最新七年级数学不等式应用题专项练习
七年级不等式试题及答案
七年级不等式试题及答案一、选择题1. 若a > b,c > 0,则下列不等式中正确的是()A. ac > bcB. ac < bcC. a/c > b/cD. a/c < b/c答案:A2. 若a < b < 0,c > 0,则下列不等式中正确的是()A. ac > bcB. ac < bcC. a/c > b/cD. a/c < b/c答案:B二、填空题1. 若x > 5,则x - 3 _______ 2。
答案:>2. 若y < -2,则-2y _______ 4。
答案:>三、解答题1. 若a > b,且a > 0,b > 0,求证:a² > b²。
证明:因为a > b,且a > 0,b > 0,所以a - b > 0,两边同时乘以a + b(a + b > 0),得到a² - b² > 0,所以a² > b²。
2. 若x > y,且x < 0,y < 0,求证:-x > -y。
证明:因为x > y,且x < 0,y < 0,所以-x < -y,两边同时乘以-1(-1 < 0),得到-x > -y。
四、应用题1. 某工厂生产的产品,若每件产品成本为c元,售价为p元,且c < p。
已知生产了n件产品,求工厂的总利润。
解:总利润 = 总售价 - 总成本= np - nc= n(p - c)因为c < p,所以p - c > 0,所以工厂的总利润为n(p - c)元。
2. 某学校有m个学生,每个学生至少需要x本练习本,现在学校有y 本练习本,且x > y/m。
问学校是否需要购买额外的练习本?解:因为每个学生至少需要x本练习本,共有m个学生,所以总共需要mx本练习本,又因为x > y/m,所以mx > y,所以学校需要购买额外的练习本。
初一不等式试题及答案
初一不等式试题及答案1. 若不等式 \(2x - 5 < 3\),求 \(x\) 的取值范围。
答案:首先将不等式 \(2x - 5 < 3\) 进行移项,得到 \(2x < 8\)。
然后将两边同时除以2,得到 \(x < 4\)。
因此,\(x\) 的取值范围是\(x < 4\)。
2. 已知 \(a > 0\),\(b < 0\),判断不等式 \(a - b > 0\) 是否成立。
答案:由于 \(a > 0\) 且 \(b < 0\),即 \(a\) 是正数,\(b\) 是负数。
根据不等式的性质,正数减去负数结果为正数,所以 \(a - b > 0\) 成立。
3. 解不等式组:\[\begin{cases}x + 2 > 0 \\3x - 4 \leq 5\end{cases}\]答案:首先解第一个不等式 \(x + 2 > 0\),得到 \(x > -2\)。
接着解第二个不等式 \(3x - 4 \leq 5\),得到 \(x \leq 3\)。
因此,不等式组的解集为 \(-2 < x \leq 3\)。
4. 若不等式 \(3x - 7 > 0\),求 \(x\) 的最小整数值。
答案:首先解不等式 \(3x - 7 > 0\),得到 \(3x > 7\)。
然后将两边同时除以3,得到 \(x > \frac{7}{3}\)。
因为 \(x\) 必须是整数,所以 \(x\) 的最小整数值是 3。
5. 已知不等式 \(5x - 2 \geq 8\),求 \(x\) 的取值范围。
答案:将不等式 \(5x - 2 \geq 8\) 进行移项,得到 \(5x \geq10\)。
然后将两边同时除以5,得到 \(x \geq 2\)。
因此,\(x\) 的取值范围是 \(x \geq 2\)。
6. 判断不等式 \(-3x + 4 > 0\) 是否有解。
不等式练习题
不等式练习题一、基本不等式1. 已知a > b,求证:a + c > b + c。
2. 已知x > 3,求证:x^2 > 9。
3. 已知0 < x < 1,求证:x^3 < x。
4. 已知a, b均为正数,求证:a^2 + b^2 > 2ab。
5. 已知|x| > |y|,求证:x^2 > y^2。
二、一元一次不等式1. 解不等式:3x 7 > 2x + 4。
2. 解不等式:5 2(x 3) ≤ 3x 1。
3. 解不等式:2(x 1) 3(x + 2) > 7。
4. 解不等式:4 3(x 2) ≥ 2x + 5。
5. 解不等式:5(x 3) + 2(2x + 1) < 7x 9。
三、一元二次不等式1. 解不等式:x^2 5x + 6 > 0。
2. 解不等式:2x^2 3x 2 < 0。
3. 解不等式:x^2 4x + 4 ≤ 0。
4. 解不等式:3x^2 + 4x 4 > 0。
5. 解不等式:x^2 + 5x 6 < 0。
四、分式不等式1. 解不等式:x / (x 1) > 2。
2. 解不等式:1 / (x + 3) 1 / (x 2) ≤ 0。
3. 解不等式:(x 1) / (x + 1) < 0。
4. 解不等式:(2x + 3) / (x 4) ≥ 1。
5. 解不等式:(3x 2) / (x^2 5x + 6) > 0。
五、含绝对值的不等式1. 解不等式:|x 2| > 3。
2. 解不等式:|2x + 1| ≤ 5。
3. 解不等式:|3x 4| < 2。
4. 解不等式:|x + 3| |x 2| > 1。
5. 解不等式:|x 5| + |x + 1| < 6。
六、综合应用题1. 已知不等式组:$\begin{cases} 2x 3y > 6 \\ x + 4y ≤ 8 \end{cases}$,求x的取值范围。
最新人教版七年级数学下册第九章 :不等式组应用题专项训练
一、选填题1、雯雯同学到文具店买中性笔和笔记本,中性笔每支0.8元,笔记本每本1.2元,雯雯带了10元钱,则可供她选择的购买方案数为(两种文具都买,且余下的钱少于0.8元)()A. 6B. 7C. 8D. 92、雯雯去文具店买文具,练习本每个卖2元,水性笔每支卖3元,两种文具至少各买1个,买文具的总钱数不能超过15元,则不同的购买方案的个数为()A. 11B. 12C. 13D. 143、某商品的售价是150元,商家售出一件这种商品可获利润是进价的10%~20%,则进价的范围是()(精确到1元).4、甲、乙两队进行篮球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分.一共进行了10场比赛,甲队保持不败,且得分不低于24分,则甲队至少胜了()场.二、解答题5、把一些书分给几名同学,如果每人分3本,那么余8本;如果前面的每名同学分5本,那么最后一人就分不到3本.这些书有多少本?共有多少人?6、把一些糖果分给小朋友,如果分给每个小朋友4颗糖,那么剩下28颗糖;如果分给每个小朋友5颗糖,那么最后一位小朋友分得的糖果不到4颗,但至少1颗.至少有多少个小朋友?7、商场销售甲、乙两种商品,它们的进价和售价如下表:(1)若该商场购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?(2)该商场为使销售甲、乙两种商品共100件的总利润(利润=售价−进价)不少于750元,且不超过760元,请你帮助该商场设计相应的进货方案.8、某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且商店购买A、B两处商品的总费用不超过296元,那么该商店有哪几种购买方案?9、某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元. (1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的数量不超过甲种奖品数量的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?10、某省计划对A,B两类学校的校舍进行改造,根据预算,改造一所A类学校和三所B类学校的校舍共需资金480万元;改造三所A 类学校和一所B类学校的校舍共需资金400万元.(1)改造一所A类学校的校舍和一所B类学校的校舍所需资金分别是多少万元?(2)该省计划共改造8所A,B两类学校的校舍.改造资金由国家财政和地方财政共同承担,若国家财政投入的资金不超过770万元,地方财政投入的奖金不少于210万元,其中地方财政投入到A,B两类学校的改造资金分别为每所20万元和30万元.请你通过计算说明有几种改造方案?11、江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?12、“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书贵440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元;(2)若学校要求采购动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请写出所有符合条件的购书方案.13、现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和2件B商品用了160元.(1)求A,B两种商品每件各是多少元?(2)如果雯雯准备购买A,B两种商品共10件,总费用不超过350元,且不低于300元,问有几种购买方案?哪种方案费用最低?14、雯雯的妈妈开了一家糕点店,现有10.2千克面粉和10.2千克鸡蛋,计划加工普通糕点和精制糕点两种产品共50盒.已知加工一盒普通糕点需0.3千克面粉和0.1千克鸡蛋,加工一盒精制糕点需0.1千克面粉和0.3千克鸡蛋.(1)有哪几种不同的加工方案?(2)若销售一盒普通糕点和一盒精制糕点的利润分别为3元和4元,则按哪种方案加工,雯雯的妈妈可获得的利润最大?最大利润是多少?15、在某河流污水网管改造建设中,需要确保在汛期来临前将建设过程中产生的渣土清运完毕,每天至少需要清运渣土12720 m3.施工方准备每天租用大、小两种运输车共80辆,已知每辆大车每天运送渣土200 m3,每辆小车每天运送渣土120 m3,大、小车每天每辆租车费用分别为1200元、900元,且要求每天租车的总费用不超过85300元.(1)施工方共有多少种租车方案?(2)哪种租车方案费用最低,最低费用是多少?16、公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B 型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路上的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?17、某中学开学初到商场购买A,B两种品牌的足球,购买A种品牌的足球50个,B种品牌的足球25个,共花费4500元.已知购买一个B种品牌的足球比购买一个A种品牌的足球多花30元.(1)求购买一个A种品牌、一个B种品牌的足球各需要多少元?(2)为了进一步丰富同学们的体育活动,学校决定再次购进A,B两种品牌的足球共50个,正好赶上商场对商品价格进行调整,A种品牌的足球售价比第一次购买时提高4元,B种品牌的足球按第一次购买时售价的九折出售,如果学校要求此次购买A,B两种品牌的足球的总费用不超过第一次花费的70%,且这次购买的B种品牌的足球不少于23个,则这次学校有哪几种购买方案?(3)请你求出学校在第二次购买活动中最多需要多少资金.18、求分式不等式5x+12x−3<0的解集.一、选填题1、B2、D3、125元~136元4、7二、解答题5、这些书有26本,共有6人.6、至少有30个小朋友.7、(1)甲40件,乙60件;(2)该商场有三种进货方案:方案一:购进甲种商品14件,购进乙种商品86件;方案二:购进甲种商品15件,购进乙种商品85件;方案三:购进甲种商品16件,购进乙种商品84件.8、(1)A商品的单价是16元,B商品的单价是4元;(2)该商店有两种购买方案:方案一:购买12件A商品,购买20件B商品;方案二:购买13件A商品,购买22件B商品.9、(1)甲奖品5件、乙奖品15件;(2)有两种不同的购买方案:方案一:购买甲种奖品7件,乙种奖品13件;方案二:购买甲种奖品8件,乙种奖品12件.10、(1)改造一所A类校舍需90万元,改造一所B类校舍需130万元;(2)有三种不同的改造方案:方案一:改造1所A类学校,7所B类学校;方案二:改造2所A类学校,6所B类学校;方案三:改造3所A类学校,5所B类学校;11、(1)每台大型收割机每小时收割小麦0.5公顷,每台小型收割机每小时收割小麦0.3公顷;(2)有三种方案:方案一:5台大小型收割机,5台小型收割机;方案二:6台大小型收割机,4台小型收割机;方案三:7台大小型收割机,3台小型收割机.12、(1)每本文学名著40元,每本动漫书18元;(2)该学校有三种进货方案:方案一:采购文学名著26本,采购动漫书46本;方案二:采购文学名著27本,采购动漫书47本;方案三:采购文学名著28本,采购动漫书48本.13、(1)A,B两种商品每件各20元、50元;(2)有两种购买方案:方案一:购买A种商品5件,B种商品5件;方案二:购买A种商品6件,B种商品4件.方案二费用最低.14、(1)有三种不同的加工方案:方案一:加工普通糕点24盒,精制糕点26盒;方案二:加工普通糕点25盒,精制糕点25盒;方案三:加工普通糕点26盒,精制糕点24盒.(2)方案一的利润最大,最大利润为176元.15、(1)施工方共有6种租车方案:方案一:大车39辆,小车41辆;方案二:大车40辆,小车40辆;方案三:大车41辆,小车39辆;方案四:大车42辆,小车38辆;方案五:大车43辆,小车37辆;方案六:大车44辆,小车36辆;(2)方案一的费用最低,最低费用为83700元.16、(1)购买A型和B型公交车每辆各需100万元、150万元;(2)该公司有3种购车方案:方案一:购买A型公交车6辆,B型公交车7辆;方案二:购买A型公交车7辆,B型公交车3辆;方案三:购买A型公交车8辆,B型公交车2辆.方案三总费用最少,最少总费用为1100万元.17、(1)A种品牌的足球单价为50元,B种品牌的足球单价为80元.(2)学校有3种购买方案:方案一:购买A种品牌的足球25个,购买B种品牌的足球25个;方案二:购买A种品牌的足球26个,购买B种品牌的足球24个;方案三:购买A种品牌的足球27个,购买B种品牌的足球23个. (3)学校在第二次购买活动中最多需要3150元.18、分式不等式5x+12x−3<0的解集为−15<x<32.。
七年级不等式题型训练
七年级不等式题型训练题目 1若不等式x < a只有 4 个正整数解,则a的取值范围是多少?解析:因为x < a只有 4 个正整数解,所以这 4 个正整数解为 1、2、3、4,所以4 < a≤ 5。
题目 2若不等式组x + 1 > 0 x - a < 0无解,则a的取值范围是多少?解析:解不等式x + 1 > 0,得x > -1;解不等式x - a < 0,得x < a。
因为不等式组无解,所以a≤ -1。
题目 3若不等式2x + 5 > 4x - 1的解集是x < 3,求a的值。
解析:解不等式2x + 5 > 4x - 1,2x - 4x > -1 - 5,-2x > -6,x < 3。
所以无需考虑a,此题中a的值未给出相关条件。
题目 4若关于x的不等式3x - a≤ 0的正整数解是 1、2、3,求a的取值范围。
解析:解不等式3x - a≤ 0,3x≤ a,x≤ (a)/(3)。
因为正整数解是 1、2、3,所以3≤ (a)/(3) < 4,9≤ a < 12。
题目 5若不等式组x - a > 0 x - b < 0的解集为a < x < b,求a、b的大小关系。
解析:解不等式x - a > 0,得x > a;解不等式x - b < 0,得x < b。
因为解集为a < x < b,所以a < b。
题目 6若不等式-2x > a - 4的解集是x < 2 - (a)/(2),求a的值。
解析:-2x > a - 4,x < -(a - 4)/(2),即x < 2 - (a)/(2),所以-(a)/(2) = -(a)/(2),a为任意实数。
题目 7若不等式组x + 8 < 4x - 1 x > m的解集是x > 3,求m的取值范围。
七年级数学不等式应用题专项练习(含答案解析)
七年级数学不等式应用题专项练习(含答案解析)1. 两名教师带学生去旅游,联系了两家标价相同的旅游公司。
甲公司优惠条件是1名教师全额收费,其余7.5折收费;乙公司的优惠条件是全部师生8折收费。
问当学生人数超过多少人时,甲旅游公司比乙旅游公司更优惠?2. 一位老师所教班级的学生人数,一半学数学,四分之一学音乐,七分之一学外语,还剩不足6位学生在玩足球。
求这个班有多少位学生?3. 某工程队要招聘甲、乙两种工人150人,甲、乙两种工种的月工资分别为600元和1000元。
现要求乙种工种的人数不少于甲种工种人数的2倍。
问甲、乙两种工种各招聘多少人时,可使得每月所付工资最少?4. 某商店以每辆300元的进价购入200辆自行车,并以每辆400元的价格销售。
两个月后自行车的销售款已超过这批自行车的进货款。
问这时至少已售出多少辆自行车?5. 某校为奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们。
如果每人送3本,则还余8本;如果前面每人送5本,则最后一人得到的课外读物不足3本。
设该校买了m本课外读物,有x名学生获奖。
请解答下列问题:(1)用含x的代数式表示m;(2)求出该校的获奖人数及所买课外读物的本数。
6. 某果品公司要请汽车运输公司或火车货运站将60t水果从A地运到B地。
已知汽车和火车从A地到B地的运输路程都是Skm,两家运输单位除都要收取运输途中每吨每小时5元的冷藏费用外,其他收取的费用和有关运输资料由表列出。
问:(1)分别写出这两家运输单位运送这批水果所要收取的总费用y1元和y2元(用含S的式子表示);(2)为减少费用,当s=100km时,你认为果品公司应该选择哪一家运输单位更为合算?7. 用甲、乙两种原料配制成某种果汁,已知这两种原料的维生素C的含量及购买这两种原料的价格如表。
现制作这种果汁200kg,要求至少含有52,000单位的维生素C。
试写出所需甲种原料的质量x(kg)应满足的不等式。
(2)在方案一中果农应付运输费:5*2000+5*1300=元,在方案二中果农应付运输费:6*2000+4*1300=元。
初一不等式的试题及答案
初一不等式的试题及答案一、选择题1. 下列不等式中,不正确的是()A. 3x - 5 > 2x + 1B. 2x + 3 > 2x + 1C. 5x < 3x + 2D. 4x - 6 > 2x + 3答案:C2. 如果a > b,那么下列不等式中正确的是()A. a - 2 > b - 2B. 2a < 2bC. -a < -bD. a/2 < b/2答案:A3. 若x > 0,y < 0,则下列不等式中正确的是()A. x + y > 0B. xy > 0C. x - y > 0D. x/y > 0答案:C4. 若a > 0,b < 0,则下列不等式中正确的是()A. a + b > 0B. ab > 0C. a - b > 0D. a/b < 0答案:C5. 若m < 0,n > 0,则下列不等式中正确的是()A. m + n > 0B. mn > 0C. m - n < 0D. m/n < 0答案:D二、填空题6. 若不等式2x - 3 < 5的解集为x < 4,则不等式2x - 3 > 5的解集为x _______ 4。
答案:>7. 若不等式3x + 2 > 11的解集为x > 3,则不等式3x + 2 < 11的解集为x _______ 3。
答案:<8. 若不等式5x - 7 ≥ 13的解集为x ≥ 4,则不等式5x - 7 < 13的解集为x _______ 4。
答案:<9. 若不等式-2x + 4 ≤ 0的解集为x ≥ 2,则不等式-2x + 4 > 0的解集为x _______ 2。
答案:<10. 若不等式4x - 6 > 2x + 8的解集为x > 7,则不等式4x - 6 < 2x + 8的解集为x _______ 7。
七年级不等式组应用题(一)
七年级不等式组应用题(一)七年级不等式组应用题题目一:购买手机壳小明想要购买手机壳,他在某网店上看到了两款手机壳的价格。
壳A的价格是x元,壳B的价格是y元。
已知小明手里的钱不超过80元,且他至少要购买一款手机壳。
请问他可选购的手机壳有哪些价格组合?题目二:运动场馆租用某运动场馆的运营商希望通过租用来增加收益。
经过调研,他们发现,七年级的学生每小时支付15元租金,而八年级的学生每小时支付20元租金。
运营商希望每小时租金收入不少于120元。
如果这两个年级的学生数量分别是a和b,且a和b的和不少于10,则运营商能够满足要求吗?题目三:汽车出租某汽车出租公司的价格策略如下:运行不超过10公里收费10元,超过10公里但不超过20公里每公里加收1元,超过20公里但不超过30公里每公里加收2元,以此类推。
小明租车行驶了x公里,其中超出10公里的部分小明需要支付多少钱?题目四:学生成绩某班级有70名学生,他们的期末考试成绩都在60分以上。
已知及格学生人数加上不及格学生人数的和为70人,及格学生的人数是不及格学生人数的3倍。
请问及格学生的人数是多少?题目五:购买书籍小红想要购买一些书籍,已经了解到所要购买的书籍一共有n本,每本书的价格为p元。
她手里最多只有100元,且必须购买至少一本书。
请问小红最多能购买几本书?题目六:制作纸盒根据规定,一个纸盒的制作需要占用2张A3纸和4张A4纸。
甲工厂每天最多可以使用A3纸240张,A4纸600张。
已知甲工厂每天最多能制作纸盒x个,且每个纸盒的售价为y元。
请问甲工厂每天最多能获得多少收益?以上是七年级不等式组的一些应用题,它们可以帮助学生深入理解和应用不等式概念。
希望这些题目能够帮助大家更好地掌握不等式组的解题方法。
题目七:聚会费用分摊小明和他的朋友们打算举办一次聚会,共有x人参加。
聚会的费用要平摊到每个人身上,已知如果参加人数不超过10人,每人需要支付10元;如果参加人数超过10人但不超过20人,则超出的每人需要支付5元;如果参加人数超过20人,则超出的每人需要支付3元。
解不等式例题50道
解不等式例题50道一、一元一次不等式1. 解不等式:2x + 5>9- 解析:- 首先对不等式进行移项,将常数项移到右边,得到2x>9 - 5。
- 计算右边式子得2x>4。
- 两边同时除以2,解得x > 2。
2. 解不等式:3x-1<8- 解析:- 移项可得3x<8 + 1。
- 即3x<9。
- 两边同时除以3,解得x<3。
3. 解不等式:5x+3≤slant2x + 9- 解析:- 移项,把含x的项移到左边,常数项移到右边,得到5x-2x≤slant9 - 3。
- 计算得3x≤slant6。
- 两边同时除以3,解得x≤slant2。
4. 解不等式:4x-7≥slant3x+1- 解析:- 移项得4x - 3x≥slant1+7。
- 即x≥slant8。
5. 解不等式:(1)/(2)x+3>x - 1- 解析:- 移项可得(1)/(2)x-x>-1 - 3。
- 通分计算,((1)/(2)-(2)/(2))x>-4,即-(1)/(2)x>-4。
- 两边同时乘以 - 2,不等号变向,解得x < 8。
6. 解不等式:(2)/(3)x-1≤slant(1)/(3)x+2- 解析:- 移项得(2)/(3)x-(1)/(3)x≤slant2 + 1。
- 计算得(1)/(3)x≤slant3。
- 两边同时乘以3,解得x≤slant9。
7. 解不等式:2(x + 3)>3(x - 1)- 解析:- 先展开括号,得到2x+6>3x - 3。
- 移项得2x-3x>-3 - 6。
- 计算得-x>-9。
- 两边同时乘以 - 1,不等号变向,解得x < 9。
8. 解不等式:3(x - 2)≤slant2(x+1)- 解析:- 展开括号得3x-6≤slant2x + 2。
- 移项得3x-2x≤slant2+6。
- 计算得x≤slant8。
初一数学不等式与不等式组30道典型题(含答案和解析及相关考点)
初一数学不等式与不等式组30道典型题(含答案和解析)1、在式子 -3<0,x ≥2,x=a,x 2-2x,x ≠3,x+1>y 中,是不等式的有( ).A. 2个B. 3个C. 4个D. 5个 答案:C.解析:式子 -3<0,x ≥2,x ≠3,x+1>y 这四个是不等式.考点:方程与不等式——不等式与不等式组——不等式的基础——不等式的定义.2、下列结论正确的有 (填序号).①如果a >b,c <d,那么a-c >b-d. ②如果a >b,那么ab >1.③如果a >b,那么1a <1b.④如果a c2<bc2,那么a <b.答案:①④.解析:①∵c <d,∴-c >-d,∵a >b,∴a-c >b-d, 故①正确.②当b <0时,ab <1, 故②错.③若a=2,b= -1,满足a >b,但1a >1b , 故③错. ④∵ac2<bc 2,∴c 2>0,∴a <b.考点:方程与不等式——不等式与不等式组——不等式的基础——不等式的性质.3、若0<m <1,m ,m 2,1m的大小关系是( ).A. m <m 2<1m B. m 2<m <1m C. 1m <m <m 2D. 1m <m 2<m答案:B.解析:可用特殊值.考点:方程与不等式——不等式与不等式组——不等式的基础——不等式的性质.4、若a <b,则下列各式中一定成立的是( ).A.a-1<b-1B. a 3>b3 C.-a <-b D.ac <bc 答案:A.解析:根据不等式的性质可得:不等式两边加(或减)同一个数(或式子),不等号的方不变.A. a-1<b-1,故A 选项是正确的.B.a >b,不成立,故B 选项是错误的.C. a >-b,不一定成立,故 选项是错误的.D. C 的值不确定,故D 选项是错误的.考点:方程与不等式——不等式与不等式组——不等式的基础——不等式的性质.5、下列式子中,是一元一次不等式的有( ).①x 2+x <1 ②1x +2>0 ③x-3>y+4 ④2x+3<8 A.1个 B.2个 C.3个 D.4个 答案:A.解析:①不是,因为它的未知数的最高次数是2.②不是,因为不等式的左边是1x +2,它不是整式.③不是,因为不等式中含有两个未知数.④是,因为它符合一元一次不等式定义中的三个条件. 故答案为A.考点:方程与不等式——不等式与不等式组——一元一次不等式的定义.6、如果(m+1)x >2是一元一次不等式,则m = . 答案:1. 解析:∵(m+1)x∣m ∣>2是一元一次不等式.∴m+1≠0.︱m ︱=1,解得:m=1.考点:数——有理数——绝对值——方程与不等式——不等式与不等式组——一元一次不等式的定义.7、解不等式3-4(2x-3)≥3(3-2x),并把它的解集在数轴上表示出来.答案:原不等式的解集为x≤3.画图见解析.解析:去括号,得3-8x+12≥9-6x.移项,得-8x+6x≥9-3-12.合并同类项,得-2x≥-6.系数化1 ,得x≤3.把它的解集在数轴上表示为:考点:方程与不等式——不等式与不等式组——在数轴上表示不等式的解集——解一元一次不等式.8、当a<3时,不等式ax≥3x+7的解集是..答案:x≤7a−3解析:ax≥3x+7.ax-3x≥7.(a-3)x≥7.∵a<3.∴a-3<0..∴x≤7a−3考点:方程与不等式-不等式与不等式组-含参不等式(组)-解含参不等式.(x-5)-1>x+m的解集为x<2,则m的值为.9、已知不等式12答案:-4.5.解析:1(x-5)-1>x+m.212x-52-1-x >m.-12x >m+72. x <-2m-7. ∵解集为x <2. 则-2m-7=2. m=-4.5.考点:方程与不等式——不等式与不等式组——含参不等式(组)——已知解集反求参数.10、若不等式4x-a <0只有三个正整数解,则 的取值范围 . 答案:12<a ≤16.解析::将4x-a <0变形为x <a4.不等式只有三个正整数解.即x 的正整数解为1,2,3,所以3<a4≤4,解得a 的取值范围为12<a ≤16.考点:方程与不等式——不等式与不等式组——一元一次不等式的整数解.11、若关于x 的不等式mx-n >0的解集是x <15,则关于x 的不等式(m+n )x >n-m 的解集是( ).A. x <-23B. x >-23C. x <23D. x >23答案:A.解析:∵不等式mx-n >0的解集是x <15.∴m <0且n m= 15.∴m=5n,n <0.∴不等式(m+n )x >n-m 可整理为6nx >-4n 的解集是x <-23.考点:方程与不等式——不等式与不等式组——解一元一次不等式.12、若方程3(x+1)-m = 3m-5x 的解是负数,则 的取值范围是( ).A. m <34 B. m >34 C. m <−34 D. m >−34答案:A.解析:3(x+1)-m = 3m-5x.3x+5x = 3m+m-3. 8x = 4m-3. ∵解是负数. ∴8x <0. ∴4m-3<0. m <34.考点:方程与不等式—一元一次方程—含字母参数的一元一次方程—含参一元一次方程.不等式与不等式组—一元一次不等式的应用.13、若关于x ,y 的二元一次方程组 {3x +y =1+ax +3y =3的解满足x+y <2,则a 的取值范围是 . 答案:a <4.解析:将二元一次方程组两个等式相加,得4x+4y=a+4,即x+y=a+44.∵x+y <2. ∴a+44<2.∴a <4.考点:方程与不等式——二元一次方程组——含字母参数的二元一次方程组.14、关于x,y 的二元一次方程组{3x −y =ax −3y =5−4a的解满足x <y,则a 的取值范围是( ).A. a >35B. a <13C. a <53D. a >53答案:D. 解析:解法一:解不等式组得{x =7a−58y =13a−158.∵x <y.∴7a−58<13a−158.解得a >53. 解法二:两式相加得4(x-y )=5-3a. ∵x <y. ∴x-y <0. ∴5-3a <0. ∴a >53.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.15、解不等式2x−13-5x+12≥1,并把它的解集在数轴上表示出来.答案:不等式的解集为x ≤-1,在数轴上表示如图所示:解析:去分母,得2(2x-1)-3(5x+1)≥6.去括号,得4x-2-15-3≥6. 移项合并同类项,得-11x ≥11. 系数化为1,得x ≤-1.∴此不等式的解集为x ≤-1,在数轴上表示如图所示:考点:方程与不等式——不等式与不等式组——在数轴上表示不等式的解集——解一元一次不等式.16、解不等式12(x+1)≤23x-1,并把它的解集表示在数轴上,再写出它的最小整数解. 答案:最小整数解为x=9. 解析:12(x+1)≤23x-1.3(x+1)≤4x-6.3x+3≤4x-6.3x-4x≤-6-3.-x≤-9.x≥9.将它的解集表示在数轴上:∴它的最小整数解为x=9.考点:方程与不等式——不等式与不等式组——解一元一次不等式.17、若m>6,则(6-m)x<m-6的解集为.答案:x>-1.解析:∵m>6.∴(6-m)x<m-6.∴x>-1.考点:方程与不等式——不等式与不等式组——含参不等式(组)——解含参不等式. 18、关于x的不等式2x-a≤-1的解集如图所示,则a的值是( ).A.4B.3C.2D.1答案:B.解析:解不等式2x-a≤-1得,x≤a−1,根据数轴可知x≤1.2=1,即a=3.∴a−12考点:方程与不等式——不等式与不等式组——在数轴上表示不等式的解集——解一元一次不等式.19、已知a、b为常数,若ax+b>0的解集是x<1,则bx-a<0的解集是( ).4A.x >-4B.x <-4C.x >4D.x <4 答案:B.解析:∵ax+b >0的解集x <14.∴x <-ba . 则-ba = 14. ∴a <0. 又∵a=-4b. ∴b >0. ∴bx-a <0. ∴bx+4b <0. ∴x+4<0. ∴x <-4.考点:方程与不等式——不等式与不等式组——含参不等式(组)——解含参不等式.20、已知方程组{2x +3y =3m +72x +y =4m +1的解满足x+y >0,求m 的取值范围.答案:m >-87.解析:{2x +3y =3m +7①2x +y =4m +1 ②.解:①+②得. 4x+4y=7m+8. 4(x+y)=7m+8. x+y=7m+84.∵x+y >0. ∴7m+84>0.∴7m+8>0. ∴7m >-8. ∴m >-87.考点:方程与不等式——二元一次方程组——含字母参数的二元一次方程组.不等式与不等式组——一元一次不等式的应用.21、解不等式组{2(x +8)≤10−4(x −3)x+12−4x+16<1,并写出该不等式组的整数解. 答案:-4<x ≤1,整数解有-3,-2,-1,0,1. 解析:{2(x +8)≤10−4(x −3)①x+12−4x+16<1 ②. 由①得:x ≤1. 由②得:x >-4. ∴-4<x ≤1.整数解有-3,-2,-1,0,1.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.22、解不等式组:{7(x −5)+2(x +1)>−152x+13−3x−12<0答案:x >2.解析:{7(x −5)+2(x +1)>−15①2x+13−3x−12<0②. 解①得:x >2. 解②得:x >1. ∴x >2.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.23、解不等式组:{2(x +1)>5x −7x+103>2x 答案:x <2.解析:解不等式2(x+1)>5x-7得.2x+2>5x-7. 3x <9.x <3. 解不等式x+103>2x 得.x+10>6x. 5x <10. x <2.∴原不等式的解集为x <2.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.24、不等式组{x +9<5x +1x >m +1的解集是x >2,则m 的取值范围是 .答案:m ≤1.解析:由不等式组可得{x >2x >m +1,其解集为x >2,则m+1≤2,m ≤1.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.25、若关于x 的不等式组{x −2<5x −a >0无解,则 的取值范围是 .答案:a ≥7.解析:解不等式组得{x <7x >a,由不等式组无解可知a ≥7.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.26、已知关于x 的不等式组{x −a ≥b 2x −a <2b +1的解集为3≤x <5,则ba 的值为 .答案:-2.解析::由x-a ≥b 得x ≥a+b.由2x-a <2b+1得x <a+2b+12.∵解集为3≤x <5. ∴{a +b =3a+2b+12=5.解b=6,a=-3.∴ba = 6−3= -2.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.27、已知方程组{x+y=m+3x−y=3m−1的解是一对正数,试化简∣2m+1∣+∣2-m∣.答案:化简得:m+3.解析:{x+y=m+3①x−y=3m−1②.①+②:2x=4m+2.x=2m+1.①-②:2y=-2m+4.y=-m+2.∵方程组的解是一对正数.∴{x>0 y>0.∴{2m+1>0−m+1>0.解得:-12<m<2.∴∣2m+1∣+∣2-m∣.=2m+1+2-m.=m+3.考点:数——有理数——绝对值化简——已知范围化简绝对值.方程与不等式——二元一次方程组——含字母参数的二元一次方程组——含参方程组解的分类讨论.不等式与不等式组——含参不等式(组)——方程根的取值范围.28、若关于x的不等式组{x−m<07−2x≤1的整数解有且只有4个,则m的取值范围是( ).A.6<m <7B.6≤m <7C.6≤m ≤7D.6<m ≤7 答案:D解析:{x −m <07−2x ≤1.由x-m <0得:x <m . 有7-2x ≤1得:x ≥3. ∴不等式的解集为:3≤x <m .∴不等式的整数解为:3 、4 、5 、6 . ∴m 的取值范围是6<m ≤7.考点:方程与不等式——不等式与不等式组——解一元一次不等式组——一元一次不等式组的整数解.29、对x,y 定义一种新运算T,规定:T(x,y )= ax+by2x+y (其中a 、b 均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)= a×0+b×12×0+1 = b .(1) 已知T(1,-1)= -2,T(4,2)= 1.① 求 a,b 的值.② 若关于m 的不等式组{T(2m,5−4m )≤4T(m,3−2m )>p恰好有3个整数解,求实数p 的取值范围.(2) 若T(x,y )=T(y,x )对任意实数x,y 都成立(这里T(x,y )和T(y,x )均有意义),则a,b 应满足怎样的关系式?答案: (1) ① a=1,b=3 .② -2≤p <−13 . (2) a=2b .解析: (1)① 根据题意得:T(1,-1)=a−b 2−1=-2,即a-b=-2.T(4,2)=4a+2b 8+2=1,即2a+b=5.解得: a=1,b=3.② 根据题意得:{2m+(5−4m )4m+(5−4m )≤4 ①m+3(3−2m )2m+3−2m>p ②.由①得:m ≥−12. 由②得:m <−9−3p 5.∴不等式组的解集为−12≤m <−9−3p 5.∵不等式组恰好有3个整数解,即m=0,1,2. ∴2<9−3p 5≤3.解得: -2≤p <-13.(2) 由T(x,y )=T(y,x ),得到ax+by 2x+y = ay+bx2y+x .整理得:(x 2-y 2)(2b-a )=0.∵T(x,y )=T(y,x )对任意实数x,y 都成立. ∴2b-a=0,即 a=2b.考点:式——探究规律——定义新运算.方程与不等式——不等式与不等式组——解一元一次不等式组.30、如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1) 在方程① 3x-1=0,② 23x+1=0,③ x-(3x+1)=-5中,不等式组{−x +2>x −53x −1>−x +2的关联方程是 .(填序号) (2)若不等式组{x −12<11+x >−3x +2的一个关联方程的根是整数,则这个关联方程可以是 (写出一个即可).(3)若方程3-x=2x,3+x=2(x+12)都是关于x 的不等式组{x <2x −m x −2≤m的关联方程,直接写出m 的取值范围.答案: (1) ③.(2)2x-1=1.(3)m 的取值范围为0≤m <1 .解析: (1)解不等式组{−x +2>x −53x −1>−x +2.解−x +2>x −5得x <312. 解3x −1>−x +2得x >34. ∴不等式的解为34<x <312.解方程① 3x-1=0得x=13,② 23x+1=0得x=-32 ,③ x-(3x+1)=-5得x=2. 根据一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程. ∴关联方程为③. (2) 解不等式{x −12<11+x >−3x +2.解x −12<1,得x <112. 解1+x >−3x +2,得x >14. ∴不等式得解集为14<x <112.∵关联方程的根是整数,∴方程的根为1. ∵2x-1=1的方程的解为1. ∴2x-1=1满足.答案不唯一,只要解为1一元一次方程即可. (3) 解方程3-x=2x,得x=1.解方程3+x=2(x+12),得x=2.∵方程3-x=2x,3+x=2(x+12),都是关于x 的不等式组{x <2x −m x −2≤m的关联方程.∴满足{1<2×1−m 1−2≤m ,即-1<m <1.且{2<2×2−m 2−2≤m ,即0≤m <2.∴m 的取值范围为0≤m <2.考点:方程与不等式——一元一次方程——一元一次方程的解.不等式与不等式组——解一元一次不等式组.。
七年级数学不等式练习题及答案
一.选择题(共20小题)1.实数a,b在数轴上的对应点如图所示,则下列不等式中错误的是()a﹣b<0A.a b>0B.a+b<0C.<1D.2.据丽水气象台“天气预报”报道,今天的最低气温是17℃,最高气温是25℃,则今天气温t(℃)的范围是()A.t<17B.t>25C.t=21D17≤t≤25.3.若x>y,则下列式子错误的是()A.x﹣3>y﹣3B.3﹣x>3﹣y C.x+3>y+2D.4.如果a<b<0,下列不等式中错误的是()a﹣b<0A.a b>0B.a+b<0C.<1D.5.如果a<0,b>0,a+b<0,则下列关系式中正确的是()6.下列说法:①x=0是2x﹣1<0的一个解;②不是3x﹣1>0的解;③﹣2x+1<0的解集是x>2;④的解集是x>1.其中正确的个数是()4个A.1个B.2个C.3个D.7.一个不等式的解集为﹣1<x≤2,则在数轴上表示正确的是()8.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为()x>2A.x<4B.x<2C.2<x<4D.9.不等式>1的解集是()x <﹣A.x >﹣B.x>﹣2C.x<﹣2D.10.不等式2x>3﹣x的解集是()x<1A.x>3B.x<3C.x>1D.11.不等式2x﹣7<5﹣2x正整数解有()4个A.1个B.2个C.3个D.12.不等式12﹣4x≥13的正整数解的个数是()A.0个B.1个C.2个D3个.13.“x的2倍与3的差不大于8”列出的不等式是()A.2x﹣3≤8B.2x﹣3≥8C.2x﹣3<8D2x﹣3>8.14.用abc表示三种不同的物体,现放在天平上比较两次,情况如图所示,则abc这三种物体按质量从大到小的顺序排列应为()c>b>aA.a=b>c B.b>a>c C.a>c>b D.15.根据下面两图所示,对a、b、c三种物体的重量判断不正确的是()b<cA.a<c B.a<b C.a>c D.16.不等式组的解集在数轴上表示正确的是()A.B.C.D.17.不等式组的解集在数轴上表示正确的是()A.B.C.D.18.不等式组的整数解共有()A.3个B.4个C.5个D6个.19.不等式组的正整数解的个数是()A.1个B.2个C.3个D4个.20.若使代数式的值在﹣1和2之间,x可以取的整数有()A.1个B.2个C.3个D4个.二.填空题(共2小题)1.关于x 的不等式组的解集是x>﹣1,则m= .22.若不等式组的解集是﹣1<x<1,则(a+b)2009= _________ .三.解答题(共8小题)23.解不等式组把解集表示在数轴上,并求出不等式组的整数解.24.解不等式组,并写出不等式组的整数解.25.解不等式组,并求其整数解.26.某地区果农收获草莓30吨,枇杷13吨,现计划租用甲、乙两种货车共10辆将这批水果全部运往省城,已知甲种货车可装草莓4吨和枇杷1吨,乙种货车可装草莓、枇杷各2吨.(1)该果农安排甲、乙两种货车时有几种方案请您帮助设计出来;(2)若甲种货车每辆要付运输费2 000元,乙种货车每辆要付运输费1 300元,则该果农应选择哪种运输方案才能使运费最少,最少运费是多少元?27.解不等式组.28.解不等式组:,并判断是否满足该不等式组.29.解不等式组30.某公司计划生产甲、乙两种产品共20件,其总产值w(万元)满足:1150<w <1200,相关数据如下表.为此,公司应怎样设计这两种产品的生产方案?产品名称每件产品的产值(万元)甲45乙752014年06月01日1051948749的初中数学组卷参考答案与试题解析一.选择题(共20小题)1.(2009•枣庄)实数a,b在数轴上的对应点如图所示,则下列不等式中错误的是()A.a b>0B.a+b<0C.<1Da﹣b<0.考点:不等式的定义;实数与数轴.分析:先根据数轴上点的特点确定a、b的符号和大小,再逐一进行判断即可求解.解答:解:由实数a,b在数轴上的对应点得:a<b<0,|a|>|b|,A、∵a<b<0,∴ab>0,故选项正确;B、∵a<b<0,∴a+b<0,故选项正确;C、∵a<b<0,∴>1,故选项错误;D、∵a<b<0,∴a﹣b<0,故选项正确.故选C.点评:本题考查的知识点为:两数相乘,同号得正;同号两数相加,取相同的符号;两数相除,同号得正.确定符号为正后,绝对值大的数除以绝对值小的数一定大于1较小的数减较大的数一定小于0.2.(2005•丽水)据丽水气象台“天气预报”报道,今天的最低气温是17℃,最高气温是25℃,则今天气温t(℃)的范围是()A.t<17B.t>25C.t=21D17≤t≤25.考点:不等式的定义.分析:读懂题意,找到最高气温和最低气温即可.解答:解:因为最低气温是17℃,所以17≤t,最高气温是25℃,t≤25,则今天气温t(℃)的范围是17≤t≤25.故选D.点评:解答此题要知道,t包括17℃和25℃,符号是≤,≥.3.(2009•临沂)若x>y,则下列式子错误的是()A.x﹣3>y﹣3B.3﹣x>3﹣y C.x+3>y+2D.考点:不等式的性质.分析:看各不等式是加(减)什么数,或乘(除以)哪个数得到的,用不用变号.解答:解:A、不等式两边都减3,不等号的方向不变,正确;B、减去一个大数小于减去一个小数,错误;C、大数加大数依然大,正确;D、不等式两边都除以3,不等号的方向不变,正确.故选B.点评:主要考查不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.4.(2008•恩施州)如果a<b<0,下列不等式中错误的是()a﹣b<0A.a b>0B.a+b<0C.<1D.考点:不等式的性质.分析:根据不等式的性质分析判断.解答:解:A、如果a<b<0,则a、b同是负数,因而ab>0,故A正确;B、因为a、b同是负数,所以a+b<0,故B正确;C、a<b<0,则|a|>|b|,则>1,也可以设a=﹣2,b=﹣1代入检验得到<1是错误的.故C错误;D、因为a<b,所以a﹣b<0,故D正确;故选:C.点评:利用特殊值法验证一些式子错误是有效的方法.5.(2006•镇江)如果a<0,b>0,a+b<0,则下列关系式中正确的是()A.a>b>﹣b B.a>﹣a>b C.b>a>﹣b D﹣a>b>﹣>﹣a>﹣b>﹣a.b>a考点:不等式的性质.专题:压轴题.分析:先确定a,b的符号与绝对值,进而放到数轴上判断4个数的大小即可.解答:解:∵a<0,b>0∴﹣a>0﹣b<0∵a+b<0∴负数a的绝对值较大∴﹣a>b>﹣b>a.故选D.点评:本题主要考查了异号两数相加的法则,数的大小的比较可以借助数轴来比较,右面的数总是大于左边的数.6.下列说法:①x=0是2x﹣1<0的一个解;②不是3x﹣1>0的解;③﹣2x+1<0的解集是x>2;④的解集是x>1.其中正确的个数是()4个A.1个B.2个C.3个D.考点:不等式的解集.分析:分别解不等式就可以得到不等式的解集,就可以判断各个选项是否成立.解答:解:①不等式2x﹣1<0的解集是x<包括0,正确;②不等式3x﹣1>0的解集是x>不包括,正确;③不等式﹣2x+1<0的解集是x>,不正确;④不等式组的解集是x>2,故不正确;故选B.点评:解答此题的关键是分别解出各不等式或不等式组的解集,再与已知相比较即可得到答案正确与否,解不等式是解决本题的关键.7.(2009•河池)一个不等式的解集为﹣1<x≤2,则在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集.分析:根据数轴上的点表示的数,右边的总是大于左边的数.这个解集就是不等式x>﹣1和x≤2的解集的公共部分.解答:解:数轴上﹣1<x≤2表示﹣1与2之间的部分,并且包含2,不包含﹣1,在数轴上可表示为:故选A.点评:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,则这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.8.(2007•武汉)如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为()A.x<4B.x<2C.2<x<4Dx>2.考点:在数轴上表示不等式的解集.分析:根据不等式组解集在数轴上的表示方法可知,不等式组的解集是指它们的公共部分,公共部分是2左边的部分.解答:解:不等式组的解集是指它们的公共部分,公共部分是2左边的部分.因而2.故选B.点评:不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,则这段就是不等式组个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9.(2008•无锡)不等式>1的解集是()x <﹣A.x >﹣B.x>﹣2C.x<﹣2D.考点:解一元一次不等式.分析:利用不等式的基本性质,将两边不等式同时乘以﹣2,不等号的方向改变.得到不等式的解集为:x<﹣2.解答:解:不等式3x+2≥5得,3x≥3,解得x≥1.故选C.点评:本题考查不等式的性质3,在不等式的两边乘以﹣2,不等号要改变方向.此题容易错解选B.10.(2007•双柏县)不等式2x>3﹣x的解集是()A.x>3B.x<3C.x>1Dx<1.考点:解一元一次专题:计算题.分析:由一元一次不等式的解法知:解此不等式只需移项,系数化1两步即可得解集.解答:解:不等式2x>3﹣x移项得,2x+x>3,即3x>3,系数化1得;x>1.故选C.点评:本题考查了解简单不等式的能力,解答这类题学生往往在解移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.11.(2007•枣庄)不等式2x﹣7<5﹣2x正整数解有()4个A.1个B.2个C.3个D.考点:一元一次不等式的整数解.专题:计算题.分析:先求出不等式的解集,在取值范围内可以找到正整数解.解答:解:不等式2x﹣7<5﹣2x的解集为x<3,正整数解为1,2,共两个.故选B.点评:解答此题要先求出不等式的解集,再确定正整数解.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.12.不等式12﹣4x≥13的正整数解的个数是()3个A.0个B.1个C.2个D.考点:一元一次不等式的整数解.分析:首先确定不等式组的解集,然后再找出不等式的特殊解.解答:解:移项得:﹣4x≥13﹣12,合并同类项得:﹣4x≥1,系数化为1得:x≤﹣,所以不等式12﹣4x≥13没有正整数解.故选A.点评:正确解不等式,求出解集是解答本题的关键,解不等式应根据不等式的基13.“x的2倍与3的差不大于8”列出的不等式是()2x﹣3>8 A.2x﹣3≤8B.2x﹣3≥8C.2x﹣3<8D.考点:由实际问题抽象出一元一次不等式.分析:理解:不大于8,即是小于或等于8.解答:解:根据题意,得2x﹣3≤8.故选A.点评:应注意抓住关键词语,弄清不等关系,把文字语言的不等关系转化为用数的不等式.14.(2008•赤峰)用abc表示三种不同的物体,现放在天平上比较两次,情况如图所示,则abc这三种物体按质量从大到小的顺序排列应为()c>b>aA.a=b>c B.b>a>c C.a>c>b D.考点:一元一次不等式的应用.专题:压轴题.分析:根据图示三种物体的质量列出不等关系式是关键.解答:解:依据第二个图得到a+c=b+c⇒a=b,依图一得:a+c+c<a+b+c,则b>c,则a=b>c;故选A.点评:本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.15.(2009•鄂州)根据下面两图所示,对a、b、c三种物体的重量判断不正确的是()A.a<c B.a<b C.a>c Db<c.考点:一元一次不等式的应用.分析:找出不等关系是解决本题的关键.解答:解:由第一图可知:3a=2b,b>a;由第二图可知:3b=2c,c>b,故a<b<c.∴A、B、D选项都正确,C选项错误.故选C.点评:解决问题的关键是读懂图意,进而列出正确的不等式.16.(2012•呼伦贝尔)不等式组的解集在数轴上表示正确的是()A.B.C.D.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先求出每个不等式的解集再求出其公共解集.解答:解:该不等式组的解集为1<x≤2,故选C.点评:本题考查了不等式组解集表示.按照不等式的表示方法1<x≤2在数轴上表示如选项C所示,解答这类题时常常因表示解集时不注意数轴上圆圈和黑点所表示意义的区别而误选D.17.(2010•东阳市)不等式组的解集在数轴上表示正确的是()A.B.C.D.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.解答:解:不等式可化为:.∴在数轴上可表示为.故选A.点评:不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.18.(2009•崇左)不等式组的整数解共有()6个A.3个B.4个C.5个D.考点:一元一次不等式组的整数解.专题:计算题.分析:先求出不等式的解集,在取值范围内可以找到整数解.解答:解:由①式解得x≥﹣2,由②式解得x<3,∴不等式组的解集为﹣2≤x<3,∴不等式组的整数解为x=﹣2,﹣1,0,1,2共5个.故选C.点评:解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.(2005•泰州)不等式组的正整数解的个数是()A.1个B.2个C.3个D4个.考点:一元一次不等式组的整数解.专题:计算题.分析:先求出不等式组的解集,在取值范围内可以找到正整数解.解答:解:解①得x>0解②得x≤3∴不等式组的解集为0<x≤3∴所求不等式组的整数解为1,2,3.共3个.故选C.点评:本题考查不等式的解法与整数解的确定.解不等式组应遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了.20.(2005•菏泽)若使代数式的值在﹣1和2之间,x可以取的整数有()A.1个B.2个C.3个D4个.考点:一元一次不等式组的整数解.专题:计算题.分析:由题意可得不等式组,解不等式组,得到不等式组的解集,然后求其整数解.解答:解:由题意可得,由(1)x>﹣,由(2)得x<,所以不等式组的解集为﹣<x<,则x可以取的整数有0,1共2个.故选B.点评:本题旨在考查不等式组的解法与整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.二.填空题(共2小题)21.(2009•孝感)关于x的不等式组的解集是x>﹣1,则m= ﹣3 .考点:解一元一次不等式组.分析:易得m+2>m﹣1.则不等式组的解集为x>m+2,根据所给的解集即可判断m的取值.解答:解:根据“同大取大”确定x的范围x>m+2,∵解集是x>﹣1,∴m+2=﹣1,m=﹣3.点评:求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到.22.(2009•凉山州)若不等式组的解集是﹣1<x<1,则(a+b)2009= ﹣1 .考点:解一元一次不等式组;代数式求值.专题:计算题;压轴题.分析:解出不等式组的解集,与已知解集﹣1<x<1比较,可以求出a、b的值,然后相加求出2009次方,可得最终答案.解答:解:由不等式得x>a+2,x<,∵﹣1<x<1,∴a+2=﹣1,=1∴a=﹣3,b=2,∴(a+b)2009=(﹣1)2009=﹣1.点评:本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数.三.解答题(共8小题)23.(2007•滨州)解不等式组把解集表示在数轴上,并求出不等式组的整数解.考点:解一元一次不等式组;在数轴上表示不等式的解集;一元一次不等式组的整数解.分析:先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条不等式表示出来.解答:解:由①得由②得x<3∴原不等式组的解集为≤x<3数轴表示:不等式组的整数解是﹣1,0,1,2.点评:本题考查不等式组的解法,需要注意不等式组解的解集在数轴上的表示方法,当包括原数时,在数轴上表示应用实心圆点表示方法,当不包括原数时应用空心圆圈来表示.24.(2005•南京)解不等式组,并写出不等式组的整数解.考点:一元一次不等式组的整数解.专题:计算题.分析:先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.解答:解:解不等式①得x≥1解不等式②得x<3∴原不等式组的解集是1≤x<3∴原不等式组的整数解是1,2.点评:本题旨在考查不等式组的解法与整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.25.(2002•潍坊)解不等式组,并求其整数解.考点:一元一次不等式组的整数解.专题:计算题.分析:首先解不等式组,再从不等式组的解集中找出适合条件的整数即可.解答:解:不等式组可化成,解不等式①得x>2.5解不等式②得x≤4,∴不等式组的解集2.5<x≤4,整数解为4,3.点评:此题考查了一元一次不等式组的整数解,正确解出不等式组的解集是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.。
初中不等式经典例题
初中不等式经典例题一、例题11. 若不等式3x - a ≤ 0的正整数解是1、2、3,求a的取值范围。
这题啊,可有点小绕呢。
首先我们来解这个不等式3x - a ≤ 0,把它变形一下就得到x ≤ a/3。
正整数解是1、2、3,那就是说3肯定是满足这个不等式的,所以3 ≤ a/3,这就得出a ≥ 9。
但是呢,4就不满足这个不等式了,要是4满足的话正整数解就不止1、2、3了,所以4 > a/3,也就是a < 12。
所以啊,a的取值范围就是9 ≤ a < 12。
2. 已知关于x的不等式组{x - a > 0,1 - x > 0}的整数解共有3个,求a的取值范围。
先看这个不等式组,x - a > 0,那就是x > a;1 - x > 0,变形一下就是x < 1。
这个不等式组的解集就是a < x < 1。
它的整数解共有3个,那这三个整数解肯定是 - 2, - 1,0啊。
所以 - 3 ≤ a < - 2。
为什么呢?要是a < - 3的话,整数解就不止3个了,要是a ≥ - 2的话,整数解就没3个了,是不是很有趣呢?二、例题21. 解不等式2(x - 1) + 5 < 3x。
这题看着简单,可也有不少同学会犯错哦。
我们先把括号展开,2x - 2 + 5 < 3x,然后把含有x的项移到一边,常数项移到另一边,就得到2x - 3x < 2 - 5,也就是 - x < - 3。
两边同时除以 - 1,注意哦,除以一个负数的时候,不等式要变号,所以x > 3。
2. 若不等式组{x + 8 < 4x - 1,x > m}的解集是x > 3,求m 的取值范围。
先解x + 8 < 4x - 1,移项得到x - 4x < - 1 - 8, - 3x < - 9,x > 3。
这个不等式组的解集是x > 3,还有个x > m,那m肯定是小于等于3的。
不等式解决问题练习题
不等式解决问题练习题一、一元一次不等式1. 解不等式:3x 5 > 22. 解不等式:4 2x ≤ 13. 解不等式:5x + 8 > 34. 解不等式:7 3x < 45. 解不等式:2x 6 ≥ 4二、一元一次不等式组1. 解不等式组:\[\begin{cases}x 2 > 0 \\3x + 1 < 4\end{cases}\]2. 解不等式组:\[\begin{cases}2x 3 < 5 \\4x + 7 > 11\end{cases}\]3. 解不等式组:\[\begin{cases}5x + 4 > 2x 1 \\3x 2 ≤ 8\end{cases}\]三、一元二次不等式1. 解不等式:x^2 5x + 6 > 02. 解不等式:2x^2 4x 6 < 03. 解不等式:x^2 + 3x 4 ≥ 04. 解不等式:x^2 + 2x + 3 ≤ 05. 解不等式:4x^2 12x + 9 > 0四、分式不等式1. 解不等式:\(\frac{1}{x2} > 0\)2. 解不等式:\(\frac{2}{x+3} < 1\)3. 解不等式:\(\frac{3}{x1} + \frac{1}{x+2} ≥ 0\)4. 解不等式:\(\frac{4}{x+1} \frac{2}{x3} ≤ 2\)5. 解不等式:\(\frac{5}{x^2 4x + 3} > 0\)五、绝对值不等式1. 解不等式:|x 4| < 32. 解不等式:|2x + 1| ≥ 53. 解不等式:|3x 7| > 24. 解不等式:|4 x| ≤ 65. 解不等式:|5x + 3| < 8六、综合应用题1. 某企业生产一种产品,每件产品的成本为50元,售价为80元。
若该企业每月固定开支为2000元,要使企业不亏损,每月至少需要销售多少件产品?2. 一辆汽车以60km/h的速度行驶,行驶过程中,速度每增加10km/h,油耗增加1L/100km。
初中不等式计算题
初中不等式计算题一、不等式计算题1. 解不等式2x - 1 > 3- 解析:- 首先对不等式进行求解,将-1移到右边得到2x>3 + 1。
- 即2x>4,两边同时除以2,解得x > 2。
2. 解不等式3x+2≤slant8- 解析:- 先将2移到右边,得到3x≤slant8 - 2。
- 即3x≤slant6,两边同时除以3,解得x≤slant2。
3. 解不等式(x)/(2)+1<3- 解析:- 先将1移到右边,得到(x)/(2)<3 - 1。
- 即(x)/(2)<2,两边同时乘以2,解得x < 4。
4. 解不等式4 - (x)/(3)≥slant2- 解析:- 先将4移到右边,得到-(x)/(3)≥slant2 - 4。
- 即-(x)/(3)≥slant - 2,两边同时乘以-3,注意此时不等号方向要改变,解得x≤slant6。
5. 解不等式2(x - 1)+3>5- 解析:- 先展开括号得到2x-2 + 3>5。
- 即2x + 1>5,将1移到右边得到2x>5 - 1。
- 即2x>4,两边同时除以2,解得x > 2。
6. 解不等式3(x+2)-1≤slant8- 解析:- 先展开括号得到3x+6 - 1≤slant8。
- 即3x + 5≤slant8,将5移到右边得到3x≤slant8 - 5。
- 即3x≤slant3,两边同时除以3,解得x≤slant1。
7. 解不等式(2x - 1)/(3)<1- 解析:- 两边同时乘以3得到2x-1<3。
- 将-1移到右边得到2x<3 + 1。
- 即2x<4,两边同时除以2,解得x < 2。
8. 解不等式(3x+2)/(2)≥slant4- 解析:- 两边同时乘以2得到3x+2≥slant8。
- 将2移到右边得到3x≥slant8 - 2。
初一不等式试题及答案
初一不等式试题及答案一、选择题1. 如果a > b,且c < 0,那么下列不等式中正确的是:A. ac > bcB. ac < bcC. a + c > b + cD. a - c < b - c答案:A2. 对于任意实数x,下列不等式一定成立的是:A. x + 1 > xB. x - 1 < xC. x × 1 = xD. x ÷ 1 = x答案:C二、填空题1. 如果x > 5,那么-3x _______ -15。
答案:<2. 已知2x - 3 < 7,解得x _______ 5。
答案:<三、解答题1. 已知不等式3x + 5 > 14,求x的取值范围。
解:首先将不等式两边同时减去5,得到3x > 9。
然后将不等式两边同时除以3,得到x > 3。
所以x的取值范围是x > 3。
2. 如果一个数的一半加上3等于这个数减去4,求这个数。
解:设这个数为x,根据题意可得:\( \frac{x}{2} + 3 = x - 4 \)将等式两边同时乘以2,得到:\( x + 6 = 2x - 8 \)将等式两边同时减去x,得到:\( 6 = x - 8 \)将等式两边同时加上8,得到:\( x = 14 \)所以这个数是14。
四、应用题1. 某工厂计划在一个月内生产至少100件产品,已知每天可以生产10件产品,问至少需要多少天完成生产计划?解:设需要x天完成生产计划。
根据题意,每天生产10件产品,至少需要生产100件产品,可以得到不等式:\( 10x \geq 100 \)将不等式两边同时除以10,得到:\( x \geq 10 \)所以至少需要10天完成生产计划。
结束语:通过本试题的练习,同学们应该对不等式的概念、性质以及解法有了更深入的理解。
希望同学们能够通过不断的练习,提高解决实际问题的能力。
初中不等式试题及答案
初中不等式试题及答案一、选择题1. 若不等式2x - 5 > 0成立,则x的取值范围是()。
A. x > 2.5B. x < 2.5C. x > -2.5D. x < -2.5答案:A2. 已知x + 3 > 0,那么以下哪个不等式一定成立?()A. x > -3B. x < -3C. x ≥ -3D. x ≤ -3答案:A二、填空题1. 解不等式3x - 7 < 0,得到x的解集是 x < \frac{7}{3} 。
2. 若不等式组\left\{\begin{matrix}x+2>0\\ 3x-4\leq5\end{matrix}\right. 的解集为x > -2,x ≤ 3,那么x的取值范围是 -2 < x ≤ 3。
三、解答题1. 解不等式2x + 3 > 5,并写出解集。
解:首先将不等式2x + 3 > 5化简,得到2x > 2,然后除以2得到x > 1。
因此,解集为x > 1。
2. 已知不等式组\left\{\begin{matrix}2x-1>3\\x+4<7\end{matrix}\right.,求x的取值范围。
解:首先解第一个不等式2x - 1 > 3,得到x > 2。
然后解第二个不等式x + 4 < 7,得到x < 3。
因此,x的取值范围是2 < x < 3。
四、应用题1. 某商店为了促销,规定购买商品金额超过100元即可享受8折优惠。
小华购买了一些商品,实际支付了80元,请问他购买的商品原价是多少?解:设小华购买的商品原价为x元,则根据题意有0.8x = 80。
解得x = 100。
所以,小华购买的商品原价是100元。
7年级不等式解应用题(含答案)
七年级不等式应用题专项训练1、某化工厂现有甲种原料290千克,乙种原料212千克,计划利用这两种原料生产A、B两种产品共80件,生产一件A产品需要甲种原料5千克,乙种原料1.5千克,生产成本是120元;生产一件B产品需要甲种原料2.5千克,乙种原料3.5千克,生产成本是200元。
(1)该化工厂现有原料能否保证生产?若能的话,有几种生产方案?请设计出来。
(2)试分析你设计的哪种生产方案总造价最低?最低造价是多少?(1)设生产A产品m件,生产B产品n件.5m+2.5n<=2901.5m+3.5n<=212m+n=80m=34,35,36n=46,45,44共3种(2)其中一种的件数为x,另一种的件数为(80-x)若A的件数为x,则y=16000-80x若B的件数为x,则y=9600+80x因为y=16000-80x是减函数,所以x越大,值越小.所以x=36时,有最小值此时y=13120y=9600+80x是增函数,所以x越小,值越小,所以x=44时值最小,此时y=13120所以这时都是A是36件,B是44件,此时最少为131202、为了保护环境,某企业决定购买10台污水处理设备,现有A、B两种型号的(1)请你设计该企业有几种购买方案;(2)若企业每月产生的污水量为2040吨,为了节约资金,应选择哪种购买方案;(3)在第(2)问的条件下,若每台设备的使用年限为10年,污水厂处理污水费为每吨10元,请你计算,该企业自己处理污水与将污水排到污水厂处理相比较,10年节约资金多少万元?(注:企业处理污水的费用包括购买设备的资金和消耗费)解:(1)设购买污水处理设备A型x台,则B型(10-x)台。
由题意知,12x+10(10-x)≤105,x≥2.5∵x取非负整数,∴x可取0,1,2.∴有三种购买方案:购A型0台,B型10台;购A型1台;B型9,购A型2台,B型8台。
(2)由题意得240x+200(10-x)≥2040,x≥1,∴x为1或2当x=1时,购买资金为12×1+10×9=102(万元)当x=2时,购买资金为12×2+10×8=104(万元)∴为了节约资金,应选购A型1台,B型9台3、我市一山区学校为部分家远的学生安排住宿,将部分教室改造成若干间住房. 如果每间住5人,那么有12人安排不下;如果每间住8人,那么有一间房还余一些床位,问该校可能有几间住房可以安排学生住宿?住宿的学生可能有多少人?解:设有x间住房,有y名学生住宿,则有y=5x+12,根据题意得:8x-(5x+12)>0 8x-(5x+12)<8 解得4<x<6 2/ 3 .因为x为整数,所以x可取5,6,把x的值代入y=5x+12得:y的值为37,42.答:该校可能有5间或6间住房,当有5间住房时,住宿学生有37人;当有6间住房时,住宿学生有42人.4、某园林的门票每张10,一次使用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次不等式应用题专项练习1.某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们,如果每人送3本,则还余8本;如果前面每人送5本,则最后一人得到的课外读物不足3本,设该校买了m本课外读物,有x名学生获奖,请解答下列问题:(1)用含x的代数式表示m;(2)求出该校的获奖人数及所买课外读物的本数.2某果品公司要请汽车运输公司或火车货运站将60t水果从A地运到B地.已知汽车和火车从A地到B地的运输路程都是Skm,两家运输单位除都要收取运输途中每吨每小时5元的冷藏费用外,其他收取的费用和有关运输资料由表列出:运输工具行驶速度(km/h)运输单价(元/t.km)装卸费用汽车50 2 3000火车80 1.7 4620(1)分别写出这两家运输单位运送这批水果所要收取的总费用y1元和y2元(用含S的式子表示);(2)为减少费用,当s=100km时,你认为果品公司应该选择哪一家运输单位更为合算?3.用甲、乙两种原料配制成某种果汁,已知这两种原料的维生素C的含量及购买这两种原料的价格如表:甲种原料乙种原料维生素C含量(单位/千克) 800 200原料价格(元/kg)18 14(1)现制作这种果汁200kg,要求至少含有52 000单位的维生素C,试写出所需甲种原料的质量x(kg)应满足的不等式;(2)如果还要求购买甲、乙两种原料的费用不超过1 800元,那么请你写出所需甲种原料的质量x(kg)应满足的另一个不等式.4,为了抓住世博会商机,某商店决定购进A,B两种世博会纪念品,若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品4件,B种纪念品3件,需要550元,(1)求购进A,B两种纪念品每件需多少元?(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑到市场需求,要求购进A种纪念品的数量不少于B 种纪念品数量的6倍,且不超过B种纪念品数量的8倍,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?5.某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人;他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能地少?6.某地区果农收获草莓30吨,枇杷13吨,现计划租用甲、乙两种货车共10辆将这批水果全部运往省城,已知甲种货车可装草莓4吨和枇杷1吨,乙种货车可装草莓、枇杷各2吨.(1)该果农安排甲、乙两种货车时有几种方案请您帮助设计出来;(2)若甲种货车每辆要付运输费2 000元,乙种货车每辆要付运输费1 300元,则该果农应选择哪种运输方案才能使运费最少,最少运费是多少元?7.开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本.(1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.8.为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A 、B 两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数及造价见下表:型号 占地面积 (单位:m 2/个 )使用农户数 (单位:户/个) 造价(单位:万元/个) A 15 18 2B 20 30 3已知可供建造沼气池的占地面积不超过365m 2,该村农户共有492户.(1)满足条件的方案共有几种?写出解答过程;(2)通过计算判断,哪种建造方案最省钱?参考答案.1. 解:(1)m=3x+8;(2)根据题意得:,解得:5<x <6,因为x 为正整数,所以x=6,把x=6代入m=3x+8得,m=26,答:该校获奖人数为6人,所买课外读物为26本.2. 解:(1)y 1=(2×60)s+5××60+3000=126s+3000; y 2=(1.7×60)s+5××60+4620=105.75s+4620;(2)当s=100km 时,y 1=3000+126×100=15600(元),y 2=105.75×100+4620=15195(元).故为减少费用,果品公司应选择火车货运站运送这批水果更为合算.3. 解:(1)若所需甲种原料的质量为xkg ,则需乙种原料(200﹣x )kg .根据题意,得800x+200(200﹣x )≥52000;(2)由题意得,18x+14(200﹣x )≤1800.4解:(1)设A,B两种纪念品每件需x元,y元.,解得:.答:A,B两种纪念品每件需25元,150元;(2)设购买A种纪念品a件,B种纪念品b件.,解得≤b≤.则b=29;30;31;32;33;则a对应为226,220;214;208,202.答:商店共有5种进货方案:进A种纪念品226件,B种纪念品29件;或A种纪念品220件,B种纪念品30件;或A种纪念品214件,B种纪念品31件;或A种纪念品208件,B种纪念品32件;或A种纪念品202件,B种纪念品33件;(3)解法一:方案1利润为:226×20+29×30=5390(元);方案2利润为:220×20+30×30=5300(元);方案3利润为:214×20+30×31=5210(元);方案4利润为:208×20+30×32=5120(元);方案5利润为:202×20+30×33=5030(元);故A种纪念品226件,B种纪念品29件利润较大为5390元.解法二:解:设利润为W元,则W=20a+30b,∵25a+150b=1000,∴a=400﹣6b,∴代入上式得:W=8000﹣90b,∵﹣90<0,∴W随着b的增大而减小,∴当b=29时,W最大,即此时a=226时,W最大,∴W最大=8000﹣90×29=5390(元),答:方案获利最大为:A种纪念品226件,B种纪念品29件,最大利润为5390元.5. 解:(1)设每名熟练工和新工人每月分别可以安装x、y辆电动汽车.根据题意,得,解得.答:每名熟练工和新工人每月分别可以安装4、2辆电动汽车.(2)设工厂有a名熟练工.根据题意,得12(4a+2n)=240,2a+n=10,n=10﹣2a,又a,n都是正整数,0<n<10,所以n=8,6,4,2.即工厂有4种新工人的招聘方案.①n=8,a=1,即新工人8人,熟练工1人;②n=6,a=2,即新工人6人,熟练工2人;③n=4,a=3,即新工人4人,熟练工3人;④n=2,a=4,即新工人2人,熟练工4人.(3)结合(2)知:要使新工人的数量多于熟练工,则n=8,a=1;或n=6,a=2;或n=4,a=3.根据题意,得W=2000a+1200n=2000a+1200(10﹣2a)=12000﹣400a.要使工厂每月支出的工资总额W(元)尽可能地少,则a应最大.显然当n=4,a=3时,工厂每月支出的工资总额W(元)尽可能地少.6. 解:(1)设应安排x辆甲种货车,那么应安排(10﹣x)辆乙种货车运送这批水果,由题意得:,解得5≤x≤7,又因为x是整数,所以x=5或6或7,方案:方案一:安排甲种货车5辆,乙种货车5辆;方案二:安排甲种货车6辆,乙种货车4辆;方案三:安排甲种货车7辆,乙种货车3辆.(2)在方案一中果农应付运输费:5×2 000+5×1300=16 500(元)在方案二中果农应付运输费:6×2 000+4×1 300=17 200(元)在方案三中果农应付运输费:7×2 000+3×1 300=17 900(元)答:选择方案一,甲、乙两种货车各安排5辆运输这批水果时,总运费最少,最少运费是16 500元.7. 解:(1)设每支钢笔x元,每本笔记本y元.依题意得:,解得:,答:每支钢笔3元,每本笔记本5元.(2)设买a支钢笔,则买笔记本(48﹣a)本,依题意得:,解得:20≤a≤24,∴一共有5种方案.方案一:购买钢笔20支,则购买笔记本28本;方案二:购买钢笔21支,则购买笔记本27本;方案三:购买钢笔22支,则购买笔记本26本;方案四:购买钢笔23支,则购买笔记本25本;方案五:购买钢笔24支,则购买笔记本24本.8. 解:(1)设建造A型沼气池x个,则建造B型沼气池(20﹣x)个,依题意得:,解得:7≤x≤9.∵x为整数∴x=7,8,9,所以满足条件的方案有三种.(2)解法①:设建造A型沼气池x个时,总费用为y万元,则:y=2x+3(20﹣x)=﹣x+60,∴y随x增大而减小,当x=9时,y的值最小,此时y=51(万元).∴此时方案为:建造A型沼气池9个,建造B型沼气池11个.解法②:由(1)知共有三种方案,其费用分别为:方案一:建造A型沼气池7个,建造B型沼气池13个,总费用为:7×2+13×3=53(万元).方案二:建造A型沼气池8个,建造B型沼气池12个,总费用为:8×2+12×3=52(万元).方案三:建造A型沼气池9个,建造B型沼气池11个,总费用为:9×2+11×3=51(万元).∴方案三最省钱.参考规范下载1、《建筑施工模板安全技术规范》JGJ162-20082、《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-20113、《建筑结构荷载规范》GB50009-20124、《钢结构设计规范》GB50017-20035、《混凝土结构设计规范》GB 50010-20106、《混凝土结构工程施工规范》GB50666-20117、《建筑施工临时支撑结构技术规范》JGJ300-20138、建筑施工计算手册(第二版)基本知识模板支撑体系简图一。