表面积是()A.12πcm2B.16πcm2C.20πcm2D.24πcm2【答案】D【解答】① 以直线AB为轴旋转一周得到的圆柱体,得出底面半径为2cm,母线长为4cm,① 圆柱侧面积=2π⋅BC⋅CD=16π(cm2),① 底面积=π⋅BC2=π⋅22=4π(cm2),① 圆柱的表面积=16π+2×4π=24π(cm2).。

相关文档
最新文档