高中数学公式全集(代数部分)

合集下载

高中数学公式大全表

高中数学公式大全表

高中数学公式大全表1. 代数公式:方程的根:设方程ax² + bx + c = 0的根为x₁和x₂,则有:x₁ + x₂ = -b/ax₁ × x₂ = c/a二次方程的解:对于方程ax² + bx + c = 0,解可以用以下公式表示:x = (-b ± √(b² - 4ac)) / 2a二次函数的顶点坐标:设二次函数的表达式为y = ax² + bx + c,顶点坐标可以通过以下公式计算:x = -b / 2ay = c - b² / 4a二次函数的平移变换:设原二次函数的表达式为y = ax² + bx + c,经过平移变换后的函数的表达式为y = a(x - h)² + k。

其中(h, k)为平移的距离,代表二次函数的顶点坐标。

2. 几何公式:三角函数:常用的三角函数包括正弦函数(sin)、余弦函数(cos)和正切函数(tan)。

它们的定义如下:sinθ = 对边 / 斜边cosθ = 邻边 / 斜边tanθ = 对边 / 邻边勾股定理:对于一直角三角形,较长的边称为斜边,其余两边称为直角边。

勾股定理可以表示为:斜边² = 直角边₁² + 直角边₂²正弦定理:对于任意三角形ABC,边长的比值与角度的正弦的比值之间有以下关系:a / sinA =b / sinB =c / sinC余弦定理:对于任意三角形ABC,边长的平方与另外两条边长的乘积和它们的夹角的余弦的乘积之间有以下关系:a² = b² + c² - 2bc cosA3. 概率公式:事件概率的计算:对于一个随机试验,事件A发生的概率可以用以下公式表示:P(A) = n(A) / n(S)其中,n(A)表示事件A发生的次数,n(S)表示随机试验的总次数。

加法原理:如果A和B是两个互不相容的事件,即A和B不能同时发生,那么A或B发生的概率可以用以下公式计算:P(A或B) = P(A) + P(B)乘法原理:如果A和B是两个相互独立的事件,即事件A发生与否不会影响事件B发生的概率,那么A和B同时发生的概率可以用以下公式计算:P(A和B) = P(A) × P(B|A)条件概率:对于事件A和B,条件概率可以表示为:P(B|A) = P(A和B) / P(A)4. 统计学公式:均值:一组数据的均值可以用以下公式计算:mean = (x₁ + x₂ + ... + xn) / n其中,x₁、x₂、...、xn为每个数据点的值,n为数据点的个数。

高中数学必考公式全总结(超详细)

高中数学必考公式全总结(超详细)

高中数学必考公式全总结(超详细)高中数学必考公式全总结(超详细)1. 代数基础- 求根公式:$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$- 平方差公式:$(a+b)^2=a^2+2ab+b^2, (a-b)^2=a^2-2ab+b^2$- 完全平方公式:$a^2-b^2=(a+b)(a-b), a^3-b^3=(a-b)(a^{n-1}+...+b^{n-1})$ 二次函数相关 - 标准形式:$y=ax²+bx+c(a≠0)$- 顶点坐标: $(-\frac{b}{(2a)},-\frac{\Delta}{4a})$- 对称轴: $x=-\dfrac b {2a}$- 判别式:$ \Delta=b²-4ac $当$\Delta>0$,有两个实根;当$\Delta=0$,有一个重根;当$\Delta<0$,无实根。

三角函数相关正弦定理:$\dfrac{sinA}{AB}=\dfrac{sinB}{BC}=\dfrac{sinC}{AC}=k(k为常数)$余弦定理:$cosA=\dfrac {b²+c²-a²} {2bc}, cosB=…, cosC=…$正切定义:tan A = $\dfrac {\textup{o}} {\textup{邻}},tan B = …,tan C = …$ 导数与微分导数定义:$\lim_{h→0}\dfrac{(f(x+h)-f(x))}{h}$ 或者$f'(x)=lim_{Δx→0}\dfrac{\vartriangle y }{\vartriangle x}(或\dif f(x))$常见导函数:$(e^{ax})'=ae^{ax},(\ln x)'=\dfrac1{x},(log_ax)'=\dfrac1{xln a},(sin x)'=cos x,(cos x)'=-sin x,(tan x)'=sec ^ 2x,(cotan x)′=-csc ^2x,$等。

高中数学必背公式大全

高中数学必背公式大全

高中数学必背公式大全一、代数部分。

1. 二项式定理。

(a+b)ⁿ = Cⁿ₀aⁿb⁰ + Cⁿ₁aⁿ⁻¹b¹ + ... + Cⁿᵢaⁿ⁻ⁱbⁱ + ... + Cⁿₙa⁰bⁿ。

2. 一元二次方程求根公式。

ax²+bx+c=0的解为x= (-b±√(b²-4ac))/2a。

3. 等差数列通项公式。

an = a₁ + (n-1)d。

4. 等比数列通项公式。

an = a₁ q^(n-1)。

5. 两点间距离公式。

两点A(x₁, y₁)和B(x₂, y₂)间的距离为√((x₂-x₁)² + (y₂-y₁)²)。

6. 直线斜率公式。

直线y=kx+b的斜率为k。

7. 二次函数顶点坐标。

二次函数y=ax²+bx+c的顶点坐标为(-b/2a, c-b²/4a)。

二、几何部分。

1. 直角三角形勾股定理。

a² + b² = c²。

2. 直角三角形中正弦、余弦、正切公式。

sinA = a/c, cosA = b/c, tanA = a/b。

3. 三角形面积公式。

三角形面积S=√(p(p-a)(p-b)(p-c)),其中p为半周长。

4. 圆周长和面积公式。

圆周长C=2πr, 圆面积S=πr²。

5. 正多边形内角和公式。

正n边形内角和为(n-2) 180°。

6. 圆锥、圆柱、球体积公式。

圆锥体积V=1/3πr²h, 圆柱体积V=πr²h, 球体积V=4/3πr³。

三、概率与统计部分。

1. 随机事件概率公式。

P(A) = n(A)/n(S)。

2. 期望公式。

E(X) = x₁p₁ + x₂p₂ + ... + xᵢpᵢ。

3. 正态分布概率公式。

P(a < X < b) = ∫(a, b) 1/√(2πσ²) e^(-(x-μ)²/2σ²) dx。

高中高考数学公式大全

高中高考数学公式大全

高中高考数学公式大全1.代数公式- 二次方程根公式:若ax^2+bx+c=0 (a≠0),则 x=(-b±√(b^2-4ac))/(2a)。

-二次三项全解公式:若知二次三项完全分解为(x-a)(x-b)(x-c)=0,则x=a,b,c。

- 余弦和公式:cos(A±B)=cosAcosB∓sinAsinB。

- 余弦差公式:cos(A-B)=cosAcosB+sinAsinB。

- 正弦和公式:sin(A±B) = sinAcosB±cosAsinB。

- 正弦差公式:sin(A-B) = sinAcosB-cosAsinB。

- 二项式定理:(a+b)^n = C(n,0)a^n b^0+C(n,1)a^(n-1)b+C(n,2)a^n^(n-2)b^2+…+C(n,n)na^0 b^n。

2.几何公式-长方形面积公式:面积=长×宽。

-正方形面积公式:面积=边长×边长。

-圆面积公式:面积=πr^2-平行四边形面积公式:面积=底边×高。

-梯形面积公式:面积=(上底+下底)×高÷2-三角形面积公式:面积=底边×高÷2- 三角形余弦定理:c^2 = a^2 + b^2 - 2abcosC。

- 三角形正弦定理:sinA/a = sinB/b = sinC/c。

- 三角形正弦面积公式:面积 = (1/2)abSinC。

-三角形内切圆半径公式:r=面积/半周长。

3.数列和数列项公式-等差数列通项公式:an = a1 + (n-1)d。

-等差数列前n项和公式:Sn = (n/2)(a1 + an)。

-等差数列等差公式:dn = an+1 - an。

-等差数列求和公式:Sn=(2a1+(n-1)d)n/2-等比数列通项公式:an = a1 * q^(n-1)。

-等比数列前n项和公式:Sn=a1(1-q^n)/(1-q)。

高中数学概念公式大全

高中数学概念公式大全

高中数学概念公式大全1.代数与函数:- 一次函数的方程:y = kx + b- 二次函数的方程:y = ax² + bx + c- 三次函数的方程:y = ax³ + bx² + cx + d-指数函数的方程:y=a^x- 对数函数的方程:y = logₐ(x)-幂函数的方程:y=x^a-绝对值函数的方程:y=,x- 正弦函数的方程:y = A sin(Bx + C) + D- 余弦函数的方程:y = A cos(Bx + C) + D-反比例函数的方程:y=k/x2.平面解析几何:-直线的一般式方程:Ax+By+C=0- 直线的斜截式方程:y = kx + b-直线的点斜式方程:y-y₁=k(x-x₁)-直线的两点式方程:(y-y₁)/(y₂-y₁)=(x-x₁)/(x₂-x₁) -圆的标准方程:(x-h)²+(y-k)²=r²-椭圆的标准方程:(x-h)²/a²+(y-k)²/b²=1-双曲线的标准方程:(x-h)²/a²-(y-k)²/b²=1- 抛物线的标准方程:y = ax² + bx + c-平行线的判定:两直线的斜率相等-垂直线的判定:两直线的斜率的乘积为-13.空间解析几何:- 空间直线的参数方程:x = x₁ + at, y = y₁ + bt, z = z₁ + ct -空间直线的对称式方程:(x-x₁)/a=(y-y₁)/b=(z-z₁)/c-空间平面的一般式方程:Ax+By+Cz+D=0-空间平面的点法式方程:(x-x₀)/A=(y-y₀)/B=(z-z₀)/C-两直线的位置关系:平行、异面、交于一点-直线与平面的位置关系:相交、平行、共面、垂直-两平面的位置关系:平行、重合、相交4.三角函数与解三角形:- 任意角的辅助角公式:sin(π - θ) = sinθ, cos(π - θ) = -cosθ, tan(π - θ) = -tanθ-任意角的和差公式:sin(θ₁ ± θ₂) = sinθ₁cosθ₂ ± cosθ₁sinθ₂cos(θ₁ ± θ₂) = cosθ₁cosθ₂∓ sinθ₁sinθ₂tan(θ₁ ± θ₂) = (tanθ₁ ± tanθ₂)/(1 ∓ tanθ₁tanθ₂)-二倍角公式:sin2θ = 2sinθcosθcos2θ = cos²θ - sin²θtan2θ = (2tanθ)/(1 - tan²θ)-三角函数的诱导公式:sin(π ± θ) = ±sinθ, cos(π ± θ) = -cosθ, tan(π ± θ) = ±tanθ-等腰三角形的性质:两底角相等,底边平分顶角,底边上的高相等- 直角三角形的性质:勾股定理(a² + b² = c²),正弦定理(sinθ = a/c),余弦定理(cosθ = b/c),正切定理(tanθ = a/b)。

高中数学公式大全完整版

高中数学公式大全完整版

高中数学公式大全完整版1.代数公式:a)二次方程求根公式:对于二次方程ax²+bx+c=0,其解为:x = (-b±√(b²-4ac))/(2a)b)平方差公式:(a+b)² = a² + 2ab + b²(a-b)² = a² - 2ab + b²c)三次方差公式:(a+b)(a²-ab+b²) = a³+b³d)和差化积公式:sin(A±B) = sinAcosB ± cosAsinBcos(A±B) = cosAcosB ∓ sinAsinBtan(A±B) = (tanA± tanB)/(1 ∓ tanAtanB) e)二项式定理:(a+b)ⁿ=nC₀aⁿb⁰+nC₁aⁿ⁻¹b¹+nC₂aⁿ⁻²b²+...+nCₙa⁰bⁿ2.几何公式:a)三角形:面积公式:S=1/2*底边*高正弦定理:sinA/a = sinB/b = sinC/c余弦定理:c² = a² + b² - 2abcosCb)圆:周长公式:C=2πr面积公式:A=πr²弧长公式:L=2πr(θ/360)c)立体图形:容积公式:立方体:V=a³正方体:V=a³圆柱体:V=πr²h圆锥体:V=1/3πr²h球体:V=4/3πr³d)平移、旋转、缩放公式:平移:(x,y)→(x+a,y+b)旋转:逆时针旋转θ度:(x,y) → (xcosθ - ysinθ, xsinθ + ycosθ)缩放:横向缩放k倍,纵向缩放k倍:(x,y) → (kx, ky)3.概率公式:a)排列组合公式:排列:A(n,m)=n!/(n-m)!组合:C(n,m)=n!/(m!(n-m)!)b)期望公式:对于离散型随机变量X,期望值E(X)=Σ(x*p(x)),其中x为X的可能取值,p(x)为对应x的概率对于连续型随机变量X,期望值E(X) = ∫(x*f(x))dx,其中f(x)表示X的概率密度函数c)标准差公式:方差σ²=Σ(x-μ)²*p(x),其中μ为随机变量X的期望值标准差σ=√σ²d)独立事件公式:P(A∩B)=P(A)P(B)4.数列与级数公式:a)等差数列通项公式:aₙ=a₁+(n-1)db)等比数列通项公式:aₙ=a₁*r^(n-1)c)等差数列求和公式:Sn=(n/2)(a₁+aₙ)d)等比数列求和公式:Sn=a₁*(rⁿ-1)/(r-1)以上是高中数学公式的一个完整版,涵盖了代数、几何、概率、数列与级数等多个方面的公式。

高中数学公式大全(全套完整版)

高中数学公式大全(全套完整版)

高中数学公式大全(全套完整版)一、代数部分1. 集合论集合的定义:集合是具有某种共同性质的事物的全体。

集合的表示方法:列举法、描述法。

集合的基本运算:并集、交集、补集、差集。

集合的性质:互异性、确定性、无序性。

2. 函数函数的定义:函数是两个非空数集A、B的元素之间的一种对应关系。

函数的表示方法:列表法、图象法、解析式法。

函数的性质:单调性、奇偶性、周期性、有界性。

常见函数:一次函数、二次函数、指数函数、对数函数、三角函数、反三角函数。

3. 数列数列的定义:数列是一列按照一定顺序排列的数。

数列的表示方法:通项公式、递推公式。

数列的性质:等差数列、等比数列、等差数列的前n项和公式、等比数列的前n项和公式。

4. 不等式不等式的定义:不等式是表示两个数之间大小关系的式子。

不等式的解法:一元一次不等式、一元二次不等式、一元高次不等式、多元不等式。

不等式的性质:传递性、可加性、可乘性。

5. 方程方程的定义:方程是含有未知数的等式。

方程的解法:一元一次方程、一元二次方程、一元高次方程、多元方程。

方程的性质:同解性、等价性。

6. 复数复数的定义:复数是实数和虚数的和。

复数的表示方法:代数式、三角式、指数式。

复数的运算:加法、减法、乘法、除法。

复数的性质:共轭复数、模、辐角。

二、几何部分1. 平面几何平面几何的基本概念:点、线、面、角、多边形。

平面几何的基本性质:直线公理、平行公理、垂线公理。

平面几何的基本定理:平行线性质定理、垂线性质定理、相交线性质定理。

平面几何的基本作图:作平行线、作垂线、作角平分线。

2. 立体几何立体几何的基本概念:点、线、面、体、角、多面体。

立体几何的基本性质:平行线性质定理、垂线性质定理、相交线性质定理。

立体几何的基本定理:平行线性质定理、垂线性质定理、相交线性质定理。

立体几何的基本作图:作平行线、作垂线、作角平分线。

3. 解析几何解析几何的基本概念:坐标、直线、圆、椭圆、双曲线、抛物线。

高中数学公式大全(最整理新版)

高中数学公式大全(最整理新版)

高中数学公式大全(最整理新版)一、代数1. 一元一次方程:ax + b = 0,其中a ≠ 0。

解为 x = b/a。

2. 一元二次方程:ax^2 + bx + c = 0,其中a ≠ 0。

解为 x =[b ± sqrt(b^2 4ac)] / 2a。

3. 一元三次方程:ax^3 + bx^2 + cx + d = 0,其中a ≠ 0。

解为x = [b ± sqrt(b^2 3ac)] / 3a。

4. 一元四次方程:ax^4 + bx^3 + cx^2 + dx + e = 0,其中 a≠ 0。

解为x = [b ± sqrt(b^2 4ac)] / 2a。

5. 分式方程:分子和分母均为多项式。

解法为将方程两边乘以分母的乘积,得到一个等价的整式方程,然后求解。

6. 二元一次方程组:由两个一元一次方程组成的方程组。

解法为消元法或代入法。

7. 二元二次方程组:由两个一元二次方程组成的方程组。

解法为消元法或代入法。

8. 三元一次方程组:由三个一元一次方程组成的方程组。

解法为消元法或代入法。

9. 等差数列:首项为 a1,公差为 d。

第 n 项为 an = a1 + (n 1)d。

前 n 项和为 Sn = n/2(a1 + an)。

10. 等比数列:首项为 a1,公比为 q。

第 n 项为 an = a1q^(n 1)。

前 n 项和为 Sn = a1 (1 q^n) / (1 q),其中q ≠ 1。

二、几何1. 平面几何(1)直线:两点确定一条直线,直线方程为 y = mx + b,其中m 是斜率,b 是截距。

(2)圆:圆心为 (a, b),半径为 r。

圆的方程为 (x a)^2 +(y b)^2 = r^2。

(3)椭圆:中心为 (a, b),长轴为 2a,短轴为 2b。

椭圆的方程为 (x a)^2 / a^2 + (y b)^2 / b^2 = 1。

(4)双曲线:中心为 (a, b),实轴为 2a,虚轴为 2b。

高中数学公式大全总结

高中数学公式大全总结

高中数学公式大全总结在高中数学学习中,数学公式是学生们必须掌握的重要知识点之一。

数学公式的掌握不仅有助于学生们解决数学题目,还能够帮助他们理解数学知识的内在逻辑和规律。

因此,本文将对高中数学中常见的公式进行总结,帮助学生们更好地掌握数学知识。

一、代数部分。

1. 一元二次方程的解法:一元二次方程的一般形式为ax^2 + bx + c = 0,其解法包括因式分解法、配方法、公式法等。

2. 二项式定理:(a + b)^n = C(n,0)a^n + C(n,1)a^(n-1)b + C(n,2)a^(n-2)b^2 + ... + C(n,n-1)ab^(n-1) + C(n,n)b^n。

3. 等差数列前n项和公式:Sn = (a1 + an) n / 2。

4. 等比数列前n项和公式:Sn = a1 (1 q^n) / (1 q)。

5. 平面直角坐标系中两点距离公式:AB = √((x2 x1)^2 + (y2 y1)^2)。

二、几何部分。

1. 直线与平面的位置关系:直线与平面的位置关系包括相交、平行、重合等情况,可以通过公式和几何图形进行判断。

2. 圆的相关公式:圆的面积公式为S = πr^2,周长公式为C = 2πr。

3. 三角形的面积公式:三角形的面积可以通过海伦公式、两边夹角的正弦公式等进行计算。

4. 直角三角形中的三角函数公式:sinθ = 对边 / 斜边,cosθ = 邻边 / 斜边,tanθ = 对边 / 邻边。

5. 圆锥、圆柱、球体的体积和表面积公式:圆锥的体积V = (1/3)πr^2h,圆柱的体积V = πr^2h,球体的体积V = (4/3)πr^3,表面积S = 4πr^2。

三、概率与统计部分。

1. 事件的概率计算公式:P(A) = n(A) / n(S),其中P(A)表示事件A发生的概率,n(A)表示事件A的样本点个数,n(S)表示样本空间的样本点个数。

2. 二项分布的概率计算公式:P(X=k) = C(n,k) p^k (1-p)^(n-k),其中X表示成功次数,n表示试验次数,p 表示每次试验成功的概率。

高中数学公式大全3篇

高中数学公式大全3篇

高中数学公式大全第一篇:初中数学公式大全一、代数公式1. 平方差公式:$(a+b)^2 = a^2 +2ab+b^2$,$(a-b)^2 = a^2 -2ab+b^2$2. 立方和公式:$a^3 + b^3 = (a+b)(a^2 -ab+b^2)$,$a^3 - b^3= (a-b)(a^2 +ab+b^2)$3. 一次二项式完全平方公式:$(a+b)^2 = a^2+2ab+b^2$,$(a-b)^2 = a^2 -2ab+b^2$4. 二次三项式公式:$a^2 +b^2 +2ab=(a+b)^2$,$a^2 +b^2 -2ab=(a-b)^2$5. 和差化积公式:$\sin (a \pm b) = \sin a\cos b \pm \cos a\sin b$,$\cos (a \pm b) = \cos a\cos b \mp \sin a\sin b$6. 二次型配方法公式:$ax^2 +bx+c=a(x-x_1)(x-x_2)$,其中 $x_1$ 和 $x_2$ 是方程 $ax^2 +bx+c=0$ 的两个根。

7. 因式分解公式:$a^2 -b^2= (a+b)(a-b)$,$a^3+b^3 = (a+b)(a^2 -ab+b^2)$,$a^3 -b^3= (a-b)(a^2+ab+b^2)$二、三角公式1. 科西汀定理:$\sin ^2 x+\cos ^2 x=1$2. 余角公式:$\sin (\frac{\pi}{2} -x) = \cos x$,$\cos (\frac{\pi}{2} -x) = \sin x$,$\tan(\frac{\pi}{2} -x) = \cot x$3. 万能公式:$\sin (a+b)=\sin a \cos b +\cos a\sin b$,$\sin (a-b)=\sin a \cos b -\cos a \sin b$4. 半角公式:$\sin ^2 {\frac{x}{2}}=\frac{1 -\cos x}{2}$,$\cos ^2 {\frac{x}{2}}=\frac{1 +\cos x}{2}$5. 双角公式:$\sin 2a=2\sin a \cos a$,$\cos2a=\cos ^2 a-\sin ^2 a$6. 和差化积公式: $\sin (a + b) = \sin a \cos b + \cos a \sin b$,$\cos (a + b) = \cos a \cos b - \sin a \sin b$7. 三角函数的周期性公式:$\sin (x + 2\pi) = \sin x$,$\cos (x + 2\pi) = \cos x$,$\tan (x + \pi) = \tan x$三、几何公式1. 三角形面积公式:$S=\frac{1}{2}bh$,其中 $b$ 是三角形底边长,$h$ 是对应高的长度。

高中数学公式大全 -回复

高中数学公式大全 -回复

高中数学公式大全一、代数部分1. 幂函数:y = axn (n为指数,a为底数)2. 指数函数:y = abx (b为底数)3. 对数函数:y = logax (a为底数)4. 一元二次方程公式:ax2 + bx + c = 0x = [-b ± √(b2 - 4ac)] / 2a5. 一元三次方程公式:ax3 + bx2 + cx + d = 0x1 = (-b + √Δ)/ax2 = (-b - √Δ)/ax3 = -c/a(Δ = b2 - 3ac)6. 高次方程公式:对于一元n次方程axn + anxn-1 + ... + b = 0,当a≠0时,有公式: x = n√[(-1)n-1b/an] (n为方程的次数)7. 四则运算公式:加法:a + b = c减法:a - b = c乘法:ab = c除法:a / b = c8. 比例:a / b = c / d (a与b成比例,c与d也成比例)9. 百分比:百分数/100 = 总数 / 部分数10. 简单利息公式:I = Prt / 100 (I为利息,P为本金,r为利率,t为时间)11. 复利公式:本金 × (1 + 年利率) ^ 时间 = 本金和利息之和12.一元二次函数: y = ax2 + bx + c13. 一元三次函数:y = ax3 + bx2 + cx + d14. 一次函数 y = kx + b15. 导数的概念: f'(x) = Δy/Δx = lim Δy/Δx (Δx->0)16. 导数的运算法则:(1)常数 Func: f'(x) = 0(2)一次Func: f'(x) = k (3)sinFunc: f'(x) = cosx(4)cosFunc: f'(x) = -sinx (5)tanFunc: f'(x) = sec2x(6)exFunc: f'(x) = ex(7)lnFunc: f'(x) = 1/x(8)求和: f'(x) = f'u + f'v (9)求差: f'(x) = f'u - f'v(10) 乘积: f'(x) = u'v + uv'(11)商: f'(x) = (u'v - uv')/v217. 函数的递增递减判断: f'(x)>0时,函数y=f(x)递增;f'(x)<0时,函数y=f(x)递减。

高中数学公式总结大全

高中数学公式总结大全

高中数学公式总结大全高中数学是一个基础而重要的学科,其中包含了众多的公式和定理。

下面是我为您总结的高中数学公式大全(只列出了常用和重要的公式,因篇幅限制可能无法完全涵盖全部公式):-----------------一、代数运算1. 二次根式的乘除公式:(a√b) ×(c√b)= ac√b, (a√b)÷(c√b)= a÷c√b2. 幂的乘除公式:a^n × a^m = a^(n+m), a^n ÷ a^m = a^(n-m)3. 平方差公式:(a-b)² = a² - 2ab + b²4. 平方和公式:(a+b)² = a² + 2ab + b²5. 完全平方公式:a² - 2ab + b² = (a - b)²6. 立方差公式:(a-b)³ = a³ - 3a²b + 3ab² - b³7. 立方和公式:(a+b)³ = a³ + 3a²b + 3ab² + b³8. a² - b² = (a+b)(a-b)9. 二次方程的求根公式:对于 ax² + bx + c = 0 的一元二次方程,x = (-b ± √(b²-4ac)) / 2a10. 二次三角恒等式:(sinθ)² + (cosθ)² = 111. 二次三角恒等式:1 + (tanθ)² = (secθ)²12. 二次三角恒等式:1 + (cotθ)² = (cscθ)²13. 对数运算公式:log_a(xy) = log_a(x) + log_a(y), log_a(x/y) = log_a(x) - log_a(y) log_a(x^n) = nlog_a(x), log_a(1/x) = -log_a(x)14. 指数运算公式:a^x × a^y = a^(x+y), a^x ÷ a^y = a^(x-y)(a^x)^y = a^(xy), (ab)^x = a^x × b^x二、平面几何1. 圆的周长公式:C = 2πr或C = πd2. 圆的面积公式:A = πr²3. 锐角三角函数:sinθ = 对边/斜边, cosθ = 邻边/斜边, tanθ = 对边/邻边4. 余角三角函数:cscθ = 1/sinθ, secθ = 1/cosθ, cotθ = 1/tanθ5. 三角恒等式:sin(90°-θ) = cosθ, cos(90°-θ) = sinθ, tan(90°-θ) = cotθ6. 直角三角形勾股定理:a² + b² = c²或c = √(a² + b²)7. 正弦定理:a/sinA = b/sinB = c/sinC8. 余弦定理:a² = b² + c² - 2bc·cosA9. 面积公式:面积S = 0.5 ×底 ×高三、空间几何1. 简单体积公式:直方体 V = l × w × h正方体 V = a³圆柱体V = πr²h球体V = (4/3)πr³2. 简单表面积公式:直方体表面积 A = 2lw + 2lh + 2wh正方体表面积 A = 6a²圆柱体侧面积A = 2πrh圆柱体全面积A = 2πr(r+h)球体表面积A = 4πr²四、概率与统计1. 排列公式:n个元素取r个排列的情况总数为 P(n,r) = n!/(n-r)!2. 组合公式:n个元素取r个组合的情况总数为 C(n,r) = n!/(r!(n-r)!)3. 随机事件概率公式:P(A) = n(A)/n(S)4. 条件概率公式:P(A|B) = P(AB)/P(B), P(B|A) = P(AB)/P(A)5. 独立事件概率公式:P(A∩B) = P(A) × P(B)六、数列与数学归纳法1. 等差数列通项公式:an = a1 + (n-1)d2. 等差数列前n项和公式:Sn = n/2 × (a1 + an) = n/2 × (2a1 + (n-1)d)3. 等比数列通项公式:an = a1 × q^(n-1)4. 等比数列前n项和公式:Sn = a1 × (1-q^n) / (1-q), q≠1五、其他1. 三角函数导数:(sinx)' = cosx, (cosx)' = -sinx, (tanx)' = sec²x2. 指数函数导数:(a^x)' = a^x × ln(a), (e^x)' = e^x3. 对数函数导数:(log_ax)' = 1 / (x × ln(a)), (lnx)' = 1 / x4. 反三角函数导数:(sin⁻¹x)' = 1 / √(1-x²), (cos⁻¹x)' = -1 / √(1-x²), (tan⁻¹x)' = 1 / (1+x²)-----------------这只是高中数学公式的一小部分,在学习过程中会遇到更多的公式和定理,希望以上总结对您有所帮助。

高中数学必修一公式大全

高中数学必修一公式大全

高中数学必修一公式大全全文共四篇示例,供读者参考第一篇示例:高中数学必修一公式大全高中数学是我们学习的一门基础学科,掌握好数学知识对我们的学习和未来的发展至关重要。

在高中阶段,数学被划分为必修一和必修二两部分,其中必修一主要包括代数、函数、数列和不等式等内容。

在这篇文章中,我们将为大家整理高中数学必修一的常用公式,希望对大家学习和复习数学知识有所帮助。

一、代数部分公式1. 二次函数一般式:y=ax^2+bx+c2. 一元二次方程求根公式:x=\frac{-b±\sqrt{b^2-4ac}}{2a}3. 重要恒等式:(a+b)^2=a^2+2ab+b^24. 二次方程判别式:Δ=b^2-4ac1. 定义域和值域的定义:- 定义域:函数能够取值的集合- 值域:函数所有可能的输出值的集合2. 奇函数和偶函数的性质:- 奇函数:f(-x)=-f(x)- 偶函数:f(-x)=f(x)3. 函数的复合与反函数:- 复合函数:(f◦g)(x)=f[g(x)]- 反函数:f(f^(-1)(x))=x4. 函数的性质之一致性与不一致性- 一致性:若f(x)=g(x),则等式两边分别代入相同的值时,结果相等- 不一致性:若f(x)=g(x),则一定存在某一值x使得f(x)≠g(x)1. 等差数列求和公式:Sn=\frac{n(a1+an)}{2}2. 等比数列求和公式:Sn=\frac{a1(1-q^n)}{1-q}3. 通项公式:- 等差数列:an=a1+(n-1)d- 等比数列:an=a1*q^(n-1)4. 递推公式:- 等差数列:an=an-1+d- 等比数列:an=an-1*q四、不等式部分公式1. 绝对值不等式的性质:- |a|<b等价于-b<a<b- |a|>b等价于a<-b或者a>b2. 一元一次不等式解法:- 含有绝对值的一元一次不等式:|ax+b|<c等价于-b<ax+b<c和-b>ax+b>-c3. 一元二次不等式解法:- 一元二次不等式ax^2+bx+c<0或者ax^2+bx+c>0的解法以上是高中数学必修一的部分公式,这些公式是我们学习数学时常用到的基础知识,希望大家能够掌握好这些知识,为学习和考试打下坚实的基础。

高中数学公式大全总结必背公式

高中数学公式大全总结必背公式

高中数学公式大全总结必背公式1. 代数公式1.1 一次函数公式- 点斜式方程:$y-y_1=m(x-x_1)$- 斜截式方程:$y=mx+c$- 两点式方程:$\frac{y-y_1}{y_2-y_1}=\frac{x-x_1}{x_2-x_1}$1.2 二次函数公式- 一般式方程:$y=ax^2+bx+c$- 顶点式方程:$y=a(x-h)^2+k$- 标准式方程:$y=a(x-p)(x-q)$1.3 等差数列公式- 第n项:$a_n=a_1+(n-1)d$- 前n项和:$S_n=\frac{n}{2}(a_1+a_n)$- 第n项与首项之差:$a_n-a_1=(n-1)d$1.4 等比数列公式- 第n项:$a_n=a_1q^{n-1}$- 前n项和:$S_n=\frac{a_1(q^n-1)}{q-1}$2. 几何公式2.1 圆的公式- 圆的面积公式:$S=\pi r^2$- 圆的周长公式:$C=2\pi r$2.2 三角形公式- 三角形面积公式:$S=\frac{1}{2}ab\sin C$- 三角形周长公式:$C=a+b+c$- 正弦定理:$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$- 余弦定理:$c^2=a^2+b^2-2ab\cos C$2.3 矩形公式- 矩形面积公式:$S=lw$- 矩形周长公式:$C=2(l+w)$- 矩形对角线长度公式:$d=\sqrt{l^2+w^2}$3. 微积分公式3.1 导数公式- 常数函数导数:$(k)'=0$- 幂函数导数:$(x^n)'=nx^{n-1}$- 指数函数导数:$(a^x)'=a^x\ln a$- 对数函数导数:$(\log_a{x})'=\frac{1}{x\ln a}$- 三角函数导数:$(\sin x)'=\cos x$, $(\cos x)'=-\sin x$, $(\tan x)'=\sec^2 x$3.2 积分公式- 幂函数积分:$\int x^n\ dx=\frac{1}{n+1}x^{n+1}+C$, ($n\neq -1$)- 指数函数积分:$\int e^x\ dx=e^x+C$- 三角函数积分:$\int \sin x\ dx=-\cos x+C$, $\int \cos x\ dx=\sin x+C$以上是部分高中数学公式的总结,希望能帮到你!记得多加练习和积累哦!。

高中数学公式总结大全

高中数学公式总结大全

高中数学公式总结大全数学作为一门重要的学科,其公式是学习数学的基础和核心。

在高中阶段,学生需要掌握各种各样的数学公式,因此,本文将对高中数学常见的公式进行总结,以便同学们能够更好地掌握和运用这些公式。

一、代数部分。

1. 一元二次方程的求根公式,对于一元二次方程ax^2+bx+c=0,其求根公式为x=(-b±√(b^2-4ac))/(2a)。

2. 二项式定理,(a+b)^n = C(n,0)a^nb^0 + C(n,1)a^(n-1)b^1 + ... + C(n,n)a^0b^n。

3. 三角函数和反三角函数的关系,sin^2x + cos^2x = 1,tanx = sinx/cosx,cotx = 1/tanx,secx = 1/cosx,cscx = 1/sinx。

二、几何部分。

1. 直线的方程,点斜式方程y-y₁=k(x-x₁),斜截式方程y=kx+b,一般式方程Ax+By+C=0。

2. 圆的方程,一般式方程x^2+y^2+2gx+2fy+c=0,标准式方程(x-a)^2+(y-b)^2=r^2。

3. 三角形的面积公式,S=1/2底高,S=√(s(s-a)(s-b)(s-c)),其中s为半周长,a、b、c为三边长。

三、概率与统计部分。

1. 排列组合公式,排列公式A(n,m)=n!/(n-m)!,组合公式C(n,m)=n!/(m!(n-m)!)。

2. 正态分布的概率计算,若X~N(μ,σ^2),则P(a<X<b)=Φ((b-μ)/σ)-Φ((a-μ)/σ),其中Φ表示标准正态分布的累积分布函数。

3. 样本均值和总体均值的关系,样本均值x是总体均值μ的无偏估计量。

四、微积分部分。

1. 导数的基本公式,(x^n)'=nx^(n-1),(e^x)'=e^x,(sinx)'=cosx,(cosx)'=-sinx。

2. 不定积分的基本公式,∫x^n dx=x^(n+1)/(n+1)+C,∫e^x dx=e^x+C,∫sinx dx=-cosx+C,∫cosx dx=sinx+C。

高中数学公式表

高中数学公式表

高中数学公式表一、代数公式1. 四则运算公式:- 加法公式:a + b = b + a- 减法公式:a - b ≠ b - a- 乘法公式:a × b = b × a- 除法公式:a ÷ b ≠ b ÷ a2. 幂运算公式:- 正整数幂公式:aⁿ × aᵐ= aⁿ⁺ᵐ- 负整数幂公式:a⁻ⁿ = 1/aⁿ- 幂的乘法公式:(aⁿ)ᵐ= aⁿᵐ- 幂的除法公式:(aⁿ)÷(aᵐ) = aⁿ⁻ᵐ3. 因式分解公式:- 平方差公式:a² - b² = (a + b)(a - b)- 完全平方公式:a² + 2ab + b² = (a + b)² - 平方和公式:a² + 2ab + b² = (a + b)²4. 根式公式:- 同底数幂相乘取根公式:√(aⁿ × bⁿ) = √(aⁿ) × √(bⁿ) = a√(b) - 同底数幂相除取根公式:√(aⁿ÷ bⁿ) = √(aⁿ) ÷ √(bⁿ) = aⁿ√(b)二、几何公式1. 平面图形公式:- 长方形的面积公式:A = l × w- 正方形的面积公式:A = a²- 三角形的面积公式:A = 1/2 × b × h- 圆的面积公式:A = πr²2. 空间图形公式:- 立方体的体积公式:V = l × w × h- 正方体的体积公式:V = a³- 圆柱体的体积公式:V = πr²h- 圆锥体的体积公式:V = 1/3 × πr²h三、三角函数公式1. 基本三角函数公式:- 正弦函数的定义:sinθ = 对边/斜边- 余弦函数的定义:cosθ = 邻边/斜边- 正切函数的定义:tanθ = 对边/邻边2. 三角函数的基本关系:- 正弦函数与余弦函数的关系:sin²θ + cos²θ = 1- 正切函数与余切函数的关系:tanθ = 1/cotθ3. 三角函数的和差公式:- 正弦函数的和差公式:sin(α ± β) = sinαcosβ ± cosαsinβ - 余弦函数的和差公式:cos(α ± β) = cosαcosβ ∓ sinαsinβ- 正切函数的和差公式:tan(α ± β) = (tanα ± tanβ)/(1 ∓tanαtanβ)四、概率与统计公式1. 概率公式:- 加法法则:P(A ∪ B) = P(A) + P(B) - P(A ∩ B)- 乘法法则:P(A ∩ B) = P(A) × P(B|A) = P(B) × P(A|B)2. 统计公式:- 平均值公式:平均值 = (数据之和) ÷ (数据的个数)- 方差公式:方差 = [(每个数据与平均值之差的平方之和) ÷ (数据的个数)]五、数列与数学归纳法公式1. 等差数列公式:- 第n项公式:aₙ = a₁ + (n-1)d- 前n项和公式:Sₙ = n/2(a₁ + aₙ)2. 等比数列公式:- 第n项公式:bₙ = b₁ × rⁿ⁻¹- 前n项和公式:Sₙ = b₁ × (1 - rⁿ)/(1 - r)以上是高中数学公式表的一部分,这些公式涵盖了代数、几何、三角函数、概率与统计、数列与数学归纳法等各个方面。

高中数学公式全集代数部分

高中数学公式全集代数部分

高中数学公式全集代数部分The Standardization Office was revised on the afternoon of December 13, 2020高中数学公式全集(代数部分)【函数】【集合】指定的某一对象的全体叫集合。

集合的元素具有确定性、无序性和不重复性。

【集合的分类】【集合的表示方法】名称定义图示性质子集真子集交集并集补集【不等式】不等式用不等号把两个解析式连结起来的式子叫做不等式不等式的性质含绝对值不等式的性质几个重要的不等式一元一次形式解集R 不等式的解法一元二次R 不等式的解法绝对值不等式的解法无理不等式的解法【数列】名称定义通项公式前n项的和公式其它数列按照一定次序排成一列的数叫做数列,记为{a n}如果一个数列{a n}的第n项a n与n之间的关系可以用一个公式来表示,这个公式就叫这个数列的通项公式等差数列等比数列数列前n项和与通项的关系:无穷等比数列所有项的和:数学归纳法适用范围证明步骤注意事项只适用于证明与自然数n有关的数学命题设P(n)是关于自然n的一个命题,如果(1)当n取第一个值n0(例如:n=1或n=2)时,命题成立(2)假设n=k时,命题成立,由此推出n=k+1时成立。

那么P(n)对于一切自然数n都成立。

(1)第一步是递推的基础,第二步的推理根据,两步缺一不可(2)第二步的证明过程中必须使用归纳假设【三角函数】角一条射线绕着它的端点旋转所产生的图形叫做角。

旋转开始时的射线叫角的始边,旋转终止时的射线叫角的终边,射线的端点叫做角的顶点。

角的单位制关系弧长公式扇形面积公式角度制弧度制角的终边位置角的集合在x轴正半轴上在x轴负半轴上在x轴上在y轴上在第一象限内在第二象限内在第三象限内在第四象限内特殊角的三角函数值函数/角sina 0 1 0 -1 0 cosa 1 0 -1 0 1 tana 0 1不存在不存在0 cota 不存在 1 0不存在不存在三角函数函数定义域值域奇偶性周期性单调性y=sinx R奇函数的性质y=cosx R偶函数y=tanx R奇函数y=cotx R奇函数角/函数正弦余弦正切余切-a -sina cosa -tana -cota900a cosa sina cota tana900+a cosa -sina -cota -tana1800-a sina -cosa -tana -cota1800+a -sina -cosa tana cota2700-a -cosa -sina cota tana2700+a -cosa sina -cota -tana3600-a -sina cosa -tana -cotasina cosa tana cota同角公式倒数关系商数关系平方关系和差角公式倍角公式万能公式半角公式积化和差公式和差化积公式【复数】复数的定义引入虚数单位i,规定i2=1,i可以和实数一起进行通常的四则运算,运算时原有加乘运算仍然成立。

高中高考数学公式大全

高中高考数学公式大全

高中高考数学公式大全1.代数公式:- 二次方程的根公式:对于二次方程ax²+bx+c=0,其根的公式为x=(-b±√(b²-4ac))/2a;- 韦达定理:对于三次方程ax³+bx²+cx+d=0,其根之和为-S₁/a,其根之积为S₃/a;-分式的倒数:若x是不等于0的实数,则x的倒数为1/x;- 二项式定理:(a+b)ⁿ的展开式为aⁿ+naⁿ⁻¹b+...+bⁿ;2.几何公式:-直角三角形的勾股定理:若a、b、c分别为直角三角形的两条直角边和斜边的长度,则a²+b²=c²;- 正弦定理:在三角形ABC中,a/sinA=b/sinB=c/sinC,其中a、b、c分别是三角形中对应的边,A、B、C分别是相对的角;- 余弦定理:在三角形ABC中,c²=a²+b²-2abcosC,其中a、b、c分别是三角形中对应的边,C是夹角;-长方形面积公式:长方形的面积等于长乘以宽;-圆的面积公式:圆的面积等于πr²,其中r为圆的半径;3.数列公式:-等差数列通项公式:如果数列{an}是等差数列,公差为d,首项为a₁,则其通项公式为an=a₁+(n-1)d;-等差数列前n项和公式:如果数列{an}是等差数列,公差为d,首项为a₁,前n项和为Sn,则其公式为Sn=(a₁+an)n/2;-等比数列通项公式:如果数列{an}是等比数列,公比为q,首项为a₁,则其通项公式为an=a₁qⁿ⁻¹;-等比数列前n项和公式:如果数列{an}是等比数列,公比为q≠1,首项为a₁,前n项和为Sn,则其公式为Sn=a₁(qⁿ-1)/(q-1);4.概率公式:-事件A的概率:P(A)=A事件发生的可能性/所有可能性;-互斥事件的概率:P(A或B)=P(A)+P(B);-相关事件的概率:P(A且B)=P(A)×P(B,A),其中P(B,A)为在事件A发生的条件下事件B发生的概率;5.导数公式:-基本函数的导数:-常数函数的导数为0;- 幂函数f(x)=xⁿ的导数为f'(x)=nxⁿ⁻¹;-指数函数f(x)=eˣ的导数为f'(x)=eˣ;- 对数函数f(x)=ln(x)的导数为f'(x)=1/x;-基本运算法则:-f(x)=u(x)±v(x)的导数为f'(x)=u'(x)±v'(x);-f(x)=c·u(x)的导数为f'(x)=c·u'(x),其中c为常数;-f(x)=u(x)·v(x)的导数为f'(x)=u'(x)·v(x)+u(x)·v'(x);-f(x)=u(x)/v(x)的导数为f'(x)=(u'(x)·v(x)-u(x)·v'(x))/v²(x);这仅仅是高中高考数学公式的部分内容,还有很多其他的公式。

高中数学常用公式集锦(完美版)

高中数学常用公式集锦(完美版)

一. 代数1. 集合,函数{}{}{}()A B B A A B A B x x A x B A B x x A x B A x x U x A c a r dA B c a r dA c a r dB c a r dA B U ⊆⊆⇔==∈∈=∈∈=∈∉=+-,,,且或且 |||()()()()()a a am n N n aaaa m n N n mn mnm nmnmn=>∈>==>∈>-011101,,,,且且,,()()aN N N aM N M N M N M N Mn M n R N N ba Na b b a a a a a a a na b a a log log log log log log log log log log log log log log log ===+⎛⎝ ⎫⎭⎪=-=∈=,基本型:()ab f x b a a b f x a ()()log =⇔=>≠>010,,()l o g ()()abf x b f x a a a =⇔=>≠01,同底型:aaf xg x a a f x g x ()()()()()=⇔=>≠01,()l o g ()l o g ()()()a af xg x f x g x a a =⇔=>>≠001,换元型:()f ax=0或()f x alog=02. 数列(1)等差数列()()()a a d a a n da Ab A a bm n k l a a a a S a a nna n n dn n n m n k l n n +-==+-⇒=++=+⇒+=+=+=+-1111122121,,成等差(2)等比数列a a qa Gb G ab m n k l a a a a n n m n k l=⇒=+=+⇒=-112,,成等比()()()S a q q q na q n n=--≠=⎧⎨⎪⎩⎪111111(3)求和公式()()()()k n n kn n n kn n k nk nk n===∑∑∑=+=++=+⎡⎣⎢⎤⎦⎥121312121216123. 不等式a b b aa b b c a c a b a c b c a b c a c b a b c d a c b d a b c ac bc>⇔<>>⇒>>⇒+>++>⇒>->>⇒+>+>>⇒>,,,0()()a b c ac bca b c d ac bda b d bn Z n a b a b n Z n nnnn><⇒<>>>>⇒<>>⇒>∈>>>⇒>∈>,,,,0000101()a b a b R a b ab a b Ra b aba b c R a b c abc a b c Ra b cabca b a b a b-≥∈⇒+≥∈⇒+≥∈⇒++≥∈⇒++≥-≤±≤+2+++2233332233,,,,,,4. 复数()()()()()()()()()()()()a bi c di a c b d a bi aba bi c di a cb d i a bic di a c bd i a bi c di ac bd bc ad ia bi c diac bd c dbc ad c bi+=+⇔==+=++++=++++-+=-+-++=-++++=+++-+,222222()()()a bi a C a bi C bi nn n n n nn+=+++-11…()()()()()[]()[]()()()()()[]a bi r i r i r i r r i r r n i n r i r i r r i r k ni k nk n nnkn+=++⋅+=⋅++++=+++=-+-=+++⎛⎝⎫⎭⎪=-cos sin cos sin cos sin cos sin cos sin cos sin cos sin cos sin cos sin cos sin θθθθθθθθθθθθθθθθθθθθθθωπθπθ11122212121211222212121222011,,…,z z z z z z z z zzz z z z z z zzzzz z z z z z z z nn121212121212122212121212=⋅==-≤±≤+==±=±⋅=⋅z z z z 1212⎛⎝ ⎫⎭⎪=5. 排列组合与二项式定理()()()()()()()A n n n n m A n n m CA m n n n m m C n m n m C C C C C n mn mnm nmn mn m n mn m n mnn m=---+=-==--+=-=+=+--1211111……!!!!!!!()a b C a C a b C a b C b T C abnn n n n n r n r r n n nr n rn rr+=+++++=--+-0111……二. 三角函数 1. 同角关系s i n c o s t a n s e c c o t c s c s i n c s c t a n s i n c o s c o s s e c c o t c o s s i n t a n c o t 222222111111αααααααααααααααααα+=+=+======,, 2. 诱导公式()()()()()()()()()s i n s i n c o s c o s t a n t a n c o s c o ss i ns i n t a n t a n s i n s i n c o s c o s t a n t a nk k k ⋅︒+=⋅︒+=⋅︒+=-=-=--=-︒±=︒±=-︒±=±360360360180180180αααααααααααααααααα()()()()()()()()()s i n s i n c o s c o s t a n t a n s i n c o s c o s s i n t a n c o t s i n c o s c o s s i n t a n c o t 360360360909090270270270︒-=-︒-=︒-=-︒±=︒±=︒±=︒±=-︒±=±︒±=αααααααααααααααααα3. 和差公式()()()s i n s i n c o s c o s s i n c o s c o s c o s s i n s i n t a n t a n t a n t a n t a n αβαβαβαβαβαβαβαβαβ±=±±=±=± 1 4. 倍角公式s i n s i n c o sc o s c o s s i n c o s s i n t a n t a n t a n 222211222122222ααααααααααα==-=-=-=-5. 半角公式s i n c o sc o s c o st a n c o s c o st a n c o s s i n s i n c o sαααααααθθθθθ212212211211=±-=±+=±-+=-=+6. 万能公式()s i n t a nt a nc o s t a nt a nt a nt a nt a ns i n c o s s i n ααααααααααααϕ=+=-+=-+=++221212122212222222,a b a b7. 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即:a Ab Bc Csin sin sin ==8. 余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍,即:ab c bc Ab c a ca B c a b ab C222222222222=+-=+-=+-cos cos cos三. 向量运算 1. 向量的加法()()a aa b b a a b c a b c +=++=+++=++002. 向量减法()()()()--=+-=-+=-=+-a aa a a a ab a b 03. 实数与向量的积:以下公式λ、u 为实数,a b 、为向量()()()λλλλλλa a ua u au a a ua==+=+()λλλa b a b +=+线段的定比分点:设,P P P 13、、的坐标分别为()x y 11,,()x y ,,()x y 22,,则有:x x x y y y =++=++121211λλλλ向量的数量积及运算律数量积(内积):a b a b ⋅=cos θ向量b 在a 方向的投影为b cos θ设a 、b 都是非零向量,e 是与b 方向相同的单位向量,θ是a 与e 的夹角,则 (1)e a a e a ⋅=⋅=cos θ (2)a b a b ⊥⇔⋅=0(3)当a 与b 同向时,a b a b ⋅=; 当a 与b 反向时,a b a b ⋅=-;a a a aa a a⋅===⋅22(4)cos θ=⋅a b a b(5)a b a b ⋅≤数量积运算律:(a ,b ,c 为向量,λ为实数)a b b a ⋅=⋅(交换律)()()()()λλλa b a b a b a b c a c b c⋅=⋅=⋅+⋅=⋅+⋅四. 解析几何 1. 直线方程()y y k x x y kx b y y y y x x x x x a ybA xB yC -=-=+--=--+=++=1112112112. 两点距离、定比分点()()AB x x P P x x y y B A =-=-+-12212212x x x y y y =++=++⎧⎨⎪⎪⎩⎪⎪121211λλλλx x x y y y =+=+⎧⎨⎪⎪⎩⎪⎪1212223. 两直线关系 l l A A B B C C 12121212//⇔=≠或k k 12=且b b 12≠l 1与l 2重合⇔==A AB BC C 121212或k k 12=且b b 12=l 1与l 2相交⇔≠A A B B 1212或k k 12≠l l A A B B 1212120⊥⇔+= 或k k 121=- l 1到l 2的角 ()t a n θ=-++≠k k k k k k 211212110l 1到l 2的夹角 ()t a nθ=-++≠k k k k k k 211212110点到直线的距离 d Ax By CA B=+++00224. 圆锥曲线 (1)圆()()x a y b R -+-=222圆心为()a b ,,半径为R (2)椭圆()x ay ba b 222210+=>>焦点()()F c F c 1200-,,, ()b a c222=-离心率e c a=准线方程x ac=±2焦半径M F a ex M F a ex 1020=+=-,(3)双曲线:x ay b22221-=(4)抛物线抛物线y px p 220=>() 焦点F p 20,⎛⎝ ⎫⎭⎪准线方程x p =-2五. 立体几何1. 空间两直线平行判定 (1)a b b c a c //////,⇒(2)a b a b ⊥⊥⎫⎬⎭⇒αα//(3)a b a b ////ααβαβ⊂=⎫⎬⎪⎭⎪⇒(4)αβγαγβ//// ==⎫⎬⎪⎭⎪⇒a b a b2. 空间两直线垂直判定(1)a b a b ⊥⊂⎫⎬⎭⇒⊥αα(2)a b l l b //⊥⎫⎬⎭⇒⊥α 3. 直线与平面平行 (1)判定 a b a b a a a ⊄⊂⎫⎬⎪⎭⎪⇒⊂⎫⎬⎭⇒ααααβαβ//////// (2)性质a ab a b ////βααβ⊂=⎫⎬⎪⎭⎪⇒4. 直线与平面垂直(1)判定m n m n B l m l n l a b a b ⊂⊂=⊥⊥⎫⎬⎭⇒⊥⊥⎫⎬⎭⇒⊥ααααα,,, //(2)性质a b a b ⊥⊥⎫⎬⎭⇒αα// 5. 平面与平面平行 (1)判定<>⊂=⎫⎬⎪⎭⎪⇒<>⊥⊥⎫⎬⎭⇒<>⎫⎬⎪⎭⎪⇒123a b a b a b A a a ,//,//////////////βαααβαβαβαγβγαβαβ<>⎫⎬⎭⇒3αγβγαβ//////(2)性质<>==⎫⎬⎪⎭⎪⇒<>⊂⎫⎬⎭⇒12αβγαγβαβααβ//////// a b a ba 6. 平面与平面垂直 (1)判定 <>⊂⊥⎫⎬⎭⇒⊥1a a αβαβ <2>二面角的平面角θ=︒90 (2)性质<>⊥=∈⊥⎫⎬⎭⇒⊥<>∈∈⊥⊥⎫⎬⎪⎭⎪⇒⊂12αβαβαβααββα,,, b a a ba A a A a a 7. 几何体的侧面积S ChS Ch 正棱柱侧正棱锥侧==12'S Rh S Rl S R圆柱侧圆锥侧球===242πππ8. 几何体的体积V Sh V ShV R hV R hV R棱柱棱锥圆柱圆锥球=====131343223πππ六. 概率与统计 1. 概率性质(1)p i i ≥=012,,,……; (2)p p 121++=…… 2. 二次分布 ()C p q b k n p nk kn k-=;,3. 期望()E x p x p x p E a b aE bn n ξξξ=+++++=+1122…………若()ξ~B n p ,,则E np ξ= 4. 方差()()()D x E p x E p x E p n n ξξξξ=-⋅+-⋅++-⋅+1212222…………5. 正态分布 ()()f x ex x u ()=∈-∞+∞--12222πσσ,,式中的实数u ,σσ(>0)是参数,分别表示总体的平均数与标准差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学公式全集(代数部分)【函数】指定的某一对象的全体叫集合。

集合的元素具有确定【集合】性、无序性和不重复性。

【集合的分类】【集合的表示方法】名定义图示性质称子集真子集交集并集补集【不等式】不等用不等号把两个解析式连结起来的式子叫做不等式式不等式的性质含绝对值不等式的性质几个重要的不等式一元一次不等式的解法形式解集R一元二次不R等式的解法绝对值不等式的解法无理不等式的解法【数列】名称定义通项公式前n项的和公式其它数列按照一定次序排成一列的数叫做数列,记为{a n}如果一个数列{a n}的第n项a n与n之间的关系可以用一个公式来表示,这个公式就叫这个数列的通项公式等差数列等比数列数列前n项和与通项的关系:无穷等比数列所有项的和:数学归纳法适用范围证明步骤注意事项只适用于证明与自然数n有关的数学命题设P(n)是关于自然n的一个命题,如果(1)当n取第一个值n0(例如:n=1或n=2)时,命题成立(2)假设n=k时,命题成立,由此推出n=k+1时成立。

那么P(n)对于一切自然数n都成立。

(1)第一步是递推的基础,第二步的推理根据,两步缺一不可(2)第二步的证明过程中必须使用归纳假设【三角函数】角一条射线绕着它的端点旋转所产生的图形叫做角。

旋转开始时的射线叫角的始边,旋转终止时的射线叫角的终边,射线的端点叫做角的顶点。

角的单位制关系弧长公式扇形面积公式角度制弧度制角的终边位置角的集合在x轴正半轴上在x轴负半轴上在x轴上在y轴上在第一象限内在第二象限内在第三象限内在第四象限内特殊角的函数/角sina 0 1 0 -1 0 cosa 1 0 -1 0 1 tana 0 1不存不存三角函数值在在cota 不存在 1 0不存在不存在三角函数的性质函数定义域值域奇偶性周期性单调性y=sinx R奇函数y=cosx R偶函数y=tanx R奇函数y=cotx R 奇函数角/函数正弦余弦正切余切-a -sina cosa -tana -cota900a cosa sina cota tana900+a cosa -sina -cota -tana1800-a sina -cosa -tana -cota1800+a -sina -cosa tana cota2700-a -cosa -sina cota tana2700+a -cosa sina -cota -tana3600-a -sina cosa -tana -cotasina cosa tana cota同角公式倒数关系商数关系平方关系和差角公式倍角公式万能公式半角公式积化和差公式和差化积公式【复数】复数的定义引入虚数单位i,规定i2=1,i可以和实数一起进行通常的四则运算,运算时原有加乘运算仍然成立。

形如:a+bi(a,b为实数)a---实部b----虚部复数的表示形式代数形式三角形式复数的运算代数式三角式【排列组合】分类计数原理分步计数原理做一件事,完成它有n类不同的办法。

第一类办法中有m1种方法,第二类办法中有m2种方法……,第n类办法中有m n种方法,则完成这件事共有:N=m1+m2+…+m n种方法。

做一件事,完成它需要分成n个步骤。

第一步中有m1种方法,第二步中有m2种方法……,第n步中有m n 种方法,则完成这件事共有:N=m1•m2•…•m n种方法。

注意:处理实际问题时,要善于区分是用分类计数原理还是分步计数原理,这两个原理的标志是“分类”还是“分步骤”。

排列组合从n个不同的元素中取m(m≤n)个元素,按照一定的顺序排成一排,叫做从n个不同的元素中取m个元素的排列。

从n个不同的元素中,任取m(m≤n)个元素并成一组,叫做从n个不同的元素中取m个元素的组合。

排列数组合数从n个不同的元素中取m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为P n m 从n个不同的元素中取m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,记为C n m选排列数全排列数二项式定理二项展开式的性质(1)项数:n+1项(2)指数:各项中的a的指数由n起依次减少1,直至0为止;b的指出从0起依次增加1,直至n为止。

而每项中a与b的指数之和均等于n 。

(3)二项式系数:各奇数项的二项式数之和等于各偶数项的二项式的系数之和高中数学公式大全:乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式b2-4ac=0 注:方程有两个相等的实根b2-4ac>0 注:方程有两个不等的实根b2-4ac<0 注:方程没有实根,有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长柱体体积公式 V=s*h 圆柱体 V=pi*r2h。

相关文档
最新文档