空间向量及其运算课件 课件
46空间向量及其运算ppt
→ → → 1→ → (3)∵M 是 AA1 的中点,∴MP=MA+AP= A1A+AP 2 1 1 1 1 =- a+a+c+2b= a+ b+c, 2 2 2 → → → 1→ → 又NC1=NC+CC1= BC+AA1 2 1→ → 1 = AD+AA1= c+a, 2 2 1 → → 1 1 ∴MP+NC1=2a+2b+c+a+2c 3 1 3 = a+ b+ c. 2 2 2
平行向量 (共线向量)
方向相同或相反的非零向量
0 与任一向量共线.
常用 e 表示 记作 a b 记作 a b 记作 a ∥b
要点梳理
1. 空间向量的有关概念及表示法
平面向量 概念 加法 减法 数乘 运算
具有大小和方向的量 加法:三角形法则或 平行四边形法则
ab
a
空间向量
具有大小和方向的量
b
b ab
a
a
ka ( k 0)
ka ( k 0)
减法:三角形法则 数乘:ka, k为正数,负数,零
b
a b
运 算 律
加法交换律 a b b a 加法交换律 a b b a 加法结合律 加法结合律 ( a b ) c a (b c ) (a b ) c a (b c )
若A(, y1 ), B( x2 , y2 ) x1 则 AB ( x2 x1 , y2 y1 ); | AB | ( x2 x1 )2 ( y2 y1 )2 , C ( x , y )是AB的中点,则 x1 x2 x 2 y y1 y2 2
空间向量基本定理--课件(共25张PPT)
基底.
3.单位正交基底:如果空间的一个基底中的三个基向量两两垂直,
且长度都为1,那么这个基底叫做单位正交基底,常用 ,,
表示.
由空间向量基本定理可知,对空间中的任意向量a,均可以分解
为三个向量xi,yj,zk,使a=xi+yj+zk,像这样,把一个空间向量
1 2
1
A. a- b+ c
2 3
2
1 1 1
C. a+ b- c
2 2 2
2 1
1
B.- a+ b+ c
3 2
2
2 2 1
D. a+ b- c
3 3 2
答案:B
1
2
2
1
1
解析:显然 = − = 2 ( + )-3 =-3a+2b+2c.
探究一
探究二
探究三
当堂检测
应用空间向量基本定理证明线线位置关系
解析:只有不共面的三个向量才能作为一个基底,在三棱柱中,
,,1 不共面,可作为基底。
激趣诱思
知识点拨
微判断
判断下列说法是否正确,正确的在后面的括号内打“√”,错误
的打“×”.
(1)空间向量的基底是唯一的.(
)
(2)若a,b,c是空间向量的一个基底,则a,b,c均为非零向
量.(
)
(3)已知A,B,M,N是空间四点,若, , 不能构成空间的
=
1 1 1
1
+ - · --
2 2 2
3
2 √10
√3× 3
=
9.5空间向量及其运算第一课时空间向量及其加减与数乘运算-PPT课件
瀚海书业
瞻前顾后
要点突破
典例精析
演练广场
首页
上一页
下一页
末页
瀚海导与练 成功永相伴
瀚海书业
瞻前顾后
要点突破
典例精析
演练广场
想一想: 1.空间向量的概念及表示方法 如同平面向量一样,在空间,我们把具有大小和方向的量叫做向量. 与平面向量一样,空间向量也用有向线段表示,并且同向且等长的有向线段表示同一向 量或相等的向量. 2.空间向量的加法、减法与数乘运算的定义 (1)与平面向量一样,我们定义空间向量的加法、减法与数乘向量,运算如下: OB― →= OA― →+ AB― → =a+b; CA― →= OA―→- OC― → = a- b; OP― →= λa(λ∈ R).
法二:用三角形法则求:作 MN― →= a, NP― →=b,则有如图(2)所示 MP― →= a+ b. 2.向量的减法运算结果仍是向量,它可以看作是加法运算即 a- b=a+ (-b),例如上 面图(2)中 MP― →- MN― →= NP― →,图 (1)中 AB―→- AD―→= DB― →.
首页
上一页
下一页
末页
瀚海导与练 成功永相伴
瀚海书业
瞻前顾后
要点突破
典例精析
演练广场
做一做: 1.两个向量 (非零向量)的模相等是两个向量相等的 ( B (A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件
)
解析:两个向量相等,则其模也相等,反之,则不一定正确.应选 B.
首页
上一页
下一页
末页
瀚海导与练 成功永相伴
瀚海书业
瞻前顾后
要点突破
典例精析
空间向量及其运算 课件
共线向量与共面向量
1.共线向量 (1) 定 义 : 表 示 空 间 向 量 的 有 向 线 段 所 在 的 直 线 互__相__平__行__或__重__合__,则这些向量叫做_共__线__向__量___或平行向量; (2)共线向量定理:对于空间任意两个向量 a,b(b≠0), a∥b 的充要条件是存在实数 λ 使__a_=__λ_b____.
【思路探究】 (1)空间向量中,零向量是怎样定义的? (2)怎样判断两个向量相等?(3)四边形 ABCD 满足什么条件
时,才有A→B+A→D=A→C? 【自主解答】 ①正确;②正确,因为A→C与A→1C1的大小
和方向均相同;③|a|=|b|,不能确定其方向,所以 a 与 b 的 方向不能确定;④中只有当四边形 ABCD 是平行四边形时,
2.共面向量 (1)定义:平行于__同__一__个__平__面___的向量叫做共面向量. (2)共面向量定理:若两个向量 a,b 不共线,则向量 p 与向量 a,b 共面的充要条件是存在唯一的有序实数对(x,y), 使_p_=__x__a_+__y_b__.
推论 空间一点 P 位于平面 ABC 内的充要条件是存在有 序实数对(x,y),使_A→_P__=__x_A→_B_+__y_A→_C__;或对空间任一定点 O,
才有A→B+A→D=A→C.
综上可知,正确命题为①②. 【答案】 ①②
1.在空间中,零向量、单位向量、向量的模、相等向 量、相反向量等概念和平面向量中相对应的概念完全相同.
2.由于向量是由其模和方向确定的,因此解答空间向 量有关概念问题时,通常抓住这两点来解决.
3.零向量是一个特殊向量,其方向是任意的,且与任 何向量都共线,这一点说明了共线向量不具备传递性.
【思路探究】 (1)E→H与F→G共线吗?怎样证明?
人教课标版《空间向量及其运算》PPT课件1
2
2 22
又 NC 1 NC
CC
1
1 2
BC
AA 1
1 AD 2
AA
1
1c 2
a,
MP
NC
1
(1 2
a
1 2
b
c)
(a
1 c) 2
3 a 1 b 3 c. 222
探究提高 用已知向量来表示未知向量,一定要结 合图形,以图形为指导是解题的关键.要正确理解 向量加法、减法与数乘运算的几何意义.首尾相接 的若干向量之和,等于由起始向量的始点指向末 尾向量的终点的向量,我们可把这个法则称为向 量加法的多边形法则.在立体几何中要灵活应用三 角形法则,向量加法的平行四边形法则在空间仍 然成立.
共线
或重合 ,则称这些向量叫做共线向量或平行向量 ,
向量
a平行于b记作
a∥b
共面 向量
平行于同一 平面 的向量叫做共面向量
二、空间向量中的有关定理
定理
内容
定 理
对于空间任意两个向量a,b,a∥b的充
要条件是存在实数λ,使 a=λb (b≠0).
如图所示,点P在l上的充要条
共线 向量
件是:
①其中
定理 推 a叫做直线l的方向向量,t∈R,
三、向量的线性运算 1.空间向量的加法和减法 类似于平面向量,我们可以定义空间向量的加法和 减法运算(如图):
OAOC
D
CO AO
2.空间向量的数乘
实数λ与空间向量a的乘积 λa 仍然是一个向量,
称为
数乘 .
当λ>0时,λa与a方向 相同
;当λ<0时,
λa与a方向
相反 ;λa的长度是a的长度的|λ|
第1章 1.1 1.1.1 空间向量及其线性运算课件(共71张PPT)
·
情
课
景
堂
导
小
学
解答空间向量有关概念问题的关键点及注意点
结
·
探
提
新 知
(1)关键点:紧紧抓住向量的两个要素,即大小和方向.
素 养
合
(2)注意点:注意一些特殊向量的特性.
作
课
探 究
①零向量不是没有方向,而是它的方向是任意的,且与任何向
时 分
层
释 疑
量都共线,这一点说明了共线向量不具备传递性.
作 业
难
返 首 页
·
结 提
新
素
知
(2)若空间任意一点 O 和不共线的三点 A,B,C,满足O→P=13O→A 养
合
作
课
探 究
+13O→B+13O→C,则点 P 与点 A,B,C 是否共面?
时 分 层
释
作
疑
业
难
返 首 页
·
17
·
情 景
[提示]
(1)空间中任意两个向量都可以平移到同一个平面内,成
课 堂
导
小
学 为同一个平面的两个向量,因此一定是共面向量.
课 时
究
分
层
释
作
疑
业
难
返 首 页
·
12
·
情
课
景
堂
导
小
学
结
探
思考:向量运算的结果与向量起点的选择有关系吗?
·
提
新
素
知
养
[提示] 没有关系.
合
作
课
探
时
究
分
层
释
空间向量及其运算(共22张PPT)
两个向量场进行点乘运算,得到一个标量场,其 每个标量是原来两个向量场的对应向量的点乘结 果。
向量场的几何意义
向量场表示了空间中某一点受到的力或速度等物理量的分布情况,可以通 过图形表示出来。
向量场的方向表示了该点受到的力的方向或速度的方向,向量的大小表示 了力的大小或速度的大小。
通过观察图形可以直观地了解向量场的分布情况,从而更好地理解物理现 象和问题。
向量的模
向量的模定义为从起点到终点距离的 长度,记作|a|。
向量的模具有以下性质:|a + b| ≤ |a| + |b|,|a - b| ≤ |a| + |b|,|λa| = |λ||a| (λ为实数)。
向量的加法
向量的加法定义为同起点同终点的向量相加,即a + b = b + a(交换律),(λ + μ)a = λa + μa(结合律)。
向量场具有方向性和大小,表 示了空间中某一点受到的力或 速度等物理量的分布情况。
向量场的运算律
1 2 3
向量场的加法
将两个向量场叠加,得到一个新的向量场,其每 个向量是原来两个向量场的对应向量的和。
向量场的数乘
将一个标量与一个向量场中的每个向量相乘,得 到一个新的向量场,其每个向量是原来向量场的 对应向量与该标量的乘积。
向量在其他领域的应用
经济学
在经济学中,例如在市场分析和供需关系中,可以使用向量来表示不同因素之间的关系,通过向量的运算来分析 这些因素之间的关系。
生物学
在生物学中,例如在生态学和生物力学中,可以使用向量来描述生物体的运动、方向和力的作用,通过向量的运 算来分析这些力的作用和影响。
THANKS
1.3 空间向量及其运算的坐标表示 课件(共45张PPT)
[解] (1)建立如图所示的空间直角坐标 系.点 E 在 z 轴上,它的 x 坐标、y 坐标均为 0,而 E 为 DD1 的中点,故其坐标为0,0,12.
由 F 作 FM⊥AD,FN⊥DC,垂足分别为 M,N, 由平面几何知识知 FM=12,FN=12, 故 F 点坐标为12,12,0. 点 G 在 y 轴上,其 x、z 轴坐标均为 0,
解决空间向量垂直、平行问题的有关思路 (1)若有关向量已知时,通常需要设出向量的坐标.例如, 设向量 a=(x,y,z). (2)在有关平行的问题中,通常需要引入参数.例如,已 知 a∥b,则引入参数 λ,有 a=λb,再转化为方程组求解. (3)选择向量的坐标形式,可以达到简化运算的目的.
利用坐标运算解决夹角、距离问题
1.建立空间直角坐标系时,要考虑如何建系才能使点的 坐标简单、便于计算,一般是要使尽量多的点落在坐标轴上.
2.已知空间点的坐标、A(x1,y1,z1),B(x2,y2,z2)向 量―A→B 的坐标等于终点坐标减起点坐标.即―A→B =(x2-x1, y2-y1,z2-z1).
[跟踪训练] 1.(2019·福建三明高二期末质量检测)已知 A(1,-2,0)和向量
空间向量的坐标表示
[ 例 1] ( 链 接 教 材 P18 例 1) 在 棱 长 为 1 的 正 方 体 ABCD-A1B1C1D1 中,E,F 分别是 D1D,BD 的中点,G 在棱 CD 上,且 CG=14CD,H 为 C1G 的中点,建立适当的坐标系.
(1)写出 E,F,G,H 的坐标; (2)写出向量―E→F ,―G→H 的坐标.
又 GD=34,故 G 点坐标为0,34,0. 由 H 作 HK⊥CG 于 K,由于 H 为 C1G 的中点. 故 HK=12,CK=18,∴DK=78, 故 H 点坐标为0,78,12. (2)―E→F =―O→F -―O→E =12,12,-12, ―G→H =―O→H -―O→G =0,18,12.
空间向量及其线性运算(26张PPT)——高中数学人教A版选择性必修第一册
2.已知空间任一点O 和不共线的三点A,B,C, 下列能得到P,A,B,C四点共面的是(B )A.OP=OA+OB+OC
解 析 :若点P,A,B,C 共面,设OP=xOA+yOB+zOC,则x+y+z=1, 满足条件的只有B, 故选B.
D. 以上都不对
(2)∵M 是AA的中点,
又N 是BC的中点,
回顾一下本节课学习了哪些新知识呢?1.空间向量的概念2.空间向量的运算律3.共线向量和共面向量
小结:
同学们再见!
授课老师:
时间:2024年9月1日
2024课件
同学们再见!
授课老师:
时间:2024年9月1日
的充要条件是
如图,0是直线1上一点,在直线1上取非零向量a, 则对于直线1上任意一 点P, 由数乘向量的定义及向量共线的充要条件可知,存在实数λ,使得
直线的方向向量
OP=λa. 把与向量a 平行的非零向量称为直线l的方向向量.
共面向量如图,如果表示向量a 的有向线段OA 所在的直线OA 与直线1平行或重合,那么称向量α平行于直线l.如果直线OA 平行于平面α或在平面α内,那么称向量a 平行于平面α.平行于同一个平面的向量,叫做共面向量.a0 Aa 1aa如果两个向量a,b 不共线,那么向量p 与 向 量a,b 共面的充要条件是存在唯一的有序实数对(x,y), 使 P=xa+yb.
证明:设 DA=a,DC=b.则DB=DC+CB=b+a,
10.如图,在平行六面体ABCD-A₁B₁CD₁中,设AA M,N,P 分别是AA,BC,C₁D₁的中点,试用a,b,c
=a,AB=b,AD=c,表示以下向量:
人教版数学高中二年级选修2-1第三章第一节空间向量及其运算复习课件(共24张PPT)
为 60°.
MN = AN - AM =1( AC + AD)-1 AB=1(q+r-p),
2பைடு நூலகம்
22
∴ MN ·AB=1(q+r-p)·p 2
=1(q·p+r·p-p2) 2
=1(a2cos 60°+a2cos 60°-a2)=0. 2
∴ MN ⊥ AB.即 MN⊥AB.
(2)求 MN 的长; 解由(1)可知 MN =1(q+r-p),
(2)解 AC→′=-a+c,C→E=b+1c, 2
∴|AC→′|= 2|a|,|C→E|= 5|a|. 2
AC→′·C→E=(-a+c)·(b+1c)=1c2=1|a|2, 2 22
∴cos〈A→C′,C→E〉=
1|a|2 2
= 10.
2· 5|a|2 10
2
即异面直线 CE 与 AC′所成角的余弦值为 10. 10
A.2,1 2
B.-1,1 32
C.-3,2
D.2,2
3、已知 P(-2,0,2),Q(-1,1,2),R(-3,0,4),设 a= PQ ,b= PR ,c= QR ,
若实数 k 使得 ka+b 与 c 垂直,则 k 的值为___2_____.
(1)证明 设C→A=a,C→B=b,CC→′=c,
根据题意,|a|=|b|=|c|且 a·b=b·c=c·a=0,
∴C→E=b+1c,A→′D=-c+1b-1a,
2
22
∴C→E·A→′D=-1c2+1b2=0. 22
∴C→E⊥A→′D,即 CE⊥A′D.
空间向量的数量积及其应用
【训练 3】 如图,在直三棱柱 ABCA′B′C′中,AC=BC=AA′, ∠ACB=90°,D,E 分别为 AB,BB′的中点. (1)求证:CE⊥A′D;(2)求异面直线 CE 与 AC′所成角的余弦值.
第7篇 第6节 空间向量及其运算课件 理 新人教A版 课件
④模长公式:|a|= a·a=___x_12+__y_21_+__z_21 _.
⑤数乘运算:λa=____(_λ_x_1,__λ_y_1_,__λ_z1_)_ (λ∈R). ⑥平行的充要条件:a∥b⇔x1=λx2,y1=λy2,z1= λz2(λ∈R).
⑦垂直的充要条件:a⊥b⇔_x_1_x2_+__y_1_y_2+__z_1_z2_=__0___.
1.设三棱锥OABC中,
→ OA
=a,
→ OB
=b,
→ OC
=c,G是
△ABC的重心,则O→G等于( )
A.a+b-c
B.a+b+c
C.12(a+b+c)
D.13(a+b+c)
解析:如图所示,
O→G=O→A+A→G =O→A+13(A→B +A→C )
(1)求空间向量数量积的方法 ①定义法.设向量a、b的夹角为θ,则a·b=|a||b|cos θ; ②坐标法.设a=(x1,y1,z1),b=(x2,y2,z2),则a·b =x1x2+y1y2+z1z2.
=O→A+13(O→B-O→A+O→C-O→A) =13(a+b+c). 故选D. 答案:D
2.P-12,0,
3关于z轴的对称点为(
)
A.12,0,-
3
B.-12,0,-
3
C.12,0,
3
D.-12,0,
3
解析:关于z轴对称,横、纵坐标变为原来的相反数, 竖坐标不变.故选C.
a·b ③cos〈a,b〉=__|a_|_|b_| ____. ④a2=a·a=_|_a_|2_,|a|=__a_2_. ⑤|a·b|___≤_|a||b|.
空间向量及其线性运算ppt课件
1 OA 2 MN
23
1 OA 2 MA AB BN
23
1 2
OA
2 3
1 2
OA
OB
OA
1 2
BC
1 2
OA
2 3
OB
1 2
OA
1 2
OC OB
1 OA 1 OB 1 OC 633
1 6
a+
13b+
1
c3
学习目标
新课讲授
课堂总结
技巧归纳 空间向量加法、减法运算的两个技巧 (1)巧用相反向量:向量减法的三角形法则是解决空间向量加法、减法的关 键,灵活运用相反向量可使向量首尾相接; (2)巧用平移:利用三角形法则和平行四边形法则进行向量加法、减法运算 时,务必注意和向量、差向量的方向,必要时可采用空间向量的自由平移 获得运算结果.
B b A
AQ M
a
O
λa(λ<0)
PN
λa(λ>0)
学习目标
新课讲授
课堂总结
运算律的类比(其中λ,μ∈R):
平面向量
空间向量
交换律
a+b=b+a
a+b=b+a
结合律 分配律
(a+b)+c = a(+b+c) , (a+b)+c =a(+b+c) ,
λ(μa) = (λμ)a
λ(μa) = (λμ)a
学习目标
新课讲授
课堂总结
利用数乘运算进行向量表示的技巧 (1)数形结合:利用数乘运算解题时,要结合具体图形,利用向量的三角形 法则、平行四边形法则,将目标向量转化为已知向量; (2)明确目标:在化简过程中要有目标意识,巧妙运用中点性质.
学习目标
新课讲授
课堂总结
立体几何空间直角坐标系空间向量及其运算课件理ppt
空间向量的投影是指一个向量在另一个向量上的投影,通常用平行四边形法则来计算。而分解则是将一个复杂 向量分解为几个简单向量的组合。
空间向量在几何学中的运用
总结词
空间向量在几何学中有着广泛的应用,如 证明平行、垂直、计算角度和距离等。
VS
详细描述
通过建立空间直角坐标系,可以用空间向 量来表示和解决几何问题。例如,利用向 量证明平行或垂直,通过计算向量的模长 来计算距离,以及利用投影来计算角度等 。
实例分析
例如,在解决一些三角形问题时,可以通过 将三角形表示为向量形式,然后利用向量的
点乘和叉乘等性质进行求解。Βιβλιοθήκη 向量法在立体几何题中的应用
要点一
向量法在立体几何中的表现形式
要点二
实例分析
向量法在立体几何中通常表现为向量的加、减、数乘、 点乘和叉乘等运算,通过这些运算可以揭示出空间几何 体的内在关系。
向量的向量积不满足交 换律和结合律。
向量的向量积与向量的 模长无关,只与两个向 量的方向和夹角有关。
混合积及其应用
• 混合积定义:三个向量的混合积是一个标量,其定义为$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$。
• 混合积的性质 • 混合积的值等于三个向量所确定的平行四边形的面积乘以三个向量的模长之积。 • 混合积的方向与三个向量的顺序有关,具体来说,如果三个向量的顺序改变,则混合积的方向也会改变。 • 混合积的应用 • 在几何学中,混合积可以用于计算平行四边形的面积和体积。 • 在物理学中,混合积可以用于计算电磁场的强度和方向。
空间直角坐标系的定义
将空间中的点用三个实数坐标表示,即为空间直角坐标系。
1.1.1 空间向量及其线性运算课件ppt
③走边路:灵活运用空间向量的加法、减法法则,尽量走边路(即沿几何体
的边选择途径).
延伸探究 本例条件不变,试用 a,b,c 表示向量 + 1 .
解 + 1 = 1 + 1 1 + 1 + + 1
1
1 1
1
1
③1 = 1 + + =-1 + + 2 =-a+b+2c.
反思感悟 空间向量线性运算的技巧和思路
(1)空间向量加法、减法运算的两个技巧
①巧用相反向量:向量加减法的三角形法则是解决空间向量加法、减法运
算的关键,灵活应用相反向量可使有关向量首尾相接,从而便于运算.
F 在对角线 A1C 上,且1 =
2
.求证:E,F,B
3
三点共线.
思路分析可通过证明 与共线来证明 E,F,B 三点共线.
证明 设=a,=b,1 =c.
因为1 =21 , 1 =
所以1 =
2
,
3 1 1 1
所以1 =
2
3
2
= (
对于空间任一点O,点P在
直线l上的充要条件是存在
推论 实数t,使
①,如图所示.
如图,空间一点P位于平面
MAB内的充要条件是存在
有序实数对(x,y),使
2.如图,O是直线l上一点,在直线l上取非零向量a,则对于直线l上任意一点P,
由数乘向量的定义及向量共线的充要条件可知,存在实数λ,使得 =λa.
解析 单位向量是指模等于1的向量,所以若a是单位向量,则必有|a|=1,即选
第1讲 空间向量及其运算(解析版)
第1讲 空间向量及其运算新课标要求1.经历由平面向量推广到空间向量的过程,了解空间向量的概念。
2.经历由平面向量的运算及其法则推广到空间向量的过程。
3.掌握空间向量的线性运算。
4. 掌握空间向量的数量积。
知识梳理1.空间向量的概念与平面向量一样,在空间,我们把具有大小和方向的量叫做空间向量,空间向量的大小叫做空间向量的长度或模,空间向量用字母a,b,c ...表示. 2.几个常见的向量3.向量的线性运算交换律:+=+a b b a ;结合律:()();()()λμλμ+=+=a b +c a +b c a a ; 分配律:();()λμλμλλλ+=++=+a a a a b a b . 4.共面向量平行于同一平面的向量,叫做共面向量. 5.空间向量的数量积||||cos ,⋅=<>a b a b a b 零向量与任意向量的数量积为0.名师导学知识点1 空间向量的有关概念【例1-1】(咸阳期末)已知是空间的一个单位向量,则的相反向量的模为A. 1B. 2C. 3D. 4【分析】本题考查了向量的基础知识,根据向量模的概念求解即可;【解答】解:因为是空间的一个单位向量,所以的相反向量的模,故选A.【变式训练1-1】(龙岩期末)在平行六面体中,与向量相等的向量共有A. 1个B. 2个C. 3个D. 4个【分析】本题考查了相等向量及其平行六面体的性质,考查了推理能力与计算能力,属于基础题.利用相等向量及其平行六面体的性质即可得出.【解答】解:如图所示,与向量的相等的向量有以下3个:故选C.知识点2 空间向量的线性运算【例2-1】(泰安期末)如图所示,在长方体中,O为AC的中点.化简:________;用,,表示,则________.【分析】本题考查空间向量的线性运算,属于基础题.利用化简即可;将分解为,继而进行正交分解即可.【解答】解:..【例2-2】(河西区期末)在三棱锥中,,,,D为BC的中点,则A. B.C. D.【分析】本题考查空间向量的加减运算,属于基础题.若D为BC的中点,则,根据向量的减法法则即可得到答案.【解答】解:依题意得,故选A.【变式训练2-1】(东湖区校级一模)在空间四边形ABCD中,M,G分别是BC,CD的中点,则A. B. C. D.【分析】本题考查了空间向量的加减运算及数乘运算,属于基础题.根据题意,将进行转化,即可得解.【解答】解:.【变式训练2-2】(随州期末)如图,已知长方体,化简下列向量表达式,并在图中标出化简结果的向量.;.【解析】解:..向量,如图所示.知识点3 共面向量【例3-1】(珠海期末)已知A,B,C三点不共线,点M满足.,,三个向量是否共面点M是否在平面ABC内【解析】解,,,向量,,共面.由知向量,,共面,又它们有共同的起点M,且A,B,C三点不共线,,A,B,C四点共面,即点M在平面ABC内.【变式训练3-1】(日照期末)如图所示,已知矩形ABCD和矩形ADEF所在的平面互相垂直,点M,N分别在对角线BD,AE上,且,.求证:向量,,共面.【解析】证明:因为M在BD上,且,所以.同理.所以.又与不共线,根据向量共面的充要条件可知,,共面.知识点4 空间向量的数量积【例4-1】(溧阳市期末)已知长方体中,,,E为侧面的中心,F为的中点试计算:.【解析】解:如图,设,,,则,,....【变式训练4-1】(兴庆区校级期末)如图所示,在棱长为1的正四面体ABCD中,E,F分别是AB,AD的中点,求:.【解析】解,..,.,,.名师导练A组-[应知应会]1.(台江区校级期末)长方体中,若,,,则等于A. B.C. D.【分析】本题考查空间向量的运算,属基础题.根据空间向量的运算法则求解即可.【解答】解:,故选C.2.(秦皇岛期末)若空间四边形OABC的四个面均为等边三角形,则的值为A. B. C. D. 0【分析】本题主要考查了空间向量的运算、向量的数量积、向量垂直的判定,属于中档题.先求出向量的数量积,由它们的数量积为0判断,所以向量的夹角为,由此得出结论.【解答】解:,空间四边形OABC的四个面为等边三角形,,,,,,故选D.3.(定远县期末)给出下列几个命题:向量,,共面,则它们所在的直线共面;零向量的方向是任意的;若,则存在唯一的实数,使.其中真命题的个数为A. 0B. 1C. 2D. 3【分析】本题主要考查命题的真假判断与应用,比较基础. 利用向量共面的条件判断.利用零向量的性质判断.利用向量共线的定理进行判断.【解答】 解:假命题.三个向量共面时,它们所在的直线或者在平面内或者与平面平行;真命题.这是关于零向量的方向的规定; 假命题.当,则有无数多个使之成立.故选B .4. (葫芦岛期末)在下列条件中,使M 与A 、B 、C 一定共面的是A. ;B. ;C.D.【分析】本题考查空间向量基本定理,考查学生分析解决问题的能力,属于基础题. 利用空间向量基本定理,进行验证,对于C ,可得,,为共面向量,从而可得M 、A 、B 、C四点共面.【解答】解:对于A ,,无法判断M 、A 、B 、C 四点共面; 对于B ,,、A 、B 、C 四点不共面; C 中,由,得,则,,为共面向量,即M 、A 、B 、C 四点共面; 对于D ,,,系数和不为1,、A 、B 、C四点不共面.故选C .5.(多选)(点军区校级月考)已知1111ABCD A B C D -为正方体,下列说法中正确的是( ) A .221111111()3()A A A D A B A B ++= B .1111()0A C A B A A -=C .向量1AD 与向量1A B 的夹角是60︒D .正方体1111ABCD A B C D -的体积为1||AB AA AD【分析】本题考查的是用向量的知识和方法研究正方体中的线线位置关系及夹角与体积.用到向量的加法、减法、夹角及向量的数量积,研究了正方体中的线线平行、垂直,异面直线的夹角及正方体的对角线的计算、体积的计算.【解答】解:由向量的加法得到:111111A A A D A B A C ++=,221113AC A B =,∴22111()3()AC A B =,所以A 正确;1111A B A A AB -=,11AB AC ⊥,∴110A C AB =,故B 正确; 1ACD ∆是等边三角形,160AD C ∴∠=︒,又11//A B D C ,∴异面直线1AD 与1A B 所成的夹角为60︒,但是向量1AD 与向量1A B 的夹角是120︒,故C 不正确;1AB AA ⊥,∴10AB AA =,故1||0AB AA AD =,因此D 不正确.故选:AB .6. (都匀市校级期中)空间的任意三个向量,,,它们一定是________向量填“共面”或“不共面”.【分析】正确理解共面向量定理是解题的关键. 由于可用向量,线性表示,即可判断出空间中的三个向量,,是否是共面向量. 【解答】解:可用向量,线性表示,由空间中共面向量定理可知,空间中的三个向量,,一定是共面向量.7. (池州模拟)给出以下结论:两个空间向量相等,则它们的起点和终点分别相同;若空间向量,,满足,则;在正方体中,必有; 若空间向量,,满足,,则.其中不正确的命题的序号为________.【分析】本题考查的知识点是空间相等的定义,难度不大,属于基础题.根据相向相等的定义,逐一分析四个结论的真假,可得答案. 【解答】 解:若两个空间向量相等,则它们方向相同,长度相等,但起点不一定相同,终点也不一定相同,故错误; 若空间向量,,满足,但方向不相同,则,故错误;在正方体中,与方向相同,长度相等,故,故正确;若空间向量,,满足,,则,故正确;故答案为.8.(未央区校级期末)O 为空间中任意一点,A ,B ,C 三点不共线,且3148OP OA OB tOC =++,若P ,A ,B ,C 四点共面,则实数t = .【分析】利用空间向量基本定理,及向量共面的条件,即可得到结论.【解答】解:由题意得,3148OP OA OB tOC =++,且P ,A ,B ,C 四点共面,∴31148t ++=18t ∴=,故答案为:18.9.(天津期末)在正四面体P ABC -中,棱长为2,且E 是棱AB 中点,则PE BC 的值为 .【分析】如图所示,由正四面体的性质可得:PA BC ⊥,可得:0PA BC =.由E 是棱AB 中点,可得1()2PE PA PB =+,代入PE BC ,利用数量积运算性质即可得出.【解答】解:如图所示,由正四面体的性质可得:PA BC ⊥, 可得:0PA BC =.E 是棱AB 中点,∴1()2PE PA PB =+,∴1111()22cos12012222PE BC PA PB BC PA BC PB BC =+=+=⨯⨯⨯︒=-. 故答案为:1-.10. (三明期中)如图所示,在正六棱柱中化简,并在图中标出表示化简结果的向量 化简,并在图中标出表示化简结果的向量.【解析】解:.,在图中表示如下:.在图中表示如下:11.(都匀市校级期中)如图所示,在四棱锥中,底面ABCD为平行四边形,,,底面求证:.【解析】证明:由底面ABCD为平行四边形,,,知,则.由底面ABCD ,知,则.又, 所以,即.12.(西夏区校级月考)如图所示,平行六面体1111ABCD A B C D -中,E 、F 分别在1B B 和1D D 上,且11||||3BE BB =,12||||3DF DD =(1)求证:A 、E 、1C 、F 四点共面;(2)若1EF xAB y AD z AA =++,求x y z ++的值.【分析】(1)利用向量三角形法则、向量共线定理、共面向量基本定理即可得出. (2)利用向量三角形法则、向量共线定理、共面向量基本定理即可得出. 【解答】(1)证明:1111111212()()3333AC AB AD AA AB AD AA AA AB AA AD AA AB BE AD DF AE AF =++=+++=+++=+++=+.A ∴、E 、1C 、F 四点共面.(2)解:111211()333EF AF AE AD DF AB BE AD DD AB BB AB AD AA =-=+-+=+--=-++,1x ∴=-,1y =,13z =,13x y z ∴++=. B 组-[素养提升]1.(多选)(三明期中)定义空间两个向量的一种运算||||sin a b a b a =<⊗,b >,则关于空间向量上述运算的以下结论中恒成立的有( ) A .a b b a =⊗⊗ B .()()a b a b λλ=⊗⊗C .()()()a b c a c b c +=+⊗⊗⊗D .若1(a x =,1)y ,2(b x =,2)y ,则1221||a b x y x y =-⊗【分析】A 和B 需要根据定义列出左边和右边的式子,再验证两边是否恒成立;C 由定义验证若a b λ=,且0λ>,结论成立,从而得到原结论不成立;D 根据数量积求出cos a <,b >,再由平方关系求出sin a <,b >的值,代入定义进行化简验证即可.【解答】解:对于A ,||||sin a b a b a =<⊗,b >,||||sin b a b a b ==<⊗,a >, 故a b b a =⊗⊗恒成立;对于:()(||||sin B a b a b a λλ=<⊗,)b >,()||||||sin a b a b a λλλ=<⊗,b >, 故()()a b a b λλ=⊗⊗不会恒成立;对于C ,若a b λ=,且0λ>,()(1)||||sin a b c b c b λ+=+<⊗,c >,()()||||sin a c b c b c b λ+=<⊗⊗,||||sin c b c b >+<,(1)||||sin c b c b λ>=+<,c >,显然()()()a b c a c b c +=+⊗⊗⊗不会恒成立;对于D ,cos a <,1212||||x x y y b a b +>=,sin a <,22121()||||x y y b a b +>=-,即有22212121212||||1()||||()||||||x x y y x x y y a b a b a b a a b ++=-=-⊗2222212222211)y y x y y +=++22121221)||y y x y x y +-.则1221||a b x y x y =-⊗恒成立.故选:AD .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
y
x1 y1
2
x2 y2
2
空间向量
空间向量的坐标运算:
a (x1, y1, z1),b (x2 , y2 , z2 )
a b (x1 x2 , y1 y2 , z1 z2 );
a (x1, y1, z1), R;
空间向量
空间向量的夹角:
a (x1, y1, z1),b (x2 , y2 , z2 ) cos a,b a • b
| a || b |
x1x2 y1 y2 z1z2
x12 y12 z12 x22 y22 z22
垂直与平行:
a (x1, y1, z1),b (x2 , y2 , z2 ) a // b x1 y1 z1 (?)
(4)已知不共线的三点A、B、C,对平面 ABC外的任意一点O,若 OG 1 (OA OB OC) 则G是三角形ABC的重心 3
以上命题中,正确的是__________
已知三棱锥O—ABC中,G为△ABC的重心,OA=a,OB=b, OC=c,试用a , b , c 来表示OG.
(1)若AD是△ABC的中线,则有
平面的向量参数方程:
A, B,C是不共线的三点,P 平面ABC
存在唯一的实数对x, y,使 AP x
AB yAC
存在唯一的实数对x, y,使
OP (1 x y) OA yOC
存在唯一的实数对x, y, z
(x y z 1),使 OP x OA
yOB zOC
空间向量及其运算
• 空间向量的概念、表示、相等关系。 • 空间向量的加法、减法、数乘向量 • 加法交换律 • 加法结合律 • 数乘分配律
共线向量和共面向量
• 空间向量共线或平行的定义和表示 • 空间共线向量定理及其推论 • 空间向量的向量参数方程及线段中点
的向量公式 • 空间向量共面的概念及其表示 • 共面向量定理及其推论(空间向量参
数方程)
空间向量基本定理
• 空间向量基本定理 • 空间向量的基底 • 空间向量基本定理的推论。
两个向量的数量积
• 空间向量的夹角、向量长 度的概念和表示方法。
• 空间向量的数量积的概念 和计算方法、性质、运算 律
平面向量
空间向量
平面向量基本定理:
空间向量基本定理:
如果e1, e2是同一平面内的两个不共线 如果三个向量e1, e2 , e3不共面,那么对 的向量,那么对于这个平面内的任一 于空间中任一向量a,存在唯一的有序
(3)求二面角C-A1D-AD的大小
x2
2 y2
2 z2
2
对比表3
平面向量
平面向量的夹角:
a (x1, y1),b (x2 , y2 ) cos a,b a • b
| a || b |
x1x2 y1 y2
x12 y12 x22 y22
垂直与平行:
a (x1, y1),b (x2 , y2 ) a // b x1 y2 x2 y1 0 a b x1x2 y1 y2 0
向量a,有且仅有一对实数x, y,使a 实数对(x, y, z),使a xe1 ye2 ze3. xe1 ye2.
对比表1
平面向量
空间向量
共线向量定理: b 0,则a // b 存在 共面向量定理: a、b不共线,p与a,b
实数,使a b.
共面 存在实数x、y,使p xa yb
直线的向量参数方程:
(1)点方向式:直线l过点A, 其方向 向量为a,则P A 存在实数t,使
OP OA ta.
(2)两点式:P在直线AB上(不与B重
合) 存在唯一实数t,使OP
OA
t
OB
(OP
(1
t
)
OA
t
OB)
存Байду номын сангаас
1 t
在唯一实数对x, y(x y 1),使OP x
OA y OB)
3.已知 AB (4,6,1), AC (4,3,2) 若 a 1 ,且 a AB,a AC
则 a =_______
4.(1)已知A、B、C、D是空间任意四点,则 AB BC CD DA 0
(2) a b a b是 a, b 共线的充要条件
(3)对空间任意一点O和不共线的三点A、B、 C,若OP xOA yOB zOC (其中x+y+z=1), 则P、A、B、C四点共面
a • b x1x2 y1 y2 z1z2. 若A(x1, y1, z1), B(x2 , y2 , z2 )
则AB (x2 x1, y2 y1);
| AB | (x2 x1)2 ( y2 y1)2 (z2 z1)2 ,
C(x,
x
y)是A B的中点,则 y
z
x1 y1 z1
AD 1 AB AC 2
(2)重心定理:当OA、OB、OC两两
垂直时,在空间直角坐标系中,重
心坐标公式为:
G x1 x2 x3 ,y1 y2 y3 ,z1 z2 z3
3
3
3
5.直三棱柱ABC-A1B1C1中,AB=AC=1, AA1=2,BAC 900 ,D为BB1的中点。 (1)求证: AD 平面A1DC1 (2)求异面直线C1D与A1C所成的角的大 小
对比表2
平面向量
平面向量的坐标运算:
a (x1, y1),b (x2 , y2 ) a b (x1 x2 , y1 y2 );
a (x1, y1), R;
a • b x1x2 y1 y2. 若A(x1, y1), B(x2 , y2 ) 则AB (x2 x1, y2 y1);
x2 y2 z2 a b x1x2 y1 y2 z1z2 0
对比表4
1.若空间三点A(1,5,-2), B(2,4,1),C(p,3,q+2)共 线,则p=___,q=___
2.已知 a (2,1,2), b (2,2,1) 则以 a, b 为邻边的平行 四边形的面积为______