《提公因式法》习题

合集下载

完整版)提公因式法练习题

完整版)提公因式法练习题

完整版)提公因式法练习题提公因式法一、课堂练1.把一个多项式拆分成几个乘积的形式,这个操作叫做因式分解,也可以说是把这个多项式分解成若干个因式的乘积。

2.填写公因式:1) x(x-5y)。

(2) -3m2(n-4)。

(3) 4b(3b2-2b+1)4) -4ab2(a+3b)。

(5) xy(x2y2-xy+2)3.填写括号中的多项式:1) -4b(a+1)。

(2) 4xy(2x-3y)。

(3) 9m2(m+3)4) -3p(5q+3p)。

(5) 2ab(a2-2ab+b2)。

(6) -x(x-y+z)7) a(2a-1)二、选择题1.正确的因式分解变形是选项B:x2+3x-4=x(x+3)-4.2.正确的因式分解变形是选项C:(x-y)2=x2-2xy+y2.3.错误的因式分解是选项C:a2b2-1/3ab2=4ab(4a-b)。

4.多项式-6a3b2-3a2b2+12a2b3因式分解时,应提取的公因式是选项D:-3a2b2.5.应提取公因式2x2y2的是选项B:2x2y2(1/2xy+y-1)。

提公因式法一、课堂练1.把一个多项式拆分成若干个因式的乘积形式,这个操作叫做因式分解。

2.填写公因式:1) x(x-5y)。

(2) -3m^2(n-4)。

(3) 4b(3b^2-2b+1)4) -4ab^2(a+3b)。

(5) xy(x^2y^2-xy+2)3.填写括号中的多项式:1) -4b(a+1)。

(2) 4xy(2x-3y)。

(3) 9m^2(m+3)4) -3p(5q+3p)。

(5) 2ab(a^2-2ab+b^2)。

(6) -x(x-y+z)7) a(2a-1)二、选择题1.正确的因式分解变形是选项B:x^2+3x-4=x(x+3)-4.2.正确的因式分解变形是选项C:(x-y)^2=x^2-2xy+y^2.3.错误的因式分解是选项C:a^2b^2-1/3ab^2=4ab(4a-b)。

4.多项式-6a^3b^2-3a^2b^2+12a^2b^3因式分解时,应提取的公因式是选项D:-3a^2b^2.5.应提取公因式2x^2y^2的是选项B:2x^2y^2(1/2xy+y-1)。

八年级下《4.2提公因式法》课时练习含答案解析

八年级下《4.2提公因式法》课时练习含答案解析

八年级下册第四章第二节提公因式法课时练习一、选择题(共10题)1.多项式-6ab 2+18a 2b 2-12a 3b 2c 的公因式是( )A .-6ab 2cB .-ab 2C .-6ab 2D .-6a 3b 2c 答案:C解析:解答:提公因式法关键是如何找公因式.方法是:一看系数、二看字母;公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂,所以答案是C 选项分析:考查如何在一个多项式中提取公因式2. 下列各式成立的是( )A .-x -y =-(x -y )B .y -x =x -yC .(x -y )2=(y -x )2D .(x -y )3=(y -x )3答案:C解析:解答:x -y 与y -x 互为相反数,而互为相反数的两个数的平方相等;故答案是C 选项分析:考查变号的问题3. 下列从左到右的变形哪个是分解因式( )A .()222x x x x +=+B .()ma mb na nb m a b n +++=++C .()212361236x x x x -+=-+D .()2222m m n m mn -+=-- 答案:A解析:解答:A 选项是提取公因式分解因式,分解因式就是把一个多项式分解成几个式子相乘形式分析:注意分解前后式子的大小不能发生改变4. 下列各式从左到右的变形中,是提公因式法因式分解的为() A .bx ax b a x -=-)(B .222)1)(1(1y x x y x ++-=+-C .)1)(1(12-+=-x x xD .()ax bx x a b +=+ 答案:D解析:解答:因式分解是把一个多项式写成几个式子相乘的形式,提取公因式法是提取出式子中的公因式,故答案D 是正确的分析:注意公因式如何提取5. 一个多项式分解因式的结果是33(4)b b +,那么这个多项式是() A .634b b - B .64b - C .634b b + D .46--b答案:C解析:解答:公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂,所以答案是C 选项分析:注意因式分解与整式乘法的相互关系——互逆关系6. 一个多项式因式分解后是()31x x +,那么这个多项式是( )A .231x +B .23x x +C . 233x x +D . 4x答案:C解析:解答:公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂,所以本题中3x 是公因式,故答案是C 选项7.利用提公因式法分解多项式32x x +可以得到( )A .21x -B .()21x x +C .21x +D .2x x - 答案:B解析:解答:多项式32x x +的公因式是2x ,所以提取公因式分解为()21x x +,故答案是B 选项分析:考查利用提公因式法分解因式8.把多项式()()222m a m a -+-分解因式正确的是 ( )A .()()22a m m -+ B .()()21m a m -- C .()()21m a m -+ D .()()21m a m --答案:B解析:解答:()()()()()()22222221m a m a m a m a m a m -+-=---=--故答案是B 选项分析:注意变号的过程9.下列式子能用提公因式法分解因式的是 ( ).A .1x +B .2x x - C .1x - D .21x +答案:B解析:解答:因为()21x x x x -=-,故答案是B 选项 分析:考查因式分解10.下列哪个多项式能分解成()2x x - ( )A .221x x -+B .244x x ++C .24x x -D .22x x -答案:D解析:解答:根据提公因式法可以得到()222x x x x -=-,故答案是B 选项分析:注意分解前后两个式子应该相等二、填空题(共10题)11. 用提公因式法分解因式:232x x x -+ =__________答案:()22x x x -+解析:解答:根据提公因式法可以得到()23222x x x x x x -+=-+ 分析:考查提公因式法分解因式12. am bm +=m (_________)答案:a b +解析:解答:找出多项式的公因式m ,提出公因式就可以得到答案;所以答案是a b + 分析:考查提公因式法分解因式13. 将()()39a x y b y x ---分解因式,应提取的公因式是___________答案:()3x y -解析:解答:()()()()()39393()3a x y b y x a x y b x y x y a b ---=-+-=-+,所以公因式是()3x y -分析:注意变号问题14. ()1x x =-答案:2x x -解析:解答:等于号两边相等,所以把右边展开可以得到2x x -分析:注意整式的乘法和因式分解是互逆的15. ______()31x x =+答案:233x x +解析:解答:把等于号的右边乘开可以得到答案是233x x +分析:考查因式分解和整式乘法的关系16. 多项式22x y xy -的公因式是________.答案:xy解析:解答:提公因式法关键是如何找公因式.方法是:一看系数、二看字母;本题中的公因式是xy分析:考查提取公因式17.多项式235xy xy y -+的公因式是答案:y解析:解答:()235351xy xy y y x xy -+=-+,所以公因式是y分析:考查如何找出公因式18. 分解因式:23269a b ab -=答案:()2323ab ab -解析:解答:因为()232269323a b ab ab ab -=-分析:注意提公因式时候,字母的次数取最低的19.分解因式212x 1815y xy y -+-=___________答案:()234x 65y x --+解析:解答:因为()2212x 181534x 65y xy y y x -+-=--+ 分析:注意变号20. x x x x =+-2323 (______)答案:2321x x -+解析:解答:()32232321x x x x x x -+=-+ 分析:考查分解因式三、解答题(共5题)21. 讨论993-99能被100整除吗?答案:能解答:993-99=99×992-99=99×(992-1)=99×9800=99×98×100其中有一个因数为100,所以993-99能被100整除解析:分析:注意提取公因式9922. 19992+1999能被2000整除吗?答案:能解答:因19992+1999=1999×(1999+1)=1999×2000,所以19992+1999能被1999整除,也能被2000整除解析:解答:因19992+1999=1999×(1999+1)=1999×2000,所以19992+1999能被1999整除,也能被2000整除分析:注意提取公因式199923. 用提公因式法分解多项式:3223048x y x yz -+答案:解答:()32223048658x y x yz x y xy z -+=--解析:分析:注意符号的变换24. 分解因式:2212x 1815y xy xy -+-答案:解答:()2212x 18153455y xy xy xy x y -+-=--+解析:分析:注意公因式是相同字母,并且指数最小的25.分解因式: n m n m y x y x 1142---(m ,n 均为大于1的整数)答案:解答:()11112422m n m n m n x y x y x y x y -----=-解析:分析:因为m ,n 均为大于1的整数,所以要找出指数最小的是那一项。

提公因式法练习题及答案

提公因式法练习题及答案

提公因式法练习题及答案提公因式法练习题及答案题目1:将多项式 $2x^3+4x^2+6x$ 用提公因式法进行因式分解。

解答1:首先观察到 $2x^3+4x^2+6x$ 的各项系数均有2的公因子,所以可以提取出公因式2。

$2x^3+4x^2+6x=2(x^3+2x^2+3x)$接下来,我们再观察到 $x^3+2x^2+3x$ 的各项系数均有x的公因子,所以可以再次提取出公因式x。

$2(x^3+2x^2+3x)=2x(x^2+2x+3)$因此,原多项式可以被因式分解为 $2x(x^2+2x+3)$。

题目2:将多项式 $3x^2+6xy+9y^2$ 用提公因式法进行因式分解。

解答2:首先观察到 $3x^2+6xy+9y^2$ 的各项系数均有3的公因子,所以可以提取出公因式3。

$3x^2+6xy+9y^2=3(x^2+2xy+3y^2)$接下来,我们再观察到 $x^2+2xy+3y^2$ 的各项系数均有1的公因子,所以无法再次提取公因式。

因此,原多项式无法再进行进一步的因式分解。

题目3:将多项式 $4x^3-12x^2y+9xy^2-27y^3$ 用提公因式法进行因式分解。

解答3:首先观察到 $4x^3-12x^2y+9xy^2-27y^3$ 的各项系数均有4的公因子,所以可以提取出公因式4。

$4x^3-12x^2y+9xy^2-27y^3=4(x^3-3x^2y+9xy^2-27y^3)$接下来,我们再观察到 $x^3-3x^2y+9xy^2-27y^3$ 的各项系数均有x的公因子,所以可以再次提取出公因式x。

$4(x^3-3x^2y+9xy^2-27y^3)=4x(x^2-3xy+9y^2-27y^2)$然后,再观察到 $x^2-3xy+9y^2-27y^2$ 的各项系数均有1的公因子,所以无法再次提取公因式。

因此,原多项式可以被因式分解为$4x(x^2-3xy+9y^2-27y^2)$。

题目4:将多项式 $6x^2+9xy-6y^2$ 用提公因式法进行因式分解。

因式分解 提公因式法 3

因式分解 提公因式法 3

因式分解提公因式法3一.选择题(共20小题)1.若mn=﹣2,m﹣n=3,则代数式m2n﹣mn2的值是()A.﹣6B.﹣5C.1D.62.将多项式m2﹣m分解因式,结果正确的是()A.m(m﹣1)B.(m+1)(m﹣1)C.m(m+1)(m﹣1)D.﹣m(m﹣1)3.如图,边长为a、b的长方形周长为20,面积为16,则a2b+ab2的值为()A.80B.160C.320D.4804.如图,矩形的长、宽分别为a,b,周长为16,面积为15,则a2b+ab2的值为()A.120B.128C.240D.2505.用提公因式法分解因式2x2y2+8x2y4时,应提取的公因式是()A.2x2y4B.8x4y2C.8x2y4D.2x2y26.下列因式分解正确的是()A.2a+4=2(a+2)B.(a﹣b)m=am﹣bmC.x(x﹣y)+y(x﹣y)=(x﹣y)2D.a2﹣b2+1=(a+b)(a﹣b)+17.多项式m2﹣4m分解因式的结果是()A.m(m﹣4)B.(m+2)(m﹣2)C.m(m+2)(m﹣2)D.(m﹣2)28.若ab=2,a﹣b=1,则代数式a3b﹣2a2b2+ab3的值为()A.2B.3C.4D.59.计算(﹣2)2020+(﹣2)2021所得的结果是()A.﹣22020B.﹣22021C.22020D.﹣210.把多项式x2y5﹣xy n z因式分解时,提取的公因式是xy5,则n的值可能为()A.6B.4C.3D.211.下列各选项中因式分解正确的是()A.x2﹣1=(x﹣1)2B.x(x﹣y)+y(y﹣x)=(x﹣y)2 C.﹣2y2+4y=﹣2y(y+2)D.x2+xy+x=x(x+y)12.下列因式分解正确的是()A.2a2﹣a=2a(a﹣1)B.﹣a2﹣2ab=﹣a(a﹣2b)C.﹣3a+3b=﹣3(a+b)D.a2+3ab=a(a+3b)13.计算21×3.14+79×3.14=()A.282.6B.289C.354.4D.31414.下列因式分解正确的是()A.(x﹣y)3﹣(x﹣y)=(x﹣y)(x﹣y)2B.(x﹣y)2﹣(x﹣y)3=(x﹣y)2(x﹣y+1)C.(x﹣y)2﹣(y﹣x)=(x﹣y)(x﹣y+1)D.(x﹣y)2﹣(y﹣x)=(x﹣y)(x﹣y﹣0)=(x﹣y)215.把多项式6a2b2﹣18ab2分解因式时,应提出的公因式是()A.6a2b B.6ab2C.a2b2D.18ab2 16.如图,边长为a、b的长方形周长为20,面积为16,则a2b+ab2的值为()A.160B.180C.320D.48017.下列因式分解中,结果正确的是()A.2m2﹣6m=m(2m2﹣6)B.x2+y2=(x+y)2C.a2+ab+a=a(a+b)D.﹣x2+2xy﹣y2=﹣(x﹣y)2 18.用提公因式法分解因式4x3y3+6x3y﹣2xy2时,应提取的公因式是()A.2x3y3B.﹣2x3y3C.12x3y3D.2xy19.计算(﹣2)100+(﹣2)99的结果为()A.﹣299B.299C.﹣2D.220.边长为a,b的长方形的周长为10,面积为6,则a2b+ab2的值为()A.15B.30C.60D.120二.填空题(共40小题)21.分解因式:m2﹣m=.22.已知(2x﹣10)(x﹣2)﹣(x﹣2)(x﹣13)可分解因式为(x+a)(x+b),则a b的值是.23.分解因式3xy﹣6xz=.24.已知x+y=5,xy=﹣1,则代数式x2y+xy2的值为.25.因式分解2m2﹣4m+2=.26.因式分解3xy﹣6y=.27.分解因式:2abc+4a2b=.28.分解因式:m2+m=.29.已知ab=﹣4,a+b=2,则a2b+ab2的值为.30.因式分解:2x2﹣6x=.31.分解因式:4m﹣2m2=.32.分解因式:ab2﹣5b2=.33.因式分解:6x2﹣9xy=.34.因式分解:﹣4y3+4y=.35.因式分解:﹣3a2b+12b=.36.因式分解:x3﹣4x2=.37.将多项式ab(a﹣b)﹣a(b﹣a)2分解因式的结果是.38.因式分解:x3﹣2x2=.39.多项式﹣6x2y+12xy2﹣3xy提公因式﹣3xy后,另一个因式为.40.分解因式x2y﹣4xy=.41.因式分解:b2﹣2b=.42.分解因式:m2+3m=.43.因式分解:3m2﹣6m=.44.分解因式:x2y﹣xy2=.45.分解因式:2a2﹣ab=.46.把多项式ab2﹣4ab﹣12a分解因式的结果是.47.将多项式2a2﹣6ab因式分解为.48.因式分解:3mx﹣9my=.49.若ab=﹣2,a+b=﹣1,则代数式a2b+ab2的值等于.50.若ab=2,a+b=﹣1,则代数式a2b+ab2的值等于.因式分解提公因式法3参考答案与试题解析一.选择题(共20小题)1.若mn=﹣2,m﹣n=3,则代数式m2n﹣mn2的值是()A.﹣6B.﹣5C.1D.6【解答】解:∵mn=﹣2,m﹣n=3,∴m2n﹣mn2=mn(m﹣n)=﹣2×3=﹣6.故选:A.2.将多项式m2﹣m分解因式,结果正确的是()A.m(m﹣1)B.(m+1)(m﹣1)C.m(m+1)(m﹣1)D.﹣m(m﹣1)【解答】解:原式=m(m﹣1).故选:A.3.如图,边长为a、b的长方形周长为20,面积为16,则a2b+ab2的值为()A.80B.160C.320D.480【解答】解:∵边长为a、b的长方形周长为20,面积为16,∴a+b=10,ab=16,∴a2b+ab2=ab(a+b)=16×10=160.故选:B.4.如图,矩形的长、宽分别为a,b,周长为16,面积为15,则a2b+ab2的值为()A.120B.128C.240D.250【解答】解:∵矩形的周长为16,面积为15,∴a+b=8,ab=15.∴a2b+ab2=ab(a+b)=15×8=120.故选:A.5.用提公因式法分解因式2x2y2+8x2y4时,应提取的公因式是()A.2x2y4B.8x4y2C.8x2y4D.2x2y2【解答】解:2x2y2+8x2y4=2x2y2(1+4y2),故应提取的公因式是2x2y2.故选:D.6.下列因式分解正确的是()A.2a+4=2(a+2)B.(a﹣b)m=am﹣bmC.x(x﹣y)+y(x﹣y)=(x﹣y)2D.a2﹣b2+1=(a+b)(a﹣b)+1【解答】解:A、2a+4=2(a+2),正确;B、(a﹣b)m=am﹣bm,是整式乘法,不是因式分解,故此选项错误;C、x(x﹣y)+y(x﹣y)=(x+y)(x﹣y),故此选项错误;D、a2﹣b2+1=(a+b)(a﹣b)+1,不符合因式分解的定义,故此选项错误.故选:A.7.多项式m2﹣4m分解因式的结果是()A.m(m﹣4)B.(m+2)(m﹣2)C.m(m+2)(m﹣2)D.(m﹣2)2【解答】解:m2﹣4m=m(m﹣4),故选:A.8.若ab=2,a﹣b=1,则代数式a3b﹣2a2b2+ab3的值为()A.2B.3C.4D.5【解答】解:原式=ab(a2﹣2ab+b2)=ab(a﹣b)2,当ab=2,a﹣b=1时,原式=2×1=2.故选:A.9.计算(﹣2)2020+(﹣2)2021所得的结果是()A.﹣22020B.﹣22021C.22020D.﹣2【解答】解:(﹣2)2020+(﹣2)2021=(﹣2)2020×(1﹣2)=﹣22020.故选:A.10.把多项式x2y5﹣xy n z因式分解时,提取的公因式是xy5,则n的值可能为()A.6B.4C.3D.2【解答】解:把多项式x2y5﹣xy n z因式分解时,提取的公因式是xy5,则:n≥5,故选:A.11.下列各选项中因式分解正确的是()A.x2﹣1=(x﹣1)2B.x(x﹣y)+y(y﹣x)=(x﹣y)2 C.﹣2y2+4y=﹣2y(y+2)D.x2+xy+x=x(x+y)【解答】解:A.x2﹣1=(x﹣1)(x+1),故此选项不合题意;B.x(x﹣y)+y(y﹣x)=(x﹣y)(x﹣y)=(x﹣y)2,故此选项符合题意;C.﹣2y2+4y=﹣2y(y﹣2),故此选项不合题意;D.x2+xy+x=x(x+y+1),故此选项不合题意;故选:B.12.下列因式分解正确的是()A.2a2﹣a=2a(a﹣1)B.﹣a2﹣2ab=﹣a(a﹣2b)C.﹣3a+3b=﹣3(a+b)D.a2+3ab=a(a+3b)【解答】解:A.2a2﹣a=a(2a﹣1),故A错误,B.﹣a2﹣2ab=﹣a(a+2b),故B错误,C.﹣3a+3b=﹣3(a﹣b),故C错误,D.a2+3ab=a(a+3b),故D正确.故选:D.13.计算21×3.14+79×3.14=()A.282.6B.289C.354.4D.314【解答】解:原式=3.14×(21+79)=3.14×100=314,故选:D.14.下列因式分解正确的是()A.(x﹣y)3﹣(x﹣y)=(x﹣y)(x﹣y)2B.(x﹣y)2﹣(x﹣y)3=(x﹣y)2(x﹣y+1)C.(x﹣y)2﹣(y﹣x)=(x﹣y)(x﹣y+1)D.(x﹣y)2﹣(y﹣x)=(x﹣y)(x﹣y﹣0)=(x﹣y)2【解答】解:A、应为(x﹣y)3﹣(x﹣y)=(x﹣y)[(x﹣y)2﹣1],有漏项,错误;B、应为(x﹣y)2﹣(x﹣y)3=(x﹣y)2(﹣x+y+1),错误;C、(x﹣y)2﹣(y﹣x)=(x﹣y)(x﹣y+1),正确;D、应为(x﹣y)2﹣(y﹣x)=(x﹣y)(x﹣y+1),错误.故选:C.15.把多项式6a2b2﹣18ab2分解因式时,应提出的公因式是()A.6a2b B.6ab2C.a2b2D.18ab2【解答】解:6a2b2﹣18ab2=6ab2(a﹣3),则应提出的公因式是6ab2.故选:B.16.如图,边长为a、b的长方形周长为20,面积为16,则a2b+ab2的值为()A.160B.180C.320D.480【解答】解:由题意得:2(a+b)=20,ab=16,∴a+b=10,∴a2b+ab2=ab(a+b)=16×10=160,故选:A.17.下列因式分解中,结果正确的是()A.2m2﹣6m=m(2m2﹣6)B.x2+y2=(x+y)2C.a2+ab+a=a(a+b)D.﹣x2+2xy﹣y2=﹣(x﹣y)2【解答】解:A、原式=2m(m﹣3),不符合题意;B、原式不能分解,不符合题意;C、原式=a(a+b+1),不符合题意;D、原式=﹣(x﹣y)2,符合题意.故选:D.18.用提公因式法分解因式4x3y3+6x3y﹣2xy2时,应提取的公因式是()A.2x3y3B.﹣2x3y3C.12x3y3D.2xy 【解答】解:4x3y3+6x3y﹣2xy2=2xy(2x2y2+3x2﹣y).故选:D.19.计算(﹣2)100+(﹣2)99的结果为()A.﹣299B.299C.﹣2D.2【解答】解:原式=(﹣2)99×(﹣2+1)=(﹣2)99×(﹣1)=299.故选:B.20.边长为a,b的长方形的周长为10,面积为6,则a2b+ab2的值为()A.15B.30C.60D.120【解答】解:由题意得:2(a+b)=10,ab=6,∴a+b=5,∴a2b+ab2=ab(a+b)=6×5=30,故选:B.二.填空题(共40小题)21.分解因式:m2﹣m=m(m﹣1).【解答】解:m2﹣m=m(m﹣1).故答案为:m(m﹣1).22.已知(2x﹣10)(x﹣2)﹣(x﹣2)(x﹣13)可分解因式为(x+a)(x+b),则a b的值是﹣8或.【解答】解:因为(2x﹣10)(x﹣2)﹣(x﹣2)(x﹣13)=(x﹣2)[(2x﹣10)﹣(x﹣13)]=(x﹣2)(x+3)=(x+a)(x+b),所以a=﹣2,b=3或a=3,b=﹣2,当a=﹣2,b=3时,a b=(﹣2)3=﹣8,当a=3,b=﹣2时,a b=3﹣2=,故答案为:﹣8或.23.分解因式3xy﹣6xz=3x(y﹣2z).【解答】解:原式=3x(y﹣2z).故答案为:3x(y﹣2z).24.已知x+y=5,xy=﹣1,则代数式x2y+xy2的值为﹣5.【解答】解:∵x+y=5,xy=﹣1,∴x2y+xy2=xy(x+y)=﹣1×5=﹣5.25.因式分解2m2﹣4m+2=2(m﹣1)2.【解答】解:原式=2(m2﹣2m+1)=2(m﹣1)2.故答案为:2(m﹣1)2.26.因式分解3xy﹣6y=3y(x﹣2).【解答】解:3xy﹣6y=3y(x﹣2).故答案为:3y(x﹣2).27.分解因式:2abc+4a2b=2ab(c+2a).【解答】解:2abc+4a2b=2ab(c+2a).故答案为:2ab(c+2a).28.分解因式:m2+m=m(m+1).【解答】解:m2+m=m(m+1).故答案为:m(m+1).29.已知ab=﹣4,a+b=2,则a2b+ab2的值为﹣8.【解答】解:原式=ab(a+b),当ab=﹣4,a+b=2时,原式=﹣8.故答案为:﹣8.30.因式分解:2x2﹣6x=2x(x﹣3).【解答】解:2x2﹣6x=2x(x﹣3).故答案为:2x(x﹣3).31.分解因式:4m﹣2m2=2m(2﹣m).【解答】解:4m﹣2m2=2m(2﹣m),故答案为:2m(2﹣m).32.分解因式:ab2﹣5b2=b2(a﹣5).【解答】解:原式=b2(a﹣5),故答案是:b2(a﹣5).33.因式分解:6x2﹣9xy=3x(2x﹣3y).【解答】解:原式=3x•2x﹣3x•3y=3x(2x﹣3y).故答案为:3x(2x﹣3y).34.因式分解:﹣4y3+4y=﹣4y(y+1)(y﹣1).【解答】解:原式=﹣4y(y2﹣1)=﹣4y(y+1)(y﹣1),故答案为:﹣4y(y+1)(y﹣1).35.因式分解:﹣3a2b+12b=﹣3b(a+2)(a﹣2).【解答】解:原式=﹣3b(a2﹣4)=﹣3b(a+2)(a﹣2).故答案为:﹣3b(a+2)(a﹣2).36.因式分解:x3﹣4x2=x2(x﹣4).【解答】解:原式=x2(x﹣4),故答案为:x2(x﹣4).37.将多项式ab(a﹣b)﹣a(b﹣a)2分解因式的结果是a(a﹣b)(2b﹣a).【解答】解:ab(a﹣b)﹣a(b﹣a)2=ab(a﹣b)﹣a(a﹣b)2=a(a﹣b)[b﹣(a﹣b)]=a(a﹣b)(2b﹣a).故答案为:a(a﹣b)(2b﹣a).38.因式分解:x3﹣2x2=x2(x﹣2).【解答】解:x3﹣2x2=x2(x﹣2).故答案为:x2(x﹣2).39.多项式﹣6x2y+12xy2﹣3xy提公因式﹣3xy后,另一个因式为2x﹣4y+1.【解答】解:﹣6x2y+12xy2﹣3xy=﹣3xy(2x﹣4y+1),则多项式﹣6x2y+12xy2﹣3xy提公因式﹣3xy后,另一个因式为2x﹣4y+1.故答案为:2x﹣4y+1.40.分解因式x2y﹣4xy=xy(x﹣4).【解答】解:x2y﹣4xy=xy(x﹣4).故答案为:xy(x﹣4).41.因式分解:b2﹣2b=b(b﹣2).【解答】解:原式=b(b﹣2).故答案为:b(b﹣2).42.分解因式:m2+3m=m(m+3).【解答】解:m2+3m=m(m+3),故答案为:m(m+3).43.因式分解:3m2﹣6m=3m(m﹣2).【解答】解:3m2﹣6m=3m(m﹣2).故答案为:3m(m﹣2).44.分解因式:x2y﹣xy2=xy(x﹣y).【解答】解:原式=xy(x﹣y).故答案为:xy(x﹣y).45.分解因式:2a2﹣ab=a(2a﹣b).【解答】解:2a2﹣ab=a(2a﹣b).故答案为:a(2a﹣b).46.把多项式ab2﹣4ab﹣12a分解因式的结果是a(b+2)(b﹣6).【解答】解:原式=a(b2﹣4b﹣12)=a(b+2)(b﹣6),故答案为:a(b+2)(b﹣6).47.将多项式2a2﹣6ab因式分解为2a(a﹣3b).【解答】解:原式=2a(a﹣3b).故答案为:2a(a﹣3b).48.因式分解:3mx﹣9my=3m(x﹣3y).【解答】解:3mx﹣9my=3m(x﹣3y).故答案为:3m(x﹣3y).49.若ab=﹣2,a+b=﹣1,则代数式a2b+ab2的值等于2.【解答】解:∵ab=﹣2,a+b=﹣1,a2b+ab2=ab(a+b)=﹣2×(﹣1)=2.故答案为:2.50.若ab=2,a+b=﹣1,则代数式a2b+ab2的值等于﹣2.【解答】解:∵ab=2,a+b=﹣1,∴原式=ab(a+b)=2×(﹣1)=﹣2.故答案为:﹣2.。

(完整版)《提公因式法》习题

(完整版)《提公因式法》习题

《提公因式法》习题一、填空题1.单项式-12x 12y 3与8x 10y 6的公因式是________.2.-xy 2(x+y)3+x(x+y)2的公因式是________.3.把4ab 2-2ab+8a 分解因式得________.4.5(m -n)4-(n-m)5可以写成________与________的乘积.5.当n 为_____时,(a-b )n =(b-a )n ;当n 为______时,(a-b )n =-(b-a )n 。

(其中n 为正整数)6.多项式-ab (a-b )2+a (b-a )2-ac (a-b )2分解因式时,所提取的公因式应是_____.7.(a-b )2(x-y )-(b-a )(y-x )2=(a-b )(x-y )×________.8.多项式18x n+1-24x n 的公因式是_______.二、选择题1.多项式8x m y n-1-12x 3m y n 的公因式是( )A .x m y nB .x m y n-1C .4x m y nD .4x m y n-12.把多项式-4a 3+4a 2-16a 分解因式( )A .-a(4a 2-4a+16)B .a(-4a 2+4a -16)C .-4(a 3-a 2+4a)D .-4a(a 2-a+4)3.如果多项式-51abc+51ab 2-a 2bc 的一个因式是-51ab,那么另一个因式是( ) A .c-b+5ac B .c+b-5ac C .c-b+51ac D .c+b-51ac 4.用提取公因式法分解因式正确的是( )A .12abc-9a 2b 2=3abc(4-3ab)B .3x 2y-3xy+6y=3y(x 2-x+2y)C .-a 2+ab-ac=-a(a-b+c)D .x 2y+5xy-y=y(x 2+5x)5.下列各式公因式是a 的是( )A. ax+ay+5 B .3ma-6ma 2 C .4a 2+10ab D .a 2-2a+ma6.-6xyz+3xy2+9x2y的公因式是()A.-3x B.3xz C.3yz D.-3xy7.把多项式(3a-4b)(7a-8b)+(11a-12b)(8b-7a)分解因式的结果是()A.8(7a-8b)(a-b);B.2(7a-8b)2 ;C.8(7a-8b)(b-a);D.-2(7a-8b)8.把(x-y)2-(y-x)分解因式为()A.(x-y)(x-y-1)B.(y-x)(x-y-1)C.(y-x)(y-x-1)D.(y-x)(y-x+1)9.下列各个分解因式中正确的是()A.10ab2c+ac2+ac=2ac(5b2+c)B.(a-b)3-(b-a)2=(a-b)2(a-b+1)C.x(b+c-a)-y(a-b-c)-a+b-c=(b+c-a)(x+y-1)D.(a-2b)(3a+b)-5(2b-a)2=(a-2b)(11b-2a)10观察下列各式: ①2a+b和a+b,②5m(a-b)和-a+b,③3(a+b)和-a-b,④x2-y2和x2+y2.其中有公因式的是()A.①② B.②③C.③④D.①④三、解答题1.请把下列各式分解因式(1)x(x-y)-y(y-x) (2)-12x3+12x2y-3xy2(3)(x+y)2+mx+my (4)a(x-a)(x+y)2-b(x-a)2(x+y)(5)15×(a-b)2-3y(b-a)(6)(a-3)2-(2a-6)(7)(m+n)(p-q)-(m+n)(q+p)2.满足下列等式的x的值.①5x2-15x=0 ②5x(x-2)-4(2-x)=03.a=-5,a+b+c=-5.2,求代数式a2(-b-c)-3.2a(c+b)的值.4.a+b=-4,ab=2,求多项式4a2b+4ab2-4a-4b的值.参考答案一、填空题1.答案:4x10y3;解析:【解答】系数的最大公约数是4,相同字母的最低指数次幂是x10y3,∴公因式为4x10y3.【分析】运用公因式的概念,找出各项的公因式即可知答案.2. 答案:x(x+y)2;解析:【解答】)-xy2(x+y)3+x(x+y)2的公因式是x(x+y)2;【分析】运用公因式的概念,找出各项的公因式即可知答案.3. 答案:2a(2b2-b+4) ;解析:【解答】4ab²- 2ab + 8a= 2a( 2b² - b + 4 ),【分析】把多项式4ab²- 2ab + 8a运用提取公因式法因式分解即可知答案.4. 答案:(m-n)4,(5+m-n)解析:【解答】5(m-n)4-(n-m)5=(m-n)4(5+m-n)【分析】把多项式5(m-n)4-(n-m)5运用提取公因式法因式分解即可知答案.5. 答案:偶数奇数解析:【解答】当n为偶数时,(a-b)n=(b-a)n;当n为奇数时,(a-b)n=-(b-a)n.(其中n为正整数)故答案为:偶数,奇数.【分析】运用乘方的性质即可知答案.6. 答案:-a(a-b)2解析:【解答】-ab(a-b)2+a(a-b)2-ac(a-b)2=-a(a-b)2(b+1-c),故答案为:-a(a-b)2.【分析】运用公因式的概念,找出各项的公因式即可知答案.7. 答案:(a-b+x-y)解析:【解答】(a-b)2(x-y)-(b-a)(y-x)2=(a-b)(x-y)×(a-b+x-y).故答案(a-b+x-y ).【分析】把多项式(a-b )2(x-y )-(b-a )(y-x )2运用提取公因式法因式分解即可.8. 答案:6x n解析:【解答】系数的最大公约数是6,相同字母的最低指数次幂是x n , ∴公因式为6x n .故答案为6x n【分析】运用公因式的概念,找出各项的公因式即可知答案.二、选择题1. 答案:D解析:【解答】多项式8x m y n-1-12x 3m y n 的公因式是4x m y n-1.故选D .【分析】运用公因式的概念,找出各项的公因式即可知答案.2. 答案:D解析:【解答】-4a 3+4a 2-16a=-4a (a 2-a+4).故选D .【分析】把多项式-4a 3+4a 2-16a 运用提取公因式法因式分解即可.3. 答案:A解析:【解答】-51abc+51ab 2-a 2bc=-51ab (c-b+5ac ),故选A. 【分析】运用提取公因式法把多项式-51abc+51ab 2-a 2bc 因式分解即可知道答案. 4. 答案:C解析:【解答】A .12abc-9a 2b 2=3ab (4c-3ab ),故本选项错误; B .3x 2y-3xy+6y=3y (x 2-x+2),故本选项错误;C .-a 2+ab-ac=-a (a-b+c ),本选项正确; D .x 2y+5xy-y=y (x 2+5x-1),故本选项错误;故选C.【分析】根据公因式的定义,先找出系数的最大公约数,相同字母的最低指数次幂,确定公因式,再提取公因式即可.5. 答案:D ;解析:【解答】A.ax+ay+5没有公因式,所以本选项错误;B.3ma-6ma 2的公因式为:3ma ,所以本选项错误;C.4a 2+10ab 的公因式为:2a ,所以本选项错误;D.a 2-2a+ma 的公因式为:a ,所以本选项正确.故选:D.【分析】把各选项运用提取公因式法因式分解即可知答案.6. 答案:D;解析:【解答】-6xyz+3xy2-9x2y各项的公因式是-3xy.故选D.【分析】运用公因式的概念,找出即可各项的公因式可知答案.7. 答案:C;【解答】(3a-4b)(7a-8b)-(11a-12b)(7a-8b)=(7a-8b)(3a-4b-11a+12b)=(7a-8b)(-8a+8b) 解析:=8(7a-8b)(b-a).故选C【分析】把(3a-4b)(7a-8b)-(11a-12b)(7a-8b)运用提取公因式法因式分解即可知答案.8. 答案:C;解析:【解答】(x-y)2-(y-x)=(y-x)2-(y-x)=(y-x)(y-x-1),故答案为:C. 【分析】把(x-y)2-(y-x)运用提取公因式法因式分解即可知答案.9. 答案:D;解析:【解答】10ab2c+6ac2+2ac=2ac(5b2+3c+1),故此选项错误;(a-b)3-(b-a)2=(a-b)2(a-b-1)故此选项错误;x(b+c-a)-y(a-b-c)-a+b-c=x(b+c-a)+y(b+c-a)+(b-c-a)没有公因式,故此选项错误;(a-2b)(3a+b)-5(2b-a)2=(a-2b)(3a+b-5a+10b)=(a-2b)(11b-2a),故此选项正确;故选:D.【分析】把各选项运用提取公因式法因式分解即可知答案.10. 答案:B.解析:【解答】①2a+b和a+b没有公因式;②5m(a-b)和-a+b=-(a-b)的公因式为(a-b);③3(a+b)和-a-b=-(a+b)的公因式为(a+b);④x 2 -y 2和x 2 +y 2没有公因式.故选B.【分析】运用公因式的概念,加以判断即可知答案.三、解答题1.答案:(1)(x-y)(x+y);(2)-3x(2x-y)2;(3)(x+y)(x+y+m);(4)(x-a)(x+y)(ax+ay-bx+ab);(5)3(a-b)(5ax-5bx+y);(6)(a-3)(a-5);(7)-2q(m+n). 解析:【解答】(1)x(x-y)-y(y-x)=(x-y)(x+y)(2)-12x3+12x2y-3xy2=-3x(4x2-4xy+y2)=-3x(2x-y)2(3)(x+y)2+mx+my=(x+y)2+m(x+y)=(x+y)(x+y+m)(4)a(x-a)(x+y)2-b(x-a)2(x+y)=(x-a)(x+y)[a(x+y)-b(x-a)]=(x-a)(x+y)(ax+ay-bx+ab) (5)15x(a-b)2-3y(b-a)=15x(a-b)2+3y(a-b)=3(a-b)(5ax-5bx+y);(6)(a-3)2-(2a-6)=(a-3)2-2(a-3)=(a-3)(a-5);(7)(m+n)(p-q)-(m+n)(q+p)=(m+n)(p-q-q-p)=-2q(m+n)【分析】运用提取公因式法因式分解即可.42.答案:(1)x=0或x=3;(2)x=2或x=-5解析:【解答】(1)5x2-15x=5x(x-3)=0,则5x=0或x-3=0,∴x=0或x=34(2)(x-2)(5x+4)=0,则x-2=0或5x+4=0,∴x=2或x=-5【分析】把多项式利用提取公因式法因式分解,然后再求x的值.3.答案:1.8解析:【解答】∵a=-5,a+b+c=-5.2,∴b+c=-0.2∴a2(-b-c)-3.2a(c+b)=-a2(b+c)-3.2a·(b+c)=(b+c)(-a2-3.2a)=-a(b+c)(a+3.2)=5×(-0.2)×(-1.8)=1.8【分析】把a2(-b-c)-3.2a(c+b)利用提取公因式法因式分解,再把已知的值代入即可知答案.4. 答案:-16解析:【解答】4a2b+4ab2-4a-4b=4(a+b)(ab-1),∵a+b=-4,ab=2,∴4a2b+4ab2-4a-4b=4(a+b)(ab-1)=-16.【分析】把4a2b+4ab2-4a-4b利用提取公因式法因式分解,再把已知的值代入即可知答案.。

提取公因式法题库

提取公因式法题库

A. 12abc — 9a"b:c=3abc (4 — 3ab) B ・3x*y—3xy+6yC・—矿+ab —ac=D ・ x'y+5xy+y二y(x:+5x+1))提取公因式法题库选择题:1.下列由左边到右边的变形,是因式分解的注明A,是整式乘法的用B表示.(1) 6a5—3a'b=3a" (2a—b):(2) —x+x^—x" (1—x):(3) (x—2) (x—3) =x3—5x+6;(4) (a—3b) 6ab+9b2;(5) x2—25= (x+5) (x—5):(6) (a—b) 2 (a—b) = (a—b) (a—b —2).2.下列各式从左到右的变化中属于因式分解的是().A・(nf —4n‘)= (m+2n) (m~2n) B・(m+1) (m—1) =m:—1C・ m:—3m—4=m (m—3) —4 D・ m:—4m—5= (m—2) 93.— 9x:y+3xy2—6xyz各项的公因式是()A.3yB. 3xz C・—3xy D・—*3x4.将a3b5—aV—ab分解因式得()A・ ab (a-b-—ab-~ 1) B・ ab (a-b-—ab")C・ a (a:b3—ab3—b) D・ b (a3b:—a:b2—a)5.下列各组代数式中,没有公因式的是()A. 5m (a—b)和b —a B・(a+b)'和一a—bC・ mx~y 和x+y D・—a:+ab a:b — ab:6.下列多项式中,能用提公因式法分解因式的是()A. x—y B・ x"+2x C・ x"+y" D・ x"~xy+y"7.下列用提公因式法分解因式不正确的是()A. 2B. 23007C. 一2沖D. 一2沁9.把代数式xy2-9x分解因式,结果正确的是()A・ x (y"—9) B・ x (y+3) C・ x (y+3) (y—3) D・ x (y+9) (y-9)10.将(a-2) +m (2 — a)分解因式,正确的是()(A)ax +ay + 5(B)4ma + 6ma2(C)5a2+ \0ab (D)a2 -4a +⑷ 3a-b(B) 3(x— y) (C)x-y (D) 3a+bC・ m (a—2) (m~1) D・ m (2 —a) (m—1)11.下列各式的公因式是。

提公因式法(有答案解析)

提公因式法(有答案解析)

2.2 提公因式法A卷:基础题一、选择题1.下列各组代数式中,没有公因式的是()A.5m(a-b)和b-a B.(a+b)2和-a-bC.mx+y和x+y D.-a2+ab和a2b-ab22.下列多项式中,能用提公因式法分解因式的是()A.x2-y B.x2+2x C.x2+y2D.x2-xy+y23.下列用提公因式法分解因式不正确的是()A.12abc-9a2b2c=3abc(4-3ab)B.3x2y-3xy+6y=3y(x2-x+2y)C.-a2+ab-ac=-a(a-b+c)D.x2y+5xy+y=y(x2+5x+1)4.(-2)2007+(-2)2008等于()A.2 B.22007C.-22007D.-220085.把代数式xy2-9x分解因式,结果正确的是()A.x(y2-9)B.x(y+3)2C.x(y+3)(y-3)D.x(y+9)(y -9)二、填空题6.9x2y-3xy2的公因式是______.7.分解因式:-4a3+16a2b-26ab2=_______.8.多项式18x n+1-24x n的公因式是______,提取公因式后,另一个因式是______.9.a,b互为相反数,则a(x-2y)-b(2y-x)的值为________.10.分解因式:a3-a=______.三、解答题11.某中学有三块草坪,第一块草坪的面积为(a+b)2m2,第二块草坪的面积为a(•a+b)m2,第三块草坪的面积为(a+b)bm2,求这三块草坪的总面积.12.观察下列等式,你得出了什么结论?并说明你所得的结论是正确的.1×2+2=4=22;2×3+3=9=32;3×4+4=16=42;4×5+5=25=52;…B卷:提高题一、七彩题1.(巧题妙解题)计算:123369510157142113539155152572135⨯⨯+⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯.2.(多题一思路路)(1)将m 2(a -2)+m (2-a )分解因式,正确的是( ) A .(a -2)(m 2-m ) B .m (a -2)(m+1) C .m (a -2)(m -1) D .m (2-a )(m -1) (2)若x+y=5,xy=10,则x 2y+xy 2=_______;(3)mn 2(x -y )3+m 2n (x -y )4分解因式后等于_______. 二、知识交叉题3.(科内交叉题)你对分解因式的了解是不是多了一些?请你猜一猜: 32005-4×32004+•10×32003能被7整除吗?4.(科内交叉题)已知串联电路的电压U=IR1+IR2+IR3,当R1=12.9Ω,R2=18.5Ω,R3=18.6Ω,I=2.3A时,求U的值.三、实际应用题5.在美丽的海滨步行道上,整齐地排着十个花坛,栽种了蝴蝶兰等各种花奔,•每个花坛的形状都相同,中间是矩形,两头是两个半圆形,半圆的直径是中间矩形的宽,若每个花坛的宽都是6m,每个花坛中间矩形长分别为36m,25m,30m,28m,•25m,•32m,24m,24m,22m和32m,你能求出这些花坛的总面积吗?你用的方法简单吗?四、经典中考题6.(2008,重庆,3分)分解因式:ax-ay=______.7.(2007,上海,3分)分解因式:2a2-2ab=_______.C卷1.(规律探究题)观察下列等式:12+2×1=1×(1+2);22+2×2=2×(2+2);32+2×3=3×(3+2);…则第n个等式可以表示为_______.2.(结论开放题)如图2-2-1,由一个边长为a的小正方形与两个长,宽分别为a,•b 的小矩形组成图形ABCD,则整个图形可表达出一些有关多项式分解因式的等式,请你写出其中任意三个等式.3.(阅读理解题)先阅读下面的例子,再解答问题.求满足4x(2x-1)-3(1-2x)=0的x的值.解:原方程可变形为(2x-1)(4x+3)=0.所以2x-1=0或4x+3=0,所以x1=12,x2=-34.注:我们知道两个因式相乘等于0,那么这两个因式中至少有一个因式等于0;•反过来,如果两个因式中有一个因式为0,它们的积一定为0,请仿照上面的例子,求满足5x (x-2)-4(2-x)=0的x的值.3.先阅读下面的材料,再分解因式:要把多项式am+an+bm+bn分解因式,可以先把它的前两项分成一组,并提出a;•把它的后两项分成一组,并提出b,从而得到a(m+n)+b(m+n).这时,由于a(m+n)+b(m+n)•又有公因式(m+n),于是可提公因式(m+n),从而得到(m+n)(a+b).因此有am+•an+•bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b).这种因式分解的方法叫做分组分解法.•如果把一个多项式的项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来分解因式了.请用上面材料中提供的方法分解因式:(1)a2-ab+ac-bc;(2)m2+5n-mn-5m.参考答案A卷一、1.C 点拨:A中公因式是(a-b),B中公因式是(a+b),D中公因式是(a-b).2.B 点拨:x2+2x=x(x+2).3.B 点拨:3x2y-3xy+6y=3y(x2-x+2).4.B 点拨:(-2)2007+(-2)2008=(-2)2007+(-2)2007×(-2)=(-2)2007×(1-2)=(-1)×(-2)2007=22007.5.C 点拨:xy2-9x=x(y2-9)=x(y2-32)=x(y+3)(y-3).二、6.3xy 点拨:9x2y-3xy2=3xy·3x-3xy·y=3xy(3x-y).7.-2a(2a2-8ab+13b2)点拨:-4a3+16a2b-26ab2=-2a(2a2-8ab+13b).8.6x n;3x-4 点拨:18x n+1-24x n=6x n·3x-6x n·4=6x n(3x-4).9.0 点拨:因为a+b=0,所以a(x-2y)-b(2y-x)=a(x-2y)+b(x-2y)=(x-2y)(a+b)=0.10.a(a+1)(a-1)点拨:a3-a=a(a2-1)=a(a+1)(a-1).三、11.解:(a+b)2+a(a+b)+b(a+b)=(a+b)[(a+b)+a+b]=(a+b)(2a+2b)=2(a+b)2(m2)点拨:本题是整式的加法运算,利用提公因式法,很快得到运算结果.12.解:结论是:n(n+1)+(n+1)=(n+1)2.说明:n(n+1)+(n+1)=(n+1)(n+1)=(n+1)2.点拨:本题是规律探究题,把所给等式竖着排列,易于观察它们之间存在的规律.B卷一、1.解:原式=33333333123(1357)1232 135(1357)1355⨯⨯⨯+++⨯⨯==⨯⨯⨯+++⨯⨯.点拨:本题的巧妙之处是利用提公因式法分解因式可使计算过程简化,且不易出错.2.(1)C (2)50 (3)mn(x-y)3(n+mx-my)点拨:(1)m2(a-2)+m(2-a)=m2(a-2)-m(a-2)=m(a-2)(m -1),故选C.(2)x2y+xy2=xy(x+y).因为x+y=5,xy=10,所以原式=10×5=50.(3)mn2(x-y)3+m2n(x-y)4=mn(x-y)3[n+m(x-y)]=mn(x-y)3(n+mx-my).以上三题的思路是一致的,都是利用提公因式法分解因式,其中第(2)•题分解因式后再代入求值.二、3.解:能,理由:32005-4×32004+10×32003=32003×(32-4×3+10)=32003×7,故能被7整除.点拨:对一个算式进行运算,运算的结果若有因数7,说明它能被7整除.4.解:U=IR1+IR2+IR3=I(R1+R2+R3)=2.3×(12.9+18.5+18.6)=2.3×50=115(V).点拨:遇到运算比较复杂的题目,可尝试用分解因工的方法把式子化简.三、5.解:S=(π·32+36×6)+(π·32+25×6)+(π·32+30×6)+…+(π·32+32×6)=10×π·32+6×(36+25+30+…+32)≈1951(m2).四、6.a(x-y)7.2a(a-b)C卷1.n2+2n=n(n+2)2.解:a(a+b)+ab=a(a+2b);a(a+2b)-ab=a(a+b);a(a+2b)-a2=2ab;a2+2ab=a(a+2b);a(a+2b)-a·2b=a2;a(a+2b)-a(a+b)=ab.点拨:答案不唯一,从上述等式中任写三个即可.3.解:5x(x-2)-4(2-x)=0,5x(x-2)+4(x-2)=0,(x-2)(5x+4).=0,所以x-2=0•或5x+4=0,所以x1=2,x2=-45点拨:观察以上解题特点发现等号左边为0,左边为因式乘积的形式,所以只要把5x(x-2)-4(2-x)=0左边因式分解即可.3.解:(1)a2-ab+ac-bc=(a2-ab)+(ac-bc)=a(a-b)+c(a-b)=(a-b)(a+c).(2)m2+5n-mn-5m=(m2-mn)+(5n-5m)=m(m-n)+5(n-m)=m(m-n)-5(m-n)=(m-n)(m-5).。

八年级数学上册《第十四章 提公因式法》练习题附答案-人教版

八年级数学上册《第十四章 提公因式法》练习题附答案-人教版

八年级数学上册《第十四章提公因式法》练习题附答案-人教版一、选择题1.下列等式从左到右的变形,属于因式分解的是( )A.x2+2x-1=(x-1)2B.(a+b)(a-b)=a2-b2C.x2+4x+4=(x+2)2D.ax2-a=a(x2-1)2.下列因式分解错误的是( )A.2a﹣2b=2(a﹣b)B.x2﹣9=(x+3)(x﹣3)C.a2+4a﹣4=(a+2)2D.﹣x2﹣x+2=﹣(x﹣1)(x+2)3.多项式12ab3+8a3b的各项公因式是( )A.abB.2abC.4abD.4ab24.将下列多项式因式分解,结果中不含因式x﹣1的是( )A.x2﹣1B.x(x﹣2)+(2﹣x)C.x2﹣2x+1D.x2+2x+15.下列多项式中,能用提公因式法因式分解的是( )A.x2﹣yB.x2+2xC.x2+y2D.x2﹣xy+y26.把a2﹣4a多项式分解因式,结果正确的是( )A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2)D.(a﹣2)2﹣47.把多项式m(m﹣1)+(m﹣1)提取公因式(m﹣1)后,余下的部分是( )A.m+1B.mC.2D.m+28.将多项式a(b﹣2)﹣a2(2﹣b)因式分解的结果是( )A.(b﹣2)(a+a2)B.(b﹣2)(a﹣a2)C.a(b﹣2)(a+1)D.a(b﹣2)(a﹣1)9.若实数a,b满足a+b=5,a2b+ab2=-10,则ab的值是( )A.-2B.2C.-50D.5010.计算(﹣2)2022+4×(﹣2)2021的值是( )A.﹣22022B.﹣4C.0D.22022二、填空题11.式子:①x2-5x+6=x(x-5)+6,②x2-5x+6=(x-2)(x-3),③(x-2)(x-3)=x2-5x +6,④x2-5x+6=(x+2)(x+3)中,是因式分解的是 (填序号).12.若多项式x2+ax+b分解因式的结果为(x+1)(x﹣2),则a+b的值为.13.若多项式x2﹣mx+n(m、n是常数)分解因式后,有一个因式是x﹣3,则3m﹣n的值为.14.把多项式﹣8a2b3c+16a2b2c2﹣24a3bc3分解因式,应提取的公因式是___________.多项式8x3y2﹣12xy3z的公因式是_________.15.计算:21×3.14﹣31×3.14=_________.16.化简(﹣2)2022+(﹣2)2021所得的结果为________.三、解答题17.计算:99+992;18.因式分解:-14abc-7ab+49ab2c.19.因式分解:(x﹣2)2﹣2x+420.因式分解:5a3b(a﹣b)3﹣10a4b3(b﹣a)2;21.若多项式x2﹣mx+n(m,n是常数)分解因式后,有一个因式是x﹣3,求3m﹣n的值.22.多项式3x3+mx2+nx+42中含有一个因式x2+x﹣2,试求m,n的值.23.在讲提取公因式一课时,张老师出了这样一道题目:把多项式3(x﹣y)3﹣(y﹣x)2分解因式,并请甲、乙两名同学在黑板上演算.甲演算的过程:3(x﹣y)3﹣(y﹣x)2=3(x﹣y)3+(x﹣y)2=(x﹣y)2[3(x﹣y)+1]=(x﹣y)2(3x﹣3y+1).乙演算的过程:3(x﹣y)3﹣(y﹣x)2=3(x﹣y)3﹣(x﹣y)2=(x﹣y)2(3x﹣3y).他们的计算正确吗?若错误,请你写出正确答案.24.阅读下列材料:已知二次三项式2x2+x+a有一个因式是(x+2),求另一个因式以及a的值.解:设另一个因式是(2x+b)根据题意,得2x2+x+a=(x+2)(2x+b).展开,得2x2+x+a=2x2+(b+4)x+2b.所以,,解得所以,另一个因式是(2x﹣3),a的值是﹣6.请你仿照以上做法解答下题:已知二次三项式3x2+10x+m有一个因式是(x+4),求另一个因式以及m的值.25.利用因式分解说明3n+2﹣4×3n+1+10×3n能被7整除.参考答案1.C2.C3.C.4.D5.B6.A7.A8.C9.A10.A11.答案为:②.12.答案为:﹣313.答案为:914.答案为:﹣8a2bc,4xy215.答案为:﹣31.4.16.答案为:22023.17.解:原式=99×(1+99)=99×100=9 900;18.解:原式=-7ab(2c-7bc+1).19.解:原式=(x﹣2)2﹣2(x﹣2)=(x﹣2)(x﹣4).20.解:原式=5a3b(a﹣b)2(a﹣b﹣2ab2)21.解:设另一个因式为x+a则(x+a)(x﹣3)=x2+(﹣3+a)x﹣3a∴﹣m=﹣3+a,n=﹣3a∴m=3﹣a∴3m﹣n=3(3﹣a)﹣(﹣3a)=9﹣3a+3a=9.22.解:∵x2+x﹣2=(x+2)(x﹣1)∴当x=﹣2时,原式=0当x=1时,原式=0即,解得.23.解:不正确;3(x﹣y)3﹣(y﹣x)2=3(x﹣y)3﹣(x﹣y)2=(x﹣y)2[3(x﹣y)﹣1]=(x﹣y)2(3x﹣3y﹣1).24.解:设另一个因式是(3x+b)根据题意,得3x2+10x+m=(x+4)(3x+b).展开,得3x2+10x+m=3x2+(b+12)x+4b. 所以,,解得所以,另一个因式是(3x﹣2),m的值是﹣8.25.解:∵原式=3n×(32﹣4×3+10)=3n×7 ∴3n+2﹣4×3n+1+10×3n能被7整除.。

提取公因式法同步练习及参考答案

提取公因式法同步练习及参考答案

提取公因式法同步练习及参考答案学习可以这样来看,它是一个潜移默化、厚积薄发的过程。

查字典数学网编辑了提取公因式法同步练习及参考答案,希望对您有所帮助!根底训练1.多项式8x3y2-12xy3z的公因式是_________.2.多项式-6ab2+18a2b2-12a3b2c的公因式是( )A.-6ab2cB.-ab2C.-6ab2D.-6a3b2c3.以下用提公因式法因式分解正确的选项是( )A.12abc-9a2b2=3abc(4-3ab)B.3x2y-3xy+6y=3y(x2-x+2y)C.-a2+ab-ac=-a(a-b+c)D.x2y+5xy-y=y(x2+5x)4.以下多项式应提取公因式5a2b的是( )A.15a2b-20a2b2B.30a2b3-15ab4-10a3b2C.10a2b-20a2b3+50a4bD.5a2b4-10a3b3+15a4b25.以下因式分解不正确的选项是( )A.-2ab2+4a2b=2ab(-b+2a)B.3m(a-b)-9n(b-a)=3(a-b)(m+3n)C.-5ab+15a2bx+25ab3y=-5ab(-3ax-5b2y);D.3ay2-6ay-3a=3a(y2-2y-1)6.填空题:(1)ma+mb+mc=m(________); (2)多项式32p2q3-8pq4m的公因式是_________;(3)3a2-6ab+a=_________(3a-6b+1);(4)因式分解:km+kn=_________; (5)-15a2+5a=________(3a-1); (6)计算:213.14-313.14=_________.7.用提取公因式法分解因式:(1)8ab2-16a3b3; (2)-15xy-5x2;(3)a3b3+a2b2-ab; (4)-3a3m-6a2m+12am.8.因式分解:-(a-b)mn-a+b.提高训练9.多项式m(n-2)-m2(2-n)因式分解等于( )A.(n-2)(m+m2)B.(n-2)(m-m2)C.m(n-2)(m+1)D.m(n-2)(m-1)10.将多项式a(x-y)+2by-2bx分解因式,正确的结果是( )A.(x-y)(-a+2b)B.(x-y)(a+2b)C.(x-y)(a-2b)D.-(x-y)(a+2b)11.把以下各式分解因式:(1)(a+b)-(a+b)2; (2)x(x-y)+y(y-x);(3)6(m+n)2-2(m+n); (4)m(m-n)2-n(n-m)2;(5)6p(p+q)-4q(q+p).应用拓展12.多项式-2an-1-4an+1的公因式是M ,那么M等于( )A.2an-1B.-2anC.-2an-1D.-2an+113.用简便方法计算:3937-1334=_______.14.因式分解:x(6m-nx)-nx2.参考答案1.4xy22.C3.C4.A5.C6.(1)a+b+c (2)8pq3 (3)a (4)k(m+n)(5)-5a (6)-31.47.(1)8ab2(1-2a2b) (2)-5x(3y+x)(3)ab(a2b2+ab-1) (4)-3am(a2+2a-4)8.-(a-b)(mn+1)9.C10.C11.(1)(a+b)(1-a-b) (2)(x-y)2 (3)2(m+n)(3m+3n-1)(4)(m-n)3 (5)2(p+q)(3p-2q)12.C 13.390 14.2x(3m-nx)上面就是为大家准备的提取公因式法同步练习及参考答案,希望同学们认真浏览,希望同学们在考试中取得优异成绩。

提公因式法练习题

提公因式法练习题

提公因式法练习题提公因式法是一种常用的数学方法,用于将多项式进行因式分解。

在学习代数时,我们经常会遇到需要使用提公因式法来简化表达式的情况。

本文将通过一些练习题来帮助读者加深对提公因式法的理解。

练习题一:将表达式 $3x^2 - 6x$ 进行因式分解。

解答:首先,我们可以将表达式中的公因数提取出来。

这里,公因数为 $3x$,所以我们可以将表达式改写为 $3x(x - 2)$。

这样,我们就成功地将表达式进行了因式分解。

练习题二:将表达式 $4x^3 - 8x^2 + 4x$ 进行因式分解。

解答:同样地,我们首先找到表达式中的公因数。

这里,公因数为 $4x$,所以我们可以将表达式改写为 $4x(x^2 - 2x + 1)$。

然而,我们还可以进一步分解$x^2 - 2x + 1$。

这个表达式可以写成 $(x - 1)^2$。

因此,整个表达式的因式分解形式为 $4x(x - 1)^2$。

练习题三:将表达式 $9x^2 - 16$ 进行因式分解。

解答:这个表达式看起来不像前两个练习题那么容易分解。

但是,我们可以使用一个特殊的公式来进行因式分解,即差平方公式。

差平方公式可以写成 $a^2 - b^2 = (a + b)(a - b)$。

我们可以将表达式 $9x^2 - 16$ 看作 $3^2x^2 - 4^2$。

根据差平方公式,我们可以将其分解为 $(3x + 4)(3x - 4)$。

因此,表达式$9x^2 - 16$ 的因式分解形式为 $(3x + 4)(3x - 4)$。

通过以上的练习题,我们可以看到提公因式法在因式分解中的重要性。

它帮助我们找到多项式中的公因数,并将其提取出来,从而简化表达式。

这种方法在解决代数问题时非常有用,尤其是在求解方程、简化分式等情况下。

除了上述的练习题外,我们还可以通过更复杂的例子来练习提公因式法。

例如,将表达式 $6x^3 + 9x^2 - 12x$ 进行因式分解。

这个表达式看起来比前面的例子更复杂,但是我们可以先找到公因数 $3x$,然后将其提取出来,得到$3x(2x^2 + 3x - 4)$。

因式分解 提公因式法精选

因式分解 提公因式法精选

因式分解-提公因式法精选题43道一.选择题(共19小题)1.将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1B.x(x﹣2)+(2﹣x)C.x2﹣2x+1D.x2+2x+12.若m﹣n=﹣2,mn=1,则m3n+mn3=()A.6B.5C.4D.33.将﹣a2b﹣ab2提公因式﹣ab后,另一个因式是()A.a+2b B.﹣a+2b C.﹣a﹣b D.a﹣2b4.若长和宽分别是a,b的长方形的周长为10,面积为4,则a2b+ab2的值为()A.14B.16C.20D.405.把8x2y﹣2xy分解因式()A.2xy(4x+1)B.2x(4x﹣1)C.xy(8x﹣2)D.2xy(4x﹣1)6.把多项式m2(a﹣2)+m(2﹣a)分解因式等于()A.(a﹣2)(m2+m)B.(a﹣2)(m2﹣m)C.m(a﹣2)(m﹣1)D.m(a﹣2)(m+1)7.已知ab=﹣2,a+b=3,则a2b+ab2的值是()A.6B.﹣6C.1D.﹣18.计算(﹣2)2020+(﹣2)2021所得的结果是()A.﹣22020B.﹣22021C.22020D.﹣29.把多项式a2﹣9a分解因式,结果正确的是()A.a(a﹣9)B.(a+3)(a﹣3)C.a(a+3)(a﹣3)D.﹣a(a﹣9)10.设P=a2(﹣a+b﹣c),Q=﹣a(a2﹣ab+ac),则P与Q的关系是()A.P=Q B.P>Q C.P<Q D.互为相反数11.计算(﹣2)2021+(﹣2)2020的值是()A.﹣2B.﹣22020C.22020D.212.下列多项式中,能用提取公因式法分解因式的是()A.x2﹣y B.x2+2x C.x2+y2D.x2﹣xy+y213.把5(a﹣b)+m(b﹣a)提公因式后一个因式是(a﹣b),则另一个因式是()A.5﹣m B.5+m C.m﹣5D.﹣m﹣514.把多项式x2y5﹣xy n z因式分解时,提取的公因式是xy5,则n的值可能为()A.6B.4C.3D.215.把多项式3a2﹣9ab分解因式,正确的是()A.3(a2﹣3ab)B.3a(a﹣3b)C.a(3a﹣9b)D.a(9b﹣3a)16.分解因式2x2﹣4x的最终结果是()A.2(x2﹣2x)B.x(2x2﹣4)C.2x(x﹣2)D.2x(x﹣4)17.下列从左边到右边的变形中,因式分解正确的是()A.x2+1=x(x+)B.(x+5)(x﹣5)=x2﹣25C.x2+x+1=x(x+1)+1D.﹣2x2﹣2xy=﹣2x(x+y)18.如图,矩形的长、宽分别为a,b,周长为16,面积为15,则a2b+ab2的值为()A.120B.128C.240D.25019.把多项式(m+1)(m﹣1)+(m﹣1)提取公因式m﹣1后,另一个因式为()A.m+1B.2m C.2D.m+2二.填空题(共17小题)20.因式分解:2x2﹣8=.21.因式分解:x(x﹣3)﹣x+3=.22.分解因式:x2+xy=.23.因式分解:x(x﹣2)﹣x+2=.24.因式分解:x2﹣3x=.25.因式分解:2x2﹣4x=.26.分解因式:a2﹣ab=.27.因式分解:a2﹣2a=.28.分解因式:2a2﹣ab=.29.因式分解3xy﹣6y=.30.因式分解:x2﹣x=.31.因式分解2x2y﹣8y=.32.因式分解:﹣3am2+12an2=.33.因式分解:x2﹣2x=.34.分解因式:m2﹣3m=.35.已知(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)可分解因式为(3x+a)(x+b),其中a、b 均为整数,则a+3b的值为.36.因式分解:5x2﹣2x=.三.解答题(共7小题)37.因式分解(1)2a2b﹣8b(2)xy3﹣10xy2+25xy38.把下列各式因式分解:(1)mn(m﹣n)﹣m(n﹣m)2;(2)(x+1)(x+2)+.39.因式分解:(1)mx+my;(2)2x2+4xy+2y2.40.因式分解:(1)8m2n+2mn;(2)2a2x2+4a2xy+2a2y2.41.先阅读、观察、理解,再解答后面的问题:第1个等式:1×2=(1×2×3﹣0×1×2)=(1×2×3)第2个等式:1×2+2×3=(1×2×3﹣0×1×3)+(2×3×4﹣1×2×3)=(1×2×3﹣0×1×2+2×3×4﹣1×2×3)=(2×3×4)第3个等式:1×2+2×3+3×4=(1×2×3﹣0×1×2)+(2×3×4﹣1×2×3)+(3×4×5﹣2×3×4)=(1×2×3﹣0×1×3+2×3×4﹣1×2×3+3×4×5﹣2×3×4)=(3×4×5)(1)依次规律,猜想:1×2+2×3+3×4+……+n(n+1)=(直接写出结果);(2)根据上述规律计算:10×11+11×12+12×13+……+29×30.42.观察以下等式:第1个等式:2×1﹣12=1第2个等式:3×2﹣22=2第3个等式:4×3﹣32=3第4个等式:5×4﹣42=4第5个等式:6×5﹣52=5……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.43.(1)分解因式:2a(y﹣z)﹣3b(z﹣y);(2)解不等式﹣x≥1,并在数轴上表示解集.因式分解-提公因式法精选题43道参考答案与试题解析一.选择题(共19小题)1.将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1B.x(x﹣2)+(2﹣x)C.x2﹣2x+1D.x2+2x+1【解答】解:A、x2﹣1=(x+1)(x﹣1),故A选项不合题意;B、x(x﹣2)+(2﹣x)=(x﹣2)(x﹣1),故B选项不合题意;C、x2﹣2x+1=(x﹣1)2,故C选项不合题意;D、x2+2x+1=(x+1)2,故D选项符合题意.故选:D.2.若m﹣n=﹣2,mn=1,则m3n+mn3=()A.6B.5C.4D.3【解答】解:∵m﹣n=﹣2,mn=1,∴(m﹣n)2=4,∴m2+n2﹣2mn=4,则m2+n2=6,∴m3n+mn3=mn(m2+n2)=1×6=6.故选:A.3.将﹣a2b﹣ab2提公因式﹣ab后,另一个因式是()A.a+2b B.﹣a+2b C.﹣a﹣b D.a﹣2b【解答】解:﹣a2b﹣ab2=﹣ab(a+2b),﹣a2b﹣ab2提公因式﹣ab后,另一个因式是a+2b,故选:A.4.若长和宽分别是a,b的长方形的周长为10,面积为4,则a2b+ab2的值为()A.14B.16C.20D.40【解答】解:∵长和宽分别是a,b的长方形的周长为10,面积为4,∴2(a+b)=10,ab=4,∴a+b=5,则a2b+ab2=ab(a+b)=20.故选:C.5.把8x2y﹣2xy分解因式()A.2xy(4x+1)B.2x(4x﹣1)C.xy(8x﹣2)D.2xy(4x﹣1)【解答】解:原式=2xy(4x﹣1).故选:D.6.把多项式m2(a﹣2)+m(2﹣a)分解因式等于()A.(a﹣2)(m2+m)B.(a﹣2)(m2﹣m)C.m(a﹣2)(m﹣1)D.m(a﹣2)(m+1)【解答】解:m2(a﹣2)+m(2﹣a),=m2(a﹣2)﹣m(a﹣2),=m(a﹣2)(m﹣1).故选:C.7.已知ab=﹣2,a+b=3,则a2b+ab2的值是()A.6B.﹣6C.1D.﹣1【解答】解:因为ab=﹣2,a+b=3,所以a2b+ab2=ab(a+b)=﹣2×3=﹣6,故选:B.8.计算(﹣2)2020+(﹣2)2021所得的结果是()A.﹣22020B.﹣22021C.22020D.﹣2【解答】解:(﹣2)2020+(﹣2)2021=(﹣2)2020×(1﹣2)=﹣22020.故选:A.9.把多项式a2﹣9a分解因式,结果正确的是()A.a(a﹣9)B.(a+3)(a﹣3)C.a(a+3)(a﹣3)D.﹣a(a﹣9)【解答】解:a2﹣9a=a(a﹣9).故选:A.10.设P=a2(﹣a+b﹣c),Q=﹣a(a2﹣ab+ac),则P与Q的关系是()A.P=Q B.P>Q C.P<Q D.互为相反数【解答】解:P=﹣a2(a﹣b+c),Q=﹣a(a2﹣ab+ac)=﹣a2(a﹣b+c),P=Q,故选:A.11.计算(﹣2)2021+(﹣2)2020的值是()A.﹣2B.﹣22020C.22020D.2【解答】解:(﹣2)2021+(﹣2)2020=(﹣2)2020×(﹣2+1)=﹣22020.故选:B.12.下列多项式中,能用提取公因式法分解因式的是()A.x2﹣y B.x2+2x C.x2+y2D.x2﹣xy+y2【解答】解:A、不符合要求,没有公因式可提,故本选项错误;B、x2+2x可以提取公因式x,正确;C、不符合要求,没有公因式可提,故本选项错误;D、不符合要求,没有公因式可提,故本选项错误;故选:B.13.把5(a﹣b)+m(b﹣a)提公因式后一个因式是(a﹣b),则另一个因式是()A.5﹣m B.5+m C.m﹣5D.﹣m﹣5【解答】解:原式=5(a﹣b)﹣m(a﹣b)=(a﹣b)(5﹣m),另一个因式是(5﹣m),故选:A.14.把多项式x2y5﹣xy n z因式分解时,提取的公因式是xy5,则n的值可能为()A.6B.4C.3D.2【解答】解:把多项式x2y5﹣xy n z因式分解时,提取的公因式是xy5,则:n≥5,故选:A.15.把多项式3a2﹣9ab分解因式,正确的是()A.3(a2﹣3ab)B.3a(a﹣3b)C.a(3a﹣9b)D.a(9b﹣3a)【解答】解:3a2﹣9ab=3a(a﹣3b).故选:B.16.分解因式2x2﹣4x的最终结果是()A.2(x2﹣2x)B.x(2x2﹣4)C.2x(x﹣2)D.2x(x﹣4)【解答】解:2x2﹣4x=2x(x﹣2).故选:C.17.下列从左边到右边的变形中,因式分解正确的是()A.x2+1=x(x+)B.(x+5)(x﹣5)=x2﹣25C.x2+x+1=x(x+1)+1D.﹣2x2﹣2xy=﹣2x(x+y)【解答】解:A、原式不能分解,不符合题意;B、原式为多项式乘法,不符合题意;C、原式不能分解,不符合题意;D、原式=﹣2x(x+y),符合题意.故选:D.18.如图,矩形的长、宽分别为a,b,周长为16,面积为15,则a2b+ab2的值为()A.120B.128C.240D.250【解答】解:∵矩形的周长为16,面积为15,∴a+b=8,ab=15.∴a2b+ab2=ab(a+b)=15×8=120.故选:A.19.把多项式(m+1)(m﹣1)+(m﹣1)提取公因式m﹣1后,另一个因式为()A.m+1B.2m C.2D.m+2【解答】解:(m+1)(m﹣1)+(m﹣1)=(m﹣1)(m+1+1)=(m﹣1)(m+2),所以,把多项式(m+1)(m﹣1)+(m﹣1)提取公因式m﹣1后,另一个因式为(m+2),故选:D.二.填空题(共17小题)20.因式分解:2x2﹣8=2(x+2)(x﹣2).【解答】解:2x2﹣8=2(x+2)(x﹣2).21.因式分解:x(x﹣3)﹣x+3=(x﹣1)(x﹣3).【解答】解:原式=x(x﹣3)﹣(x﹣3)=(x﹣1)(x﹣3),故答案为:(x﹣1)(x﹣3)22.分解因式:x2+xy=x(x+y).【解答】解:x2+xy=x(x+y).23.因式分解:x(x﹣2)﹣x+2=(x﹣2)(x﹣1).【解答】解:原式=x(x﹣2)﹣(x﹣2)=(x﹣2)(x﹣1).故答案为:(x﹣2)(x﹣1).24.因式分解:x2﹣3x=x(x﹣3).【解答】解:x2﹣3x=x(x﹣3).故答案为:x(x﹣3)25.因式分解:2x2﹣4x=2x(x﹣2).【解答】解:2x2﹣4x=2x(x﹣2).故答案为:2x(x﹣2).26.分解因式:a2﹣ab=a(a﹣b).【解答】解:a2﹣ab=a(a﹣b).27.因式分解:a2﹣2a=a(a﹣2).【解答】解:a2﹣2a=a(a﹣2).故答案为:a(a﹣2).28.分解因式:2a2﹣ab=a(2a﹣b).【解答】解:2a2﹣ab=a(2a﹣b).故答案为:a(2a﹣b).29.因式分解3xy﹣6y=3y(x﹣2).【解答】解:3xy﹣6y=3y(x﹣2).故答案为:3y(x﹣2).30.因式分解:x2﹣x=x(x﹣1).【解答】解:x2﹣x=x(x﹣1).故答案为:x(x﹣1).31.因式分解2x2y﹣8y=2y(x+2)(x﹣2).【解答】解:2x2y﹣8y=2y(x2﹣4)=2y(x+2)(x﹣2)故答案为:2y(x+2)(x﹣2).32.因式分解:﹣3am2+12an2=﹣3a(m+2n)(m﹣2n).【解答】解:原式=﹣3a(m2﹣4n2)=﹣3a(m+2n)(m﹣2n).故答案为:﹣3a(m+2n)(m﹣2n).33.因式分解:x2﹣2x=x(x﹣2).【解答】解:原式=x(x﹣2),故答案为:x(x﹣2).34.分解因式:m2﹣3m=m(m﹣3).【解答】解:m2﹣3m=m(m﹣3).故答案为:m(m﹣3).35.已知(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)可分解因式为(3x+a)(x+b),其中a、b 均为整数,则a+3b的值为﹣31.【解答】解:(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)=(3x﹣7)(2x﹣21﹣x+13)=(3x﹣7)(x﹣8),∵(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)可分解因式为(3x+a)(x+b),∴(3x﹣7)(x﹣8)=(3x+a)(x+b),则a=﹣7,b=﹣8,故a+3b=﹣7+3×(﹣8)=﹣31.故答案为:﹣31.36.因式分解:5x2﹣2x=x(5x﹣2).【解答】解:5x2﹣2x=x(5x﹣2),故答案为:x(5x﹣2).三.解答题(共7小题)37.因式分解(1)2a2b﹣8b(2)xy3﹣10xy2+25xy【解答】解:(1)2a2b﹣8b=2b(a2﹣4)=2b(a﹣2)(a+2);(2)xy3﹣10xy2+25xy=xy(y2﹣10y+25)=xy(y﹣5)2.38.把下列各式因式分解:(1)mn(m﹣n)﹣m(n﹣m)2;(2)(x+1)(x+2)+.【解答】解:(1)mn(m﹣n)﹣m(n﹣m)2=mn(m﹣n)﹣m(m﹣n)2=m(m﹣n)[n﹣(m﹣n)]=m(m﹣n)(2n﹣m);(2)(x+1)(x+2)+=x2+3x+2+=(x+)2.39.因式分解:(1)mx+my;(2)2x2+4xy+2y2.【解答】解:(1)mx+my=m(x+y);(2)2x2+4xy+2y2=2(x2+2xy+y2)=2(x+y)2.40.因式分解:(1)8m2n+2mn;(2)2a2x2+4a2xy+2a2y2.【解答】解:(1)8m2n+2mn=2mn(4m+1);(2)2a2x2+4a2xy+2a2y2=2a2(x2+2xy+y2)=2a2(x+y)2.41.先阅读、观察、理解,再解答后面的问题:第1个等式:1×2=(1×2×3﹣0×1×2)=(1×2×3)第2个等式:1×2+2×3=(1×2×3﹣0×1×3)+(2×3×4﹣1×2×3)=(1×2×3﹣0×1×2+2×3×4﹣1×2×3)=(2×3×4)第3个等式:1×2+2×3+3×4=(1×2×3﹣0×1×2)+(2×3×4﹣1×2×3)+(3×4×5﹣2×3×4)=(1×2×3﹣0×1×3+2×3×4﹣1×2×3+3×4×5﹣2×3×4)=(3×4×5)(1)依次规律,猜想:1×2+2×3+3×4+……+n(n+1)=n(n+1)(n+2)(直接写出结果);(2)根据上述规律计算:10×11+11×12+12×13+……+29×30.【解答】解:(1)根据题意得:1×2+2×3+3×4+……+n(n+1)=n(n+1)(n+2);故答案为:n(n+1)(n+2);(2)原式=(1×2+2×3+3×4+4×5+5×6+6×7+7×8+8×9+9×10+……+29×30)﹣(1×2+2×3+3×4+4×5+5×6+6×7+7×8+8×9)=×29×30×31﹣×8×9×10=8990﹣240=8750.42.观察以下等式:第1个等式:2×1﹣12=1第2个等式:3×2﹣22=2第3个等式:4×3﹣32=3第4个等式:5×4﹣42=4第5个等式:6×5﹣52=5……按照以上规律,解决下列问题:(1)写出第6个等式:7×6﹣62=6;(2)写出你猜想的第n个等式:(n+1)×n=n2(用含n的等式表示),并证明.【解答】解:(1)第6个等式是7×6﹣62=6,故答案为:7×6﹣62=6;(2)猜想:第n个等式是(n+1)×n﹣n2=n,故答案为:(n+1)×n﹣n2=n,证明:∵左边=(n+1)×n﹣n2=n2+n﹣n2=n∵右边=n∴左边=右边,∴等式成立.43.(1)分解因式:2a(y﹣z)﹣3b(z﹣y);(2)解不等式﹣x≥1,并在数轴上表示解集.【解答】解:(1)原式=2a(y﹣z)+3b(y﹣z)=(y﹣z)(2a+3b);(2)去分母得:4x﹣1﹣3x≥3,解得:x≥4,如图所示:.。

(完整版)七年级数学提取公因式法测试题

(完整版)七年级数学提取公因式法测试题

9.1 ~9.2 因式分解提取公因式法同步练习【基础能力训练】一、因式分解1.以下变形属于分解因式的是()A . 2x2- 4x+1=2x ( x- 2)+1B . m( a+b+c) =ma+mb+mcC.x2- y2=( x+y )( x- y)D.( m- n)( b+a) =( b+a)( m- n)2.计算( m+4 )( m- 4)的结果,正确的选项是()A . m2- 4 B. m2+16 C. m2- 16 D. m2+43.分解因式 mx+my+mz= ()D. m3abcA . m( x+y ) +mzB .m( x+y+z )C.m( x+y - z)4. 20052- 2005 必定能被()整除A.2 008 B .2 004 C.2 006 D .2 0095.以下分解因式正确的选项是()A . ax+xb+x=x ( a+b)B. a2+ab+b2=( a+b)2C.a2+5a- 24= ( a-3)( a- 8) D. a( a+ab)+b( 1+b )=a2b( 1+b )6.已知多项式 2x2+bx+c 分解因式为2( x-3)( x+1),则 b,c 的值是()A . b=3, c=1B . b=- c, c=2C.b= - c, c=-4 D. b=- 4, c=- 67.请写出一个二次多项式,再将其分解因式,其结果为______.8.计算: 21× 3.14+62× 3.14+17× 3.14=_________.二、提公因式法9.多项式 3a2b3c+4a5 b2+6a3 bc2的各项的公因式是()A . a2bB . 12a5b3c2 C. 12a2bc D. a2b210.把多项式 m2( x- y)+m ( y- x)分解因式等于()A .( x- y)( m2+n )B.( x-y)( m2- m)C.m( x- y)( m- 1)D. m( x- y)( m+1)11.(- 2)2001+(- 2)2002等于()A .- 22001B .- 22002 C.22001 D.- 212.- ab(a- b)2+a( b-a)2-ac( a- b)2的公因式是()A .- a( a- b)B.( a- b)2 C.- a(a- b)( b- 1)D.- a( a- b)2 13.察看以下各式:( 1) abx-cdy (2) 3x2y+6y 2x (3) 4a3- 3a2+2a- 1 ( 4)( x- 3)2+( 3x- 9)(5) a2( x+y )( x- y) +12 ( y- x)( 6)- m2n( x- y)n+mn2(x- y)n+1此中能够直接用提公因式法分解因式的有()A .( 1)( 3)( 5)B .( 2)( 4)( 5)C.(2)( 4)(5)( 6)D.( 2)( 3)( 4)( 5)( 6)14.多项式 12x 2n- 4n n提公因式后,括号里的代数式为()A . 4x n B. 4x n- 1 C. 3x n D . 3x n-115.分解以下因式:(1) 56x3 yz- 14x 2y2z+21xy 2z2(2)( m- n)2+2n ( m- n)(3) m( a-b+c)- n(a+c- b)+p ( c- b+a)( 4) a(a- x)( a-y) +b(x- a)( y- a)【综合创新训练】三、综合测试16.若 x2( x+1) +y ( xy+y ) =(x+1 )· B,则 B=_______ .17.已知 a-2=b+c ,则代数式a(a- b- c)- b( a- b-c)- c( a- b- c) =______ 18.利用分解因式计算: 1 297 的 5%,减去 897 的 5%,差是多少?四、创新应用19.利用因式分解计算:( 1) 2 0042- 4× 2 004;(2)39×37-13× 34(3) 121× 0.13+12.1× 0.9-12× 1.21(4) 20 062 006× 2 008-20 082 008× 2 0062n 4 2 2n20.计算:22n 3五、综合创新21.计算: 2- 22- 23-- 218-219+22022.已知 2x- y= 1, xy=2 ,求 2x4y3- x3y4的值.323.已知: x3+x2+x+1=0 ,求 1+x+x 2+x 3+x 4+x 5++x2007的值.24.设 n 为整数,求证:( 2n+1)2- 25 能被 4 整除.【研究学习】猜年纪杨老师对同学们说:“我能猜出你们每一位同学的年纪,不信的话,你们就按下边方法试一试:先把你的年纪乘以 5,再加 5,而后把结果扩大 2 倍, ?最后把算得的结果告诉老师,老师就知道你的年纪了.”杨老师又说:“雨晴,你算出的是多少?”雨晴答:“ 130”.杨老师立刻说:“你 12 岁”.假如你是杨老师, ?当李强同学算出的结果是 140 时,你会说李强多少岁?答案:【基础能力训练】1.C 2. C 3.B 4.B 5. C 6.D7. 4a2- 4ab+b 2=( 2a- b)2 8.3149. A 10. C 11. C 12. D 13. C 14.D15.( 1) 7xyz( 8x2- 2xy+3yz )( 2)( m- n)( m+n)(3)( a- b+c)( m- n+p)( 4)( a- x)(a- y)( a+b)【综合创新训练】16. x2+y 2分析:x2(x+1)+y(xy+y)=x2(x+1)+y2(x+1)=(x+1)(x2+y2),故 B=x 2+y 2.17. 4分析:由 a- 2=b+c 得 a- b-c=2,a( a- b- c)- b(a- b- c)- c( a- b- c)=( a- b- c)( ?a-b- c) =(a- b- c)2=22=4 .18. 20分析:1 297× 5%-897× 5%=5%(1 297-897)=5%×400=20.19.( 1)原式 =2 004( 2 004-4) =2 004× 2 000=4 008 000(2)原式 =39 × 37- 39× 27=39( 37- 27) =390(3)原式 =1.21 ×13+1.21 ×9- 1.21×12=1.21×( 13+9-12) =1.21× 10=12.1(4)原式 =2 006× 10 001×2 008- 2 008× 10 001× 2 006=02n 4 2n 1 -3 1 720.原式 = =1-2 =1 -=2n 4 8 821.原式 =220- 219- 218-- 23- 22+2=2 19- 218-- 23- 22+2==22+2=6 .22. 2x4y3- x3y4=x 3y3( 2x- y) =( 2x- y)( xy)3把 2x-y= 1, xy=2 代入得8.3 323. 0分析:分红四个一组,该提公因式的提取公因式代入即可.24.( 2n+1 )2-25= ( 2n+1)2- 52=[ ( 2n+1) +5][ (2n+1 )- 5]=( 2n+6)( 2n-4)=2( n+3)× [?2 ( n- 2) ]=4( n+3)( n- 2),因此能被 4 整除.【研究学习】假定学生 x 岁,用老师的方法获得的式子是2( 5x+5 ),把它分解以后得10( x+1 ),所以老师只需把学生的得数÷10 再减去 1,即可获得学生的实质年纪,因此,李强13 岁.。

提公因式法》习题

提公因式法》习题

提公因式法》习题提公因式法》题1.单项式-12x12y3与8x10y6的公因式是______。

答案:4x10y3.2.-xy2(x+y)3+x(x+y)2的公因式是______。

答案:-xy2(x+y)2.3.把4ab2-2ab+8a分解因式得______。

答案:2a(2b-1)。

4.5(m-n)4-(n-m)5可以写成______与______的乘积。

答案:(m-n)4×(5m-9n)。

5.当n为偶数时,(a-b)n=(b-a)n;当n为奇数时,(a-b)n=- (b-a)n。

(其中n为正整数)6.多项式-ab(a-b)(b-a)(a-b)所提取的公因式应是a-b。

7.(a-b)2(x-y)-(b-a)(y-x)2=(a-b)(x-y)(a+b-2x+2y)。

8.多项式18xn+1-24xn的公因式是6xn。

二、选择题1.多项式8xmyn-1-12x3myn的公因式是()答案:4xmyn。

2.把多项式-4a3+4a2-16a分解因式()答案:-4a(a2-a+4)。

3.abc+ab2-a2bc的一个因式是-ab,那么另一个因式是()答案:XXX。

4.用提取公因式法分解因式正确的是()答案:C.-a2+ab-ac=-a(a-b+c)。

5.下列各式公因式是a的是()答案:A。

ax+ay+5.6.+3xy2+9x2y的公因式是()答案:-3xy。

7.把多项式(3a-4b)(7a-8b)+(11a-12b)(8b-7a)分解因式的结果是()答案:B。

2(7a-8b)2.8.把(x-y)2-(y-x)分解因式为()答案:A。

(x-y)(x-y-1)。

4)ax2+axy-ayx-ay2+x2y-xy2-abx-aby+abx+ab2=(x-a)(x+y)(ax+ay-bx+ab)5)15a(x-y)-15b(x-y)+3y(x-y)=3(a-b)(5ax-5bx+y)=3(a-b)(5ax-5bx+y)6)a2-8a+15=(a-3)(a-5)7)-2q(m+n)=2q(-m-n)=-2q(m+n).改写】1.(1) 将 $x(x-y)-y(y-x)$ 运用提取公因式法因式分解,得到$(x-y)(x+y)$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《提公因式法》习题一、填空题1.单项式-12x 12y 3与8x 10y 6的公因式是________.2.-xy 2(x+y)3+x(x+y)2的公因式是________.3.把4ab 2-2ab+8a 分解因式得________.4.5(m -n)4-(n-m)5可以写成________与________的乘积.5.当n 为_____时,(a-b )n =(b-a )n ;当n 为______时,(a-b )n =-(b-a )n 。

(其中n 为正整数)6.多项式-ab (a-b )2+a (b-a )2-ac (a-b )2分解因式时,所提取的公因式应是_____.7.(a-b )2(x-y )-(b-a )(y-x )2=(a-b )(x-y )×________.8.多项式18x n+1-24x n 的公因式是_______.二、选择题1.多项式8x m y n-1-12x 3m y n 的公因式是( )A .x m y nB .x m y n-1C .4x m y nD .4x m y n-12.把多项式-4a 3+4a 2-16a 分解因式( )A .-a(4a 2-4a+16)B .a(-4a 2+4a -16)C .-4(a 3-a 2+4a)D .-4a(a 2-a+4)3.如果多项式-51abc+51ab 2-a 2bc 的一个因式是-51ab,那么另一个因式是( ) A .c-b+5ac B .c+b-5ac C .c-b+51ac D .c+b-51ac 4.用提取公因式法分解因式正确的是( )A .12abc-9a 2b 2=3abc(4-3ab)B .3x 2y-3xy+6y=3y(x 2-x+2y)C .-a 2+ab-ac=-a(a-b+c)D .x 2y+5xy-y=y(x 2+5x)5.下列各式公因式是a 的是( )A. ax+ay+5 B .3ma-6ma 2 C .4a 2+10ab D .a 2-2a+ma6.-6xyz+3xy2+9x2y的公因式是()A.-3x B.3xz C.3yz D.-3xy7.把多项式(3a-4b)(7a-8b)+(11a-12b)(8b-7a)分解因式的结果是()A.8(7a-8b)(a-b);B.2(7a-8b)2 ;C.8(7a-8b)(b-a);D.-2(7a-8b)8.把(x-y)2-(y-x)分解因式为()A.(x-y)(x-y-1)B.(y-x)(x-y-1)C.(y-x)(y-x-1)D.(y-x)(y-x+1)9.下列各个分解因式中正确的是()A.10ab2c+ac2+ac=2ac(5b2+c)B.(a-b)3-(b-a)2=(a-b)2(a-b+1)C.x(b+c-a)-y(a-b-c)-a+b-c=(b+c-a)(x+y-1)D.(a-2b)(3a+b)-5(2b-a)2=(a-2b)(11b-2a)10观察下列各式: ①2a+b和a+b,②5m(a-b)和-a+b,③3(a+b)和-a-b,④x2-y2和x2+y2.其中有公因式的是()A.①② B.②③C.③④D.①④三、解答题1.请把下列各式分解因式(1)x(x-y)-y(y-x) (2)-12x3+12x2y-3xy2(3)(x+y)2+mx+my (4)a(x-a)(x+y)2-b(x-a)2(x+y)(5)15×(a-b)2-3y(b-a)(6)(a-3)2-(2a-6)(7)(m+n)(p-q)-(m+n)(q+p)2.满足下列等式的x的值.①5x2-15x=0 ②5x(x-2)-4(2-x)=03.a=-5,a+b+c=-5.2,求代数式a2(-b-c)-3.2a(c+b)的值.4.a+b=-4,ab=2,求多项式4a2b+4ab2-4a-4b的值.参考答案一、填空题1.答案:4x10y3;解析:【解答】系数的最大公约数是4,相同字母的最低指数次幂是x10y3,∴公因式为4x10y3.【分析】运用公因式的概念,找出各项的公因式即可知答案.2. 答案:x(x+y)2;解析:【解答】)-xy2(x+y)3+x(x+y)2的公因式是x(x+y)2;【分析】运用公因式的概念,找出各项的公因式即可知答案.3. 答案:2a(2b2-b+4) ;解析:【解答】4ab²- 2ab + 8a= 2a( 2b² - b + 4 ),【分析】把多项式4ab²- 2ab + 8a运用提取公因式法因式分解即可知答案.4. 答案:(m-n)4,(5+m-n)解析:【解答】5(m-n)4-(n-m)5=(m-n)4(5+m-n)【分析】把多项式5(m-n)4-(n-m)5运用提取公因式法因式分解即可知答案.5. 答案:偶数奇数解析:【解答】当n为偶数时,(a-b)n=(b-a)n;当n为奇数时,(a-b)n=-(b-a)n.(其中n为正整数)故答案为:偶数,奇数.【分析】运用乘方的性质即可知答案.6. 答案:-a(a-b)2解析:【解答】-ab(a-b)2+a(a-b)2-ac(a-b)2=-a(a-b)2(b+1-c),故答案为:-a(a-b)2.【分析】运用公因式的概念,找出各项的公因式即可知答案.7. 答案:(a-b+x-y)解析:【解答】(a-b)2(x-y)-(b-a)(y-x)2=(a-b)(x-y)×(a-b+x-y).故答案(a-b+x-y ).【分析】把多项式(a-b )2(x-y )-(b-a )(y-x )2运用提取公因式法因式分解即可.8. 答案:6x n解析:【解答】系数的最大公约数是6,相同字母的最低指数次幂是x n , ∴公因式为6x n .故答案为6x n【分析】运用公因式的概念,找出各项的公因式即可知答案.二、选择题1. 答案:D解析:【解答】多项式8x m y n-1-12x 3m y n 的公因式是4x m y n-1.故选D .【分析】运用公因式的概念,找出各项的公因式即可知答案.2. 答案:D解析:【解答】-4a 3+4a 2-16a=-4a (a 2-a+4).故选D .【分析】把多项式-4a 3+4a 2-16a 运用提取公因式法因式分解即可.3. 答案:A解析:【解答】-51abc+51ab 2-a 2bc=-51ab (c-b+5ac ),故选A. 【分析】运用提取公因式法把多项式-51abc+51ab 2-a 2bc 因式分解即可知道答案. 4. 答案:C解析:【解答】A .12abc-9a 2b 2=3ab (4c-3ab ),故本选项错误; B .3x 2y-3xy+6y=3y (x 2-x+2),故本选项错误;C .-a 2+ab-ac=-a (a-b+c ),本选项正确; D .x 2y+5xy-y=y (x 2+5x-1),故本选项错误;故选C.【分析】根据公因式的定义,先找出系数的最大公约数,相同字母的最低指数次幂,确定公因式,再提取公因式即可.5. 答案:D ;解析:【解答】A.ax+ay+5没有公因式,所以本选项错误;B.3ma-6ma 2的公因式为:3ma ,所以本选项错误;C.4a 2+10ab 的公因式为:2a ,所以本选项错误;D.a 2-2a+ma 的公因式为:a ,所以本选项正确.故选:D.【分析】把各选项运用提取公因式法因式分解即可知答案.6. 答案:D;解析:【解答】-6xyz+3xy2-9x2y各项的公因式是-3xy.故选D.【分析】运用公因式的概念,找出即可各项的公因式可知答案.7. 答案:C;【解答】(3a-4b)(7a-8b)-(11a-12b)(7a-8b)=(7a-8b)(3a-4b-11a+12b)=(7a-8b)(-8a+8b) 解析:=8(7a-8b)(b-a).故选C【分析】把(3a-4b)(7a-8b)-(11a-12b)(7a-8b)运用提取公因式法因式分解即可知答案.8. 答案:C;解析:【解答】(x-y)2-(y-x)=(y-x)2-(y-x)=(y-x)(y-x-1),故答案为:C. 【分析】把(x-y)2-(y-x)运用提取公因式法因式分解即可知答案.9. 答案:D;解析:【解答】10ab2c+6ac2+2ac=2ac(5b2+3c+1),故此选项错误;(a-b)3-(b-a)2=(a-b)2(a-b-1)故此选项错误;x(b+c-a)-y(a-b-c)-a+b-c=x(b+c-a)+y(b+c-a)+(b-c-a)没有公因式,故此选项错误;(a-2b)(3a+b)-5(2b-a)2=(a-2b)(3a+b-5a+10b)=(a-2b)(11b-2a),故此选项正确;故选:D.【分析】把各选项运用提取公因式法因式分解即可知答案.10. 答案:B.解析:【解答】①2a+b和a+b没有公因式;②5m(a-b)和-a+b=-(a-b)的公因式为(a-b);③3(a+b)和-a-b=-(a+b)的公因式为(a+b);④x 2 -y 2和x 2 +y 2没有公因式.故选B.【分析】运用公因式的概念,加以判断即可知答案.三、解答题1.答案:(1)(x-y)(x+y);(2)-3x(2x-y)2;(3)(x+y)(x+y+m);(4)(x-a)(x+y)(ax+ay-bx+ab);(5)3(a-b)(5ax-5bx+y);(6)(a-3)(a-5);(7)-2q(m+n). 解析:【解答】(1)x(x-y)-y(y-x)=(x-y)(x+y)(2)-12x3+12x2y-3xy2=-3x(4x2-4xy+y2)=-3x(2x-y)2(3)(x+y)2+mx+my=(x+y)2+m(x+y)=(x+y)(x+y+m)(4)a(x-a)(x+y)2-b(x-a)2(x+y)=(x-a)(x+y)[a(x+y)-b(x-a)]=(x-a)(x+y)(ax+ay-bx+ab) (5)15x(a-b)2-3y(b-a)=15x(a-b)2+3y(a-b)=3(a-b)(5ax-5bx+y);(6)(a-3)2-(2a-6)=(a-3)2-2(a-3)=(a-3)(a-5);(7)(m+n)(p-q)-(m+n)(q+p)=(m+n)(p-q-q-p)=-2q(m+n)【分析】运用提取公因式法因式分解即可.42.答案:(1)x=0或x=3;(2)x=2或x=-5解析:【解答】(1)5x2-15x=5x(x-3)=0,则5x=0或x-3=0,∴x=0或x=34(2)(x-2)(5x+4)=0,则x-2=0或5x+4=0,∴x=2或x=-5【分析】把多项式利用提取公因式法因式分解,然后再求x的值.3.答案:1.8解析:【解答】∵a=-5,a+b+c=-5.2,∴b+c=-0.2∴a2(-b-c)-3.2a(c+b)=-a2(b+c)-3.2a·(b+c)=(b+c)(-a2-3.2a)=-a(b+c)(a+3.2)=5×(-0.2)×(-1.8)=1.8【分析】把a2(-b-c)-3.2a(c+b)利用提取公因式法因式分解,再把已知的值代入即可知答案.4. 答案:-16解析:【解答】4a2b+4ab2-4a-4b=4(a+b)(ab-1),∵a+b=-4,ab=2,∴4a2b+4ab2-4a-4b=4(a+b)(ab-1)=-16.【分析】把4a2b+4ab2-4a-4b利用提取公因式法因式分解,再把已知的值代入即可知答案.。

相关文档
最新文档