众数、中位数、平均数与频率分布直方图的关系
求众数、中位数、平均数
2.2.2 用样本的数字特征估计总体的数字特征第一课时 求众数、中位数、平均数【学习目标】1、会求样本的众数、中位数、平均数、; 3、会用样本的数字特征对总体进行估计; 4、会用相关知识解决简单实际问题。
【重难点】重点:求众数、中位数、平均数 难点:知识的简单应用【学习过程】 复习一、众数、中位数、平均数的概念 1、众数:在一组数据中,出现次数最多的数据叫做这组数据的众数.2、中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.3、 平均数: 一般地,如果n 个数12,,,n x x x ,那么()121n x x x x n=+++叫做这n 个数的平均数。
众数、中位数、平均数都是描述一组数据的集中趋势的特征数,只是描述的角度不同,其中以平均数的应用最为广泛. 练习1、求下列各组数据的众数(1)、1 ,2,3,3,3,5,5,8,8,8,9,9 众数为:(2)、1 ,2,3,3,3,5,5,8,8,9,9 众数为:练习2、求下列各组数据的中位数(1)、1 ,2,3,3,3,4,6,8,8,8,9,9 中位数为:(2)、1 ,2,3,3,3,4,8,8,8,9,9 中位数为: 【新课讲解】知识点一、众数、中位数、平均数与频率分布直方图的关系1、众数在样本数据的频率分布直方图中,就是最高矩形的中点的横坐标。
2、平均数等于频率分布图中每个小矩形的面积乘以小矩形底边中点的横坐标之和。
人员 经理 管理人员 高级技工 工人 学徒 合计 周工资 2200 250 220 200 100 人数 1 6 5 10 1 23 合计22001500110020001006900指出这个问题中周工资的众数、中位数、平均数。
练习1:(新课程导学P27例2)某小区广场上有甲、乙两组市民正在进行晨练,两组市民的年龄如下(单位:岁):甲组:13,13,14,15,15,15,15,16,17,17;乙组:54,3,4,4,5,5,6,6,6,57。
人教版高中数学必修三第二章第2节用样本的数字特征估计总体的数字特征 课件 (2)
2)从标准差的定义和计算公式都可以得出:S 0。 当 S 0 时,意味着所有的样本数据都等于样本 平均数。
课后作业:
课本 P81 习题2.2 A组 6、7.
P79练习答案
解: 依题意计算可得
x1=900 s1≈23.8
x2=900 s2 ≈42.6
如果你是教练,你应当如何对这次射击情 况作出评价?如果这是一次选拔性考核,你应 当如何作出选择?
x甲7
x乙7
两人射击 的平均成绩是一样的. 那么两个
人的水平就没有什么差异吗?
频率 0.3
0.2
0.1 频率
4
频率
5 67 8 (甲)
9 10
0.4 0.3
0.2 0.1
4 5 6 7 8 9 10 (乙)
于,是 样本 x1,x2 数 , xn到 据 x 的 “平均 ”是 :距离
x1xx2xxnx
S
.
n
1.标准差定义:是样本数据到平均数的一种平 均距离。它用来描述样本数据的分散程度。在 实际应用中,标准差常被理解为稳定性。
假设样本数据是 x1,x2,xn, 平均数是 x
2、标准差算法及其公式为:
1)算出样本数据的平均数 。 2)算出每个样本数据与样本数据平均数的差: 3)算出(2)中 的平方。 4)算出(3)中n个平方数的平均数,即为样本方差。 5)算出(4)中平均数的算术平方根,即为样本标准差。
s1 n[x (1x)2(x2x)2 (xnx)2]
3.关于标准差的说明: 1)标准差较大,数据的离散程度较大;标准差较 小,数据的离散程度较小。
规律:标准差越大, 则a越大,数据的 离散程度越大;反 之,数据的离散程 度越小。
_众数,中位数,平均数与频率分布直方图
谢谢观看! 2020
月均用水量
/t
0.5 1 1.5 2 2.5 3 3.5 4 4.5
三 三种数字特征的优缺点
1、众数体现了样本数据的最大集中 点,但它对其它数据信息的忽视使得无 法客观地反映总体特征.如上例中众数是 2.25t,它告诉我们,月均用水量为2.25t的 居民数比月均用水量为其它数值的居民 数多,但它并没有告诉我们多多少.
二 、 众数、中位数、平均数 与频率分布直方图的关系
1、众数在样本数据的频率分布直方图 中,就是最高矩形的中点的横坐标。
例如,在上一节调查的100位居民的月 均用水量的问题中,从这些样本数据的频 率分布直方图可以看出,月均用水量的众 数是2.25t.如图所示:
频率分布直方图如下:
频率 组距
众数(Байду номын сангаас高的矩形的中点)
2200 1500
1100
2000 100 6900
(1)指出这个问题中周工资的众数、中
位数、平均数 (2)这个问题中,工资的平均数能客观
地反映该厂的工资水平吗?为什么?
分析:众数为200,中位数为220,
平均数为300。
因平均数为300,由表格中所列 出的数据可见,只有经理在平均数以 上,其余的人都在平均数以下,故用 平均数不能客观真实地反映该工厂的 工资水平。
3、平均数是频率分布直方图的“重 心”.
是直方图的平衡点. n 个样本数据的平均 数的估计值等于频率分布直方图中每个 小矩形的面积乘以小矩形底边中点的横 坐标之和。 给出.下图显示了居民月均用水量的平 均数: x=2.02
频率分布直方图如下:
频率 组距
平均数
0.50
0.40
0.30
高中数学必修二统计概率知识点总结
必修第二册第九章 统计知识点总结知识点一:简单随机抽样1. 全面调查和抽样调查2.简单随机抽样的概念放回简单随机抽样不放回简单随机抽样一般地,设一个总体含有N(N 为正整数)个个体,从中逐个抽取n (1≤n<N)个个体作为样本如果抽取是放回的,且每次抽取时总体内的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做放回简单随机抽样如果抽取是不放回的,且每次抽取时总体内未进入样本的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做不放回简单随机抽样放回简单随机抽样和不放回简单随机抽样统称为简单随机抽样.通过简单随机抽样获得的样本称为简单随机样本3.抽签法先把总体中的个体编号,然后把所有编号写在外观、质地等无差别的小纸片(也可以是卡片、小球等)上作为号签,并将这些小纸片放在一个不透明的盒里,充分搅拌.最后从盒中不放回地逐个抽取号签,使与号签上的编号对应的个体进入样本,直到抽足样本所需要的个体数.调查方式全面调查(普查)抽样调查定义对每一个调查对象都进行调查的方法,称为全面调查,又称普查根据一定目的,从总体中抽取一部分个体进行调查,并以此为依据对总体的情况作出估计和推断的调查方法,称为 抽样调查相关概念总体:在一个调查中,我们把调查对象的全体称为总体.个体:组成总体的每一个调查对象称为个体样本:把从总体中抽取的那部分个体 称为样本.样本量:样本中包含的个体数称为 样本量4.随机数法(1)定义:先把总体中的个体编号,用随机数工具产生已编号范围内的整数随机数,把产生的随机数作为抽中的编号,使与编号对应的个体进入样本,重复上述过程,直到抽足样本所需要的个体数.(2)产生随机数的方法:(i)用随机试验生成随机数;(ii)用信息技术生成随机数.5.总体均值和样本均值(1)总体均值:一般地,总体中有N个个体,它们的变量值分别为Y1,Y2,…,Y N,则称Y=Y1+Y2+⋯+Y NN =1N∑i=1NY i为总体均值,又称总体平均数.(2)总体均值加权平均数的形式:如果总体的N个变量值中,不同的值共有k(k≤N)个,不妨记为Y1,Y2,…,Y k,其中Y i出现的频数f i(i=1,2,…,k),则总体均值还可以写成加权平均数的形式Y=1N ∑i=1kf i Y i.(3)如果从总体中抽取一个容量为n的样本,它们的变量值分别为y1,y2,…,y n,则称y=y1+y2+⋯+y nn =1n∑i=1ny i为样本均值,又称样本平均数.6.分层随机抽样的相关概念(1)分层随机抽样的定义:一般地,按一个或多个变量把总体划分成若干个子总体,每个个体属于且仅属于一个子总体,在每个子总体中独立地进行简单随机抽样,再把所有子总体中抽取的样本合在一起作为总样本,这样的抽样方法称为分层随机抽样,每一个子总体称为层.(2)比例分配:在分层随机抽样中,如果每层样本量都与层的大小成比例,那么称这种样本量的分配方式为比例分配.(3)进行分层随机抽样的相关计算时,常用到的关系①样本容量n总体容量N =该层抽取的个体数该层的个体数;②总体中某两层的个体数之比等于样本中这两层抽取的个体数之比;③样本的平均数和各层的样本平均数的关系:w=mm+n x+nm+ny=MM+Nx+NM+Ny.1.画频率分布直方图的步骤(1)求极差:极差为一组数据中最大值与最小值的差;(2)决定组距与组数:当样本容量不超过100时,常分成5-12组,为方便起见,一般取等长组距,并且组距应力求“取整”;(3)将数据分组;(4)列频率分布表:一般分四列:分组、频数累计、频数、频率.其中频数合计应是样本容量,频率合计是⑥1;.(5)画频率分布直方图:横轴表示分组,纵轴表示频率组距=频率,各小长方形的面积的总和等于1.小长方形的面积=组距×频率组距2.其他统计图表统计图表主要应用扇形图直观描述各部分数据在全部数据中所占的比例条形图和直方图直观描述不同类别或分组数据的频数和频率反映统计对象在不同时间(或其他合适情形)的发展折线图变化情况1.第p百分位数:一般地,一组数据的第p百分位数是这样一个值,它使得这组数据中至少有p%的数据小于或等于这个值,且至少有(100-p)%的数据大于或等于这个值.2.计算一组n个数据的第p百分位数的步骤第1步,按从小到大排列原始数据.第2步,计算i=n×p%.第3步,若i不是整数,而大于i的比邻整数为j,则第p百分位数为第j项数据;若i是整数,则第p百分位数为第i项与第(i+1)项数据的平均数.3.四分位数:第25百分位数,第50百分位数,第75百分位数,这三个分位数把一组由小到大排列后的数据分成四等份,因此称为四分位数.知识点四:总体集中趋势的估计1.众数、中位数和平均数的定义(1)众数:一组数据中出现次数最多的数.(2)中位数:一组数据按大小顺序排列后,处于中间位置的数.如果这组数据是偶数个,则取中间两个数据的平均数.(3)平均数:一组数据的和除以数据个数所得到的数.2.众数、中位数、平均数与频率分布直方图的关系(1)平均数:在频率分布直方图中,样本平均数可以用每个小矩形底边中点的横坐标与小矩形的面积的乘积之和近似代替.(2)中位数:在频率分布直方图中,中位数左边和右边的直方图的面积应该相等.(3)众数:众数是最高小矩形底边的中点所对应的数据.2.众数、中位数、平均数与频率分布直方图的关系众数众数是最高小长方形底边的中点所对应的数据,表示样本数据的中心值中位数①在频率分布直方图中,中位数左边和右边的直方图面积相等,由此可以估计中位数的值,但是有偏差;②表示样本数据所占频率的等分线平均数①平均数等于每个小长方形的面积乘小长方形底边中点的横坐标之和;②平均数是频率分布直方图的重心,是频率分布直方图的平衡点1.一组数据x1,x2,…,x n的方差和标准差数据x1,x2,…,x n的方差为1n ∑i=1n(x i-x)2=1n∑i=1nx i2-x2,标准差为√1n∑i=1n(x i-x)2.2.总体方差和总体标准差(1)总体方差和标准差:如果总体中所有个体的变量值分别为Y1,Y2,…,Y N,总体的平均数为Y,则称S2= 1N ∑i=1N(Y i-Y)2为总体方差,S=√S2为总体标准差.(2)总体方差的加权形式:如果总体的N个变量值中,不同的值共有k(k≤N)个,不妨记为Y1,Y2,…,Y k,其中Y i出现的频数为f i(i=1,2,…,k),则总体方差为S2= 1N ∑i=1kf i(Y i-Y)2.3.样本方差和样本标准差如果一个样本中个体的变量值分别为y1,y2,…,y n,样本平均数为y,则称s2= 1n ∑i=1n(y i-y)2为样本方差,s=√s2为样本标准差.4.标准差的意义标准差刻画了数据的离散程度或波动幅度,标准差越大,数据的离散程度越大;标准差越小,数据的离散程度越小.5.分层随机抽样的方差设样本容量为n,平均数为x,其中两层的个体数量分别为n1,n2,两层的平均数分别为x1,x2,方差分别为s12,s22,则这个样本的方差为s2=n1n [s12+(x1-x)2]+n2n[s22+(x2-x)2].必修第二册第十章概率知识点总结知识点一:有限样本空间与随机事件1.随机试验的概念和特点(1)随机试验:我们把对随机现象的实现和对它的观察称为随机试验,简称试验,常用字母E表示.(2)随机试验的特点:(i)试验可以在相同条件下重复进行;(ii)试验的所有可能结果是明确可知的,并且不止一个;(iii)每次试验总是恰好出现这些可能结果中的一个,但事先不能确定出现哪一个结果.2.样本点和样本空间定义字母表示样本点我们把随机试验E的每个可能的基本结果称为样本点用ω表示样本点样本空间全体样本点的集合称为试验E的样本空间用Ω表示样本空间有限样本空间如果一个随机试验有n个可能结果ω1,ω2,…,ωn,则称样本空间Ω={ω1,ω2,…,ωn}为有限样本空间Ω={ω1,ω2,…,ωn}3.事件的类型我们将样本空间Ω的子集称为随机事件,简称事件,并把只包含一个样本点的事件称为基本事件.随机事件一般用大写字母A,B,C,…表示.在每次试验中,当且仅当A中某个样本点出现时,称为事件A发生.Ω作为自身的子集,包含了所有的样本点,在每次试验中总有一个样本点发生,所以Ω总会发生,我们称Ω为必然事件.而空集⌀不包含任何样本点,在每次试验中都不会发生,我们称⌀为不可能事件.必然事件与不可能事件不具有随机性.为了方便统一处理,将必然事件和不可能事件作为随机事件的两个极端情形.这样,每个事件都是样本空间Ω的一个子集.知识点二:事件的关系和运算1.包含关系定义一般地,若事件A 发生,则事件B 一定发生,我们就称事件B 包含事件A(或事件A 包含于事件B)含义 A 发生导致B 发生 符号表示B ⊇A(或A ⊆B)图形表示特殊情形如果事件B 包含事件A,事件A 也包含事件B,即B ⊇A 且A ⊇B,则称事件A 与事件B 相等,记作A=B2.并事件(和事件)定义一般地,事件A 与事件B 至少有一个发生,这样的一个事件中的样本点或者在事件A 中,或者在事件B 中,我们称这个事件为事件A 与事件B 的并事件(或 和事件)含义 A 与B 至少有一个发生符号表示A ∪B(或A+B)图形表示3.交事件(积事件)定义一般地,事件A 与事件B 同时发生,这样的一个事件中的样本点既在事件A中,也在事件B 中,我们称这样的一个事件为事件A 与事件B 的交事件(或积 事件)含义 A 与B 同时发生 符号表示A ∩B(或AB)图形表示4.互斥(互不相容)一般地,如果事件A与事件B不能同时发生,也就是说A∩B是一个不可能定义事件,即A∩B=⌀,则称事件A与事件B互斥(或互不相容)含义A与B不能同时发生符号表示A∩B=⌀图形表示5.互为对立一般地,如果事件A与事件B在任何一次试验中有且仅有一个发生,即A∪B=定义Ω,且A∩B=⌀,那么称事件A与事件B互为对立.事件A的对立事件记为A 含义A与B有且仅有一个发生符号表示A∩B=⌀,且A∪B=Ω图形表示6.清楚随机事件的运算与集合运算的对应关系有助于解决此类问题.符号事件的运算集合的运算A 随机事件集合A A的对立事件A的补集AB 事件A与B的交事件集合A与B的交集A∪B 事件A与B的并事件集合A与B的并集知识点三:古典概型1.古典概型的定义试验具有如下共同特征:(1)有限性:样本空间的样本点只有有限个;(2)等可能性:每个样本点发生的可能性相等.我们将具有以上两个特征的试验称为古典概型试验,其数学模型称为古典概率模型,简称古典概型.2.古典概型的概率计算公式一般地,设试验E是古典概型,样本空间Ω包含n个样本点,事件A包含其中的k个样本点,则定义事件A的概率P(A)= kn =n(A)n(Ω),其中n(A)和n(Ω)分别表示事件A和样本空间Ω包含的样本点个数.知识点四:概率的基本性质1.概率的基本性质性质1 对任意的事件A,都有P(A)≥0.性质2 必然事件的概率为1,不可能事件的概率为0,即P(Ω)=1,P(⌀)=0.性质3 如果事件A与事件B互斥,那么P(A∪B)=P(A)+P(B).性质4 如果事件A与事件B互为对立事件,那么P(B)=1-P(A),P(A)=1-P(B).性质5 如果A⊆B,那么P(A)≤P(B).性质6 设A,B是一个随机试验中的两个事件,我们有P(A∪B)=P(A)+P(B)-P(A∩B).知识点五:事件的相互独立性1.相互独立事件的定义:对任意两个事件A与B,如果P(AB)=P(A)P(B)成立,则称事件A 与事件B相互独立,简称为独立.2.相互独立事件的性质:当事件A,B相互独立时,则事件A与事件B相互独立,事件A与事件B相互独立,事件A与事件B相互独立.【提示】公式P(AB)=P(A)P(B)可以推广到一般情形:如果事件A1,A2,…,A n相互独立,那么这n个事件同时发生的概率等于每个事件发生的概率的积,即P(A1A2·…·A n)=P(A1)P(A2)·…·P(A n).3. 两个事件是否相互独立的判断方法(1)直接法:由事件本身的性质直接判定两个事件发生是否相互影响.(2)公式法:若P(AB)=P(A)P(B),则事件A,B为相互独立事件.4.求相互独立事件同时发生的概率的步骤:①首先确定各事件之间是相互独立的.②求出每个事件的概率,再求积.5.事件间的独立性关系已知两个事件A,B相互独立,它们的概率分别为P(A),P(B),则有事件表示概率A,B同时发生AB P(A)P(B)A,B都不发生A B P(A)P(B)A,B恰有一个发生(A B)∪(A B) P(A)P(B)+P(A)P(B)A,B中至少有一个发生(A B)∪(A B)∪(AB) P(A)P(B)+P(A)P(B)+P(A)P(B)A,B中至多有一个发生(A B)∪(A B)∪(A B) P(A)P(B)+P(A)P(B)+P(A)P(B)。
频率分布图的中位数算法
频率分布直方图的中位数的求法:每个矩形的面积就是这组数据的频率。
把每个矩形的面积从左加起,加到接近0.5时(没超过)用0.5减去之前加得的面积,再用减得的数值除以下一组的面积,再乘以组距,再加上在与上一组之间的数就得到了中位数。
从频率分布直方图可以估计出的几个数据:
1、众数:频率分布直方图中最高矩形的底边中点的横坐标。
2、算术平均数:频率分布直方图每组数值的中间值乘以频率后相加。
3、加权平均数:加权平均数就是所有的频率乘以数值后的和相加。
4、中位数:把频率分布直方图分成两个面积相等部分的平行于Y轴的直线横坐标。
高三数学众数、中位数、平均数
二 、 众数、中位数、平均数 与频率分布直方图的关系
1、众数在样本数据的频率分布直方图 中,就是最高矩形的中点的横坐标。 例如,在上一节调查的100位居民的月 均用水量的问题中,从这些样本数据的频 率分布直方图可以看出,月均用水量的众 数是2.25t.如图所示:
频率 组距
0.5 0.4 0.3 0.2 0.1
孝,可是,盈儿„„”“不管你有啥啊天大的理由,反正你就是不能去你二哥那里!”“娘亲!”“盈儿,爹娘连想都没有想过让你去四川的事 情。五年前是因为你二哥在京城需要有人照应,爹娘没有办法,不得已而为之的事情。去年是因为有你二哥壹路同行,而且你二哥也没有娶妻, 所以娘才同意你去四川。现在的情况完全不壹样咯!你二哥已经娶咯嫂子,你过去不是要受嫂子的气吗?而且自古蜀道艰险,爹娘能让你壹各姑 娘家,孤零零地壹各人走那条险路吗?再有咯,京城可是在天子脚下,要啥啊有啥啊,不比那蛮夷之地强多咯?在京城里给你觅得壹各佳婿,总 比你嫁到山高路远的巴蜀之地好啊!你二哥那是去上任,总有回来的那壹天,你假如是嫁到咯那里,啥啊时候能让娘亲再见到你啊!这可是壹辈 子怕是要见不到咯啊!”年夫人越说越伤心,越说越动情,到最后,竟然伏在桌案上抬不起身来。玉盈也是被娘亲的话感动得热泪盈眶,更为自 己只为咯躲避王爷而惹得娘亲如此伤心而内疚不已。见娘亲哭得难以自持,她扑通壹下子就跪倒在咯年夫人的面前:“娘亲,玉盈不孝,伤咯娘 亲的心,盈儿再也不去四川咯,盈儿这就跟你回京城,好吗?娘啊,您不要再哭咯,盈儿知错咯。”“盈儿,自从你来到年府的第壹天,娘就壹 直拿你当亲生的闺女看待,凝儿有的,你壹定不能缺咯!这是娘对你亲生爹娘许下的承诺。”“娘,盈儿知错咯,您千万不要再难过咯。盈儿壹 定跟爹娘回京城,壹定为爹娘恪尽孝道,为爹娘养老送终„„”“傻孩子,爹娘怎么会要你养老送终呢!爹娘只要你嫁得壹各良人佳婿就是最大 的心愿。”“娘,盈儿说过咯,盈儿不会嫁人的,假如娘亲壹定要盈儿嫁人,盈儿还不如进咯道观做姑子!”“盈儿!你”年夫人壹口气堵在心 中,顿觉胸闷气短,直挺挺地就要栽倒。眼见着闯咯大祸的玉盈吓得啥啊也不敢再说,壹边喊人请大夫,壹边将娘亲扶到咯床上。大夫很快就请 来,仔细诊治壹番,见没有大碍,留下方子就走咯。大夫走后,年老爷、玉盈壹直守在夫人的身边。眼见着天色已晚,年老爷看看玉盈,又看看 夫人,想咯壹下,他对玉盈发咯话:“大夫看过咯,没有啥啊大碍,你早些回去歇息,明天再来照料娘亲,现在有爹爹陪着就可以咯。”“爹爹, 您的身体会受不住的,这些还是由盈儿来做吧。”“爹爹说啥啊,你听啥啊就是咯,爹爹自有爹爹的安排。”玉盈见状,只好和翠珠两人又忙咯 半天,把壹切料理妥当才离开。听见玉盈走咯,年夫人才慢慢地睁开咯眼睛。果然猜得不假,年大人心中有咯底。第壹卷 第201章 疑问“夫人 这又是为何事跟盈儿闹咯脾气?气坏咯身体可就不值当咯。”“唉,老爷,妾身这可就是想不
经典:众数、中位数、平均数与频率分布直方图的关系
分布直方图如图3,则这20名工人中一天生产
该产品 数量在
的中位 数.
3、平均数是频率分布直方图的“重心”.
是直方图的平衡点. n 个样本数据的平均数由 公式:
X= n 1(x1x2xn)
假设每组数据分别为〔a1, b1)、 〔a2, b2)、 … … 〔ak, bk)时, 且每组数据相应的 频率分别为f1、 f2 、 …… fk;那么样本的平 均数(或总体的数学期望)由下列公式计算即 可。
1002000.102003000.153004000.40
2
2
2
4005000.205006000.15151409082.5365.
2
2
我 们 估 计 总 体 生子产元的件电的 寿 命 的
期 望 值 ( 总 体 均36值5. ) 为
思考:从样本数据可知,所求得该样本的众 数、中位数和平均数,这与我们从样本频率 分布直方图得出的结论有偏差,你能解释一 下原因吗?
频数
20 30 80 40 30 200
频率
0.10 0.15 0.40 0.20
0.15 1
累积频率 0.10 0.25 0.65 0.85 1
0 100 200300400 500 600 寿命(h)
总体分布的估计
(3)由频率分布表 出可 ,以 寿看 命 10在 h0~400
的电子元件出现 为的 :0.6频 5,率 所以我们估计电子
元件寿命 10在 h0~40h0的概率:0为 .65.
( 4) .由 频 率 分 布 表 命可 在 40知 h0以, 上寿 的 电 子
元 件 出 现 的 :0.2频 00率 .15为 0.3, 5 故 我 们
众数中位数平均数与频率分布直方图的关系
频数
20 30 80 40 30 200
频率
0.10 0.15 0.40 0.20
0.15 1
累积频率 0.10 0.25 0.65 0.85 1
0 100 200300400 500 600 寿命(h)
总体分布得估计
(3)由频率分布表可以看 出,寿命在100h ~ 400
的电子元件出现的频率 为 : 0.65,所以我们估计电子
(2)中位数就是样本数据所占频率得等分线,她不受 少数几个极端值得影响,这在某些情况下就是优点, 但她对极端值不敏感有时也会成为缺点、
(3)由于平均数与每一个样本得数据有关,所以任何 一个样本数据得改变都会引起平均数得改变,这就是 众数、中位数都不具有得性质。但平均数受数据中 得极端值得影响较大,使平均数在估计总体时可靠性 降低。
0.08 0.10
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
中位数左边立方图得小矩形面积为0、月5 均用水量 /t 0~2得小矩形面积之和为:
0、5×(0、08+0、16+0、30+0、44) 0、5-0、49=0、01、01/0、5=0、02 如图在直线t=2、02之前所有小矩形得面积为0、 所以该样本得中位数为2、02
众数中位数平均数与频率分布直方 图的关系
一 众数、中位数、平均数得概念
众数、中位数、平均数都就是描述一 组数据得集中趋势得特征数,只就是描述得 角度不同,其中以平均数得应用最为广泛、
众数:在一组数据中,出现次数最多得 数据叫做这组数据得众数、
中位数:将一组数据按大小依次排列, 把处在最中间位置得一个数据(或最中间 两个数据得平均数)叫做这组数据得中位 数、
2
众数、中位数、平均数
中位数:中位数左边和右边的直方图的面积相等。
频率 组距
数据值为2.03t
0.5 0.4 0.3 0.2 0.1 O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量(t)
说明:
2.03这个中位数的估计值,与样本 的中位数值2.0不一样,这是因为样本数 据的频率分布直方图,只是直观地表明 分布的形状,但是从直方图本身得不出 原始的数据内容,所以由频率分布直方 图得到的中位数估计值往往与样本的 实际中位数值不一致.
平均数:
x x1 s1 x 2 s 2 x n s n
x 1 . 973
频率 组距
0.5 0.4 0.3
0.2
0.1 O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量(t)
三、三种数字特征的优缺点 1、众数体现了样本数据的最大集中点,但它对其它数据信息的 忽视使得无法客观地反映总体特征.如上例中众数是2.25t,它告诉 我们,月均用水量为2.25t的居民数比月均用水量为其它数值的居 民数多,但它并没有告诉我们多多少. 2、中位数是样本数据所占频率的等分线,它不受少数几个极端 值的影响,这在某些情况下是优点,但它对极端值的不敏感有时 也会成为缺点。如上例中假设有某一用户月均用水量为10t,那 么它所占频率为0.01,几乎不影响中位数,但显然这一极端值是不 能忽视的。 3、由于平均数与每一个样本的数据有关,所以任何一个样本 数据的改变都会引起平均数的改变,这是众数、中位数都不具 有的性质。也正因如此 ,与众数、中位数比较起来,平均数可 以反映出更多的关于样本数据全体的信息,但平均数受数据中 的极端值的影响较大,使平均数在估计时可靠性降低。
四、众数、中位数、平均数的简单应用 例、某工厂人员及工资构成如下: 人员 周工资 经理 2200 管理人员 250 高级技工 220 工人 200 学徒 100 合计
高中数学第九章统计-总体百分位数的估计 总体集中趋势的估计课件及答案
分数的中位数和众数分别是
()
A.84,85
B.84,84
C.85,84
D.85,85
答案:B
3.已知一组数据7.5,8.0,8.4,7.8,8.3,那么这组数据的平均数为________.
答案:8.0
题型一 百分位数的计算及应用
[探究发现] (1)第p百分位数有什么特点? 提示:总体数据中的任意一个数小于或等于它的可能性是p%. (2)某组数据的第p百分位数在此组数据中一定存在吗?为什么? 提示:不一定.因为按照计算第p百分位数的步骤,第2步计算所得 的i=n×p%如果是整数,则第p百分位数为第i项与第(i+1)项数据的平均 数.若第i项与第(i+1)项数据不相等,则第p百分位数在此组数据中就不 存在.
18,18,17,15,13,设其平均数为 a,中位数为 b,众数为 c,则有 ( )
A.a>b>c
B.a>c>b
C.c>a>b
D.c>b>a
[解析] (1)把这组数据按从小到大排列为:10,12,12,14,14,14,17,18, 19,23,27,则可知其众数为 14,中位数为 14.
(2)由题意得 a=110(16+18+15+11+16+18+18+17+15+13)=11507= 15.7,中位数为 16,众数为 18,则 b=16,c=18,所以 c>b>a.
(二)基本知能小试
1.判断正误:
(1)若一组样本数据各不相等,则其第 65%分位数大于第 15%分位数.(√ )
(2)若一组样本数据的第 20%分位数是 30,则在这组数据中有 20%的数据大
于 30.
(× )
(3)若一组数据有 80 个,按从小到大排列,第 80 百分位数为第 64 项数据.
222用样本的数字特征估计总体的数字特征(2)方差标准差讲解
性质归纳:kan b的平均数和方差:
已知a1,a2,,an的平均数是3,方差是2. 则a1 b,a2 b,,an b的平均数是3 b, 方差是2. ka1,ka2,,kan的平均数是3k,方差是2k 2.
标准差是样本平均数的一种平均距离,一般用s表示.
所谓“平均距离”,其含义可作如下理解:
假设样本数据是x1,x2,...xn ,x 表示这组数据的平均数,xi到 x
的距离是
-
xi - x (i = 1,2,… ,n).
, :
-
于是
样本数据x1,
x2,
x
到
n
x
的“平均距离”是
x1 x x2 x xn x
2.2.2用样本的数字特征估计总体 的数字特征(2) 方差、标准差
学习目标 1.明确标准差、方差等数字特征的意义,深刻 体会它们所反映的样本特征。 2.会用样本的数字特征估计总体的的数字特征, 初步体会样本的数字特征的随机性
复习回顾
一.什么是一组数据的众数、中位数及平均数?
众数:一组数据中出现次数最多的数据。
[解析] (1)甲组成绩的众数为 90 分,乙组成绩的众数为
70 分,从成绩的众数比较看,甲组成绩好些.
(2)s
2
甲
=
1 2+5+10+13+14+6
×[2×(50
-
80)2
+
5×(60
- 80)2 + 10×(70 - 80)2 + 13×(80 - 80)2 + 14×(90 - 80)2 +
A.众数 B.平均数
高考一轮复习第10章统计统计案例第2讲用样本估计总体
第二讲 用样本估计总体知识梳理·双基自测 知识梳理知识点一 用样本的频率分布估计总体分布 (1)频率分布表与频率分布直方图频率分布表和频率分布直方图,是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布规律,从中可以看到整个样本数据的频率分布情况.绘制频率分布直方图的步骤为:①_求极差__;②_决定组距与组数__;③_将数据分组__;④_列频率分布表__;⑤_画频率分布直方图__.(2)频率分布折线图顺次连接频率分布直方图中_各小长方形上端的中点__,就得到频率分布折线图. (3)总体密度曲线总体密度曲线反映了总体在各个范围内取值的百分比,它能提供更加精细的信息. 知识点二 茎叶图(1)茎叶图中茎是指_中间__的一列数,叶是从茎的_旁边__生长出来的数.(2)茎叶图的优点是可以_保留__原始数据,而且可以_随时__记录,这对数据的记录和表示都能带来方便.知识点三 样本的数字特征(1)众数:一组数据中出现次数最多的数.(2)中位数:将数据从小到大排列,若有奇数个数,则最中间的数是中位数;若有偶数个数,则中间两数的平均数是中位数.(3)平均数:x =_x 1+x 2+…+x nn__,反映了一组数据的平均水平.(4)标准差: s =_1n[x 1-x2+x 2-x2+…+x n -x2]__,反映了样本数据的离散程度.(5)方差:s 2=_1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]__,反映了样本数据的离散程度.重要结论(1)若一组数据x i (i =1,2,…,n)的平均数为x -,方差为s 2,则数据组ax i +b(i =1,2,…,n ,a ,b 为常数)的平均数为a x -+b ,方差为a 2·s 2.(2)频率分布直方图与众数、中位数与平均数的关系 ①最高的小长方形底边中点的横坐标即是众数.②中位数左边和右边的小长方形的面积和是相等的,均为12.③平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.( √ ) (2)一组数据的众数可以是一个或几个,那么中位数也具有相同的结论.( × )(3)从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.( √ )(4)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次.( × )(5)在频率分布直方图中,最高的小长方形底边中点的横坐标是众数.( √ ) (6)在频率分布直方图中,众数左边和右边的小长方形的面积和是相等的.( × ) 题组二 走进教材2.(P 81A 组T1改编)已知某班级部分同学一次测验的成绩统计如图,则其中位数和众数分别为( B )A .95,94B .92,86C .99,86D .95,91[解析]由茎叶图可知,此组数据由小到大排列依次76,79,81,83,86,86,87,91,92,94,95,96,98,99,101,103,114,共17个,故92为中位数,出现次数最多的为众数,故众数为86,故选B .3.(P 7T1)如图是100位居民月均用水量的频率分布直方图,则月均用水量为[2,2.5)范围内的居民有_25__人.[解析]100×(0.5×0.5)=25(人).题组三走向高考4.(2020·新课标Ⅲ)设一组样本数据x1,x2,…,x n的方差为0.01,则数据10x1,10x2,…,10x n的方差为( C )A.0.01 B.0.1C.1 D.10[解析]∵样本数据x1,x2,…,x n的方差为0.01,∴根据任何一组数据同时扩大几倍方差将变为平方倍增长,∴数据10x1,10x2,…,10x n的方差为:100×0.01=1,故选C.5.(2020·天津)从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),…,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为( B )A.10 B.18C.20 D.36[解析]直径落在区间[5.43,5.47)的频率为(6.25+5)×0.02= 0.225,则被抽取的零件中,直径落在区间[5.43,5.47)内的个数为0.225×80 =18个,故选B.考点突破·互动探究考点一频率分布直方图——自主练透例1 (1)(2021·江西赣州十四县联考)中央电视台播出《中国诗词大会》火遍全国,下面是组委会在选拔赛时随机抽取的100名选手的成绩,按成绩分组,得到的频率分布表如下所示:组号分组频数频率第1组[160,165) 0.100笫2组[165,170) ①第3组[170,175) 20 ②第4组[175,180) 20 0.200第5组[180,185) 10 0.100合计100 1.00(ⅰ)请先求出频率分布表中①、②位置的相应数据,再完成频率分布直方图(用阴影表示).(ⅱ)为了能选拔出最优秀的选手,组委会决定在笔试成绩高的第3,4,5组中用分层抽样抽取5名选手进入第二轮面试,则第3,4,5组每组各抽取多少名选手进入第二轮面试?(ⅲ)在(ⅱ)的前提下,组委会决定在5名选手中随机抽取2名选手接受考官A面试,求第4组至少有一名选手被考官A面试的概率.(2)(2021·福建漳州质检)2018年9月的台风“山竹”对我国多个省市的财产造成重大损害,据统计直接经济损失达52亿元.某青年志愿者组织调查了某地区的50个农户在该次台风中造成的直接经济损失,将收集的损失数据分成五组:[0,2 000],(2 000,4 000],(4 000,6 000],(6 000,8 000],(8 000,10 000](单位:元),得到如图所示的频率分布直方图.(ⅰ)试根据频率分布直方图估计该地区每个农户的损失(同一组中的数据用该区间的中点值代表);(ⅱ)台风后该青年志愿者与当地政府向社会发出倡议,为该地区的农户捐款帮扶,现从这50户损失超过4 000元的农户中随机抽取2户进行重点帮扶,设抽出损失超过8 000元的农户数为X,求X的分布列和数学期望.[解析](1)(ⅰ)第1组的频数为100×0.100=10,所以①处应填的数为100-(10+20+20+10)=40, 从而第2组的频率为40100=0.400.②处应填的数为1-(0.1+0.4+0.2+0.1)=0.200. 频率分布直方图如图所示.(ⅱ)因为第3,4,5组共有50名选手,所以利用分层抽样在50名选手中抽取5名选手进入第二轮面试时,每组抽取的人数分别为:第3组:2050×5=2,第4组:2050×5=2,第5组:1050×5=1,所以第3,4,5组分别抽取2人,2人,1人进入第二轮面试. (ⅲ)记“第4组至少有一名选手被考官A 面试”为事件A , 则P(A)=C 12C 13+C 22C 25=710. ⎝ ⎛⎭⎪⎫或P A =1-P A -=1-C 23C 25=710 (2)(ⅰ)记每个农户的平均损失为x -元,则x -=1 000×0.3+3 000×0.4+5 000×0.18+7 000×0.06+9 000×0.06=33 601;(ⅱ)由频率分布直方图,可得损失超过 4 000元的农户共有(0.000 09+0.000 03+0.000 03)×2 000×50=15(户),损失超过8 000元的农户共有0.000 03×2 000×50=3(户),随机抽取2户,则X 的可能取值为0,1,2; 计算P(X =0)=C 212C 215=2235,P(X =1)=C 112C 13C 215=1235,P(X =2)=C 23C 215=135.所以X 的分布列为:X0 1 2P2235 1235 135数学期望为E(X)=0×2235+1×1235+2×135=25.名师点拨应用频率分布直方图时的注意事项用频率分布直方图解决相关问题时,应正确理解图表中各个量的意义,识图掌握信息是解决该类问题的关键.频率分布直方图有以下几个要点:(1)纵轴表示频率/组距;(2)频率分布直方图中各长方形高的比也就是其频率之比;(3)频率分布直方图中每一个矩形的面积是样本数据落在这个区间上的频率,所有的小矩形的面积之和等于1,即频率之和为1.〔变式训练1〕(1)(2021·安徽“皖南八校”摸底)某校高三年级有400名学生,在一次数学测试中,成绩都在[80,130](单位:分)内,其频率分布直方图如图,则这次测试数学成绩不低于100分的人数为_220__.(2)(2021·山西适应性考试)某病毒引起的肺炎的潜伏期平均为7天左右,短的约2~3天,长的约10~14天,甚至有20余天.某医疗机构对400名确诊患者的潜伏期进行统计,整理得到以下频率分布直方图.根据该直方图估计:要使90%的患者显现出明显病状,需隔离观察的天数至少是( C )A .12B .13C .14D .15[解析] (1)根据频率分布直方图知: (2a +0.04+0.03+0.02)×10=1⇒a =0.005; 计算出数学成绩不低于100分的频率为: (0.03+0.02+0.005)×10=0.55;所以这次测试数学成绩不低于100分的人数为0.55×400=220人.(2)由题可知,第一,二,三,四,五组的频率分别为0.16,0.4,0.32,0.08,0.04. 因为前三组的频率和为0.88, 故要使90%的患者显现出明显病状,则需隔离观察的天数至少是:13+0.9-0.880.02=14,故选C .考点二 茎叶图——师生共研例2 (多选题)(2021·四川省乐山市调研改编)胡萝卜中含有大量的β-胡萝卜素,摄入人体消化器官后,可以转化为维生素A ,现从a ,b 两个品种的胡萝卜所含的β-胡萝卜素(单位mg)得到茎叶图如图所示,则下列说法正确的是( ABD )A .x a <x bB .a 的方差大于b 的方差C .b 品种的众数为3.31D .a 品种的中位数为3.27 [解析] 由茎叶图得:b 品种所含β-胡萝卜素普遍高于a 品种, ∴x a <x b ,故A 正确;a 品种的数据波动比b 品种的数据波动大, ∴a 的方差大于b 的方差,故B 正确; b 品种的众数为3.31与3.41,故C 错误; a 品种的数据的中位数为:3.23+3.312=3.27,故D 正确.名师点拨茎叶图的绘制及应用(1)茎叶图的绘制需注意:①“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一;②重复出现的数据要重复记录,不能遗漏,特别是“叶”的位置上的数据.(2)茎叶图通常用来记录两位数的数据,可以用来分析单组数据,也可以用来比较两组数据.通过茎叶图可以确定数据的中位数,数据大致集中在哪个茎,数据是否关于该茎对称,数据分布是否均匀等.〔变式训练2〕(2019·山东)如图所示的茎叶图记录了甲,乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 与y 的值分别为( A )A .3,5B .5,5C .3,7D .5,7[解析] 甲组数据的中位数为65,由甲、乙两组数据的中位数相等,得y =5.又甲、乙两组数据的平均值相等,∴15×(56+65+62+74+70+x)=15×(59+61+67+65+78),∴x =3.故选A . 考点三 样本数字特征——多维探究 角度1 样本数字特征与频率分布直方图例3 (1)如图所示是一样本的频率分布直方图,则由图形中的数据,可以估计众数与中位数分别是( B )A .12.5,12.5B .12.5,13C .13,12.5D .13,13[解析] 由频率分布直方图可知,众数为10+152=12.5,因为0.04×5=0.2,0.1×5=0.5,在频率分布直方图中,中位数左边和右边的面积相等,所以中位数在区间[10,15)内.设中位数为x ,则(x -10)×0.1=0.5-0.2,解得x =13.角度2 样本数字特征与茎叶图(2)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示:⎪⎪⎪897 74 0 1 0 x 9 1则7个剩余分数的方差为_367__.[解析] 由图可知去掉的两个数是87,99,所以87+90×2+91×2+94+90+x =91×7,解得x =4,∴s 2=17[(87-91)2+(90-91)2×2+(91-91)2×2+(94-91)2×2]=367.角度3 样本数字特征的计算(3)(2021·湖北武汉、襄阳、荆门、宜昌四地六校考试联盟联考)已知某7个数据的平均数为5,方差为4,现又加入一个新数据5,此时这8个数的方差s 2为( C )A .52B .3C .72D .4[解析] 设某7个数据分别为a 1,a 2,…,a 7, 则由题意得a 1+a 2+…+a 7=5×7=35, (a 1-5)2+(a 2-5)2+…+(a 7-5)2=4×7=28, 加入新数据5后的平均数x -=35+58=5,方差s 2=a 1-52+a 2-52+…+a 7-52+5-528=288=72.故选C .名师点拨平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数,中位数,众数描述其集中趋势,方差和标准差描述其波动大小.〔变式训练3〕(1)(角度1)某小区共有1 000户居民,现对他们的用电情况进行调查,得到频率分布直方图如图所示,则该小区居民用电量的中位数为_155__,平均数为_156.8__.(2)(角度2)(2021·陕西西安八校联考)在一次技能比赛中,共有12人参加,他们的得分(百分制)茎叶图如图,则他们得分的中位数和方差分别为( B )A .89 54.5B .89 53.5C .87 53.5D .89 54(3)高铁、扫码支付、共享单车、网购并称中国“新四大发明”,近日对全国100个城市的共享单车和扫码支付的使用人数进行大数据分析,其中共享单车使用的人数分别为x 1,x 2,x 3,…,x 100,它们的平均数为x -,方差为s 2:其中扫码支付使用的人数分别为3x 1+2,3x 2+2,3x 3+2,…,3x 100+2,它们的平均数为x -′,方差为s′2,则x -′,s′2分别为( C )A .3x -+2,3s 2+2 B .3x -,3s 2C .3x -+2,9s 2D .3x -+2,9s 2+2[解析] (1)中位数为:150+(170-150)×0.10.02×20=155.该组数据的平均数为x =0.005×20×120+0.015×20×140+0.020×20×160+0.005×20×180+0.003×20×200+0.002×20×220=156.8.(2)由题可知,中位数为:87+912=89,先求平均数:x -=78+79+84+86+87+87+91+94+98+98+99+9912=90,S 2=112[(-12)2+(-11)2+(-6)2+(-4)2+(-3)2+(-3)2+12+42+82+82+92+92]=53.5,故中位数为:89,方差为53.5,故选:B .(3)显然x -′=3x -+2,而每个数据上都加上或减去相同数不影响方差,但每个数据都乘以a ,则方差变为原方差的a 2倍,故选C .考点四 折线图——师生共研例4 (多选题)(2021·河南顶级名校模拟改编)如图是某地某月1日至15日的日平均温度变化的折线图,根据该折线图,下列结论不正确的是( BCD )A .连续三天日平均温度的方差最大的是7日,8日,9日三天B .这15天日平均温度的极差为15 ℃C .由折线图能预测16日温度要低于19 ℃D .由折线图能预测本月温度小于25 ℃的天数少于温度大于25 ℃的天数[解析] A 选项,日平均温度的方差的大小取决于日平均温度的波动的大小,7,8,9三日的日平均温度的波动最大,故日平均温度的方差最大,正确;B 选项,这15天日平均温度的极差为18 ℃,B 错;C 选项,由折线图无法预测16日温度是否低于19 ℃,故C 错误;D 选项,由折线图无法预测本月温度小于25 ℃的天数是否少于温度大于25 ℃的天数,故D 错误.故选B 、C 、D .名师点拨折线图可以显示随时间(根据常用比例放置)而变化的连续数据,因此非常适用于显示在相等时间间隔下数据的趋势.〔变式训练4〕(多选题)甲乙两名同学在本学期的六次考试成绩统计如图,甲乙两组数据的平均值分别为x -甲、x -乙,则( BC )A .每次考试甲的成绩都比乙的成绩高B .甲的成绩比乙稳定C .x -甲一定大于x -乙D .甲的成绩的极差大于乙的成绩的极差[解析] 第二次考试甲的成绩比乙低,A 错;由图可知甲的成绩比乙的成绩波动小,B 正确,D 错;甲的平均成绩显然比乙的平均成绩高,C 正确;故选B 、C .名师讲坛·素养提升 高考与频率分布直方图例5 (2021·安徽省池州市期末)高三年级某班50名学生期中考试数学成绩的频率分布直方图如图所示,成绩分组区间为:[80,90),[90,100),[100,110),[110,120),[120,130),[130,140),[140,150].其中a ,b ,c 成等差数列且c =2a ,物理成绩统计如表.(说明:数学满分150分,物理满分100分)分组 [50,60) [60,70) [70,80) [80,90) [90,100]频数6920105(1)根据频率分布直方图,请估计数学成绩的平均分; (2)根据物理成绩统计表,请估计物理成绩的中位数;(3)若数学成绩不低于140分的为“优”,物理成绩不低于90分的为“优”,已知本班中至少有一个“优”同学总数为6人,从此6人中随机抽取3人.记X 为抽到两个“优”的学生人数,求X 的分布列和期望值.[解析] (1)根据频率分布直方图得, (a +b +2c +0.024+0.020+0.004)×10 =1, 又因a +c =2b ,c =2a ,解得a =0.008,b =0.012,c =0.016, 故数学成绩的平均分x -=85×0.04+95×0.12+105×0.16+115×0.2+125×0.24 +135×0.16+145×0.08=117.8(分),(2)总人数50分,由物理成绩统计表知,中位数在成绩区间[70,80), 所以物理成绩的中位数为75分.(3)数学成绩为“优”的同学有4人,物理成绩为“优”有5人,因为至少有一个“优”的同学总数为6名同学,故两科均为“优”的人数为3人,故X 的取值为0、1、2、3.P(X =0)=C 33C 36=120,P(X =1)=C 13C 23C 36=920,P(X =2)=C 23C 13C 36=920,P(X =3)=C 33C 36=120,所以分布列为:X 0 1 2 3 P120920920120∴期望值为E(X)=0×120+1×920+2×920+3×120=32.名师点拨(1)通过统计图可以很清楚地表示出各部分数量同总数之间的关系. (2)准确理解频率分布直方图的数据特点是解题关键. 〔变式训练5〕(2019·高考全国Ⅲ卷)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).[解析](1)由已知得0.70=a+0.20+0.15,故a=0.35.b=1-0.05-0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05,乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.。
众数,中位数,平均数,标准差
巧合 频率 组距
分组 [0,0.5) [0.5,1) [1,1.5) [1.5,2) [2,2.5) [2.5,3) [3,3.5) [3.5,4) [4,4.5]
频率 0.04 0.08 0.15 0.22 0.25 0.14 0.06 0.04 0.02
0.50 0.40 0.30 0.20 0.10
四
众数、中位数、平均数的简单应用
例1 某工厂人员及工资构成如下:
人员 周工资 人数 合计 经理 2200 1 2200 管理人员 250 6 1500 高级技工 220 5 1100 工人 200 10 2000 学徒 合计 100 1 23 100 6900
(1)指出这个问题中周工资的众数、中 位数、平均数 (2)这个问题中,工资的平均数能客观 地反映该厂的工资水平吗?为什么?
? 16
找到啦!有区别了!
上述各偏差的平方和的大小还与什么有关?
——与射击次数有关!
所以要进一步用各偏差平方的平均数来衡量数据的稳定性
设一组数据x1、x2、…、xn中,各数据与它们的平均 数的差的平方分别是(x1-x)2、(x2-x)2 、… (xn-x)2 , 那么我们用它们的平均数,即用
S2=
分析:众数为200,中位数为220,
平均数为300。 因平均数为300,由表格中所列出的数据 可见,只有经理在平均数以上,其余的人 都在平均数以下,故用平均数不能客观真 实地反映该工厂的工资水平。
教练的烦恼
甲,乙两名射击手的测试成绩统计如下:
第一次 第二次 第三次 第四次 第五次
甲命中环数 乙命中环数
O
0.5
1
1.5
2
数据的统计 (标准差,众数、中位数、平均数)
解:用计算器计算可得:
x甲 25.401, x乙 25, 406; s甲 0.037, s乙 0.068.
从样本平均数看,甲生产的零件内径比乙生产 的更接近内径标准(25.40mm),但是差异很小; 从样本标准差看,由于 s甲 s乙 , 因此,甲生产的零件内径比乙的稳定程度高 得多.于是,可以作出判断,甲生产的零件的质 量比乙的高一些.
解: 依题意计算可得 x1=900 x2=900
s1≈23.8
s2 ≈42.6
甲乙两种水稻6年平均产量的平均数相同,但 甲的标准差比乙的小,所以甲的生产比较稳定.
解 : (1) 平均重量约为496.86 g , 标准差约为6.55
(2)重量位于(x-s , x+s)之间有14袋白糖,所占 百分比为66.67%.
分析:每一个工人生产的所有零件的内径尺寸组成一 个总体.由于零件的生产标准已经给出(内径25.40mm), 生产质量可以从总体的平均数与标准差两个角度来衡 量.总体的平均数与内径标准尺寸25.40mm的差异大 时质量低,差异小时质量高;当总体的平均数与标准尺 寸很接近时,总体的标准差小的时候质量高,标准差大 的时候质量低.这样,比较两人的生产质量,只要比较他 们所生产的零件内径尺寸所组成的两个总体的平均数 与标准差的大小即可.但是这两个总体的平均数与标 准差都是不知道的,根据用样本估计总体的思想,我们 可以通过抽样分别获得相应的样体数据,然后比较这 两个样本的平均数、标准差,以此作为两个总体之间 的估计值.
2、中位数 :将一组数据按大小依次排列,把处 在最中间位置的一个数据(或两个数据的平均数) 叫做这组数据的中位数。
3、平均数:一组数据的算术平均数,即
x = (x1+x2+……+xn) /n
中位数、众数、条形统计图和频率分布直方图
中位数、众数、条形统计图和频率分布直方图中位数(Median)统计学名词。
将数据排序后,位置在最中间的数值。
即将数据分成两部分,一部分大于该数值,一部分小于该数值。
中位数的位置:当样本数为奇数时,中位数=(N+1)/2 ; 当样本数为偶数时,中位数为N/2与1+N/2的均值众数(Mode)统计学名词,在统计分布上具有明显集中趋势点的数值,代表数据的一般水平(众数可以不存在或多于一个)。
修正定义:是一组数据中出现次数最多的那个数值,就是众数,有时众数在一组数中有好几个。
用M表示。
理性理解:简单的说,就是一组数据中占比例最多的那个数。
用众数代表一组数据,可靠性较差,不过,众数不受极端数据的影响,并且求法简便。
在一组数据中,如果个别数据有很大的变动,选择中位数表示这组数据的“集中趋势”就比较适合。
条形统计图是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按一定的顺序排列起来。
从条形统计图中很容易看出各种数量的多少。
条形统计图一般简称条形图,也叫长条图或直条图。
条形统计图是用条形的长短来代表数量的大小,便于比较。
条形统计图又分为条形统计图和复式条形统计图,复式条形统计图由多种数据组成,用不同的颜色标出。
频率分布直方图:在直角坐标系中,横轴表示样本数据,纵轴表示频率与组距的比值,将频率分布表中各组频率的大小用相应矩形面积的大小来表示,由此画成的统计图叫做频率分布直方图。
(在图中,各个长方形的面积等于相应各组的频率的数值,所有小矩形面积和为1)把全体样本分成的组的个数称为组数。
每一组两个端点的差称为组距。
落在不同小组中的数据个数为该组的频数。
各组的频数之和等于这组数据的总数。
频数与数据总数的比为频率(总频率=各组频率之和,且它的值为1)。
频率大小反映了各组频数在数据总数中所占的份量。
频数分布直方图条与条之间无间隔,而条形统计图有。
1)条形统计图中,横轴上的数据是孤立的,是一个具体的数据。
最新众数、中位数、平均数与频率分布直方图的关系
二 、 众数、中位数、平均数 与频率分布直方图的关系
(在只有频率分布直方图的情况下,也可以估计总体特征,而且直方图比较直观 便于形象地进行分析。)
1、众数在样本数据的频率分布直方图中, 就是最高矩形的中点的横坐标。
频数
20 30 80 40 30 200
频率
0.10 0.15 0.40 0.20
0.15 1
累积频率 0.10 0.25 0.65 0.85 1
0 100 200300400 500 600 寿命(h)
总体分布的估计
(3)由频率分布表 出可 ,以 寿看 命 10在 h0~400
的电子元件出现 为的 :0.6频 5,率 所以我们估计电子
1、通过频率分布直方图的估计精度低;
2、通过频率分布直方图的估计结果与数据分组 有关;
3、在不能得到样本数据,只能得到频率分布直 方图的情况下,也可以估计总体特征,而且直方图 比较直观便于形象地进行分析。
20
30
80
40
30
(1)列出频率分布表;
(2)画出频率分布直方图; (3)估计电子元件寿命在100h~400h以内的概率; (4)估计电子元件寿命在400h以上的概率; (5)估计总体的数学期望.
寿命 100~200 200~300 300~400 400~500 500~600
合计
频率/组距
总体分布的估计
1002000.102003000.153004000.40
2
2
2
4005000.205006000.15151409082.5365.
众数、中位数和平均数
100W优质文档免费下 载
VIP有效期内的用户可以免费下载VIP免费文档,不消耗下载特权,非会员用户需要消耗下载券/积分获取。
部分付费文档八折起 VIP用户在购买精选付费文档时可享受8折优惠,省上加省;参与折扣的付费文档均会在阅读页标识出折扣价格。
VIP有效期内享有搜索结果页以及文档阅读页免广告特权,清爽阅读没有阻碍。
知识影响格局,格局决定命运! 多端互通
抽奖特权
VIP有效期内可以无限制将选中的文档内容一键发送到手机,轻松实现多端同步。 开通VIP后可以在VIP福利专区不定期抽奖,千万奖池送不停!
福利特权
开通VIP后可在VIP福利专区定期领取多种福利礼券。
VIP专享文档下载特权自VIP生效起每月发放一次, 每次发放的特权有效期为1个月,发放数量由您购买 的VIP类型决定。
每月专享9次VIP专享文档下载特权, 自VIP生效起每月发放一次,持续有 效不清零。自动续费,前往我的账号 -我的设置随时取消。
服务特 权
共享文档下载特权
VIP用户有效期内可使用共享文档下载特权下载任意下载券标价的文档(不含付费文档和VIP专享文档),每下载一篇共享文
2.2.2 用样本的数字特征估计总 体的数字特征
1. 众数、中位数、平均数
一 众数、中位数、平均数的概念
众数、中位数、平均数都是描述一组 数据的集中趋势的特征数,只是描述的角 度不同,其中以平均数的应用最为广泛.
众数:在一组数据中,出现次数最多 的数据叫做这组数据的众数.
中数:将一组数据按大小依次排列, 把处在最中间位置的一个数据(或最中 间两个数据的平均数)叫做这组数据的 中位数.
服务特 权
共享文档下载特权
中位数、众数、条形统计图和频率分布直方图
中位数、众数、条形统计图和频率分布直方图中位数(Median)统计学名词。
将数据排序后,位置在最中间的数值。
即将数据分成两部分,一部分大于该数值,一部分小于该数值。
中位数的位置:当样本数为奇数时,中位数=(N+1)/2 ; 当样本数为偶数时,中位数为N/2与1+N/2的均值众数(Mode)统计学名词,在统计分布上具有明显集中趋势点的数值,代表数据的一般水平(众数可以不存在或多于一个)。
修正定义:是一组数据中出现次数最多的那个数值,就是众数,有时众数在一组数中有好几个。
用M表示。
理性理解:简单的说,就是一组数据中占比例最多的那个数。
用众数代表一组数据,可靠性较差,不过,众数不受极端数据的影响,并且求法简便。
在一组数据中,如果个别数据有很大的变动,选择中位数表示这组数据的“集中趋势”就比较适合。
条形统计图是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按一定的顺序排列起来。
从条形统计图中很容易看出各种数量的多少。
条形统计图一般简称条形图,也叫长条图或直条图。
条形统计图是用条形的长短来代表数量的大小,便于比较。
条形统计图又分为条形统计图和复式条形统计图,复式条形统计图由多种数据组成,用不同的颜色标出。
频率分布直方图:在直角坐标系中,横轴表示样本数据,纵轴表示频率与组距的比值,将频率分布表中各组频率的大小用相应矩形面积的大小来表示,由此画成的统计图叫做频率分布直方图。
(在图中,各个长方形的面积等于相应各组的频率的数值,所有小矩形面积和为1)把全体样本分成的组的个数称为组数。
每一组两个端点的差称为组距。
落在不同小组中的数据个数为该组的频数。
各组的频数之和等于这组数据的总数。
频数与数据总数的比为频率(总频率=各组频率之和,且它的值为1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.
众数、中位数、平均数
一 众数、中位数、平均数的概念
众数、中位数、平均数都是描述一组 数据的集中趋势的特征数,只是描述的角 度不同,其中以平均数的应用最为广泛. 众数:在一组数据中,出现次数最多 的数据叫做这组数据的众数.
中数:将一组数据按大小依次排列, 把处在最中间位置的一个数据(或最中 间两个数据的平均数)叫做这组数据的 中位数.
三
三种数字特征的优缺点
1、众数体现了样本数据的最大集中 点,但它对其它数据信息的忽视使得无 法客观地反映总体特征.如上例中众数是 2.25t,它告诉我们,月均用水量为2.25t的 居民数比月均用水量为其它数值的居民 数多,但它并没有告诉我们多多少.
2、中位数是样本数据所占频率 的等分线,它不受少数几个极端值的 影响,这在某些情况下是优点,但它 对极端值的不敏感有时也会成为缺点。 如上例中假设有某一用户月均用水量 为10t,那么它所占频率为0.01,几乎 不影响中位数,但显然这一极端值是不 能忽视的。
平均数: 一组数据的算术平均数,即
x= x= 练习: 在一次中学生田径运动会上, 参加男子跳高的17名运动员的成绩如下 表所示:
成绩(单 位:米)
1 ( x1 x 2 x n ) n
1.50 1.60 1.65
2 3 2
1.70
3
1.75
4
1.80
1
1.85
1
1.90
1
人数
分别求这些运动员成绩的众数,中位数与 平均数
分析:众数为200,中位数为220,
平均数为300。
因平均数为300,由表格中所列 出的数据可见,只有经理在平均数以 上,其余的人都在平均数以下,故用 平均数不能客观真实地反映该工厂的 工资水平。
二 、 众数、中位数、平均数 与频率分布直方图的关系
1、众数在样本数据的频率分布直方图 中,就是最高矩形的中点的横坐标。 例如,在上一节调查的100位居民的月 均用水量的问题中,从这些样本数据的频 率分布直方图可以看出,月均用水量的众 数是2.25t.如图所示:
频率 组距
0.5 0.4 0.3 0.2 0.1
3、平均数是频率分布直方图的“重 心”. 是直方图的平衡点. n 个样本数据的平均 数由公式: 1 X= n ( x1 x 2 x n ) 给出.下图显示了居民月均用水量的平 均数: x=1.973
频率 组距
0.5 0.4 0.3
0.2
0.1 O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量(t)
解:在17个数据中,1.75出现了4次,出现的 次数最多,即这组数据的众数是1.75. 上面表里的17个数据可看成是按从小到大 的顺序排列的,其中第9个数据1.70是最中间的 一个数据,即这组数据的中位数是1.70; 这组数据的平均数是
答:17名运动员成绩的众数、中位数、平均数 依次是1.75(米)、1.70(米)、1.69(米).
3、由于平均数与每一个样本的 数据有关,所以任何一个样本数据的 改变都会引起平均数的改变,这是众 数、中位数都不具有的性质。也正因 如此 ,与众数、中位数比较起来,平 均数可以反映出更多的关于样本数据 全体的信息,但平均数受数据中的极 端值的影响较大,使平均数在估计时 可靠性降低。
众数、中位数ห้องสมุดไป่ตู้平均数的 简单应用 例 某工厂人员及工资构成如下:
频率 组距
0.5 0.4 0.3 0.2 0.1 O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量(t)
说明:
2.03这个中位数的估计值,与样本 的中位数值2.0不一样,这是因为样本数 据的频率分布直方图,只是直观地表明 分布的形状,但是从直方图本身得不出 原始的数据内容,所以由频率分布直方 图得到的中位数估计值往往与样本的 实际中位数值不一致.
O
0.5
1
1.5
2
2.5
3
3.5
4
4.5
月平均用水量(t)
2、在样本中,有50%的个体小于或等于 中位数,也有50%的个体大于或等于中位 数,因此,在频率分布直方图中,中位数 左边和右边的直方图的面积应该相等,由 此可以估计中位数的值。下图中虚线代表 居民月均用水量的中位数的估计值,此数 据值为2.03t.
人员 周工资 人数 合计 经理 2200 1 2200 管理人员 250 6 1500 高级技工 220 5 1100 工人 200 10 2000 学徒 合计 100 1 23 100 6900
四
(1)指出这个问题中周工资的众数、中 位数、平均数 (2)这个问题中,工资的平均数能客观 地反映该厂的工资水平吗?为什么?