数学建模-(动态规划)
整数规划和动态规划-数学建模
(1.13), (1.14)
max z = ∑ (0.487xi1 + 0.520 xi2 + 0.613 xi3 + 0.720 xi 4 + 0.487 xi 5 + 0.520 xi 6 + 0.640 xi 7 )
i =1
2
于是成为一个有 13 个不等式约束 14 个自然条件的整数线性规划模型,目标是函数 的最大化. (3)问题求解 1) 此模型可用分枝定界法,割平面法求最优解,但用部分枚举法比较便当. 部分枚举法————隐枚举法(Implicit Enumeration) 2) 用 Lingo 软件求解 max=0.487*x11+0.520*x12+0.613*x13+0.720*x14+0.487*x15+0.520*x16+0.640*x17+ 0.487*x21+0.520*x22+0.613*x23+0.720*x24+0.487*x25+0.520*x26+0.640*x27; x11+x21<=8; x12+x22<=7; x13+x23<=9; x14+x24<=6; x15+x25<=6; x16+x26<=4; x17+x27<=8; 2*x11+3*x12+x13+0.5*x14+4*x15+2*x16+x17<=40;
西安理工大学理学院
王秋萍
x13 + x23 ≤ 9 x14 + x24 ≤ 6 x15 + x25 ≤ 6 x16 + x26 ≤ 4 x17 + x27 ≤ 8
数学建模中的动态规划与贪心算法
在现代数学建模中,动态规划和贪心算法是两种常用的方法。
它们具有重要的理论和实际意义,可以在很多实际问题中得到应用。
动态规划是一种通过将问题分解为子问题,并反复求解子问题来求解整个问题的方法。
它的核心思想是将原问题分解为若干个规模较小的子问题,并将子问题的最优解合并得到原问题的最优解。
动态规划的求解过程通常包括问题的建模、状态的定义、状态转移方程的确定、初始条件的设置和最优解的确定等步骤。
通过动态规划方法,可以大大减少问题的求解时间,提高求解效率。
举个例子,假设我们有一组物品,每个物品有重量和价值两个属性。
我们希望从中选出一些物品放入背包中,使得在背包容量限定的条件下,背包中的物品的总价值最大化。
这个问题可以使用动态规划来解决。
首先,我们定义一个状态变量,表示当前的背包容量和可选择的物品。
然后,我们根据背包容量和可选择的物品进行状态转移,将问题分解为子问题,求解子问题的最优解。
最后,根据最优解的状态,确定原问题的最优解。
与动态规划相比,贪心算法更加简单直接。
贪心算法是一种通过每一步的局部最优选择来达到全局最优解的方法。
贪心算法的核心思想是每一步都做出当前看来最好的选择,并在此基础上构造整个问题的最优解。
贪心算法一般包括问题的建模、贪心策略的确定和解的构造等步骤。
尽管贪心算法不能保证在所有情况下得到最优解,但在一些特定情况下,它可以得到最优解。
举个例子,假设我们要找零钱,现有的零钱包括若干2元、5元和10元的硬币。
我们希望找出一种最少的方案来凑出某个金额。
这个问题可以使用贪心算法来解决。
首先,我们确定贪心策略,即每次选择最大面额的硬币。
然后,我们根据贪心策略进行解的构造,直到凑够目标金额。
动态规划和贪心算法在数学建模中的应用广泛,在实际问题中也有很多的成功应用。
例如,动态规划可以用于求解最短路径、最小生成树等问题;贪心算法可以用于求解调度、路径规划等问题。
同时,动态规划和贪心算法也相互补充和影响。
有一些问题既可以使用动态规划求解,也可以使用贪心算法求解。
在数学建模中常用的方法
在数学建模中常用的方法数学建模是一种利用数学模型来描述和解决实际问题的方法。
它在科学研究、工程技术和经济管理等领域具有广泛的应用。
在数学建模中,常用的方法包括线性规划、非线性规划、动态规划、离散事件模拟、蒙特卡洛方法等。
下面将对这些方法进行详细介绍。
1.线性规划:线性规划是一种在给定的约束条件下最大化或最小化线性目标函数的方法。
它适用于有着线性关系的问题,包括生产计划、资源分配、运输问题等。
线性规划的主要方法是使用线性规划模型将问题转化为数学形式,并通过线性规划算法求解最优解。
2.非线性规划:非线性规划是一种在给定的约束条件下最大化或最小化非线性目标函数的方法。
它适用于有着非线性关系的问题,包括优化设计、模式识别、经济决策等。
非线性规划的主要方法是使用非线性规划模型将问题转化为数学形式,并通过非线性规划算法求解最优解。
3.动态规划:动态规划是一种通过将复杂问题分解为子问题,并利用最优子结构的性质求解问题的方法。
它适用于有着重叠子问题的问题,包括最短路径问题、背包问题、机器调度问题等。
动态规划的主要方法是建立递推关系,通过填表或递归的方式求解最优解。
4.离散事件模拟:离散事件模拟是一种通过模拟系统状态的变化,以评估系统性能的方法。
它适用于有着离散事件发生和连续状态变化的问题,包括排队论、制造过程优化、金融风险评估等。
离散事件模拟的主要方法是建立事件驱动的模拟模型,并通过统计分析得到系统性能的估计。
5.蒙特卡洛方法:蒙特卡洛方法是一种基于概率统计的模拟方法,通过生成随机样本来估计问题的解。
它适用于有着随机性质的问题,包括随机优化、风险分析、可靠性评估等。
蒙特卡洛方法的主要思想是基于大数定律,通过大量的随机模拟次数来逼近问题的解。
除了上述方法外,在数学建模中还可以使用图论、拟合分析、概率论和统计方法等。
图论可用于描述网络结构和路径问题;拟合分析可用于对实际数据进行曲线或曲面拟合;概率论和统计方法可用于建立概率模型和对数据进行统计分析。
数学建模动态规划
u5*(E2)F.
4
6
D2 2
F
3
1
D3
3
E2 u4 *(D 1)E1.
f4(D2)5 u4 *(D 2)E2.
f 3 ( C 2 ) m d 3 ( C 2 , D 1 i ) f 4 n ( D 1 ) d 3 ( { C , 2 , D 2 ) f 4 ( D 2 )}
m 4 i7 ,5 n 5 } { 1 . 0
一、基本概念
阶段:是指问题需要做出决策的步数。阶段总数常记为n,相 应的是n个阶段的决策问题。阶段的序号常记为k,称为阶段 变量,k=1,2, …,n. k即可以是顺序编号也可以是逆序编号, 常用顺序编号。 状态:各阶段开始时的客观条件,第k阶段的状态常用状态
变量 s k 表示,状态变量取值的集合成为状态集合,用 S k
4
A
5
2
B1 3
6
8 7
B2
7
C1
5
8
4
C2 5
3
C3 4
8
C4 4
D1
3
5 6
D2 2
1
D3
3
u5*(E1)F,
E1
4
3
E2
u5*(E2)F.
F
f 4 ( D 1 ) m d 4 ( D 1 , E 1 i ) f n 5 ( E 1 ) d 4 ( { D , 1 , E 2 ) f 5 ( E 2 )}
到过程终止时的最佳效益。记为
其中 opt 可根据具体情况取max 或min。 基本方程:此为逐段递推求和的依据,一般为:
式中opt 可根据题意取 max 或 min. 例如,案例1的基本方程为:
数学建模生产与库存动态规划求解
因
d1 3 v1 2d1 2 3 6 v1 0,1, 2,3, 4,5,6
x1 V1 d1 x1 3, 4,5,6,7,8,9 于是有:
f1* (0) 5 x1 0.2V1 5 3 8, V1* 0, x1* 3
什么事动态规划方法
动态规划(dynamic programming)是运筹学的一个分支,是求解决策过 程(decision process)最优化的数学方法。20世纪50年代初美国数学家 R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的 优化问题时,提出了著名的最优化原理(principle of optimality),把多阶 段过程转化为一系列单阶段问题,利用各阶段之间的关系,逐个求解, 创立了解决这类过程优化问题的新方法——动态规划。主要用于求解以 时间划分阶段的动态过程的优化问题 。
假定:不论在任何时期,生产每批产品的固定费用F为8(千元),单位 产品的生产成本费用为2(千元),单位产品每时期(阶段)库存货H为2( 千元),最初库存量S1为l个单位,仓库容量M为4个单位,计划期末的 库存量0。任何一个时期生产能力所允许的最大生产批量B不超过6个 单位。问题:在满足上述给定的条件下,该厂如何安排各个时期的生 产与库存,使所花的总成本费用最低?
递推方程: f k (Vk ) 0 xmin dk Ck ( xk ) hk (Vk ) f k 1 (Vk 1 ) k Vk f8 (V8 ) 0.
期初有库存但生产能力受限
设某工厂调查了解市场情况,估计在今后三个时期市场对产品的需要量 如表3-6所示:
动态规划模型如何建立
数学建模之动态规划
第四章动态规划§1 引言1.1 动态规划的发展及研究内容动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。
20世纪50年代初R. E. Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优性原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法—动态规划。
1957年出版了他的名著《Dynamic Programming》,这是该领域的第一本著作。
动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。
例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。
虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。
应指出,动态规划是求解某类问题的一种方法,是考察问题的一种途径,而不是一种特殊算法(如线性规划是一种算法)。
因而,它不象线性规划那样有一个标准的数学表达式和明确定义的一组规则,而必须对具体问题进行具体分析处理。
因此,在学习时,除了要对基本概念和方法正确理解外,应以丰富的想象力去建立模型,用创造性的技巧去求解。
例1 最短路线问题下面是一个线路网,连线上的数字表示两点之间的距离(或费用)。
试寻求一条由A 到G距离最短(或费用最省)的路线。
例2 生产计划问题工厂生产某种产品,每单位(千件)的成本为1(千元),每次开工的固定成本为3(千元),工厂每季度的最大生产能力为6(千件)。
经调查,市场对该产品的需求量第一、二、三、四季度分别为2,3,2,4(千件)。
数学建模中的动态规划问题
数学建模中的动态规划问题动态规划是一种常见且重要的数学建模技术,它在解决许多实际问题中发挥着关键作用。
本文将介绍动态规划问题的基本概念和解题方法,并通过几个实例来说明其在数学建模中的应用。
一、动态规划的基本概念动态规划是解决多阶段决策问题的一种方法。
一般来说,动态规划问题可以分为以下几个步骤:1. 确定阶段:将问题划分为若干个阶段,每个阶段对应一个决策。
2. 确定状态:将每个阶段的可能状态列出,并定义对应的决策集合。
3. 确定状态转移方程:根据当前阶段的状态和上一个阶段的决策,确定状态的转移关系。
4. 确定初始条件:确定问题的初始状态。
5. 确定决策的评价标准:根据问题的具体要求,确定决策的评价标准。
6. 使用递推或递归公式求解:根据状态转移方程,使用递推或递归公式求解问题。
二、动态规划问题的解题方法在解决动态规划问题时,一般可以使用自顶向下和自底向上两种方法。
自顶向下的方法,也称为记忆化搜索,是指从问题的最优解出发,逐步向下求解子问题的最优解。
该方法通常使用递归来实现,并通过记忆化技术来避免重复计算。
自底向上的方法,也称为动态规划的迭代求解法,是指从问题的初始状态出发,逐步向上求解各个阶段的最优解。
该方法通常使用迭代循环来实现,并通过存储中间结果来避免重复计算。
三、动态规划在数学建模中的应用1. 01背包问题:给定一组物品和一个背包,每个物品有对应的价值和重量,要求选择一些物品放入背包中,使得背包中物品的总价值最大,而且总重量不超过背包的容量。
这是一个经典的动态规划问题,在数学建模中经常遇到。
2. 最短路径问题:在给定的有向图中,求解从一个顶点到另一个顶点的最短路径。
该问题可以使用动态规划的思想对其进行求解,其中每个阶段表示到达某个顶点的最短路径。
3. 最长公共子序列问题:给定两个序列,求解它们最长的公共子序列的长度。
该问题可以使用动态规划的方法解决,其中每个阶段表示两个序列的某个子序列。
四、实例分析以01背包问题为例进行具体分析。
数学建模常用方法
数学建模常用方法数学建模是利用数学工具和方法来研究实际问题,并找到解决问题的最佳方法。
常用的数学建模方法包括线性规划、非线性规划、动态规划、整数规划、图论、最优化理论等。
1. 线性规划(Linear Programming, LP): 线性规划是一种在一定约束条件下寻找一组线性目标函数的最佳解的方法。
常见的线性规划问题包括生产调度问题、资源分配问题等。
2. 非线性规划(Nonlinear Programming, NLP): 非线性规划是指当目标函数或约束条件存在非线性关系时的最优化问题。
非线性规划方法包括梯度方法、牛顿法、拟牛顿法等。
3. 动态规划(Dynamic Programming, DP): 动态规划方法是一种通过将复杂的问题分解成多个子问题来求解最优解的方法。
动态规划广泛应用于计划调度、资源配置、路径优化等领域。
4. 整数规划(Integer Programming, IP): 整数规划是一种在线性规划的基础上,将变量限制为整数的最优化方法。
整数规划常用于离散变量的问题,如设备配置、路径优化等。
5. 图论(Graph Theory): 图论方法研究图结构和图运算的数学理论,常用于解决网络优化、路径规划等问题。
常见的图论方法包括最短路径算法、最小生成树算法等。
6. 最优化理论(Optimization Theory): 最优化理论是研究寻找最优解的数学方法和理论,包括凸优化、非凸优化、多目标优化等。
最优化理论在优化问题建模中起到了重要的作用。
7. 离散数学方法(Discrete Mathematics): 离散数学方法包括组合数学、图论、概率论等,常用于解决离散变量或离散状态的问题。
离散数学方法在计算机科学、工程管理等领域应用广泛。
8. 概率统计方法(Probability and Statistics): 概率统计方法通过对已有数据进行分析和建模,提供了一种推断和预测的数学方法。
概率统计方法在决策分析、风险评估等领域起到了重要的作用。
数学建模常用方法介绍
数学建模常用方法介绍数学建模是指利用数学方法对实际问题进行数学描述和分析的过程。
它是数学与实际问题相结合的一种科学研究方法。
在数学建模中,常用的方法有线性规划、非线性规划、动态规划、数值模拟、统计分析等。
下面将介绍这些常用的数学建模方法。
1.线性规划线性规划是一种优化问题的数学描述方法,可以用于求解最优化问题,例如最大化利润或最小化成本。
线性规划的基本思想是在一定的约束条件下,通过线性目标函数和线性约束条件,寻找最优解。
线性规划常用的算法有单纯形法、内点法等。
2.非线性规划非线性规划是一种在约束条件下求解非线性最优化问题的方法。
与线性规划不同,非线性规划中目标函数和/或约束条件是非线性的。
非线性规划的求解方法包括梯度下降法、牛顿法等。
3.动态规划动态规划是一种常用的求解最优化问题的方法,它可以用于求解具有重叠子问题结构的问题。
动态规划将原问题分解为一系列子问题,并通过保存子问题的解来避免重复计算,从而降低计算复杂度。
动态规划常用于求解最短路径问题、背包问题等。
4.数值模拟数值模拟是通过数值方法对实际问题进行计算机模拟和仿真的方法。
数值模拟在现代科学和工程中得到广泛应用。
数值模拟方法包括有限差分法、有限元法、蒙特卡洛方法等。
5.统计分析统计分析是通过数理统计方法对数据进行分析和推断的方法。
统计分析可以帮助我们了解数据的分布、关系和趋势,并做出科学的推断和预测。
统计分析方法包括假设检验、方差分析、回归分析等。
除了以上常用方法,还有一些其他常用的数学建模方法,例如图论、随机过程、优化算法等。
不同的问题需要选用不同的数学建模方法。
为了解决实际问题,数学建模需要结合实际背景和需求,在数学建模的过程中运用合适的数学方法,建立准确的模型,并通过数学分析和计算机辅助求解,得到符合实际情况的解答和结论。
数学建模的过程不仅仅是将数学工具应用于实际问题,更要注重问题的形式化、合理性和可行性。
在实际建模过程中,需要对问题进行适当的简化和假设,并考虑到模型的稳定性和可靠性。
建立动态规划数学模型的步骤
建立动态规划数学模型的步骤动态规划是一种解决多阶段决策问题的优化方法,它将问题分为若干阶段,每个阶段采取一个最优决策,通过递推的方式得到问题的最优解。
建立动态规划数学模型的步骤主要包括以下几个方面。
第一步,明确问题:首先要明确要解决的问题是什么,分析问题的特点和要求,明确决策的目标和约束条件。
例如,我们可以考虑求解一个最优化问题,使一些目标函数取得最大(或最小)值。
第二步,定义状态:将问题的解表示为一个或多个状态变量。
状态是问题的一个关键特征,它描述了问题在每个阶段的情况,通常用一个或多个变量表示。
状态可以是离散的,也可以是连续的。
例如,假设我们要解决一个装箱问题,可以将状态定义为装箱剩余空间的大小。
第三步,确定决策变量:决策变量是问题中可以通过决策调整的变量,其取值将影响问题的解。
决策变量通常与状态有关,帮助我们在每个阶段做出最优决策。
继续以装箱问题为例,决策变量可以是选择放入的物品或物品的数量。
第四步,建立状态转移方程:通过分析问题的特点和约束条件,建立各个阶段之间的状态转移方程。
状态转移方程描述了问题中不同状态之间的关系,即通过做出一些决策后,当前状态如何转移到下一个状态。
状态转移方程通常由决策变量和前一阶段的状态变量表示。
在装箱问题中,状态转移方程可以描述为剩余空间等于前一阶段的剩余空间减去当前决策变量所占空间。
第五步,确定边界条件:边界条件是求解动态规划问题的关键,它们表示问题的起始状态和结束状态。
通常,起始状态是已知的,而结束状态需要根据问题的要求进行分析确定。
例如,装箱问题的起始状态可以是剩余空间等于货柜的总容量,结束状态可以是没有物品剩余可以放入货柜。
第六步,确定目标函数:目标函数是求解最优化问题时需要优化的目标。
在动态规划中,目标函数通常与状态有关,它表示在每个阶段的状态下所要最大(或最小)化的目标量。
例如,在装箱问题中,目标函数可以是放入货柜的物品总价值。
第七步,建立递推关系:根据状态转移方程和边界条件,可以利用递推的方法从起始状态逐步计算到结束状态。
数学建模常用算法模型
数学建模常用算法模型数学建模是将实际问题抽象为数学模型,并利用数学方法求解问题的过程。
在数学建模中,算法模型是解决问题的关键。
下面介绍一些常用的数学建模算法模型。
1.线性规划模型:线性规划是一种用于求解线性约束下的最优化问题的数学方法。
线性规划模型的目标函数和约束条件均为线性函数。
线性规划广泛应用于供需平衡、生产调度、资源配置等领域。
2.非线性规划模型:非线性规划是一种用于求解非线性目标函数和约束条件的最优化问题的方法。
非线性规划模型在能源优化调度、金融风险管理、工程设计等方面有广泛应用。
3.整数规划模型:整数规划是一种在决策变量取离散值时求解最优化问题的方法。
整数规划模型在网络设计、物流调度、制造安排等领域有广泛应用。
4.动态规划模型:动态规划是一种通过将问题分解为多个阶段来求解最优化问题的方法。
动态规划模型在资源分配、投资决策、路径规划等方面有广泛应用。
5.随机规划模型:随机规划是一种在目标函数和约束条件存在不确定性时求解最优化问题的方法。
随机规划模型在风险管理、投资决策、资源调度等方面有广泛应用。
6.进化算法模型:进化算法是一种通过模拟生物进化过程来求解最优化问题的方法。
进化算法模型包括遗传算法、粒子群算法、蚁群算法等,被广泛应用于参数优化、数据挖掘、机器学习等领域。
7.神经网络模型:神经网络是一种模仿人脑神经元连接和传递信息过程的数学模型。
神经网络模型在模式识别、数据分类、信号处理等领域有广泛应用。
8.模糊数学模型:模糊数学是一种用于处理不确定性和模糊信息的数学模型。
模糊数学模型在风险评估、决策分析、控制系统等方面有广泛应用。
除了以上常用的数学建模算法模型,还有许多其他的算法模型,如图论模型、动力系统模型、马尔科夫链模型等。
不同的问题需要选择合适的算法模型进行建模和求解。
数学建模算法模型的选择和应用需要根据具体的问题和要求进行。
数学建模作业_动态规划求解指派问题
3 问题的伪代码实现
1 设 k 的初始值为 1; 2 写出 X k ,即第 k 阶段决策变量可能的取值,特别地, X 1 ={1,2, 。 。 。 ,n}。 3 对每一个 sk ,计算 sk g1 (sk 1 , xk 1 ) sk 1 {xk 1. j} ,及 d ( sk , xk ) ; 4 计算 f k ( sk ) ; 5 若 X k 为空,转到第 6 步,否则,k++,转回执行第 2 步。 6 最优指派决策为 f k ( sk ) ,根据 f k ( sk ) 写出最优指派方案{ xkj }。 7 程序算法复杂度:是 O(V*E*E)
其中“ - ”表示集合的差运算。 (4)指派问题指标递归方程:
f k (sk ) min{ f k (sk , xk ) | xk X k } , f k (sk , xk ) d k (sk , d k ) f k 1 ( g1 (sk 1 , xk 1 )) , f 0 (s0 ) 0, k 1,2,..., n.
float costforout[101][101]; int matrixsize; int personnumber; int jobnumber; }matrix; matrix sb; int result[501][2]; void twozero(matrix &sb); void judge(matrix &sb,int result[501][2]); void refresh(matrix &sb); void circlezero(matrix &sb); matrix input(); void output(int result[501][2],matrix sb); void zeroout(matrix &sb); matrix input() { matrix sb; int m; int pnumber,jnumber; int i,j; float k; char w; printf("指派问题的动态规划解法:\n\n"); printf("按最大价值分配请输入 1;最小价值分配请输入 0:\n"); scanf("%d",&m); while (m!=1&&m!=0) { printf("请输入 1 或 0:\n"); scanf("%d",&m); } printf("请输入可分配总人数(介于 1 和 100 之间):\n"); scanf("%d",&pnumber); while(pnumber<1 || pnumber>100) { printf("请输入合法数据:\n"); scanf("%d",&pnumber); } printf("请输入工作数(介于 1 和 100 之间):\n"); scanf("%d",&jnumber); while(jnumber<1 || jnumber>100) { printf("请输入合法数据:\n");
数学建模方法详解三种最常用算法
数学建模方法详解三种最常用算法数学建模是指将实际问题转化为数学模型,并通过数学方法进行求解和分析的过程。
在数学建模中,常用的算法有很多种,其中最常用的有三种,分别是线性规划、整数规划和动态规划。
一、线性规划线性规划是一种优化方法,用于在给定的约束条件下,寻找目标函数最大或最小值的一种方法。
它的数学形式是以线性约束条件为基础的最优化问题。
线性规划的基本假设是目标函数和约束条件均为线性的。
线性规划通常分为单目标线性规划和多目标线性规划,其中单目标线性规划是指在一个目标函数下找到最优解,而多目标线性规划则是在多个目标函数下找到一组最优解。
线性规划的求解方法主要有两种:单纯形法和内点法。
单纯形法是最常用的求解线性规划问题的方法,它的核心思想是通过不断迭代改进当前解来达到最优解。
内点法是一种相对较新的求解线性规划问题的方法,它的主要思想是通过从可行域的内部最优解。
二、整数规划整数规划是线性规划的一种扩展形式,它在线性规划的基础上增加了变量必须取整数的限制条件。
整数规划具有很强的实际应用性,它能够用于解决很多实际问题,如资源分配、生产优化等。
整数规划的求解方法通常有两种:分支定界法和割平面法。
分支定界法是一种常用的求解整数规划问题的方法,它的基本思想是通过将问题划分为若干个子问题,并通过求解子问题来逐步缩小解空间,最终找到最优解。
割平面法也是一种常用的求解整数规划问题的方法,它的主要思想是通过不断添加线性割平面来修剪解空间,从而找到最优解。
三、动态规划动态规划是一种用于求解多阶段决策问题的数学方法。
多阶段决策问题是指问题的求解过程可以分为若干个阶段,并且每个阶段的决策都受到之前决策的影响。
动态规划的核心思想是将问题划分为若干个相互关联的子问题,并通过求解子问题的最优解来求解原始问题的最优解。
动态规划通常分为两种形式:无后效性和最优子结构。
无后效性是指一个阶段的决策只与之前的状态有关,与之后的状态无关。
最优子结构是指问题的最优解能够由子问题的最优解推导而来。
数学建模常用算法模型
数学建模常用算法模型在数学建模中,常用的算法模型包括线性规划、整数规划、非线性规划、动态规划、图论算法以及遗传算法等。
下面将对这些算法模型进行详细介绍。
1.线性规划:线性规划是一种用于求解最优化问题的数学模型和解法。
它的目标是找到一组线性约束条件下使目标函数取得最大(小)值的变量取值。
线性规划的常用求解方法有单纯形法、内点法和对偶理论等。
2.整数规划:整数规划是一种求解含有整数变量的优化问题的方法。
在实际问题中,有时变量只能取整数值,例如物流路径问题中的仓库位置、设备配置问题中的设备数量等。
整数规划常用的求解方法有分支界定法和割平面法等。
3.非线性规划:非线性规划是一种求解非线性函数优化问题的方法,它在实际问题中非常常见。
与线性规划不同,非线性规划的目标函数和约束函数可以是非线性的。
非线性规划的求解方法包括牛顿法、拟牛顿法和全局优化方法等。
4.动态规划:动态规划是一种用于解决决策过程的优化方法。
它的特点是将问题划分为一系列阶段,然后依次求解每个阶段的最优决策。
动态规划常用于具有重叠子问题和最优子结构性质的问题,例如背包问题和旅行商问题等。
5.图论算法:图论算法是一类用于解决图相关问题的算法。
图论算法包括最短路径算法、最小生成树算法、网络流算法等。
最短路径算法主要用于求解两点之间的最短路径,常用的算法有Dijkstra算法和Floyd-Warshall算法。
最小生成树算法用于求解一张图中连接所有节点的最小代价树,常用的算法有Prim算法和Kruskal算法。
网络流算法主要用于流量分配和问题匹配,例如最大流算法和最小费用最大流算法。
6.遗传算法:遗传算法是一种借鉴生物进化原理的优化算法。
它通过模拟生物的遗传、变异和选择过程,不断优化问题的解空间。
遗传算法适用于对问题解空间有一定了解但难以确定最优解的情况,常用于求解复杂的组合优化问题。
总结起来,数学建模中常用的算法模型包括线性规划、整数规划、非线性规划、动态规划、图论算法以及遗传算法等。
数学建模的常用模型与求解方法知识点总结
数学建模的常用模型与求解方法知识点总结数学建模是运用数学方法和技巧来研究和解决现实问题的一门学科。
它将实际问题抽象化,建立数学模型,并通过数学推理和计算求解模型,从而得出对实际问题的理解和解决方案。
本文将总结数学建模中常用的模型类型和求解方法,并介绍每种方法的应用场景。
一、线性规划模型与求解方法线性规划是数学建模中最常用的模型之一,其基本形式为:$$\begin{align*}\max \quad & c^Tx \\s.t. \quad & Ax \leq b \\& x \geq 0\end{align*}$$其中,$x$为决策变量向量,$c$为目标函数系数向量,$A$为约束系数矩阵,$b$为约束条件向量。
常用的求解方法有单纯形法、对偶单纯形法和内点法等。
二、非线性规划模型与求解方法非线性规划是一类约束条件下的非线性优化问题,其目标函数或约束条件存在非线性函数。
常见的非线性规划模型包括凸规划、二次规划和整数规划等。
求解方法有梯度法、拟牛顿法和遗传算法等。
三、动态规划模型与求解方法动态规划是一种用于解决多阶段决策问题的数学方法。
它通过将问题分解为一系列子问题,并利用子问题的最优解构造原问题的最优解。
常见的动态规划模型包括最短路径问题、背包问题和任务分配等。
求解方法有递推法、记忆化搜索和剪枝算法等。
四、图论模型与求解方法图论是研究图及其应用的一门学科,广泛应用于网络优化、城市规划和交通调度等领域。
常见的图论模型包括最小生成树、最短路径和最大流等。
求解方法有贪心算法、深度优先搜索和广度优先搜索等。
五、随机模型与概率统计方法随机模型是描述不确定性问题的数学模型,常用于风险评估和决策分析。
概率统计方法用于根据样本数据对随机模型进行参数估计和假设检验。
常见的随机模型包括马尔可夫链、蒙特卡洛模拟和马尔科夫决策过程等。
求解方法有蒙特卡洛法、马尔科夫链蒙特卡洛法和最大似然估计等。
六、模拟模型与求解方法模拟模型是通过生成一系列随机抽样数据来模拟实际问题,常用于风险评估和系统优化。
数学建模案例分析最优化方法建模动态规划模型举例
§6 动态规划模型举例以上讨论的优化问题属于静态的,即不必考虑时间的变化,建立的模型——线性规划、非线性规划、整数规划等,都属于静态规划。
多阶段决策属于动态优化问题,即在每个阶段(通常以时间或空间为标志)根据过程的演变情况确定一个决策,使全过程的某个指标达到最优。
例如:(1)化工生产过程中包含一系列的过程设备,如反应器、蒸馏塔、吸收器等,前一设备的输出为后一设备的输入。
因此,应该如何控制生产过程中各个设备的输入和输出,使总产量最大。
(2)发射一枚导弹去击中运动的目标,由于目标的行动是不断改变的,因此应当如何根据目标运动的情况,不断地决定导弹飞行的方向和速度,使之最快地命中目标。
(3)汽车刚买来时故障少、耗油低,出车时间长,处理价值和经济效益高。
随着使用时间的增加则变得故障多,油耗高,维修费用增加,经济效益差。
使用时间俞长,处理价值也俞低。
另外,每次更新都要付出更新费用。
因此,应当如何决定它每年的使用时间,使总的效益最佳。
动态规划模型是解决这类问题的有力工具,下面介绍相关的基本概念及其数学描述。
(1)阶段 整个问题的解决可分为若干个相互联系的阶段依次进行。
通常按时间或空间划分阶段,描述阶段的变量称为阶段变量,记为k 。
(2)状态 状态表示每个阶段开始时所处的自然状况或客观条件,它描述了研究过程的状况。
各阶段的状态通常用状态变量描述。
常用k x 表示第k 阶段的状态变量。
n 个阶段的决策过程有1+n 个状态。
用动态规划方法解决多阶段决策问题时,要求整个过程具有无后效性。
即:如果某阶段的状态给定,则此阶段以后过程的发展不受以前状态的影响,未来状态只依赖于当前状态。
(3)决策 某一阶段的状态确定后,可以作出各种选择从而演变到下一阶段某一状态,这种选择手段称为决策。
描述决策的变量称为决策变量。
决策变量限制的取值范围称为允许决策集合。
用)(k k x u 表示第k 阶段处于状态k x 时的决策变量,它是k x 的函数,用)(k k x D 表示k x 的允许决策集合。
常用数学建模方法及实例
常用数学建模方法及实例数学建模是将实际问题转化为数学模型,通过数学方法进行求解和分析的过程。
常用的数学建模方法包括线性规划、整数规划、非线性规划、图论、动态规划等。
一、线性规划线性规划是一种用于求解线性约束下目标函数的最优值的方法。
它常用于资源分配、生产计划、供应链管理等领域。
例1:公司有两个工厂生产产品A和产品B,两种产品的生产过程需要使用原材料X和Y。
产品A和产品B的利润分别为10和8、工厂1每小时生产产品A需要1个单位的X和2个单位的Y,每小时生产产品B需要2个单位的X和1个单位的Y。
工厂2每小时生产产品A需要2个单位的X和1个单位的Y,每小时生产产品B需要1个单位的X和3个单位的Y。
公司给定了每种原材料的供应量,求使公司利润最大化的生产计划。
二、整数规划整数规划是线性规划的一种扩展,要求变量的取值为整数。
整数规划常用于离散决策问题。
例2:公司有5个项目需要投资,每个项目的投资金额和预期回报率如下表所示。
公司有100万元的投资资金,为了最大化总回报率,应该选择哪几个项目进行投资?项目投资金额(万元)预期回报率1207%2306%3409%4104%5508%三、非线性规划非线性规划是一种求解非线性目标函数下约束条件的最优值的方法。
它广泛应用于经济、金融和工程等领域。
例3:公司通过降低售价和增加广告费用来提高销售额。
已知当售价为p时,销量为q=5000-20p,广告费用为a时,销售额为s=p*q-2000a。
已知售价的范围为0≤p≤100,广告费用的范围为0≤a≤200,公司希望最大化销售额,求最优的售价和广告费用。
四、图论图论是一种用于研究图(由节点和边组成)之间关系和性质的数学方法,常用于网络分析、路径优化、社交网络等领域。
例4:求解最短路径问题。
已知一个有向图,图中每个节点表示一个城市,每条边表示两个城市之间的道路,边上的权重表示两个城市之间的距离。
求从起始城市到目标城市的最短路径。
五、动态规划动态规划是一种通过将问题划分为子问题进行求解的方法,常用于求解最优化问题。
数学建模各题型的算法
数学建模各题型的算法数学建模的题型很多,对应的算法也有多种。
以下是数学建模常见题型以及相应的算法:1. 线性规划(Linear Programming):常用的线性规划算法包括单纯形法(Simplex Algorithm)、内点法(Interior Point Method)等。
2. 整数规划(Integer Programming):常用的整数规划算法包括分支定界法(Branch and Bound)、动态规划法(Dynamic Programming)、割平面法(Cutting Plane Method)等。
3. 非线性规划(Nonlinear Programming):常用的非线性规划算法包括梯度下降法(Gradient Descent)、牛顿法(Newton's Method)、拟牛顿法(Quasi-Newton Method)、遗传算法(Genetic Algorithm)等。
4. 图论(Graph Theory):常用的图论算法包括最短路径算法(Dijkstra Algorithm、Floyd-Warshall Algorithm)、最小生成树算法(Prim Algorithm、Kruskal Algorithm)、最大流算法(Ford-Fulkerson Algorithm、Edmonds-Karp Algorithm)等。
5. 动态规划(Dynamic Programming):动态规划算法用于求解具有重叠子问题性质的最优化问题,常用的算法有钢条切割问题、背包问题、旅行商问题等。
6. 模拟退火算法(Simulated Annealing):模拟退火算法是一种全局优化算法,常用于求解复杂的组合优化问题,如旅行商问题、装箱问题等。
7. 神经网络(Neural Network):神经网络算法常用于函数拟合、分类、聚类等问题,其中包括前馈神经网络(Feedforward Neural Network)、卷积神经网络(Convolutional Neural Network)、循环神经网络(Recurrent Neural Network)等。
数学建模动态规划问题
个阶段的决策过程有 个状态变量, 表示 演变的结果。在例1中 取 ,或定义为 ,即 。
根据过程演变的具体情况,状态变量可以是离散的或连续的。为了计算的方便有时将连续变量离散化;为了分析的方便有时又将离散变量视为连续的。
状态变量简称为状态。
2.1.3决策
当一个阶段的状态确定后,可以作出各种选择从而演变到下一阶段的某个状态,这种选择手段称为决策(decision),在最优控制问题中也称为控制(control)。
.
决策 Байду номын сангаас允许集合为
.
状态转移方程和阶段指标应对 的每个取值 和 的每个取值 计算,即 , 。最优值函数应对 的每个取值 计算。基本方程可以表为
(4)
按照(3),(4)逆向计算出 ,为全过程的最优值。记状态 的最优决策为 ,由 和 按照状态转移方程计算出最优状态,记作 。并得到相应的最优决策,记作 。于是最优策略为 。
描述决策的变量称决策变量(decision variable),变量允许取值的范围称允许决策集合(set of admissible decisions)。用 表示第 阶段处于状态 时的决策变量,它是 的函数,用 表示 的允许决策集合。在例1中 可取 或 ,可记作 ,而 。
决策变量简称决策。
2.1.4策略
( )写出基本方程即最优值函数满足的递归方程,以及端点条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.某公司打算向它的三个营业区增设6个销售店,每个营业区至少增设1个。
各营业区每年增加的利润与增设的销售店个数有关,具体关系如表1所示。
试规划各营业区应增设销售店的个数,以使公司总利润增加额最大。
:
个销售店,C 区增设1个销售店.最大利润为490万元。
贝尔曼(Bellman )最优化原理:在最优策略的任意一阶段上,无论过去的状态和决策如何,对过去决策所形成的当前状态而言,余下的诸决策必须构成最优子策略。
2.某公司拟将500万元的资本投入所属的甲、乙、丙三个工厂进行技术改造,各工厂获得投资后年利润将有相应的增长,增长额如表所示。
试确定500万元资
解:将问题按工厂分为三个阶段3,2,1=k ,设状态变量k (3,2,1=k )代表从第k 个工厂到第3个工厂的投资额,决策变量k x 代表第k 个工厂的投资额。
于是有状态转移率k k k x S S -=+1、允许决策集合}0|{)(k k k k k S x x S D ≤≤=和递推关系式:
)}()({max )(10k k k k k S x k k x S f x g S f k k -+=+≤≤ )1,2,3(=k
0)(44=S f
当3=k 时:
)}({max }0)({max )(330330333333x g x g S f S x S x ≤≤≤≤=+=
于是有表2-1,表中*3x 表示第三个阶段的最优决策。
当2=k 时:
)}()({max )(2232202222x S f x g S f S x -+=≤≤
于是有表7-3。
当1=k 时:
)}()({max )(1121101111x S f x g S f S x -+=≤≤
于是有表2-3。
然后按计算表格的顺序反推算,可知最优分配方案有两个:(1)甲工厂投资200万元,乙工厂投资200万元,丙工厂投资100万元;(2)甲工厂没有投资,乙工厂投资200万元,丙工厂投资300万元。
按最优分配方案分配投资(资源),年利润将增长210万元。