遗传算法求解tsp问题的matlab代码
一些解决TSP问题的算法及源代码

模拟退火算法新解的产生和接受可分为如下四个步骤:
第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当
前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法
决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。
(3)产生新解S′
(4)计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数
(5)若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解.
(6)如果满足终止条件则输出当前解作为最优解,结束程序。
终止条件通常取为连续若干个新解都没有被接受时终止算法。
(7) T逐渐减少,且T->0,然后转第2步。
(wm, wm-1 ,…,w1 , wm+1 ,…,wk-1 ,wn , wn-1 ,…,wk).
上述变换方法可简单说成是“逆转中间或者逆转两端”。
也可以采用其他的变换方法,有些变换有独特的优越性,有时也将它们交替使用,得到一种更好方法。
代价函数差设将(w1, w2 ,……,wn)变换为(u1, u2 ,……,un),则代价函数差为:
第二步是计算与新解所对应的目标函数差。因为目标函数差仅由变换部分产生,所以目标函数差的计算最好按增量计算。
事实表明,对大多数应用而言,这是计算目标函数差的最快方法。
第三步是判断新解是否被接受,判断的依据是一个接受准则,最常用的接受准则是Metropo1is准则:若Δt′<0则接受S′作
为新的当前解S,否则以概率exp(-Δt′/T)接受S′作为新的当前解S。
% coordinates given by LOC, which is an M by 2 matrix and M is
TSP问题的求解

(1)优点:算法稳定,易得标准值 (2)缺点:针对 TSP 问题,需要先计算出第 i 个城市到其余城市的距离, 当城市数目较多时计算复杂。
关键词:TSP 问题 模拟退火算法 线性规划 遗传算法
一、问题重述
1.1 引言 TSP 是典型的组合优化问题, 并且是一个 NP-hard 问题,TSP 简单描述为:
一名商人欲到 n 个不同的城市去推销商品, 每 2 个城市 i 和 j 之间的距离为 d ij , 如何选择一条路径使得商人每个城市走一遍后回到起点, 所走的路径最短。用数 学符号表示为:设 n 维向量 s =(c1 , c2 , …, cn )表示一条路经, 目标函数为:min
小可以不断变化。在该题中,取温度的衰减系数α=0.9,其中固定温度下最大迭 代次数为:100 次,固定温度下目标函数值允许的最大连续未改进次数为 5 次, 即当算法搜索到的最优值连续若干步保持不变时停止迭代。
④最短路径的确定
借助 Matlab 通过模拟退火算法得出最短路径为:27—26—25—24—15— 14—8—7—11—10—21—20—19—18—9—3—2—1—6—5—4—13—12—30—23 —22—17—16—29—28—27,最短路径图如下图 1
图1 最短距离为:423.7406
(2)法二:遗传算法 优化过程如下图 2 所示:
图2 初始种群中的一个随机值(初始路径):
22—6—3—16—11—30—7—28—17—14—8—5—29—21—25—27—26—19 —15—1—23—2—4—18—24—13—9—20—10—12—22
基于Matlab的遗传算法解决TSP问题的报告

报告题目:基于Matlab的遗传算法解决TSP问题说明:该文包括了基于Matlab的遗传算法解决TSP问题的基本说明,并在文后附录了实现该算法的所有源代码。
此代码经过本人的运行,没有发现错误,结果比较接近理论最优值,虽然最优路径图有点交叉。
因为本人才疏学浅,本报告及源代码的编译耗费了本人较多的时间与精力,特收取下载积分,还请见谅。
若有什么问题,可以私信,我们共同探讨这一问题。
希望能对需要这方面的知识的人有所帮助!1.问题介绍旅行商问题(Traveling Salesman Problem,简称TSP)是一个经典的组合优化问题。
它可以描述为:一个商品推销员要去若干个城市推销商品,从一个城市出发,需要经过所有城市后,回到出发地,应如何选择行进路线,以使总行程最短。
从图论的角度看,该问题实质是在一个带权完全无向图中。
找一个权值最小的Hemilton回路。
其数学描述为:设有一个城市集合其中每对城市之间的距离(),i j d c c R +∈,求一对经过C中每个城市一次的路线()12,,n c c c ΠΠΠ⋯使()()()1111min ,,n i n i i d c c d c c −ΠΠΠΠ+=+∑其中()12,,12n n ΠΠΠ⋯⋯是,的一个置换。
2.遗传算法2.1遗传算法基本原理遗传算法是由美国J.Holland 教授于1975年在他的专著《自然界和人工系统的适应性》中首先提出的,它是一类借鉴生物界自然选择和自然遗传机制的随机化搜索算法。
遗传算法模拟自然选择和自然遗传过程中发生的繁殖、交叉和基因突变现象,在每次迭代中都保留一组候选解,并按某种指标从解群中选取较优的个体,利用遗传算子(选择、交叉和变异)对这些个体进行组合,产生新一代的候选解群,重复此过程,直到满足某种收敛指标为止。
遗传算法,在本质上是一种不依赖具体问题的直接搜索方法,是一种求解问题的高效并行全局搜索方法。
遗传算法在模式识别、神经网络、图像处理、机器学习、工业优化控制、自适应控制、负载平衡、电磁系统设计、生物科学、社会科学等方面都得到了应用。
遗传算法的C语言实现(二)-----以求解TSP问题为例

遗传算法的C语⾔实现(⼆)-----以求解TSP问题为例上⼀次我们使⽤遗传算法求解了⼀个较为复杂的多元⾮线性函数的极值问题,也基本了解了遗传算法的实现基本步骤。
这⼀次,我再以经典的TSP问题为例,更加深⼊地说明遗传算法中选择、交叉、变异等核⼼步骤的实现。
⽽且这⼀次解决的是离散型问题,上⼀次解决的是连续型问题,刚好形成对照。
⾸先介绍⼀下TSP问题。
TSP(traveling salesman problem,旅⾏商问题)是典型的NP完全问题,即其最坏情况下的时间复杂度随着问题规模的增⼤按指数⽅式增长,到⽬前为⽌还没有找到⼀个多项式时间的有效算法。
TSP问题可以描述为:已知n个城市之间的相互距离,某⼀旅⾏商从某⼀个城市出发,访问每个城市⼀次且仅⼀次,最后回到出发的城市,如何安排才能使其所⾛的路线最短。
换⾔之,就是寻找⼀条遍历n个城市的路径,或者说搜索⾃然⼦集X={1,2,...,n}(X的元素表⽰对n个城市的编号)的⼀个排列P(X)={V1,V2,....,Vn},使得Td=∑d(V i,V i+1)+d(V n,V1)取最⼩值,其中,d(V i,V i+1)表⽰城市V i到V i+1的距离。
TSP问题不仅仅是旅⾏商问题,其他许多NP完全问题也可以归结为TSP问题,如邮路问题,装配线上的螺母问题和产品的⽣产安排问题等等,也使得TSP问题的求解具有更加⼴泛的实际意义。
再来说针对TSP问题使⽤遗传算法的步骤。
(1)编码问题:由于这是⼀个离散型的问题,我们采⽤整数编码的⽅式,⽤1~n来表⽰n个城市,1~n的任意⼀个排列就构成了问题的⼀个解。
可以知道,对于n个城市的TSP问题,⼀共有n!种不同的路线。
(2)种群初始化:对于N个个体的种群,随机给出N个问题的解(相当于是染⾊体)作为初始种群。
这⾥具体采⽤的⽅法是:1,2,...,n作为第⼀个个体,然后2,3,..n分别与1交换位置得到n-1个解,从2开始,3,4,...,n分别与2交换位置得到n-2个解,依次类推。
遗传算法MATLAB完整代码(不用工具箱)

遗传算法MATLAB完整代码(不用工具箱)遗传算法解决简单问题%主程序:用遗传算法求解y=200*exp(-0.05*x).*sin(x)在区间[-2,2]上的最大值clc;clear all;close all;global BitLengthglobal boundsbeginglobal boundsendbounds=[-2,2];precision=0.0001;boundsbegin=bounds(:,1);boundsend=bounds(:,2);%计算如果满足求解精度至少需要多长的染色体BitLength=ceil(log2((boundsend-boundsbegin)'./precision));popsize=50; %初始种群大小Generationmax=12; %最大代数pcrossover=0.90; %交配概率pmutation=0.09; %变异概率%产生初始种群population=round(rand(popsize,BitLength));%计算适应度,返回适应度Fitvalue和累计概率cumsump[Fitvalue,cumsump]=fitnessfun(population);Generation=1;while Generation<generationmax+1< p="">for j=1:2:popsize%选择操作seln=selection(population,cumsump);%交叉操作scro=crossover(population,seln,pcrossover);scnew(j,:)=scro(1,:);scnew(j+1,:)=scro(2,:);%变异操作smnew(j,:)=mutation(scnew(j,:),pmutation);smnew(j+1,:)=mutation(scnew(j+1,:),pmutation);endpopulation=scnew; %产生了新的种群%计算新种群的适应度[Fitvalue,cumsump]=fitnessfun(population);%记录当前代最好的适应度和平均适应度[fmax,nmax]=max(Fitvalue);fmean=mean(Fitvalue);ymax(Generation)=fmax;ymean(Generation)=fmean;%记录当前代的最佳染色体个体x=transform2to10(population(nmax,:));%自变量取值范围是[-2,2],需要把经过遗传运算的最佳染色体整合到[-2,2]区间xx=boundsbegin+x*(boundsend-boundsbegin)/(power((boundsend),BitLength)-1);xmax(Generation)=xx;Generation=Generation+1;endGeneration=Generation-1;Bestpopulation=xx;Besttargetfunvalue=targetfun(xx);%绘制经过遗传运算后的适应度曲线。
遗传算法matlab程序代码

遗传算法matlab程序代码遗传算法是一种优化算法,用于在给定的搜索空间中寻找最优解。
在Matlab中,可以通过以下代码编写一个基本的遗传算法:% 初始种群大小Npop = 100;% 搜索空间维度ndim = 2;% 最大迭代次数imax = 100;% 初始化种群pop = rand(Npop, ndim);% 最小化目标函数fun = @(x) sum(x.^2);for i = 1:imax% 计算适应度函数fit = 1./fun(pop);% 选择操作[fitSort, fitIndex] = sort(fit, 'descend');pop = pop(fitIndex(1:Npop), :);% 染色体交叉操作popNew = zeros(Npop, ndim);for j = 1:Npopparent1Index = randi([1, Npop]);parent2Index = randi([1, Npop]);parent1 = pop(parent1Index, :);parent2 = pop(parent2Index, :);crossIndex = randi([1, ndim-1]);popNew(j,:) = [parent1(1:crossIndex),parent2(crossIndex+1:end)];end% 染色体突变操作for j = 1:NpopmutIndex = randi([1, ndim]);mutScale = randn();popNew(j, mutIndex) = popNew(j, mutIndex) + mutScale;end% 更新种群pop = [pop; popNew];end% 返回最优解[resultFit, resultIndex] = max(fit);result = pop(resultIndex, :);以上代码实现了一个简单的遗传算法,用于最小化目标函数x1^2 + x2^2。
遗传算法及其MATLAB程序代码

遗传算法及其MATLAB程序代码遗传算法及其MATLAB实现主要参考书:MATLAB 6.5 辅助优化计算与设计飞思科技产品研发中⼼编著电⼦⼯业出版社2003.1遗传算法及其应⽤陈国良等编著⼈民邮电出版社1996.6主要内容:遗传算法简介遗传算法的MATLAB实现应⽤举例在⼯业⼯程中,许多最优化问题性质⼗分复杂,很难⽤传统的优化⽅法来求解.⾃1960年以来,⼈们对求解这类难解问题⽇益增加.⼀种模仿⽣物⾃然进化过程的、被称为“进化算法(evolutionary algorithm)”的随机优化技术在解这类优化难题中显⽰了优于传统优化算法的性能。
⽬前,进化算法主要包括三个研究领域:遗传算法、进化规划和进化策略。
其中遗传算法是迄今为⽌进化算法中应⽤最多、⽐较成熟、⼴为⼈知的算法。
⼀、遗传算法简介遗传算法(Genetic Algorithm, GA)最先是由美国Mic-hgan⼤学的John Holland于1975年提出的。
遗传算法是模拟达尔⽂的遗传选择和⾃然淘汰的⽣物进化过程的计算模型。
它的思想源于⽣物遗传学和适者⽣存的⾃然规律,是具有“⽣存+检测”的迭代过程的搜索算法。
遗传算法以⼀种群体中的所有个体为对象,并利⽤随机化技术指导对⼀个被编码的参数空间进⾏⾼效搜索。
其中,选择、交叉和变异构成了遗传算法的遗传操作;参数编码、初始群体的设定、适应度函数的设计、遗传操作设计、控制参数设定等5个要素组成了遗传算法的核⼼内容。
遗传算法的基本步骤:遗传算法是⼀种基于⽣物⾃然选择与遗传机理的随机搜索算法,与传统搜索算法不同,遗传算法从⼀组随机产⽣的称为“种群(Population)”的初始解开始搜索过程。
种群中的每个个体是问题的⼀个解,称为“染⾊体(chromos ome)”。
染⾊体是⼀串符号,⽐如⼀个⼆进制字符串。
这些染⾊体在后续迭代中不断进化,称为遗传。
在每⼀代中⽤“适值(fitness)”来测量染⾊体的好坏,⽣成的下⼀代染⾊体称为后代(offspring)。
遗传算法介绍并附上Matlab代码

1、遗传算法介绍遗传算法,模拟达尔文进化论的自然选择和遗产学机理的生物进化构成的计算模型,一种不断选择优良个体的算法。
谈到遗传,想想自然界动物遗传是怎么来的,自然主要过程包括染色体的选择,交叉,变异(不明白这个的可以去看看生物学),这些操作后,保证了以后的个基本上是最优的,那么以后再继续这样下去,就可以一直最优了。
2、解决的问题先说说自己要解决的问题吧,遗传算法很有名,自然能解决的问题很多了,在原理上不变的情况下,只要改变模型的应用环境和形式,基本上都可以。
但是遗传算法主要还是解决优化类问题,尤其是那种不能直接解出来的很复杂的问题,而实际情况通常也是这样的。
本部分主要为了了解遗传算法的应用,选择一个复杂的二维函数来进行遗传算法优化,函数显示为y=10*sin(5*x)+7*abs(x-5)+10,这个函数图像为:怎么样,还是有一点复杂的吧,当然你还可以任意假设和编写,只要符合就可以。
那么现在问你要你一下求出最大值你能求出来吗?这类问题如果用遗传算法或者其他优化方法就很简单了,为什么呢?说白了,其实就是计算机太笨了,同时计算速度又超快,举个例子吧,我把x等分成100万份,再一下子都带值进去算,求出对应的100万个y的值,再比较他们的大小,找到最大值不就可以了吗,很笨吧,人算是不可能的,但是计算机可以。
而遗传算法也是很笨的一个个搜索,只不过加了一点什么了,就是人为的给它算的方向和策略,让它有目的的算,这也就是算法了。
3、如何开始?我们知道一个种群中可能只有一个个体吗?不可能吧,肯定很多才对,这样相互结合的机会才多,产生的后代才会多种多样,才会有更好的优良基因,有利于种群的发展。
那么算法也是如此,当然个体多少是个问题,一般来说20-100之间我觉得差不多了。
那么个体究竟是什么呢?在我们这个问题中自然就是x值了。
其他情况下,个体就是所求问题的变量,这里我们假设个体数选100个,也就是开始选100个不同的x值,不明白的话就假设是100个猴子吧。
加速遗传算法

for i=1:(N-1)
len=len+D(p(1,i),p(1,i+1));
end
%计算归一化适应值子程序
function fitness=fit(len,m,maxlen,minlen)
fitness=len;
for i=1:length(len)
[a(1,x),b(1,y)]=exchange(a(1,x),b(1,y)); xchange(x,y)
temp=x;
x=y;
y=temp;
% 计算路径的子程序
function len=myLength(D,p)
[N,NN]=size(D);
nn=0;
for i=1:n
if fitness(i,1)>=alpha*rand
nn=nn+1;
FARM(nn,:)=farm(i,:);
end
end
FARM=FARM(1:nn,:);
[aa,bb]=size(FARM);%交叉和变异
while aa<n
if nn<=2
nnper=randperm(2);
end
farm=FARM;
clear FARM
counter=counter+1
end
Rlength=myLength(D,R);
function [a,b]=intercross(a,b)
L=length(a);
if L<=10%确定交叉宽度
W=1;
elseif ((L/10)-floor(L/10))>=rand&&L>10
改进遗传算法求解TSP问题的Matlab程序设计

( 徽 农 业 大 学 信 息 与 计 算 机 学 院 物 流 工 程 系 ,安 徽 合 肥 2 0 3 安 3 0 6)
摘
要 :本 文 用 改 进 遗 传 算 法 求解 T P问 题 ,编 制 了完 整 的 Malb程 序 予 以仿 真 实 现 。程 序 中 S t a
选 择算 子使 用 的是 最 佳 个 体 保存 与赌 轮 选 择 相 结 合 的策 略 ,文 章 最 后 分 析 了最 佳 个 体 保 持 比 例 对 寻
一
个 约 束 性 多路 旅 行 商 问 题 。 因此 ,对 T P问 题 求 解 S T P问题 是 一 个 组 合 优 化 问 题 ,随 着 问题 的 增 大 , S
具 有 一定 的现 实 意 义 。
其 搜 索空 间也 急 剧 扩 大 ,有 时 在 目前 的计 算 机 上 用 枚 举 法很 难 甚 至 不 能 求 出 最 优 解 。对 这 类 问题 ,用 启 发
3 T P问 题 的 Malb实 现 .S t a 参 数说 明 :P P IE表 示 群体 规 模 ,N I I S表 示 城 市 数 目 ,p p表 示 初 始 种群 ,MA — O SZ C TE o X
G N表示 进 化 代 数 ,P E c表 示 个体 交 叉 概 率 ,P 表 示 个体 变 异 概 率 。 m ( ) 编 码 并 生成 初始 种 群 1 编码 是 应 用 遗 传算 法 时要 解 决 的首 要 问 题 ,也 是 设 计 遗 传 算 法 时 的一 个 关 键 步 骤 。在 遗 传 算 法 中把 一 个 问题 的 可行 解 从 其 解 空 间 转 换 到遗 传 算 法 所 能 处 理 的 搜 索 空 间 的 转 换 方 法 就 称 为编 码 。而 由遗 传 算 法 解 空 间 向 问题 空 间 的 转 换 称 为解 码 。求 解 T P问 题 时 ,采 用 S
遗传算法matlab代码

遗传算法matlab代码以下是一个简单的遗传算法的MATLAB 代码示例:matlab复制代码% 遗传算法参数设置pop_size = 50; % 种群大小num_vars = 10; % 变量数目num_generations = 100; % 进化的代数mutation_rate = 0.01; % 变异率crossover_rate = 0.8; % 交叉率% 初始化种群population = rand(pop_size, num_vars);% 开始进化for i = 1:num_generations% 计算适应度fitness = evaluate_fitness(population);% 选择操作selected_population = selection(population, fitness);% 交叉操作offspring_population = crossover(selected_population,crossover_rate);% 变异操作mutated_population = mutation(offspring_population,mutation_rate);% 生成新种群population = [selected_population; mutated_population];end% 选择最优解best_solution = population(find(fitness == max(fitness)), :);% 适应度函数function f = evaluate_fitness(population)f = zeros(size(population));for i = 1:size(population, 1)f(i) = sum(population(i, :));endend% 选择函数function selected_population = selection(population, fitness)% 轮盘赌选择total_fitness = sum(fitness);probabilities = fitness / total_fitness;selected_indices = zeros(pop_size, 1);for i = 1:pop_sizer = rand();cumulative_probabilities = cumsum(probabilities);for j = 1:pop_sizeif r <= cumulative_probabilities(j)selected_indices(i) = j;break;endendendselected_population = population(selected_indices, :);end% 交叉函数function offspring_population = crossover(parental_population, crossover_rate)offspring_population = zeros(size(parental_population));num_crossovers = ceil(size(parental_population, 1) *crossover_rate);crossover_indices = randperm(size(parental_population, 1),num_crossovers);以下是另一个一个简单的遗传算法的MATLAB 代码示例:matlab复制代码% 初始化种群population = rand(nPopulation, nGenes);% 进化迭代for iGeneration = 1:nGeneration% 计算适应度fitness = evaluateFitness(population);% 选择父代parentIdx = selection(fitness);parent = population(parentIdx, :);% 交叉产生子代child = crossover(parent);% 变异子代child = mutation(child);% 更新种群population = [parent; child];end% 评估最优解bestFitness = -Inf;for i = 1:nPopulationf = evaluateFitness(population(i, :));if f > bestFitnessbestFitness = f;bestIndividual = population(i, :);endend% 可视化结果plotFitness(fitness);其中,nPopulation和nGenes分别是种群大小和基因数;nGeneration是迭代次数;evaluateFitness函数用于计算个体的适应度;selection函数用于选择父代;crossover函数用于交叉产生子代;mutation函数用于变异子代。
遗传算法matlab代码0304190947

tmpind=tmprnd if ~any(difind) difind(1)=1; end
difind=[0,diff(tmpieind(logical(difind)); fatherrand=fatherrand(:,childind); generation=generation+1; end % score maxV=max(score,[],2); minV=11*300-maxV; plot(minV,'*');title('各代的目标函数值'); F4=D(:,4); FF4=F4-fatherrand(:,1); FF4=max(FF4,1); D(:,5)=FF4; save DData D function D=code load youhua.mat % properties F2 and F3 F1=A(:,1); F2=A(:,2); F3=A(:,3); if (max(F2)>1450)||(min(F2)<=900) error('DATA property F2 exceed it''s range (900,1450]') end % get group property F1 of data, according to F2 value F4=zeros(size(F1)); for ite=11:-1:1 index=find(F2<=900+ite*50); F4(index)=ite; end D=[F1,F2,F3,F4]; function ScoreN=scorefun(fatherrand,D) F3=D(:,3); F4=D(:,4); N=size(fatherrand,2); FF4=F4*ones(1,N); FF4rnd=FF4-fatherrand; FF4rnd=max(FF4rnd,1); ScoreN=ones(1,N)*300*11; % 这里有待优化 for k=1:N FF4k=FF4rnd(:,k); for ite=1:11
基于遗传算法求解TSP问题的研究及Matlab实现

第13卷㊀第7期Vol.13No.7㊀㊀智㊀能㊀计㊀算㊀机㊀与㊀应㊀用IntelligentComputerandApplications㊀㊀2023年7月㊀Jul.2023㊀㊀㊀㊀㊀㊀文章编号:2095-2163(2023)07-0058-06中图分类号:TP391.41文献标志码:A基于遗传算法求解TSP问题的研究及Matlab实现杨锦涛,赵春香,杨成福(云南师范大学信息学院,昆明650500)摘㊀要:TSP问题属于组合优化问题,同时也是一个NPC问题,因此人们一直致力于为其寻找有效的近似求解算法㊂遗传算法是模仿生物进化而构建的一种随机搜索方法,具有较强的全局搜索能力㊁潜在的并行性以及良好的可扩展性,能有效求解TSP问题㊂然而,如何确定遗传参数和选择遗传操作一直是一个难题,本文针对TSP问题的求解构建完整的遗传算法体系,选择合适的参数,设计多组交叉算子和变异算子,分别对TSP问题进行求解㊂通过多次实验以及对实验结果的分析比较,探究不同的交叉算子和变异算子求解TSP问题的效果,为遗传操作中交叉算子和变异算子的选择提供一定的参考㊂关键词:TSP问题;组合优化;遗传算法ResearchonsolvingTSPproblembasedongeneticalgorithmandMatlabimplementationYANGJintao,ZHAOChunxiang,YANGChengfu(SchoolofInformation,YunnanNormalUniversity,Kunming650500,China)ʌAbstractɔTheTSPproblembelongstocombinatorialoptimizationproblemsandisalsoanNPCproblem,sopeoplehavebeentryingtofindthecorrespondingeffectiveapproximationsolvingalgorithms.Geneticalgorithmisarandomsearchmethodbuilttoimitatebiologicalevolution,withstrongglobalsearchability,potentialparallelismandgoodscalability,whichcaneffectivelysolveTSPproblems.However,howtodeterminegeneticparametersandselectgeneticmanipulationhasalwaysbeenadifficultproblem.Inthispaper,acompletegeneticalgorithmsystemisconstructedforthesolutionofTSPproblems,appropriateparametersareselected,andmultiplesetsofcrossoperatorsandmutationoperatorsaredesignedtosolveTSPproblemsseparately.Throughmultipleexperimentsandtheanalysisandcomparisonofexperimentalresults,theeffectofdifferentcrossoveroperatorsandmutationoperatorsinsolvingTSPproblemsisexplored,whichprovidesacertainreferencefortheselectionofcrossoveroperatorsandmutationoperatorsingeneticoperations.ʌKeywordsɔTSPproblem;combinatorialoptimization;geneticalgorithm基金项目:云南师范大学博士科研启动基金(2021ZB019)㊂作者简介:杨锦涛(2002-),女,本科生,主要研究方向:深度学习;赵春香(2000-),女,本科生,主要研究方向:深度学习;杨成福(1986-),男,博士,讲师,硕士生导师,主要研究方向:信息超材料㊁深度学习㊁人工智能㊂通讯作者:杨成福㊀㊀Email:yangchengfu@ynnu.edu.cn收稿日期:2022-12-180㊀引㊀言TSP问题㊁即巡回旅行商问题,是组合优化领域中的一个典型问题㊂现实生活中的很多实际应用问题都可以简化为TSP问题㊂TSP问题可以用图论描述为:已知带权完全图G,求一条使得路径总和最小㊁且经过所有顶点的回路㊂TSP问题虽然描述简单㊁容易理解,但是求解是很困难的㊂当问题的规模较小时,仅使用枚举法就能找到一条最优路径,但当城市数量较多时,即使用计算机也无法将解全部列举,要求出TSP问题的最优解是不可能的㊂遗传算法是一种自组织㊁自适应的全局寻优算法,因其潜在的并行性㊁较高的鲁棒性,在应用研究方面取得了很多可观的成果,被广泛应用于函数优化㊁组合优化㊁生产调度㊁自适应控制㊁图像处理㊁机器学习㊁数据挖掘㊁人工生命㊁遗传编程等领域㊂1975年,Holland[1]受生物学中生物进化和自然选择学说的启发,提出了著名的遗传算法㊂2006年,何燕[2]对遗传算法进行改进,将其应用到车间调度领域㊂2010年,蒋波[3]将遗传算法应用于车辆路径优化问题,指出遗传算法求解该问题的优越性,并对其做出了改进,实验证明改进后的遗传算法能Copyright ©博看网. All Rights Reserved.够有效解决此类问题㊂2013年,乔阳[4]将遗传算法和Ostu图像分割法进行改进后结合在一起进行图像分割实验,得到了满意的结果㊂遗传算法是模拟生物进化的过程发展而来的一种算法,从一定规模的解集(初始种群)开始,通过选择㊁交叉和变异,将适应度低的解(个体)淘汰掉,将适应度高的解(个体)保留下来,并产生新的解(个体),生成新的解集(种群),通过不断地迭代,使解集(种群)中的解(个体)越来越接近问题的最优解㊂生物学和遗传算法概念之间的对应关系见表1㊂表1㊀生物学和遗传算法概念对照Tab.1㊀Comparisonofbiologicalandgeneticalgorithmconcepts生物学遗传算法外界环境约束条件个体问题的一个可行解个体对环境的适应度可行解的质量种群一定数量可行解的集合生物的繁衍算法的迭代种群的进化过程可行解的优化过程㊀㊀本文针对TSP问题构建完整的遗传算法体系,将求解TSP问题几种常用的交叉算子和变异算子两两组合在一起,分别对具体的TSP问题实例进行求解,从所得的最优解和求解的时间两方面对实验结果进行分析和总结,探究使用不同的交叉算子和变异算子时遗传算法求解对称式TSP问题的效果[5]㊂1㊀遗传算法求解TSP问题1.1㊀编码编码是指按照一定的构造方法,将问题的可行解转变为遗传算法能直接处理的个体㊂常用的编码方式有二进制编码㊁近邻编码㊁次序编码㊁路径编码[6]㊂使用路径编码求解TSP问题,不仅编码过程简单易操作,而且编码结果非常直观,即首先对城市进行编号,然后以城市编号作为城市的编码,因此本文选择使用路径编码方式对城市进行编码㊂1.2㊀初始种群一般地,初始种群采用随机方法生成,如果种群规模为M,则随机生成M个个体㊂1.3㊀适应度函数适应度函数用于对种群中的个体进行优劣程度的评价,由于算法在搜索最优解的过程中主要以个体的适应度作为依据,所以如果适应度函数构建不当,很可能导致算法的收敛速度缓慢㊁甚至无法收敛,即适应度函数直接决定着算法的收敛能力和寻优能力㊂对于TSP问题,适应度函数一般取路径总和的倒数,具体定义公式见如下:f(x)=1ðn-1i=1d(ti,ti+1)+d(tn,t1)(1)㊀㊀其中,n表示城市的数量;T=(t1,t2, ,tn)为种群中的一个个体;d(ti,tj)表示城市i到城市j的距离㊂TSP问题为最小值问题,由适应度函数可知,路径总和与个体适应度呈倒数关系㊂1.4㊀遗传操作1.4.1㊀选择算子选择是用选择算子对个体进行筛选的过程,这一过程中,差的个体被保留下来的概率小,好的个体被保留下来的概率大,会使种群中的个体向最优解进化㊂常用的选择算子有轮盘赌选择㊁最佳个体保存选择㊁锦标赛选择和排序选择[7]㊂轮盘赌选择是TSP问题求解最常用的选择算子,即使用适应度值计算出每个个体被选择的概率,并根据该概率值对种群中的个体进行选择㊂本文也使用轮盘赌选择作为选择算子,并在轮盘赌的基础上添加最佳个体保存选择,即把种群中出现过的适应度值最高的个体保留下来,避免种群中优秀的个体在遗传操作中被淘汰或破坏㊂1.4.2㊀交叉算子个体交叉是为了实现种群的更新,而交叉算子是进行交叉的手段,定义了个体之间以怎样的方式交叉㊂对于不同问题,由于编码方式的不同,交叉算子也有所不同㊂对此拟做研究分述如下㊂(1)部分匹配交叉(PMX):首先采用随机方式在父体中确定2个位置,由2个位置确定一个交叉段,然后将2个父体的交叉段进行交换,最后根据交叉段之间的映射关系消除子代中的重复基因㊂(2)顺序交叉(OX):首先从父体中随机选择2个位置,由2个位置确定一个基因段,然后将父体A的该基因段复制到子代A 的对应位置,最后将父体B除父体A被选择的基因段之外的基因依次复制到子代A 的其余位置,同理可得到子代B ㊂(3)循环交叉(CX):首先将父体A的第一个基因复制到子代,然后在父体B中的相同位置查看基因,随后在父体A中找到该基因复制到子代的相同位置,并在父体B中查看相同位置的基因,重复此步骤,直到在父体B中找到的基因已经在子代中,停止循环,在父体B中找到剩余的基因,并按照顺序复制到子代中的剩余位置㊂95第7期杨锦涛,等:基于遗传算法求解TSP问题的研究及Matlab实现Copyright©博看网. All Rights Reserved.1.4.3㊀变异算子变异操作的主要目的是维持种群多样性,在遗传算法后期,个体交叉产生新个体的能力弱,通过个体变异可以进一步产生新个体,扩大搜索空间㊂接下来给出剖析论述如下㊂(1)对换变异㊂首先用随机方式在父体中确定2个位置,然后交换这2个位置上的基因㊂(2)倒位变异㊂用随机方式在父体中确定2个位置,以确定一个基因段,然后将其进行逆序排列㊂(3)插入变异㊂用随机方式在父体中确定一个位置,以确定一个待插入的基因,再用随机方式确定2个位置,以确定插入点,最后将待插入的基因放入插入点㊂1.5㊀遗传算法求解TSP问题具体步骤根据上文选择的实现技术构建完整的遗传算法体系后,对TSP问题实例进行求解的具体步骤如下:Step1㊀获取城市数据,对城市进行编号㊂Step2㊀初始化种群㊂Step3㊀适应度评价㊂Step4㊀执行选择操作,采用轮盘赌选择对个体进行筛选,选出足够数量的个体㊂Step5㊀执行交叉操作,将选择操作中选出的个体两两组合作为父染色体,判断是否进行交叉,如果进行交叉,则按照选定的交叉算子进行交叉㊂Step6㊀执行变异操作,将执行交叉操作后的每个个体作为父染色体,判断是否进行变异,如果进行变异,则按照选定的变异算子进行变异㊂Step7㊀完成变异后,执行最佳个体保存策略,判断当前种群中的最优解是否优于历史最优解㊂如果是,更新历史最优解,否则找出种群中最差的解,用最优解将其替换掉㊂Step8㊀判断是否继续进行迭代,若是,回到Step3;否则,结束迭代,输出最优解㊂㊀㊀将前述的3种交叉算子和3种变异算子两两组合在一起,共有9种组合方式,见表2㊂基于表2中列出的9种组合,重复对TSP问题进行求解㊂表2㊀9组交叉算子和变异算子Tab.2㊀9setsofcrossoverandmutationoperators组合编号交叉算子变异算子第一组部分匹配交叉对换变异第二组部分匹配交叉倒位变异第三组部分匹配交叉插入变异第四组循序交叉对换变异第五组循环交叉倒位变异第六组循环交叉插入变异第七组顺序交叉对换变异第八组顺序交叉倒位变异第九组顺序交叉插入变异2㊀实验及结果分析2.1㊀实验仿真本文使用Matlab实现上文构建的遗传算法,从TSPLIB中选择测试样例进行具体分析㊂TSPLIB是包含对称旅行商问题㊁哈密顿回路问题㊁以及非对称旅行商问题的多种实例数据的文件库,数据规模多样㊂本文在对每个测试样例进行求解时,改变算法的交叉算子和变异算子,进行多次重复的实验,从问题的最优解和求解时间两方面对几组交叉算子和变异算子求解TSP问题的效果进行分析比较㊂在完成算法的编程后,初步设置参数,对实例Oliver30进行求解,根据实验结果对算法的参数进行调整,最终选定迭代次数G为500,交叉概率Pc为0.9,变异概率Pm为0.2,种群规模M根据待求解问题的规模来确定㊂一般地,城市个数越多,种群规模越大,对30个城市的实例Oliver30,种群规模取100㊂用上述9组交叉算子和变异算子分别对Oliver30求解10次的结果见表3㊂表3㊀遗传算法求解Oliver30Tab.3㊀GeneticalgorithmforOliver30序号第一组第二组第三组第四组第五组第六组第七组第八组第九组1511.98425.10526.40510.03425.48496.34532.75425.72472.362565.56429.62451.69538.10423.74479.01501.09428.04495.353495.80432.66468.32496.65476.12495.19514.30428.84476.094496.84425.10433.09534.14424.12457.73501.54431.71457.745541.80460.17464.91536.89451.72445.97496.24435.31474.216500.88429.83494.45525.44438.38483.92507.57450.41478.807501.92432.66521.33514.30425.27466.65561.85428.46460.748514.90450.69497.46488.21425.31484.18515.13423.74474.739529.06447.21487.60482.61434.61500.18571.79431.76466.6910556.31425.73507.64510.61433.54471.18456.79438.38483.2706智㊀能㊀计㊀算㊀机㊀与㊀应㊀用㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第13卷㊀Copyright©博看网. All Rights Reserved.㊀㊀以文献[8]中求得的最优解423.74作为参考值,从表3可以看出第2组㊁第5组㊁第8组交叉算子和变异算子的求解结果都比较接近参考最优解,且较稳定,说明参数设置较合理㊂其中一次求解的收敛曲线如图1所示,最优路线如图2所示㊂其中,以圆圈标记的点为路线起点,其与路线终点用虚线相连,其余路线用实线连接㊂12001000800600400200400600迭代次数最优解图1㊀Oliver30收敛曲线Fig.1㊀ConvergencecurveofOliver301008060402020406080100城市横坐标城市纵坐标图2㊀Oliver30最优路线图Fig.2㊀OptimalroadmapofOliver302.2㊀实验结果从TSPLIB中选择测试样例进行求解,本文总共选择了5个实例,分别是ulysses16㊁dantzig42㊁eil51㊁eil76㊁eil101,根据问题的规模为每个实例设置合适的种群规模(M)㊂其中,ulysses16㊁dantzig42㊁eil51实例的种群规模取100,eil76实例的种群规模取150,eil101实例的种群规模取200,分别用上述9组交叉算子和变异算子求解10次,记录10次求解结果的最好值(Best)㊁平均值(AVR)和偏差率(Dr),以及求解的平均时间(Time),这里的偏差率可由式(2)来计算:Dr=Best-OptOpt(2)㊀㊀其中,Opt是TSPLIB数据集提供的最优解㊂实验结果见表4 表8㊂表4㊀遗传算法求解ulysses16Tab.4㊀Geneticalgorithmforulysses16序号AVGBestOptDrTime/s第1组第2组第3组第4组第5组第6组第7组第8组第9组75.0174.0174.2474.3674.0574.2074.6074.0974.2874.0073.9973.9973.9973.9973.9973.9973.9973.99740.000.000.000.000.000.000.000.000.001.21.11.40.70.70.70.50.50.5表5㊀遗传算法求解dantzig42Tab.5㊀Geneticalgorithmfordantzig42序号AVGBestOptDrTime/s第1组第2组第3组第4组第5组第6组第7组第8组第9组1022.34756.49915.69944.02733.00894.321061.21760.73937.22864.89713.99838.38858.26698.98794.02893.35725.37846.416990.240.020.200.230.000.140.280.040.211.41.62.81.01.01.00.70.60.7表6㊀遗传算法求解eil51Tab.6㊀Geneticalgorithmforeil51序号AVGBestOptDrTime/s第1组第2组第3组第4组第5组第6组第7组第8组第9组642.66516.35592.00646.09503.97580.39657.48511.91607.42613.87487.95532.90559.68481.67534.41604.81465.28551.704260.440.150.250.310.130.250.420.090.301.41.83.61.11.11.10.70.70.716第7期杨锦涛,等:基于遗传算法求解TSP问题的研究及Matlab实现Copyright ©博看网. All Rights Reserved.表7㊀遗传算法求解eil76Tab.7㊀Geneticalgorithmforeil76序号AVGBestOptDrTime/s第1组第2组第3组第4组第5组第6组第7组第8组第9组1037.94880.641002.011012.32835.37993.691073.78833.77992.89971.96806.53916.52949.17792.39925.741014.86781.88894.475380.810.500.700.760.470.720.890.450.662.23.29.51.81.81.80.91.01.0表8㊀遗传算法求解eil101Tab.8㊀Geneticalgorithmforeil101序号AVGBestOptDrTime/s第1组第2组第3组第4组第5组第6组第7组第8组第9组1470.941340.331452.021468.171194.491408.331479.121238.681438.391361.781286.641363.671352.241142.191297.431397.691168.251340.936291.161.051.171.150.821.061.220.861.133.25.320.42.72.72.71.21.21.2㊀㊀为了方便对比,将每个实例求解结果中的偏差率(Dr)和求解的平均时间(Time)分别统计在一起,由于实例ulysses16问题规模小,坐标数据也容易处理,不管选择哪种交叉算子和变异算子,求解结果都很接近最优解,因此在进行偏差率的比较时不将其考虑在内,具体见表9㊁表10㊂表9㊀偏差率对比Tab.9㊀Deviationratecomparison序号dantzig42eil51eil76eil101第1组第2组第3组第4组第5组第6组第7组第8组第9组0.240.020.200.230.000.140.280.040.210.440.150.250.310.130.250.420.090.300.810.500.700.760.470.720.890.450.661.161.051.171.150.821.061.220.861.13表10㊀求解平均时间对比Tab.10㊀Comparisonofaveragesolvingtime序号ulysses16dantzig42eil51eil76eil101第1组第2组第3组第4组第5组第6组第7组第8组第9组1.21.11.40.70.70.70.50.50.51.41.62.81.01.01.00.70.60.71.41.83.61.11.11.10.70.70.72.23.29.51.81.81.80.91.01.03.25.320.42.72.72.71.21.21.23㊀实验结论根据上述实验结果,可以得出如下结论:(1)表9中的偏差率描述了采用不同的交叉算子和变异算子时,所求得的最优解与TSPLIB中给出的最优解的差距,偏差率越小,说明算法求得的结果越接近最优解,算法的寻优能力越好㊂从表9中可以看出,第2组数据总是小于第1组和第3组㊁第5组数据总是小于第4组和第6组㊁第8组数据总是小于第7组和第9组,这说明每种交叉算子和逆转变异组合在一起时,问题的求解结果总是比与对换变异和插入变异组合在一起时更接近最优解㊂由此可知,遗传算法使用逆转变异作为变异算子时比选择对换变异和插入变异作为变异算子的寻优能力更强㊂(2)表10是采用每组交叉算子和变异算子求解每个实例10次所花时间的平均值,所花的时间越少,说明算法的搜索速度越快,执行效率越高,由于变异操作比较简单,所以遗传算法的执行效率主要由交叉操作决定㊂从表10中可以看出,遗传算法采用顺序交叉和循环交叉时,即使采用不同的变异算子,所花的时间也基本相同,但是采用部分匹配交叉所花的时间会因为变异算子的不同而有所不同㊂对于每一个实例,在得到的解的质量差别不大的情况下,遗传算法使用部分匹配交叉所花的时间最多,使用循环交叉所花的时间最少㊂综上所述,对于比较简单的TSP问题,由于使用遗传算法总能求得与最优解很接近的解,所以选择何种交叉算子和变异算子对算法的寻优能力影响不大,但是使用部分匹配交叉会花费比较多的时间,会导致算法的执行效率低,因此交叉算子选择循环26智㊀能㊀计㊀算㊀机㊀与㊀应㊀用㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第13卷㊀Copyright©博看网. All Rights Reserved.交叉比较合适㊂对于不是总能求得最优解的TSP问题,与对换变异和插入变异相比,使用逆转变异会使算法具有更强的寻优能力,找到的最优解更接近最优解,使用部分匹配交叉和顺序交叉会花费比循环交叉更多的时间,使算法的执行效率变低,而且找到的最优解也不会更优㊂4 结束语本文对几种常用的交叉算子和变异算子求解TSP问题的效果进行了研究㊂实验结果表明,在几种常用的交叉算子和变异算子中,选择循环交叉和逆转变异算法的执行效率最高,寻优能力最好,这能为遗传算法中交叉算子和变异算子的选择提供一定的参考,同时有利于设计出更好的交叉算子和变异算子,提高算法的性能㊂参考文献[1]HOLLANDJ.Adaptationinnaturalandartificialsystems:anintro⁃ductoryanalysiswithapplicationtobiology[J].ControlArtificialIntelligence,1975.[2]何燕.基于遗传算法的车间调度优化及其仿真[D].武汉:武汉理工大学,2006.[3]蒋波.基于遗传算法的带时间窗车辆路径优化问题研究[D].北京:北京交通大学,2010.[4]乔阳.基于改进遗传算法的图像分割方法[D].成都:电子科技大学,2013.[5]张家善,王志宏,陈应显,等.一种求解旅行商问题的改进遗传算法[J].计算机系统应用,2012,21(09):192-194,191.[6]王娜.求解TSP的改进遗传算法[D].西安:西安电子科技大学,2010.[7]于丰瑞.基于改进的遗传算法求解TSP问题[D].呼和浩特:内蒙古农业大学,2016.[8]闫茹.基于改进遗传算法的旅游路线优化研究与应用[D].银川:北方民族大学,2021.(上接第57页)[3]田浩杰,杨晓庆,翟晓雨.基于深度学习的线圈炮缺陷自动检测与分类[J].现代计算机,2022,28(10):86-91.[4]张浩,吴陈,徐影.基于深度学习在海缆表面缺陷检测中的应用[J].电脑知识与技术,2022,18(15):88-91.[5]陈宗仁,谢文达,余君,等.基于深度学习的金属机械零件表面缺陷检测方法[J].制造业自动化,2021,43(12):170-173.[6]王昊,李俊峰.基于深度学习的车载导航导光板表面缺陷检测研究[J].软件工程,2022,25(03):34-38,16.[7]刘瑞珍,孙志毅,王安红,等.基于深度学习的偏光片缺陷实时检测算法[J].太原理工大学学报,2020,51(01):125-130.[8]王鸣霄,范娟娟,周磊,等.基于深度学习的排水管道缺陷自动检测与分类[J].给水排水,2020,46(12):106-111.[9]施恺杰,王颖,王嘉璐,等.基于深度学习的电子换向器表面缺陷检测[J].网络安全技术与应用,2021(06):113-115.[10]于宏全,袁明坤,常建涛,等.基于深度学习的铸件缺陷检测方法[J].电子机械工程,2021,37(06):59-64.[11]LECUNY,BOTTOUL,BENGIOY,etal.Gradient-basedlearningappliedtodocumentrecognition[J].ProceedingsoftheIEEE,1998,86(11):2278-2324.[12]KRIZHEVSKYA,SUTSKEVERI,HINTONGE.Imagenetclassificationwithdeepconvolutionalneuralnetworks[J].CommunicationsoftheACM,2017,60(6):84-90.[13]SIMONYANK,ZISSERMANA.Verydeepconvolutionalnetworksforlarge-scaleimagerecognition[J].arXivpreprintarXiv:1409.1556,2014.[14]SZEGEDYC,LIUWei,JIAYanqing,etal.Goingdeeperwithconvolutions[C]//IEEEConferenceonComputerVisionandPatternRecognition(CVPR).Boston,MA,USA:IEEE,2015:1-9.[15]HEKaiming,ZHANGXiangyu,RENShaoqing,etal.Deepresiduallearningforimagerecognition[C]//IEEEConferenceonComputerVisionandPatternRecognition(CVPR).LasVegas,NV,USA:IEEE,2016:770-778.36第7期杨锦涛,等:基于遗传算法求解TSP问题的研究及Matlab实现Copyright©博看网. All Rights Reserved.。
遗传算法解决TSP问题

遗传算法解决旅行商(TSP)问题旅行商问题(traveling saleman problem,简称tsp):已知N个城市之间的相互距离,现有一个推销员必须遍访这n个城市,并且每个城市只能访问一次,最后又必须返回出发城市。
如何安排他对这些城市的访问次序,可使其旅行路线的总长度最短?本程序使用MATLAB软件,利用遗传算法解决TSP问题。
程序使用如下:gatsp 为主程序,cityNum为城市个数,在此程序中可以设置为30、50和70。
Inn是种群个数,gnmax是最大迭代次数,pc是交叉概率,pm是变异概率。
算法程序运行结果如下:算法程序如下(不同的function需放在不同的.m文件中):注:红色部分不属于算法内容,仅作间隔标致。
-------------------------------------------------------------------------------------------------------%主程序:%遗传算法求解tspfunction gaTSPCityNum=30;[dislist,Clist]=tsp(CityNum);inn=100; %初始种群大小gnmax=1000; %最大代数pc=0.9; %交叉概率pm=0.08; %变异概率%产生初始种群for i=1:inns(i,:)=randperm(CityNum);end[f,p]=objf(s,dislist);gn=1;while gn<gnmax+1for j=1:2:innseln=sel(s,p); %选择操作scro=cro(s,seln,pc); %交叉操作scnew(j,:)=scro(1,:);scnew(j+1,:)=scro(2,:);smnew(j,:)=mut(scnew(j,:),pm); %变异操作smnew(j+1,:)=mut(scnew(j+1,:),pm);ends=smnew; %产生了新的种群[f,p]=objf(s,dislist); %计算新种群的适应度%记录当前代最好和平均的适应度[fmax,nmax]=max(f);ymean(gn)=1000/mean(f);ymax(gn)=1000/fmax;%记录当前代的最佳个体x=s(nmax,:);drawTSP(Clist,x,ymax(gn),gn,0);gn=gn+1;%pause;endgn=gn-1;figure(2);plot(ymax,'r'); hold on;plot(ymean,'b');grid;title('搜索过程');legend('最优解','平均解');string1=['最终度',num2str(ymax(gn))];gtext(string1);End----------------------------------------------------------------- %交叉程序:function scro=cro(s,seln,pc);bn=size(s,2);pcc=pro(pc); %根据交叉概率决定是否进行交叉操作,1则是,0则否scro(1,:)=s(seln(1),:);scro(2,:)=s(seln(2),:);if pcc==1c1=round(rand*(bn-2))+1; %在[1,bn-1]范围内随机产生一个交叉位c2=round(rand*(bn-2))+1;chb1=min(c1,c2);chb2=max(c1,c2);middle=scro(1,chb1+1:chb2);scro(1,chb1+1:chb2)=scro(2,chb1+1:chb2);scro(2,chb1+1:chb2)=middle;for i=1:chb1while find(scro(1,chb1+1:chb2)==scro(1,i))zhi=find(scro(1,chb1+1:chb2)==scro(1,i));y=scro(2,chb1+zhi);scro(1,i)=y;endwhile find(scro(2,chb1+1:chb2)==scro(2,i))zhi=find(scro(2,chb1+1:chb2)==scro(2,i));y=scro(1,chb1+zhi);scro(2,i)=y;endendfor i=chb2+1:bnwhile find(scro(1,1:chb2)==scro(1,i))zhi=find(scro(1,1:chb2)==scro(1,i));y=scro(2,zhi);scro(1,i)=y;endwhile find(scro(2,1:chb2)==scro(2,i))zhi=find(scro(2,1:chb2)==scro(2,i));y=scro(1,zhi);scro(2,i)=y;endendendEnd----------------------------------------------------------------- %变异程序:function snnew=mut(snew,pm);bn=size(snew,2);snnew=snew;pmm=pro(pm); %根据变异概率决定是否进行变异操作,1则是,0则否if pmm==1c1=round(rand*(bn-2))+1; %在[1,bn-1]范围内随机产生一个变异位c2=round(rand*(bn-2))+1;chb1=min(c1,c2);chb2=max(c1,c2);x=snew(chb1+1:chb2);snnew(chb1+1:chb2)=fliplr(x);endend----------------------------------------------------------------- %适应度计算:function [f,p]=objf(s,dislist);inn=size(s,1); %读取种群大小for i=1:innf(i)=caldist(dislist,s(i,:)); %计算函数值,即适应度endf=1000./f';%计算选择概率fsum=0;for i=1:innfsum=fsum+f(i)^15;endfor i=1:innps(i)=f(i)^15/fsum;end%计算累积概率p(1)=ps(1);for i=2:innp(i)=p(i-1)+ps(i);endp=p';end----------------------------------------------------------------- %选着个体程序:function seln=sel(s,p);inn=size(p,1);%从种群中选择两个个体for i=1:2r=rand; %产生一个随机数prand=p-r;j=1;while prand(j)<0j=j+1;endseln(i)=j; %选中个体的序号endend-----------------------------------------------------------------%城市坐标:function [DLn,cityn]=tsp(n)if n==10city10=[0.4 0.4439;0.2439 0.1463;0.1707 0.2293;0.2293 0.761;0.5171 0.9414;0.8732 0.6536;0.6878 0.5219;0.8488 0.3609;0.6683 0.2536;0.6195 0.2634];%10 cities d'=2.691for i=1:10for j=1:10DL10(i,j)=((city10(i,1)-city10(j,1))^2+(city10(i,2)-city10(j,2))^ 2)^0.5;endendDLn=DL10;cityn=city10;endif n==30city30=[41 94;37 84;54 67;25 62;7 64;2 99;68 58;71 44;54 62;83 69;64 60;18 54;22 60;83 46;91 38;25 38;24 42;58 69;71 71;74 78;87 76;18 40;13 40;82 7;62 32;58 35;45 21;41 26;44 35;4 50];%30 cities d'=423.741 by D B Fogelfor i=1:30for j=1:30DL30(i,j)=((city30(i,1)-city30(j,1))^2+(city30(i,2)-city30(j,2))^ 2)^0.5;endendDLn=DL30;cityn=city30;endif n==50city50=[31 32;32 39;40 30;37 69;27 68;37 52;38 46;31 62;30 48;21 47;25 55;16 57;17 63;42 41;17 33;25 32;5 64;8 52;12 42;7 38;5 25; 10 77;45 35;42 57;32 22;27 23;56 37;52 41;49 49;58 48;57 58;39 10;46 10;59 15;51 21;48 28;52 33;58 27;61 33;62 63;20 26;5 6;13 13;21 10;30 15;36 16;62 42;6369;52 64;43 67];%50 cities d'=427.855 by D B Fogelfor i=1:50for j=1:50DL50(i,j)=((city50(i,1)-city50(j,1))^2+(city50(i,2)-city50(j,2))^ 2)^0.5;endendDLn=DL50;cityn=city50;endif n==75city75=[48 21;52 26;55 50;50 50;41 46;51 42;55 45;38 33;33 34;45 35;40 37;50 30;55 34;54 38;26 13;15 5;21 48;29 39;33 44;15 19;16 19;12 17;50 40;22 53;21 36;20 30;26 29;40 20;36 26;62 48;67 41;62 35;65 27;62 24;55 20;35 51;30 50;45 42;21 45;36 6;6 25;11 28;26 59;30 60;22 22;27 24;30 20;35 16;54 10;50 15;44 13;35 60;40 60;40 66;31 76;47 66;50 70;57 72;55 65;2 38;7 43;9 56;15 56;10 70;17 64;55 57;62 57;70 64;64 4;59 5;50 4;60 15;66 14;66 8;43 26];%75 cities d'=549.18 by D B Fogelfor i=1:75for j=1:75DL75(i,j)=((city75(i,1)-city75(j,1))^2+(city75(i,2)-city75(j,2))^ 2)^0.5;endendDLn=DL75;cityn=city75;endend----------------------------------------------------------------- %根据交叉概率决定是否进行交叉操作:function pcc=pro(pc);test(1:100)=0;l=round(100*pc);test(1:l)=1;n=round(rand*99)+1;pcc=test(n);end----------------------------------------------------------------- %计算城市距离矩阵:function F=caldist(dislist,s)distan=0;n=size(s,2);for i=1:n-1distan=distan+dislist(s(i),s(i+1));enddistan=distan+dislist(s(n),s(1));F=distan;----------------------------------------------------------------- %作图:function m=drawTSP(Clist,BSF,bsf,p,f)CityNum=size(Clist,1);for i=1:CityNum-1plot([Clist(BSF(i),1),Clist(BSF(i+1),1)],[Clist(BSF(i),2),Clist(B SF(i+1),2)],'ms-','LineWidth',2,'MarkerEdgeColor','k','MarkerFace Color','g');hold on;endplot([Clist(BSF(CityNum),1),Clist(BSF(1),1)],[Clist(BSF(CityNum), 2),Clist(BSF(1),2)],'ms-','LineWidth',2,'MarkerEdgeColor','k','Ma rkerFaceColor','g');title([num2str(CityNum),'城市TSP']);if f==0text(1.5,1.5,['第',int2str(p),' 步',' 最短距离为',num2str(bsf)]);elsetext(1,1,['最终搜索结果:最短距离 ',num2str(bsf)]);endhold off;pause(0.05)-----------------------------------------------------------------。
遗传算法求解TSP问题

遗传算法求解TSP问题1、遗传算法前⼀篇遗传算法的基本内容在之前的博客已经应⽤过了之前遗传算法解决的是函数优化问题,即求解最⼤值或最⼩值问题;此次要解决的是组合优化问题中的TSP问题,即旅⾏商问题。
这边先介绍⼀下TSP问题TSP问题(Traveling Salesman Problem),即旅⾏商问题,⼜译为旅⾏推销员问题、货郎担问题,是数学领域中著名问题之⼀。
假设有⼀个旅⾏商⼈要拜访n个城市,他必须选择所要⾛的路径,路径的限制是每个城市只能拜访⼀次,⽽且最后要回到原来出发的城市。
路径的选择⽬标是要求得的路径路程为所有路径之中的最⼩值。
简单地说,TSP问题就是要找到图中的最短哈密尔顿回路,即全局最短路径。
然后遗传算法可以模仿⽣物进化,然后可以找到⼀个近似最优解,但其不⼀定是全局最优解。
2、实验原理1)产⽣初始种群;随机⽣成N个个体作为初始群体popm,随机选择⼀个种群;2)适应度函数;个体评价计算P(t)中各个个体的适应度,遗传算法在进化搜索中基本不利⽤外部信息,仅以适应度函数为依据,利⽤种群中每个个体的适应度值来进⾏搜索。
TSP的⽬标是路径总长度为最短3)选择运算;将使适应度较⼤(优良)个体有较⼤的存在机会,⽽适应度较⼩(低劣)的个体继续存在的机会也较⼩。
简单遗传算法采⽤赌轮选择机制4)交叉运算将交叉算⼦作⽤于群体;5)变异运算将变异算⼦作⽤于群体,并通过以上运算得到下⼀代群体P(t + 1);6)终⽌条件输出解。
3、代码实现1.city.m:随机⽣成N个城市的坐标并保存2.plot_route.m:实现连点画图3.染⾊体的路程代价函数 mylength.m4.适应度函数fit.m5.交叉操作函数 cross.m6.变异函数 Mutation.m7.main函数3、结果分析调整参数并分析运⾏结果(1)对于city_25.mat⽂件中的城市序列,参数ITER=2000,m=2,Pc=0.8,Pm=0.05保持不变,调整种群个数M的值,观察其结果变化:M=50M=100M=500由运⾏结果可知当M=100时得到TSP的最短路径长度均⼩于M=50和M=500运⾏得出的最短路径长度。
matlab智能算法代码

matlab智能算法代码MATLAB是一种功能强大的数值计算和科学编程软件,它提供了许多智能算法的实现。
下面是一些常见的智能算法及其在MATLAB中的代码示例:1. 遗传算法(Genetic Algorithm):MATLAB中有一个专门的工具箱,称为Global Optimization Toolbox,其中包含了遗传算法的实现。
以下是一个简单的遗传算法示例代码:matlab.% 定义目标函数。
fitness = @(x) x^2;% 设置遗传算法参数。
options = gaoptimset('Display', 'iter','PopulationSize', 50);% 运行遗传算法。
[x, fval] = ga(fitness, 1, options);2. 粒子群优化算法(Particle Swarm Optimization):MATLAB中也有一个工具箱,称为Global Optimization Toolbox,其中包含了粒子群优化算法的实现。
以下是一个简单的粒子群优化算法示例代码:matlab.% 定义目标函数。
fitness = @(x) x^2;% 设置粒子群优化算法参数。
options = optimoptions('particleswarm', 'Display','iter', 'SwarmSize', 50);% 运行粒子群优化算法。
[x, fval] = particleswarm(fitness, 1, [], [], options);3. 支持向量机(Support Vector Machine):MATLAB中有一个机器学习工具箱,称为Statistics and Machine Learning Toolbox,其中包含了支持向量机的实现。
遗传算法解决TSP问题的matlab程序

1.遗传算法解决TSP 问题(附matlab源程序)2.知n个城市之间的相互距离,现有一个推销员必须遍访这n个城市,并且每个城市3.只能访问一次,最后又必须返回出发城市。
如何安排他对这些城市的访问次序,可使其4.旅行路线的总长度最短?5.用图论的术语来说,假设有一个图g=(v,e),其中v是顶点集,e是边集,设d=(dij)6.是由顶点i和顶点j之间的距离所组成的距离矩阵,旅行商问题就是求出一条通过所有顶7.点且每个顶点只通过一次的具有最短距离的回路。
8.这个问题可分为对称旅行商问题(dij=dji,,任意i,j=1,2,3,…,n)和非对称旅行商9.问题(dij≠dji,,任意i,j=1,2,3,…,n)。
10.若对于城市v={v1,v2,v3,…,vn}的一个访问顺序为t=(t1,t2,t3,…,ti,…,tn),其中11.ti∈v(i=1,2,3,…,n),且记tn+1= t1,则旅行商问题的数学模型为:12.min l=σd(t(i),t(i+1)) (i=1,…,n)13.旅行商问题是一个典型的组合优化问题,并且是一个np难问题,其可能的路径数目14.与城市数目n是成指数型增长的,所以一般很难精确地求出其最优解,本文采用遗传算法15.求其近似解。
16.遗传算法:17.初始化过程:用v1,v2,v3,…,vn代表所选n个城市。
定义整数pop-size作为染色体的个数18.,并且随机产生pop-size个初始染色体,每个染色体为1到18的整数组成的随机序列。
19.适应度f的计算:对种群中的每个染色体vi,计算其适应度,f=σd(t(i),t(i+1)).20.评价函数eval(vi):用来对种群中的每个染色体vi设定一个概率,以使该染色体被选中21.的可能性与其种群中其它染色体的适应性成比例,既通过轮盘赌,适应性强的染色体被22.选择产生后台的机会要大,设alpha∈(0,1),本文定义基于序的评价函数为eval(vi)=al23.pha*(1-alpha).^(i-1) 。
遗传算法matlab程序代码

function [R,Rlength]= GA_TSP(xyCity,dCity,Population,nPopulation,pCrossover,percent,pMutation,generation,nR,rr,rang eCity,rR,moffspring,record,pi,Shock,maxShock)clear allA=load('d.txt');AxyCity=[A(1,:);A(2,:)]; %x,y为各地点坐标xyCityfigure(1)grid onhold onscatter(xyCity(1,:),xyCity(2,:),'b+')grid onnCity=50;nCityfor i=1:nCity %计算城市间距离for j=1:nCitydCity(i,j)=abs(xyCity(1,i)-xyCity(1,j))+abs(xyCity(2,i)-xyCity(2,j));endend %计算城市间距离xyCity; %显示城市坐标dCity %显示城市距离矩阵%初始种群k=input('取点操作结束'); %取点时对操作保护disp('-------------------')nPopulation=input('种群个体数量:'); %输入种群个体数量if size(nPopulation,1)==0nPopulation=50; %默认值endfor i=1:nPopulationPopulation(i,:)=randperm(nCity-1); %产生随机个体endPopulation %显示初始种群pCrossover=input('交叉概率:'); %输入交叉概率percent=input('交叉部分占整体的百分比:'); %输入交叉比率pMutation=input('突变概率:'); %输入突变概率nRemain=input('最优个体保留最大数量:');pi(1)=input('选择操作最优个体被保护概率:');%输入最优个体被保护概率pi(2)=input('交叉操作最优个体被保护概率:');pi(3)=input('突变操作最优个体被保护概率:');maxShock=input('最大突变概率:');if size(pCrossover,1)==0pCrossover=0.85;endif size(percent,1)==0percent=0.5;endif size(pMutation,1)==0pMutation=0.05;endShock=0;rr=0;Rlength=0;counter1=0;counter2=0;R=zeros(1,nCity-1);[newPopulation,R,Rlength,counter2,rr]=select(Population,nPopulation,nCity,dCity,Rlength,R,coun ter2,pi,nRemain);R0=R;record(1,:)=R;rR(1)=Rlength;Rlength0=Rlength;generation=input('算法终止条件A.最多迭代次数:');%输入算法终止条件if size(generation,1)==0generation=200;endnR=input('算法终止条件B.最短路径连续保持不变代数:');if size(nR,1)==0nR=10;endwhile counter1<generation&counter2<nRif counter2<nR*1/5Shock=0;elseif counter2<nR*2/5Shock=maxShock*1/4-pMutation;elseif counter2<nR*3/5Shock=maxShock*2/4-pMutation;elseif counter2<nR*4/5Shock=maxShock*3/4-pMutation;elseShock=maxShock-pMutation;endcounter1newPopulationoffspring=crossover(newPopulation,nCity,pCrossover,percent,nPopulation,rr,pi,nRemain);offspringmoffspring=Mutation(offspring,nCity,pMutation,nPopulation,rr,pi,nRemain,Shock);[newPopulation,R,Rlength,counter2,rr]=select(moffspring,nPopulation,nCity,dCity,Rlength,R,coun ter2,pi,nRemain);counter1=counter1+1;rR(counter1+1)=Rlength;record(counter1+1,:)=R;endR0;Rlength0;R;Rlength;minR=min(rR);disp('最短路经出现代数:')rr=find(rR==minR)disp('最短路经:')record(rr,:);mR=record(rr(1,1),:)disp('终止条件一:')counter1disp('终止条件二:')counter2disp('最短路经长度:')minRdisp('最初路经长度:')rR(1)figure(2)plotaiwa(xyCity,mR,nCity)figure(3)i=1:counter1+1;plot(i,rR(i))grid onfunction[newPopulation,R,Rlength,counter2,rr]=select(Population,nPopulation,nCity,dCity,Rlength,R,coun ter2,pi,nRemain)Distance=zeros(nPopulation,1); %零化路径长度Fitness=zeros(nPopulation,1); %零化适应概率Sum=0; %路径长度for i=1:nPopulation %计算个体路径长度for j=1:nCity-2Distance(i)=Distance(i)+dCity(Population(i,j),Population(i,j+1));end %对路径长度调整,增加起始点到路径首尾点的距离Distance(i)=Distance(i)+dCity(Population(i,1),nCity)+dCity(Population(i,nCity-1),nCity);Sum=Sum+Distance(i); %累计总路径长度end %计算个体路径长度if Rlength==min(Distance)counter2=counter2+1;elsecounter2=0;endRlength=min(Distance); %更新最短路径长度Rlength;rr=find(Distance==Rlength);R=Population(rr(1,1),:); %更新最短路径for i=1:nPopulationFitness(i)=(max(Distance)-Distance(i)+0.001)/(nPopulation*(max(Distance)+0.001)-Sum); %适应概率=个体/总和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[p1,I]=sort(p);
B=Ap(I,:)';
end
%=====================================================
function y=rshift(x,dir)
% Usage: y=rshift(x,dir)
% rotate x vector to right (down) by 1 if dir = 0 (default)
% or rotate x to left (up) by 1 if dir = 1
if nargin<2, dir=0; end
[m,n]=size(x);
if m > 1,
[csort,ridx]=sort(cost); % sort from small to big.
csum=sum(csort);
caverage=csum/ngpool;
cprobilities=caverage./csort;
copynumbers=0;removenumbers=0;
diffidx=find(sameidx==0);
if length(diffidx)<=2
gpool(2*i,:)=[1 randomize([2:12]')' 1];
end
end
%===========
%cross gens in couples
for i=1:ngpool/2
j=j-1;
t=X3(j);X3(j)=X3(i);X3(i)=t;
end
if X4(i)~=0,
k=k-1;
t=X4(k);X4(k)=X4(i);X4(i)=t;
end
end
for i=n1:n2
X3(2+i-n1)=X2(i);
X4(2+i-n1)=X1(i);
if nargin == 1,
rowcol=0;
end
if rowcol==0,
[m,n]=size(A);
p=rand(m,1);
[p1,I]=sort(p);
B=A(I,:);
elseif rowcol==1,
Ap=A';
[m,n]=size(Ap);
end
end
FARM=FARM(1:nn,:);
[aa,bb]=size(FARM);%交叉和变异
while aa<n
if nn<=2
nnper=randperm(2);
else
nnper=randperm(nn);
counter=0;
while counter<C
for i=1:n
len(i,1)=myLength(D,farm(i,:));%计算路径长度
end
maxlen=max(len);
minlen=min(len);
fitness=fit(len,m,maxlen,minlen);%计算归一化适应值
2048 1439
2496 3063 2805 1721 1172 0 676 2376 2187 1882
1813 1327
1821 2387 2129 1045 842 676 0 1700 1511 1206
1165 651
636 972 1622 1356 2542 2376 1700 0 189 494
end
elseif dir==0, % default rotate right or down
if col==0,
y = [x(n) x(1:n-1)];
elseif col==1 % column vector
y = [x(n); x(1:n-1)];
end
end
if n == 1,
col=1;
elseif n > 1,
error('x must be a vector! break');
end % x is a column vector
elseif m == 1,
if n == 1,
y=x; return
elseif n > 1,
end
L1=X3;L2=X4;
%=======================
其中distTSP.txt为10个城市距离矩阵。
0 622 1042 776 2236 2496 1821 636 825 1130
2005 1953
622 0 1608 1342 2802 3063 2387 972 1161 1166
0 514
1953 2519 2261 1177 1439 1327 651 1686 1497 1192
514 0
二。%TSP问题(又名:旅行商问题,货郎担问题)遗传算法通用matlab程序
%D是距离矩阵,n为种群个数,建议取为城市个数的1~2倍,
%C为停止代数,遗传到第 C代时程序停止,C的具体取值视问题的规模和耗费的时间而定
for i=1:ngpool,
if cprobilities(i)>1.1
copynumbers=copynumbers+1;
end
if cprobilities(i)<0.9
removenumbers=removenumbers+1;
end
end
copygpool=min(copynumbers,removenumbers);
2623 2519
1042 1608 0 1336 2544 2805 2129 1622 1811 2116
2313 2261
776 1342 1336 0 1451 1721 1045 1356 1545 1229
1229 1177
2236 2802 2544 1451 0 1172 842 2542 2353 2048
一Matlab的GA程序 遗传算法求TSP
for i=1:ngpool,
cost(i)=sum(diag(distance(gpool(i,:)',rshift(gpool(i,:))')));
end
% record current best solution
[costmin,idx]=min(cost);
end
%=========
%when genaration is more than 50,or the patterns in a couple are too close,do
mutation
for i=1:ngpool/2
%
sameidx=[gpool(2*i-1,:)==gpool(2*i,:)];
%==================================================
function [L1,L2]=crossgens(X1,X2)
% Usage:[L1,L2]=crossgens(X1,X2)
s=randomize([2:12]')';
n1=min(s(1),s(11));n2=max(s(1),s(11));
rr=find(len==minlen);
R=farm(rr(1,1),:);%更新最短路径
FARM=farm;%优胜劣汰,nn记录了复制的个数
nn=0;
for i=1:n
if fitness(i,1)>=alpha*rand
nn=nn+1;
FARM(nn,:)=farm(i,:);
end
disp(['cost function evaluation: ' int2str(increase) ' times!'])
disp(['n:' int2str(resultincrease)])
disp(['minmum trip length = ' num2str(resultcost)])
[N,NN]=size(D);
farm=zeros(n,N);%用于存储种群
for i=1:n
farm(i,:)=randperm(N);%随机生成初始种群
end
R=farm(1,:);%存储最优种群
len=zeros(n,1);%存储路径长度
fitness=zeros(n,1);%存储归一化适应值
[gpool(2*i-1,:),gpool(2*i,:)]=crossgens(gpool(2*i-1,:),gpool(2*i,:));
end
for i=1:ngpool,
cost(i)=sum(diag(distance(gpool(i,:)',rshift(gpool(i,:))')));
disp('optimum tour = ')
disp(num2str(resulttour))
%====================================================
function B=randomize(A,rowcol)
% Usage: B=randomize(A,rowcol)
% randomize row orders or column orders of A matrix