解直角三角形

合集下载

《解直角三角形》 教学设计

《解直角三角形》 教学设计

《解直角三角形》教学设计一、教学目标1、知识与技能目标(1)理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形。

(2)能够将实际问题中的数量关系转化为解直角三角形的数学问题,并能正确选用适当的锐角三角函数关系式解决问题。

2、过程与方法目标(1)通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,培养学生分析问题和解决问题的能力。

(2)通过将实际问题转化为数学问题,体会数学建模的思想。

3、情感态度与价值观目标(1)通过数学学习,让学生体验数学与生活的密切联系,激发学生学习数学的兴趣。

(2)培养学生严谨的科学态度和合作交流的意识。

二、教学重难点1、教学重点(2)将实际问题转化为解直角三角形的数学问题。

2、教学难点将实际问题中的数量关系转化为直角三角形中元素之间的关系。

三、教学方法讲授法、讨论法、练习法四、教学过程1、复习引入(1)提问:直角三角形的三边有什么关系?锐角之间有什么关系?边角之间有什么关系?(2)在直角三角形 ABC 中,∠C = 90°,∠A、∠B、∠C 所对的边分别为 a、b、c。

已知 a = 3,b = 4,求 c 的长度。

(3)已知∠A = 30°,斜边 c = 6,求∠A 的对边 a 的长度。

通过复习,为学习解直角三角形做好知识铺垫。

2、讲授新课(1)解直角三角形的概念在直角三角形中,由已知元素求出未知元素的过程,叫做解直角三角形。

直角三角形中,除直角外,共有五个元素,即三条边和两个锐角。

只要知道其中的两个元素(至少有一个是边),就可以求出其余的三个元素。

(3)解直角三角形的方法①已知两条直角边 a、b,求斜边 c 及锐角 A、B。

由勾股定理\(c =\sqrt{a^2 + b^2}\),\(\tan A =\frac{a}{b}\),则\(A =\arctan\frac{a}{b}\),\(B = 90° A\)。

解直角三角形知识点及跟踪习题

解直角三角形知识点及跟踪习题

解直角三角形知识点及跟踪习题 考点一、直角三角形的性质1、直角三角形的两个锐角互余可表示如下:∠C=90°⇒∠A+∠B=90°2、在直角三角形中,30°角所对的直角边等于斜边的一半。

∠A=30° 可表示如下: ⇒BC=21AB ∠C=90°3、直角三角形斜边上的中线等于斜边的一半 ∠ACB=90°可表示如下: ⇒CD=21AB=BD=AD D 为AB 的中点 知识点二.三角函数对于锐角A 的每一个确定的值,其对边与斜边、邻边与斜边、邻边与对边的比值也是惟一确定的. 因此这几个比值都是锐角∠A 的函数,记作sin A 、cos A 、tan A 、cot A ,即sin A =斜边的对边A ∠, cos A =斜边的邻边A ∠, tan A =的邻边的对边A A ∠∠, cot A = 的对边的邻边A A ∠∠分别叫做锐角∠A 的正弦、余弦、正切、余切,统称为锐角∠A 的三角函数.知识点三。

锐角三角函数的特征与性质:(1)锐角三角函数的值都是正实数,并且0<sin A <1,0<cos A <1 (2)tan A •cot A =1(3)补充:sin tan cos AAA,cos cot sin AA A (视情况定) (4)补充:已知锐角∠A ,则22sin cos 1AA(视情况定)(5)锐角三角函数的增减性当角度在0°~90°之间变化时,①.正弦值随着角度的增大(或减小)而增大(或减小) ②.余弦值随着角度的增大(或减小)而减小(或增大) ③.正切值随着角度的增大(或减小)而增大(或减小) ④.余切值随着角度的增大(或减小)而减小(或增大 知识点四、一些特殊角的三角函数值三角函数 0° 30°45°60°90° sinα 0 21 22 23 1 cos α 1 23 22 21 0 tan α 0 33 1 3不存在 cot α不存在3133 0︒15020米30米从上往下看,视线与水平线的夹角叫做俯角.(2在修路、挖河、开渠和筑坝时,设计纸上都要注明斜坡的倾斜程度. 如图19.4.5,坡面的铅垂高度(h )和水平长度(l )的比叫做坡面坡度 (或坡比).记作i ,即i =lh . 坡度通常写成1∶m 的形式,如i =1∶6. 坡面与水平面的夹角叫做坡角,记作a ,有i =lh=tan a 显然,坡度越大,坡角a 就越大,坡面就越陡. 知识点六.1.解直角三角形:在直角三角形中,除一个直角外,还有2个角和3条边共5个元素,由已知元素求出未知元素 的过程,叫做解直角三角形。

解直角三角形讲义

解直角三角形讲义

解直角三角形初三下册第一章: 知识点总结:1. 解直角三角形:在直角三角形中,由已知元素求位置元素的过程,就是解直角三角形。

(1) 三边关系:222c b a (2) 锐角关系:∠A+∠B=90°; ( 3 ) 边角关系:正弦:锐角A 的对边与斜边的比叫做∠A 的正弦,记sinA ,即sinA =c a余弦:锐角A 的邻边与斜边的比叫做∠A 的余弦,记cosA ,即cosA=c b;正切:锐角A 的对边与邻边的比叫做∠A 的正切,记tanA ,即tanA=ba;特殊锐角的三角函数值① 同角三角函数的关系:平方关系:1cos sin 22 A A ; 商数关系:tanA=AAcos sin ②互余两角的三角函数关系:sinA=cosB; sinA=cos(90°-A) ; cosA=sin (90°-A ); tanA=cot(90°-A )2.实际问题仰角:进行高度测量时,在视线与水平线所成的角中,当视线在水平线上方时叫做仰角。

俯角:进行高度测量时,在视线与水平线所成的角中,当视线在水平线下方时叫做俯角。

坡度(坡比):坡面的铅垂高度和水平宽度的比叫做坡面的坡度,记作i=h:l。

坡角:坡面与水平面的夹角叫做坡角,记作a,即i=h:l=tana.方位角:从某点的正北方向沿顺时针方向旋转到目标方向所形成的角叫做方位角。

方向角:从正北方向或正南方向到目标方向形成的小雨90°的角叫做方向角。

典型例题:题型一:特殊三角函数值1、计算2sin30°-sin245°+cot60°的结果是()A、B、C、D、2、已知a=3,且(4tan 45°-b)2+=0,以a,b,c为边组成的三角形面积等于()A、6B、7C、8D、93、已知a为锐角,且sin(a-10°)=,则a等于()A、50°B、60°C、70°D、80°4、在△ABC中,∠C=90°,∠B=2∠A,则cosA等于()A、B、C、D、5、如图,如果∠A是等边三角形的一个内角,那么cosA的值等于()A、B、C、D、16、△ABC中,∠A、∠B都是锐角,且sinA=,cosB=,则△ABC的形状是()A、直角三角形B、钝角三角形C、锐角三角形D、不能确定7、计算:sin213°+cos213°+sin60°-tan30°.8、求下列各式的值:(1)a、b、c是△ABC的三边,且满足a2=(c+b)(c-b)和4c-5b=0,求cosA+cosB的值;(2)已知A为锐角,且tanA=,求sin2A+2sinAcosA+cos2A的值.题型二:解直角三角形1、如图,在△ABC中,∠C=90°,∠B=60°,D是AC上一点,DE⊥AB于E,且CD=2,DE=1,则BC的长为()A、2B、C、2D、42、等腰三角形的顶角为120°,腰长为2cm,则它的底边长为()A、cmB、cmC、2cmD、cm3、如图,梯形ABCD中,AD∥BC,∠B=45°,∠D=120°,AB=8cm,则DC的长为()A、cmB、cmC、cmD、8cm4、如图,在Rt△ABC中,∠ACB为90°,CD⊥AB,cos∠BCD=,BD=1,则边AB的长是()A、B、C、2 D、5、如图,将等腰直角三角形ABC绕点A逆时针旋转15°后得到△AB′C′,若AC=1,则图中阴影部分的面积为()A、B、C、D、6、在△ABC中,∠A=120°,AB=4,AC=2,则sinB的值是()A、B、C、D、7、如图,矩形ABCD中,对角线AC、BD相交于点0,∠AOB=60°,AB=5,则AD的长是()A、5B、5C、5D、108、如图,在菱形ABCD中,DE⊥AB,,BE=2,则tan∠DBE的值()A、B、2 C、D、9、如图,四边形ABCD和四边形BEFD都是矩形,且点C恰好在EF上.若AB=1,AD=2,则S△BCE为()A、1B、C、D、10、如图,在Rt△ABC中,∠A=90°,AB=AC=8,点E为AC的中点,点F在底边BC上,且FE⊥BE,则△CEF的面积是()A、16B、18C、6D、711、如图,在梯形ABCD中,∠A=∠B=90°,AB=,点E在AB上,∠AED=45°,DE=6,CE=7.求:AE的长及sin∠BCE的值.12、如图,直角梯形ABCD中,AD∥BC,∠A=90°,AB=AD=6,DE⊥DC交AB于E,DF平分∠EDC交BC 于F,连接EF.(1)证明:EF=CF;(2)当tan∠ADE=时,求EF的长.题型三:解直角三角形的应用1、如图,某市在“旧城改造”中计划在一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米a元,则购买这种草皮至少要()A、450a元B、225a元C、150a元D、300a元2、如图,AB是斜靠在墙上的长梯,D是梯上一点,梯脚B与墙脚的距离为1.6m(即BC的长),点D与墙的距离为1.4m(即DE的长),BD长为0.55m,则梯子的长为()A、4.50mB、4.40mC、4.00mD、3.85m3、如图,太阳光线与地面成60°角,一棵倾斜的大树AB与地面成30°角,这时测得大树在地面的影长BC为10m,则大树的长为()m.A、5B、10C、15D、204、如图,小明同学在东西走向的文一路A处,测得一处公共自行车租用服务点P在北偏东60°方向上,在A 处往东90米的B处,又测得该服务点P在北偏东30°方向上,则该服务点P到文一路的距离PC为()A、60米B、45米C、30米D、45米5、如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:(1)(2)的计算结果精确到0.1米,参考数据:≈1.41,≈1.73,≈2.24,≈2.45)6、如图,河流的两岸PQ、MN互相平行,河岸PQ上有一排小树,已知相邻两树之间的距离CD=50米,某人在河岸MN的A处测得∠DAN=35°,然后沿河岸走了120米到达B处,测得∠CBN=70°.求河流的宽度CE(结果保留两个有效数字).(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)7、某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长AB=6m,∠ABC=45°,后考虑到安全因素,将楼梯脚B移到CB延长线上点D处,使∠ADC=30°(如图所示).(1)求调整后楼梯AD的长;(2)求BD的长.(结果保留根号)8、某河道上有一个半圆形的拱桥,河两岸筑有拦水堤坝.其半圆形桥洞的横截面如图所示.已知上、下桥的坡面线ME、NF与半圆相切,上、下桥斜面的坡度i=1:3.7,桥下水深=5米.水面宽度CD=24米.设半圆的圆心为O,直径AB在坡角顶点M、N的连线上.求从M点上坡、过桥、下坡到N点的最短路径长.(参考数据:π≈3,≈1.7,tan15°=)题型四:坡度坡角问题及仰角俯角问题1、如图,是一水库大坝横断面的一部分,坝高h=6m,迎水斜坡AB=10m,斜坡的坡角为α,则tanα的值为()A、B、C、D、2、如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m.如果在坡度为0.75的山坡上种树,也要求株距为4m,那么相邻两树间的坡面距离为()A、5mB、6mC、7mD、8m3、周末,身高都为1.6米的小芳、小丽来到溪江公园,准备用她们所学的知识测算南塔的高度.如图,小芳站在A处测得她看塔顶的仰角α为45°,小丽站在B处(A、B与塔的轴心共线)测得她看塔顶的仰角β为30°.她们又测出A、B两点的距离为30米.假设她们的眼睛离头顶都为10cm,则可计算出塔高约为(结果精确到0.01,参考数据:≈1.414,≈1.732)()A、36.21米B、37.71米C、40.98米D、42.48米4、一次数学活动中,小迪利用自己制作的测角器测量小山的高度CD.已知她的眼睛与地面的距离为1.6米,小迪在B处测量时,测角器中的∠AOP=60°(量角器零度线AC和铅垂线OP的夹角,如图);然后她向小山走50米到达点F处(点B,F,D在同一直线上),这时测角器中的∠EO′P′=45°,那么小山的高度CD约为()(注:数据≈1.732,≈1.414供计算时选用)A、68米B、70米C、121米D、123米5、如图,已知楼高AB为50m,铁塔基与楼房房基间的水平距离BD为50m,塔高DC为m,下列结论中,正确的是()A、由楼顶望塔顶仰角为60°;B、由楼顶望塔基俯角为60°;C、由楼顶望塔顶仰角为30°;D、由楼顶望塔基俯角为30°6、已知小芳站在层高为2.5米的六层楼的屋顶上来估计旁边一支烟囱的高度,当小芳以俯角∠COB=45°向下看时,刚好可以看到烟囱的底部,当小芳以仰角∠AOB=30°向上看时,刚好可以看到烟囱的顶部,若小芳的身高为1.5米,请你估计烟囱的高度(=1.414,=1.732结果保留三个有效数字)()A、22.1米B、26.0米C、27.9米D、32.8米7、如图,小明在大楼30米高(即PH=30米)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B 处的俯角为60°,巳知该山坡的坡度i(即tan∠ABC)为1:,点P,H,B,C,A在同一个平面上,点H、B、C在同一条直线上,且PH丄HC.(1)山坡坡角(即∠ABC)的度数等于多少度;(2)求A、B两点间的距离(结果精确到0.1米,参考数据:≈1.732).8、如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度.他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为2米,台阶AC的坡度为(即AB:BC=),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(测倾器的高度忽略不计).题型五:方向角问题1、如图,已知一渔船上的渔民在A处看见灯塔M在北偏东60°方向,这艘渔船以28海里/时的速度向正东方向航行,半小时后到达B处,在B处看见灯塔M在北偏东15°方向,此时灯塔M与渔船的距离是()A、7海里B、14海里C、7海里D、14海里2、在一次夏令营活动中,小霞同学从营地A点出发,要到距离A点10千米的C地去,先沿北偏东70°方向走了8千米到达B地,然后再从B地走了6千米到达目的地C,此时小霞在B地的()A、北偏东20°方向上B、北偏西20°方向上C、北偏西30°方向上D、北偏西40°方向上3、如图,小亮家到学校有两条路,一条沿北偏东45°方向可直达学校前门,另一条从小明家一直往东,到商店处向正北走100米,到学校后门;若两条路程相等,学校南北走向,学校后门在小明家北偏东67.5°处,学校前门到后门的距离是()A、100米B、米C、米D、米4、综合实践课上,小明所在小组要测量护城河的宽度.如图所示是护城河的一段,两岸ABCD,河岸AB上有一排大树,相邻两棵大树之间的距离均为10米.小明先用测角仪在河岸CD的M处测得∠α=36°,然后沿河岸走50米到达N点,测得∠β=72°.请你根据这些数据帮小明他们算出河宽FR(结果保留两位有效数字)(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)5、如图,自来水厂A和村庄B在小河l的两侧,现要在A,B间铺设一知输水管道.为了搞好工程预算,需测算出A,B间的距离.一小船在点P处测得A在正北方向,B位于南偏东24.5°方向,前行1200m,到达点Q处,测得A位于北偏东49°方向,B位于南偏西41°方向.(1)线段BQ与PQ是否相等?请说明理由;(2)求A,B间的距离.(参考数据cos41°=0.75).6、如图所示,一艘轮船以30海里/小时的速度向正北方向航行,在A处得灯塔C在北偏西30°方向,轮船航行2小时后到达B处,在B处时测得灯塔C在北偏西45°方向.当轮船到达灯塔C的正东方向的D处时,求此时轮船与灯塔C的距离.(结果精确到0.1海里,参考数据≈1.41,≈1.73).7如图,港口B在港口A的西北方向,上午8时,一艘轮船从港口A出发,以15海里∕时的速度向正北方向航行,同时一艘快艇从港口B出发也向正北方向航行,上午10时轮船到达D处,同时快艇到达C处,测得C 处在D处得北偏西30°的方向上,且C、D两地相距100海里,求快艇每小时航行多少海里?(结果精确到0.1海里∕时,参考数据≈1.41,≈1.73)8、(2010•陕西)在一次测量活动中,同学们要测量某公园的码头A与他正东方向的亭子B之间的距离,如图他们选择了与码头A、亭子B在同一水平面上的点P在点P处测得码头A位于点P北偏西方向30°方向,亭子B位于点P北偏东43°方向;又测得P与码头A之间的距离为200米,请你运用以上数据求出A与B的距离.练习作业:1、在Rt△ABC中,∠C=90°,∠B=35°,AB=7,则BC的长为()A、7sin35°B、C、7cos35°D、7tan35°2、Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边.那么c等于()A、acos A+bsin BB、asin A+bsin BC、D、3、如图AD⊥CD,AB=13,BC=12,CD=3,AD=4,则sinB=()A、B、C、D、4、如图,已知一坡面的坡度i=1:,则坡角α为()A、15°B、20°C、30°D、45°5、如图所示,CD是平面镜,光线从A点出发经CD上的E点反射后到达B点,若入射角为α,AC⊥CD,BD⊥CD,垂足分别为C,D,且AC=3,BD=6,CD=11,则tanα的值是()A、B、C、D、6、如图,沿AC方向开山修路,为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B,取∠ABD=145°,BD=500米,∠D=55度.要使A,C,E成一直线.那么开挖点E离点D的距离是()A、500sin55°米B、500cos55°米C、500tan55°米D、500cot55°米7、如图,在矩形ABCD中,DE⊥AC于E,设∠ADE=α,且cosα=,AB=4,则AD的长为()A、3 B、C、D、8、如图,在梯形ABCD中,AD∥BC,AB=CD=AD,BD⊥CD.(1)求sin∠DBC的值;(2)若BC长度为4cm,求梯形ABCD的面积.9、路边路灯的灯柱BC垂直于地面,灯杆BA的长为2米,灯杆与灯柱BC成120°角,锥形灯罩的轴线AD 与灯杆AB垂直,且灯罩轴线AD正好通过道路路面的中心线(D在中心线上).已知点C与点D之间的距离为12米,求灯柱BC的高.(结果保留根号)10、如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了100m,此时自B处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m,请你计算出该建筑物的高度.(取=1.732,结果精确到1m).11、如图,某船由西向东航行,在点A测得小岛O在北偏东60°,船航行了10海里后到达点B,这时测得小岛O在北偏东45°,船继续航行到点C时,测得小岛O恰好在船的正北方,求此时船到小岛的距离.。

解直角三角形 知识讲解

解直角三角形 知识讲解

解直角三角形 知识讲解【学习目标】1.了解解直角三角形的含义,会综合运用平面几何中有关直角三角形的知识和锐角三角函数的定义解直角三角形;2.会运用有关解直角三角形的知识解决实际生活中存在的解直角三角形问题.【要点梳理】要点一、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形. 在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt △ABC 中,∠C=90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,则有: ①三边之间的关系:a 2+b 2=c 2(勾股定理). ②锐角之间的关系:∠A+∠B=90°. ③边角之间的关系:sin ,cos ,tan ,cot a bab A A A Ac c b a ==== sin ,cos ,tan ,cot b aba B B B B c c a b==== ④,h 为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系). (3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解. 要点二、解直角三角形的常见类型及解法由由,要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算;2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.要点三、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别地:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图;2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解;3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.【典型例题】类型一、解直角三角形1.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,根据下列条件,解这个直角三角形.(1)∠B=60°,a =4; (2)a =1,b = 【答案与解析】(1)∠A =90°-∠B =90°-60°=30°.由tan bB a =知, 由cos =a B c 知,48cos cos 60a c B ===°.(2)由tan bB a==B =60°,∴ ∠A =90°-60°=30°.∵ 222a b c +=,∴ 2c =.【总结升华】解直角三角形的两种类型是:(1)已知两边;(2)已知一锐角和一边.解题关键是正确选择边角关系.常用口诀:有弦(斜边)用弦(正弦、余弦),无弦(斜边)用切(正切). (1)首先用两锐角互余求锐角∠A ,再利用∠B 的正切、余弦求b 、c 的值;(2)首先用正切求出∠B 的值,再求∠A 的值,然后由正弦或余弦或勾股定理求c 的值. 举一反三:【变式】(1)已知Rt △ABC 中,∠C =90°,b=2 ,求∠A 、∠B 和c ;(2)已知Rt △ABC 中,∠C =90°,sinA=23, c=6 ,求a 和b.【答案】(1)c=4;∠A=60°、∠B=30°; (2)a=4;b=2.如图所示,在Rt △ABC 中,∠C =90°,∠B =30°,b =20,解这个直角三角形.【答案与解析】由∠C =90°知,∠A+∠B =90°,而∠B =30°, ∴ ∠A =90°-30°=60°.又 sin 30b c =°,∴ 1202c=. ∴ c =40.由勾股定理知222a cb =-.∴ 2224020a =-,a =.【总结升华】解这个直角三角形就是根据已知∠C =90°,∠B =30°,b =20,求∠A 、a 、c 的过程. 类型二、解直角三角形在解决几何图形计算问题中的应用3.如图所示,BC 是半圆⊙O 的直径,D 是的中点,四边形ABCD 的对角线AC 、BD 交于点E ,(1)求证:△ABE ∽△DBC ; (2)已知BC =52,CDsin ∠AEB 的值; (3)在(2)的条件下,求弦AB 的长.【答案与解析】(1)∵,∴ ∠1=∠2,又BC 是⊙O 的直径,∴ ∠BAC =∠BDC =90°. ∴ △ABE ∽△DBC .(2)由△ABE ∽△DBC ,∴ ∠AEB =∠DCB . 在Rt △BDC 中,BC =52,CD= ∴ BD= ∴ sin ∠AEB =sin ∠DCB=552BD BC ==. (3)在Rt △BDC 中,BD1=∠2=∠3,∠ADE =∠BDA ,∴ △AED ∽△BAD . ∴AD DEDB AD=,∴ 2AD DE DB =. 又∵2CD AD ==,∴ CD 2=(BO -BE)·BD ,∴BE =在Rt △ABE 中,AB =BE .sin ∠AEB32=.【总结升华】本题综合了三角函数、相似三角形、勾股定理、圆等方面知识,尤其涉及三角函数问题,都是通过找出或构造盲角三角形来解决问题. (1)根据圆周角定理易证△ABE ∽△DBC .(2)利用(1)的结论,将∠AEB 转化为Rt △BCD 中的DCB ∠.(3)在Rt △ABE 中求AB .举一反三:【变式】如图,在△ABC 中,AC=12cm ,AB=16cm ,sinA=13. (1)求AB 边上的高CD ;(2)求△ABC 的面积S ;(3)求tanB .【答案】(1)CD=4cm ;(2)S=32 cm 2;(3)类型三、解直角三角形在解决实际生活、生产问题中的应用4.某过街天桥的截面图为梯形,如图所示,其中天桥斜面CD 的坡度为i =i =铅直高度DE 与水平宽度CE 的比),CD 的长为10 m ,天桥另一斜面AB 的坡角∠ABC =45°.(1)写出过街天桥斜面AB 的坡度; (2)求DE 的长;(3)若决定对该过街天桥进行改建,使AB 斜面的坡度变缓,将其45°坡角改为30°,方便过路群众,改建后斜面为AF ,试计算此改建需占路面的宽度FB 的长(结果精确到.0.01 m). 【答案与解析】(1)在Rt △AGB 中,∠ABG =45°,AG =BG . ∴ AB 的坡度1AGi BG'==.(2)在Rt △DEC 中,∵ tan 3DE C EC ∠==,∴ ∠C =30°. 又∵ CD =10 m .∴ 15m 2DE CD ==. (3)由(1)知AG =BG =5 m ,在Rt △AFG 中,∠AFG =30°,tan AG AFG FG ∠=55FB =+,解得5 3.66(m)FB ==.答:改建后需占路面的宽度FB 的长约为3.66 m . 【总结升华】(1)解梯形问题常作出它的两条高,构造直角三角形求解.(2)坡度是坡面的铅直高度与水平宽度的比,它等于坡角的正切值.5.腾飞中学在教学楼前新建了一座“腾飞”雕塑.为了测量雕塑的高度,小明在二楼找到一点C ,利用三角板测得雕塑顶端A 点的仰角为30°,底部B 点的俯角为45°,小华在五楼找到一点D ,利用三角板测得A 点的俯角为60°(如图所示).若已知CD 为10米,请求出雕塑AB 的高度.(结果精确到0.11.73).【答案与解析】过点C 作CE ⊥AB 于E .∵ ∠D =90°-60°=30°,∠ACD =90°-30°=60°,∴ ∠CAD =180°-30°-60°=90°.∵ CD =10,∴ AC =12CD =5. 在Rt △ACE 中,AE =AC ·sin ∠ACE =5×sin 30°=52,CE =AC ·cos ∠ACE =5×cos 30 在Rt △BCE 中,∵ ∠BCE =45°,∴ 551)22AB AE BE =+=+=≈6.8(米). ∴ 雕塑AB 的高度约为6.8米.【总结升华】此题将实际问题抽象成数学问题是解题关键,从实际操作(用三角形板测得仰角、俯角)过程中,提供作辅助线的方法,同时对仰角、俯角等概念不能模糊.。

(完整版)解直角三角形总结

(完整版)解直角三角形总结

解直角三角形总结解直角三角形与直角三角形的概念、性质、判定和作图有着密切的联系,是在深入研究几何图形性质的基础上,根据已知条件,计算直角三角形未知的边长、角度和面积,以及与之相关的几何图形的数量。

1、明确解直角三角形的依据和思路在直角三角形中,我们是用三条边的比来表述锐角三角函数定义的.因此,锐角三角函数的定义本质揭示了直角三角形中边角之间的关系,是解直角三角形的基础。

如图1,在Rt△ABC中,∠C=90°,设三个内角A、B、C所对的边分别为a、b、c(以下字母同),则解直角三角形的主要依据是(1)边角之间的关系:sinA=cosB=ac, cosA=sinB=bc,tanA=cotB=ab,cotA=tanB=ba。

(2)两锐角之间的关系:A+B=90°。

(3)三条边之间的关系:。

以上每个边角关系式都可看作方程,解直角三角形的思路,就是根据已知条件,正确地选择直角三角形中边角间的关系式,通过解一元方程来求解。

2、解直角三角形的基本类型和方法我们知道,由直角三角形中已知的元素求出未知元素的过程叫作解直角三角形,而在直角三角形中,除直角以外还有三条边及两个锐角共五个元素,那么什么样的直角三角形才可解呢?如果已知两个锐角能否解直角三角形呢?事实上,解直角三角形跟直角三角形的判定与作图有着本质的联系,因为已知两个元素(至少有一个是边)可以判定直角三角形全等,也可以作出直角三角形,即此时直角三角形是确定的,所以这样的直角三角形是可解的。

由于已知两个锐角的直角三角形是不确定的,它们是无数多个相似的直角三角形,因此求不出各边的长。

所以,要解直角三角形,给出的除直角外的两个元素中,必须至少有一个是边。

这样,解直角三角形就分为两大类,即已知一条边及一个锐角或已知两条边解直角三角形。

四种基本类型和解法列表如下:已知条件解法一边及一锐角直角边a及锐角A B=90°-A,b=a·tanA,c=sinaA斜边c及锐角A B=90°—A,a=c·sinA,b=c·cosA两边两条直角边a和b ,B=90°—A,直角边a和斜边c sinA=ac,B=90°-A,例1、如图2,若图中所有的三角形都是直角三角形,且∠A=α,AE=1,求AB的长。

解直角三角形

解直角三角形

解直角三角形直角三角形是一种特殊的三角形,其中一个角度为90度(直角)。

解直角三角形是指根据三角形已知的某些条件,推导出其他未知的角度或边长。

在解直角三角形时,常用到三角比例、勾股定理等概念和公式。

下面将详细介绍解直角三角形的方法和步骤。

一、已知两边长度求角度当已知一个直角三角形的两条直角边的长度时,可以通过求解正弦、余弦、正切等三角比例来确定其他两个角度的大小。

假设已知直角三角形的两条直角边长度分别为a和b。

1. 解正弦比例根据正弦定理,sinA=a/c,sinB=b/c,其中c为斜边的长度。

可根据已知的a和b,解出c,然后利用反正弦函数求解出A和B的大小。

2. 解余弦比例根据余弦定理,cosA=a/c,cosB=b/c,同样可以根据已知的a和b解出c,然后求解出A和B的大小。

3. 解正切比例根据正切定理,tanA=a/b,tanB=b/a,可以通过已知的a和b求解出A和B的大小。

二、已知一边长度求其他边长和角度当已知一个直角三角形的一个直角边和一个锐角边的长度时,可以通过勾股定理求解出另一个直角边的长度,并进一步求解出其他角度和边长。

假设已知直角三角形的一个直角边长度为a,一个锐角边长度为b。

1. 求解斜边的长度根据勾股定理,a²+b²=c²,可以解出斜边c的长度。

2. 求解未知角的大小根据已知的三边长度,利用正弦、余弦、正切等三角函数,可以求解出其他两个角的大小。

3. 求解另一个直角边的长度根据已知的斜边长度和一个直角角度,可以利用正弦、余弦等三角函数,求解出另一个直角边的长度。

三、应用解直角三角形的例子解直角三角形的方法在实际生活中有广泛的应用。

比如在测量、建筑、地理等领域都需要用到解直角三角形的知识。

1. 测量在测量中,我们常常需要通过已知的边长测量出其他未知的边长或角度。

例如在测量高楼建筑的高度时,可以利用解直角三角形的方法。

通过观察建筑物的倾斜角度,可以利用三角函数求解出建筑物的高度。

解直角三角形

解直角三角形
2、一些解直角三角形的问题往往与其他知识联 系,所以在复习时要形成知识结构,要把解直角 三角形作为一种工具,能在解决各种数学问题时 合理运用.
〖归纳小结二〗
• 转化思想贯穿全章。把实际问题转化为数学问题。 • 数形结合思想。画出图形,使已知元素和未知元素更直观。 • 函数思想。锐角的四个三角函数,角度与函数值一一对应。 • 方程思想。若某个元素无法直接求解,往往设未知数,根据三角形
A
BC
E
D
外国船只,除特许外,不得进入我国海洋100海里以内的 区域。如图,设A、B是我们的观察站,A和B之间的距离为 160海里,海岸线是过A、B的一条直线。一外国船只在P点, 在A点测得∠BAP=450,同时在B点测得∠ABP=600,问此时 是否要向外国船只发出警告,令其退出我国海域.
100海里
距离.(精确到1米)
A 2000 B
解:在RtΔABC中,
D 300
∵ ∠CAB = 900 - ∠DAC = 600
∵ tan ∠CAB = BC
AB
C
∴ BC = AB·tan ∠CAB
=2000× tan 600 ≈3464(米)
又∵cos ∠CAB =
AB AC
AC
AB COS 600
2000 400(0 米) 0.5
A
B
C
例1 如图所示,一棵大树在一次强烈的 地震中于离地面10米处折断倒下,树顶落 在离树根24米处.大树在折断之前高多少?
解:设RtΔABC中,∠C=900,
AC =10m,BC=24m.
10m
则 AB= BC 2 AC 2
242 102 = 26(米)
24m A
26+AB,小强从点B沿山坡向上

解直角三角形(5种题型)(解析版)

解直角三角形(5种题型)(解析版)

解直角三角形(5种题型)【知识梳理】一.解直角三角形(1)解直角三角形的定义在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.(2)解直角三角形要用到的关系①锐角、直角之间的关系:∠A+∠B=90°;②三边之间的关系:a2+b2=c2;③边角之间的关系:sin A=∠A的对边斜边=ac,cos A=∠A的邻边斜边=bc,tan A=∠A的对边∠A的邻边=ab.(a,b,c分别是∠A、∠B、∠C的对边)二.解直角三角形的应用(1)通过解直角三角形能解决实际问题中的很多有关测量问.如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.(2)解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.三.解直角三角形的应用-坡度坡角问题(1)坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.(2)把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h/l=tanα.(3)在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.应用领域:①测量领域;②航空领域③航海领域:④工程领域等.四.解直角三角形的应用-仰角俯角问题(1)概念:仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.(2)解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.在视线与水平线所成的角中,视线在水平线上方的角叫仰角;视线在水平线下方的角叫俯角;五.解直角三角形的应用-方向角问题(1)在辨别方向角问题中:一般是以第一个方向为始边向另一个方向旋转相应度数.(2)在解决有关方向角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方向角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角.【考点剖析】一.解直角三角形1.(2022春•闵行区校级期中)如图,在Rt△ABC中,∠ACB=90°,AC=BC=6,点D在边AC上,且AD =2CD,DE⊥AB,垂足为点E,联结CE,求:(1)线段BE的长;(2)∠ECB的余弦值.【分析】(1)根据题意,AC=BC=6,AD=2CD,可得AD的长度,根据等腰直角三角形的性质可得AB=√2AC,由AE=sin45°•AD的长度,则BE=AB﹣AE,计算即可得出答案;(2)过点E作EF⊥BC,垂足为F,如图,根据等腰直角三角形的性质可得,EF=BF=sin45°•BE,则CF=BC﹣BF,根据勾股定理可得CE=√EF2+CF2,在Rt△ECF中,由cos∠ECB=CFCE 计算即可得出答案.【解答】解:(1)∵AC=BC=6,AD=2CD,∴AD=4,∵∠ACB=90°,∴AB=√2AC=6√2,∴∠DAE=45°,DE⊥AB,∴AE=sin45°•AD=√22×4=2√2,∴BE=AB﹣AE=6√2−2√2=4√2;(2)过点E作EF⊥BC,垂足为F,如图,∵∠B=45°,∴EF=BF=sin45°•BE=√22×4√2=4,∴CF=BC﹣BF=2,∴CE=√EF2+CF2=√42+22=2√5,在Rt△ECF中,cos∠ECB=CFCE =2√5=√55.【点评】本题主要考查了解直角三角形及等腰直角三角形形的性质,应用等腰直角三角形性质进行计算是解决本题的关键.2.(2022春•浦东新区校级期中)如图,在△ABC中,CD是边AB上的高,AE是BC边上的中线,已知AD=8,BD=4,cos∠ABC=45.(1)求高CD的长;(2)求tan∠EAB的值.【分析】(1)在Rt△BCD中,由已知条件cos∠ABC=BDBC =45,即可算出BC的长,根据勾股定理即可得出答案;(2)过点E作EF⊥AB,垂足为F,如图,可得CD∥EF,由E为BC的中点,可得EF是△BCD的中位线,即可算出EF=12CD,DF的长度,即可算出AF=AD+DF的长度,在Rt△AEF中,根据tan∠EAB=EFAF即可得出答案.【解答】解:(1)在Rt△BCD中,∵cos∠ABC=BDBC =45,∴4BC =45,∴BC=5,∴CD=√BC2−BD2=√52−42=3;(2)过点E作EF⊥AB,垂足为F,如图,∵EF⊥BD,∴CD∥EF,∵E为BC的中点,∴EF是△BCD的中位线,∴EF=12CD=12×3=32,DF=12BD=12×4=2,∴AF=AD+DF=8+2=10,在Rt△AEF中,∴tan∠EAB=EFAF =3210=15.【点评】本题主要考查了解直角三角形,熟练掌握解直角三角形的方法进行求解是解决本题的关键.3.(2022•黄浦区二模)如图,在Rt△ABC中,∠ACB=90°,AC=3,sin∠ABC=13,D是边AB上一点,且CD=CA,BE⊥CD,垂足为点E.(1)求AD 的长; (2)求∠EBC 的正切值.【分析】(1)过C 点作CH ⊥AD 于H ,如图,利用等腰三角形的性质得到AH =DH ,再证明∠ACH =∠ABC ,则sin ∠ACH =sin ∠ABC =13,然后利用正弦的定义求出AH ,从而得到AD 的长;(2)在Rt △ABC 中先求出AB =9,则BD =7,再证明∠HCD =∠EBD ,则sin ∠EBD =DE BD =13,利用正弦的定义求出DE =73,接着利用勾股定理计算出BE ,然后根据正切的定义求解.【解答】解:(1)过C 点作CH ⊥AD 于H ,如图, ∵CD =CA , ∴AH =DH ,∵∠ABC+∠BCH =90°,∠ACH+∠BCH =90°, ∴∠ACH =∠ABC , ∴sin ∠ACH =sin ∠ABC =13, 在Rt △ACH 中,sin ∠ACH =AH AC =13,∴AD =2AH =2;(2)在Rt △ABC 中,sin ∠ABC =AC AB=13,∴AB =3AC =9,∴BD =AB ﹣AD =9﹣2=7, ∵∠E =90°, 而∠EDB =∠HDC , ∴∠HCD =∠EBD , ∴sin ∠EBD =DE BD =13,∴DE =13BD =73,∴BE =√72−(73)2=14√23,在Rt △EBC 中,tan ∠EBC =EC EB=3+7314√23=4√27.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了等腰直角三角形的性质. 二.解直角三角形的应用4.(2022•长宁区二模)冬至是一年中太阳光照射最少的日子,如果此时楼房最低层能采到阳光,一年四季整座楼均能受到阳光的照射,所以冬至是选房买房时确定阳光照射的最好时机.某居民小区有一朝向为正南方向的居民楼.该居民楼的一楼是高6米的小区超市,超市以上是居民住房,在该楼前面20米处要盖一栋高25米的新楼.已知上海地区冬至正午的阳光与水平线夹角为29°(参考数据:sin29°≈0.48;cos29°≈0.87;tan29°≈0.55)(1)冬至中午时,超市以上的居民住房采光是否有影响,为什么?(2)若要使得超市全部采光不受影响,两楼应至少相距多少米?(结果保留整数)【分析】(1)延长光线交CD 于点F ,过点F 作FG ⊥AB ,垂足为G ,根据题意可得∠AFG =29°,GF =BC =20米,GB =FC ,然后在Rt △AGF 中,利用锐角三角函数的定义求出AG ,从而求出GB 的长,进行比较,即可解答;(2)延长光线交直线BC 于点E ,根据题意可得∠AEB =29°,然后在Rt △ABE 中,利用锐角三角函数的定义求出BE 的长,即可解答.【解答】解:(1)冬至中午时,超市以上的居民住房采光有影响,理由:延长光线交CD于点F,过点F作FG⊥AB,垂足为G,则∠AFG=29°,GF=BC=20米,GB=FC,在Rt△AGF中,AG=FG•tan29°≈20×0.55=11(米),∵AB=25米,∴GB=AB﹣AG=25﹣11=14(米),∴FC=GB=14米,∵14米>6米,∴冬至中午时,超市以上的居民住房采光有影响;(2)延长光线交直线BC于点E,则∠AEB=29°,在Rt△ABE中,AB=25米,∴BE=ABtan29°≈250.55≈45(米),∴若要使得超市全部采光不受影响,两楼应至少相距45米.【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.5.(2022•徐汇区二模)激光电视的光源是激光,它运用反射成像原理,屏幕不通电无辐射,降低了对消费者眼睛的伤害.根据THX观影标准,当观影水平视场角“θ”的度数处于33°到40°之间时(如图1),双眼肌肉处于放松状态,是最佳的感官体验的观影位.(1)小丽家决定要买一个激光电视,她家客厅的观影距离(人坐在沙发上眼睛到屏幕的距离)为3.5米,小佳家要选择电视屏幕宽(图2中的BC的长)在什么范围内的激光电视就能享受黄金观看体验?(结果精确到0.1m,参考数据:sin33°≈0.54,tan33°≈0.65,sin40°≈0.64,tan40°≈0.84,sin16.5°≈0.28,tan16.5°≈0.30,sin20°≈0.34,tan20°≈0.36)(2)由于技术革新和成本降低,激光电视的价格逐渐下降,某电器商行经营的某款激光电视今年每台销售价比去年降低4000元,在销售量相同的情况下,今年销售额在去年销售总额100万元的基础上减少20%,今年这款激光电视每台的售价是多少元?【分析】(1)过点A作AD⊥BC于点D,根据题意可得AB=AC,当∠BAC=33°时,当∠BAC=40°时,利用锐角三角函数即可解决问题;(2)设今年这款激光电视每台的售价是x元,则去年每台的售价为(x+4000)元.由题意列出方程即可解决问题.【解答】解:(1)如图,过点A作AD⊥BC于点D,根据题意可知:AB=AC,AD⊥BC,∴BC=2BD,∠BAD=∠CAD=∠BAC,当∠BAC=33°时,∠BAD=∠CAD=16.5°,在△ABD中,BD=AD×tan16.5°≈3.5×0.30=1.05(m),∴BC=2BD=2.10(m),当∠BAC=40°时,∠BAD=∠CAD=20°,在△ABD中,BD=AD×tan20°≈3.5×0.36=1.26(m),∴BC=2BD=2.52m,答:小佳家要选择电视屏幕宽为2.10m﹣2.52m之间的激光电视就能享受黄金观看体验;(2)设今年这款激光电视每台的售价是x元,则去年每台的售价为(x+4000)元.由题意可得:=,解得:x=16000,经检验x=16000是原方程的解,符合题意,答:今年这款激光电视每台的售价是16000元.【点评】本题考查了解直角三角形的应用,分式方程的应用,视点,视角和盲区,解决本题的关键是根据题意找到等量关系准确列出方程.6.(2022•崇明区二模)为解决群众“健身去哪儿”问题,某区2021年新建、改建90个市民益智健身苑点,图1是某益智健身苑点中的“侧摆器”.锻炼方法:面对器械,双手紧握扶手,双脚站立于踏板上,腰部发力带动下肢做左右摆式运动.(1)如图2是侧摆器的抽象图,已知摆臂OA的长度为80厘米,在侧摆运动过程中,点A为踏板中心在侧摆运动过程中的最低点位置,点B为踏板中心在侧摆运动过程中的最高点位置,∠BOA=25°,求踏板中心(精确到0.1厘米)(sin25°≈0.423,cos25°≈0.906,tan25°≈0.466)点在最高位置与最低位置时的高度差.(2)小杰在侧摆器上进行锻炼,原计划消耗400大卡的能量,由于小杰加快了运动频率,每小时能量消耗比原计划增加了100大卡,结果比原计划提早12分钟完成任务,求小杰原计划完成锻炼需多少小时?【分析】(1)过点B作BD⊥OA垂足为D,由题意得:OB=OA=80cm,然后在Rt△BOD中,利用锐角三角函数的定义求出OD的长,进行计算即可解答;(2)先设小杰原计划x小时完成锻炼,然后根据实际每小时的能量消耗﹣原计划每小时的能量消耗=100,列出方程进行计算即可解答.【解答】解:(1)过点B作BD⊥OA垂足为D,由题意得:OB=OA=80cm,在Rt△BOD中,∠BOA=25°,∴OD=BO•cos25°≈80×0.906=72.48(cm),∴AD=OA﹣OD=80﹣72.48≈7.5(cm),∴踏板中心点在最高位置与最低位置时的高度差约为7.5厘米;(2)设小杰原计划x小时完成锻炼,由题意得:,解得:,经检验:都是原方程的根,但不符合题意,舍去,答:小杰原计划锻炼1小时完成.【点评】本题考查了解直角三角形的应用,分式方程的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.7.(2022•宝山区二模)某超市大门口的台阶通道侧面如图所示,共有4级台阶,每级台阶高度都是0.25米.根据部分顾客的需要,超市计划做一个扶手AD,AB、DC是两根与地平线MN都垂直的支撑杆(支撑杆底端分别为点B、C).(1)求点B与点C离地面的高度差BH的长度;(2)如果支撑杆AB、DC的长度相等,且∠DAB=66°.求扶手AD的长度.(参考数据:sin66°≈0.9,cos66°≈0.4,tan66°≈2.25,cot66°≈0.44)【分析】(1)根据每级台阶高度都是0.25米,然后计算出3个台阶的总高度,即可解答;(2)连接BC,根据题意可得:AB=DC,AB∥DC,从而可得四边形ABCD是平行四边形,然后利用平行四边形的性质可得AD=BC,AD∥BC,从而求出∠CBH=66°,最后在Rt△CBH中,利用锐角三角函数的定义进行计算即可解答.【解答】解:(1)∵每级台阶高度都是0.25米,∴BH=3×0.25=0.75(米),∴点B与点C离地面的高度差BH的长度为0.75米;(2)连接BC,由题意得:AB=DC,AB∥DC,∴四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAB=∠CBH=66°,在Rt△CBH中,BH=0.75米,∴BC=≈=1.875(米),∴扶手AD的长度约为1.875米.【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.三.解直角三角形的应用-坡度坡角问题8.(2021秋•闵行区期末)如图,某幢楼的楼梯每一级台阶的高度为20厘米,宽度为30厘米,那么斜面AB 的坡度为.【分析】根据坡度的概念计算,得到答案.【解答】解:斜面AB的坡度为20:30=1:1.5,故答案为:1:1.5.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.9.(2022春•浦东新区校级期中)工厂的传送带把物体从地面送到离地面5米高的地方,如果传送带与地面所成的斜坡的坡度i=1:2.4,那么物体所经过的路程为米.【分析】根据坡度的概念求出AC,根据勾股定理求出AB.【解答】解:∵传送带与地面所成的斜坡的坡度i=1:2.4,∴BCAC =12.4,即5AC=12.4,解得,AC=12,由勾股定理得,AB=√AC2+BC2=√122+52=13(米),故答案为:13.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.10.(2022•黄浦区二模)某传送带与地面所成斜坡的坡度i=1:2.4,如果它把物体从地面送到离地面10米高的地方,那么物体所经过的路程为米.【分析】根据坡度的概念求出水平距离,根据勾股定理计算,得到答案.【解答】解:∵传送带与地面所成斜坡的坡度i=1:2.4,它把物体从地面送到离地面10米高,∴水平距离为:2.4×10=24,∴物体所经过的路程为:√102+242=26(米),故答案为:26.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度的概念是解题的关键.11.(2022•浦东新区二模)如图,一个高BE为√3米的长方体木箱沿坡比为1:√3的斜面下滑,当木箱滑至如图位置时,AB=3米,则木箱端点E距地面AC的高度EF为米.【分析】根据坡度的概念求出∠DAF=30°,根据正弦的定义求出DE,进而求出BD,得到答案.【解答】解:设AB、EF交于点D,∵斜坡的坡比为1:√3,∴tan∠DAF=√3=√33,∴∠DAF=30°,∴∠ADF=90°﹣30°=60°,∴∠BDE=60°,在Rt△BDE中,sin∠BDE=BEDE,∴√3DE =√32,解得,DE=2(米),∴BD=1m,∴AD=AB﹣BD=2(米),在Rt△ADF中,∠DAF=30°,∴DF=12AD=1(米),∴EF=DE+DF=3(米),故答案为:3.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度的概念是解题的关键.四.解直角三角形的应用-仰角俯角问题12.(2021秋•浦东新区期末)在离旗杆20米处的地方,用测角仪测得旗杆顶的仰角为α,如测角仪的高为1.5米,那么旗杆的高为()米.A.20cotαB.20tanαC.1.5+20tanαD.1.5+20cotα【分析】由题意得,在直角三角形中,知道了已知角的邻边求对边,用正切值计算即可.【解答】解:根据题意可得:旗杆比仪器高20tanα,测角仪高为1.5米,故旗杆的高为(1.5+20tanα)米.故选:C.【点评】本题考查了解直角三角形的应用﹣仰角俯角,熟练掌握解直角三角形的方法是解题的关键.13.(2022•徐汇区二模)如图,小明在某次投篮中刚好把球打到篮板的点D处后进球,已知小明与篮板底的距离BC=5米,眼睛与地面的距离AB=1.7米,视线AD与水平线的夹角为α,已知tanα的值为0.3,则点D到地面的距离CD的长为米.【分析】根据题意可得AE=BC=5米,EC=AB=1.7米,然后在Rt△ADE中,利用锐角三角函数的定义求出DE的长,进行计算即可解答.【解答】解:由题意得:AE=BC=5米,EC=AB=1.7米,在Rt△ADE中,tanα=0.3,∴DE=AE•tanα=5×0.3=1.5(米),∴DC=DE+EC=1.5+1.7=3.2(米),∴点D到地面的距离CD的长为3.2米,故答案为:3.2.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解题的关键.14.(2022•青浦区二模)小明要测量公园里一棵古树的高,被一条小溪挡住去路,采用计算方法,在A点测得古树顶的仰角为α,向前走了100米到B点,测得古树顶的仰角为β,则古树的高度为米.【分析】设CD=x米,用含x的代数式表示出AD和BD的长,再根据AD﹣BD=100可得x的值.【解答】解:设CD=x米,在Rt△ACD中,tanα=CDAD,∴AD=xtanα,在Rt△BCD中,tanβ=CDBD,∴BD=xtanβ,∵AD﹣BD=100,∴xtanα−xtanβ=100,解得x=100⋅tanβ⋅tanαtanβ−tanα,故答案为:100⋅tanβ⋅tanαtanβ−tanα.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.五.解直角三角形的应用-方向角问题15.(2021秋•黄浦区期末)如图,在东西方向的海岸线l上有一长为1千米的码头MN,在距码头西端M的正西方向58千米处有一观测站O,现测得位于观测站O的北偏西37°方向,且与观测站O相距60千米的小岛A处有一艘轮船开始航行驶向港口MN.经过一段时间后又测得该轮船位于观测站O的正北方向,且与观测站O相距30千米的B处.(1)求AB两地的距离;(结果保留根号)(2)如果该轮船不改变航向继续航行,那么轮船能否行至码头MN靠岸?请说明理由.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37≈0.75.)【分析】(1)过点A作AC⊥OB于点C.可知△ABC为直角三角形.根据勾股定理解答.(2)延长AB交l于D,比较OD与OM+MN的大小即可得出结论.【解答】解:(1)过点A作AC⊥OB于点C.由题意,得OA=60千米,OB=30千米,∠AOC=37°.∴AC=OAsin37°≈60×0.60=36(千米).在Rt△AOC中,OC=OA•cos∠AOC≈60×0.8=48(千米).∴BC=OC﹣OB=48﹣30=18(千米).在Rt△ABC中,AB=.(2)如果该轮船不改变航向继续航行,不能行至码头MN靠岸.理由:延长AB交l于点D.∵∠ABC=∠OBD,∠ACB=∠BOD=90°.∴△ABC∽△DBO,∴,∴,∴OD=60(千米).∵60>58+1,∴该轮船不改变航向继续航行,不能行至码头MN靠岸.【点评】本题考查了解直角三角形的应用,此题结合方向角,考查了阅读理解能力、解直角三角形的能力.计算出相关特殊角和作出辅助线构造相似三角形是解题的关键.16.(2021秋•嘉定区期末)如图,在航线l的两侧分别有两个灯塔A和B,灯塔A到航线l的距离为AC=3千米,灯塔B到航线l的距离为BD=4千米,灯塔B位于灯塔A南偏东60°方向.现有一艘轮船从位于灯塔B北偏西53°方向的N(在航线l上)处,正沿该航线自东向西航行,10分钟后该轮船行至灯塔A正南方向的点C(在航线l上)处.(1)求两个灯塔A和B之间的距离;(2)求该轮船航行的速度(结果精确到0.1千米/小时).(参考数据:,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)【分析】(1)根据特殊角三角函数即可解决问题;(2)根据三角函数定义可得CN的长,进而可以求该轮船航行的速度.【解答】解:(1)由题意,得∠ACM=∠BDM=90°,AC=3,BD=4,∠CAM=∠DBM=60°,在Rt△ACM中,,∴cos60°=,∴AM=6,在Rt△BDM中,,∴cos60°=,∴BM=8,∴AB=AM+BM=14千米.答:两个灯塔A和B之间的距离为14千米.(2)在Rt△ACM中,,∴,∴,在Rt△BDM中,,∴, ∴, ∴,在Rt △BDN 中,,由题意,得∠DBN =53°∴, ∴DN =4tan53°,∴,设该轮船航行的速度是V 千米/小时,由题意,得,∴V ≈40.7(千米/小时 ),答:该轮船航行的速度是40.7千米/小时. 【点评】本题考查了解直角三角形的应用中的仰角俯角问题、矩形的判定与性质等知识;掌握仰角俯角定义是解题的关键.【过关检测】一、单选题 九年级假期作业)已知在ABC 中,【答案】B 【分析】过点C 作CD AB ⊥,垂足为D ,根据60A ∠=︒,得出30ACD ∠=︒,进而求得CD ,由已知条件得出CD BD =,进而得出45BCD ∠=︒,即可求解.【详解】解:如图所示,过点C 作CD AB ⊥,垂足为D ,在Rt ADC 中,60A ∠=︒,∴30ACD ∠=︒, ∴sin ,cos CD AD A A AC AC ==sin 602CD =︒∴⨯=11BD AB AD ∴=−=∴CD BD =,在Rt BCD 中,CD BD =45BCD ∴∠=︒75ACB ACD BCD ∴∠=∠+∠=︒故选:B .【点睛】本题考查了解直角三角形,构造直角三角形,掌握直角三角形的边角关系是解题的关键.【答案】D【分析】在直线y=2x 上任取一点P (a ,2a),过点P 作x 轴的垂线,垂足为点B ,则可求得α的正余弦、正余切值,从而可得答案.【详解】如图,在直线y=2x 上任取一点P (a ,2a),过点P作x 轴的垂线,垂足为点B则OB=|a|,PB=2|a| 由勾股定理得:|OPa ==在直角△POB 中,sin 5PB OP α==,cos 5OB OP α===, 2tan =2a PB OB a α==,1cot =22a OB PB a α==故选项D 正确故选:D【点睛】本题考查了正比例函数的图象与性质,锐角三角函数,关键是画出图形,并在直线任取一点,作x 轴的垂线得到直角三角形.【答案】D【分析】先求出120°的补角为60°,然后再把60°放在直角三角形中,所以过点C作CD⊥AB,交BA的延长线于点D,在Rt△ACD中可求出AD与CD的长,最后在Rt△BDC中利用勾股定理求出BC即可解答.【详解】解:过点C作CD⊥AB,交BA的延长线于点D,∵∠BAC=120°,∴∠CAD=180°-∠BAC=60°,在Rt△ACD中,AC=2,∴AD=ACcos60°=2×12=1,CD=ACsin60°=2×∵AB=4,∴BD=AB+AD=4+1=5,∴tanB=CD BD=, 故选:D .【点睛】本题考查了解直角三角形,勾股定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键. 4.(2023·上海·九年级假期作业)如图,45ACB ∠=︒,125PRQ ∠=︒,ABC 底边BC 上的高为1h ,PQR 底边QR 上的高为2h ,则有( )A .12h h =B .12h h <C .12h h >D .以上都有可能【答案】B 【分析】由已知可知高所对的斜边都为5,由正弦的定义可得到高关于正弦的表达式,比较正弦值即可得到答案.【详解】解:如图,分别作出两三角形的高12,h h∵45,5ACB AC ∠=︒=∴1sin 455sin 45h AC =⨯︒=︒ ∵125,5PRQ PR ∠=︒=∴()2sin 1801255sin55h PR =︒−︒=︒ ∵sin 55sin 45︒︒>∴21h h > 故选:B .【点睛】本题考查解直角三角形,依题意作高构造直角三角形是解题的关键.5.(2023·上海·九年级假期作业)小杰在一个高为h 的建筑物顶端,测得一根高出此建筑物的旗杆顶端的仰【答案】C 【分析】过A 作AE BC ⊥于E ,在Rt ACE △中,已知了CE 的长,可利用俯角CAE ∠的正切函数求出AE 的值;进而在Rt ABE △中,利用仰角BAE ∠的正切函数求出BE 的长;从而可得答案.【详解】解:如图,过A 作AE BC ⊥于E ,则四边形ADCE 是矩形,CE AD h ==.∵在Rt ACE △中,CE h =,60CAE ∠=︒,∴tan 60CE AE ==︒,∵在Rt ABE △中,30BAE ∠=︒,∴1tan 303BE AE h =︒==,∴1433BC BE CE h h h =+=+=. 即旗杆的高度为43h .故选C .【点睛】本题考查了解直角三角形的应用--仰角俯角问题,首先构造直角三角形,再运用三角函数的定义解题,是中考常见题型,解题的关键是作出高线构造直角三角形.6.(2021·上海·九年级专题练习)如图,把两条宽度都是1的纸条,其中一条对折后再两条交错地叠在一起,相交成角α,则重叠部分的面积是( )【答案】C【分析】根据题意可知:所得图形是菱形,设菱形ABCD,由已知得∠ABE=α,过A作AE⊥BC于E,由勾股定理可求BE、AB、BC的长度,根据菱形的面积公式即可求出所填答案.【详解】解:由题意可知:重叠部分是菱形,设菱形ABCD,则∠ABE=α,过A作AE⊥BC于E,则AE=1,设BE=x,∵∠ABE=α,∴AB=1sin sinAEαα=,∴BC=AB=1sinα,∴重叠部分的面积是:1sinα×1=1sinα.故选:C.【点睛】本题主要考查了菱形的性质,勾股定理,含30°角的直角三角形的性质,菱形的面积公式等知识点,把实际问题转化成数学问题,利用所学的知识进行计算是解此题的关键.二、填空题7.(2023·上海·九年级假期作业)小球沿着坡度为1:1.5i=的坡面滚动了13m,则在这期间小球滚动的水平距离是___________m.【答案】【分析】设高度为x ,根据坡度比可得水平距离为1.5x ,根据勾股定理列方程即可得到答案;【详解】解:设高度为x ,∵坡度为1:1.5i =,∴水平距离为1.5x ,由勾股定理可得,222(1.5)13x x +=,解得:x =∴水平距离为1.5⨯=故答案为:【点睛】本题考查坡度比及勾股定理,解题的关键是根据坡度比得到高度与水平距离的关系.【答案】13【分析】根据斜坡AB 的坡度1i =AB 的值先求出AH ,再根据斜坡AC 的坡度21:2.4i =,求得AC ,即可求解.【详解】解:∵1i =∴tan 3ABH ∠==, ∴30ABH ∠=︒,∴152AH AB ==, ∵21:2.4i =,∴1tan 2.4AH ACB CH ∠==,∵5AH =,∴12=CH ,在Rt ACH 中,13AC ==,故答案为:13.【点睛】本题考查的是解直角三角形的应用,坡度问题,熟知锐角三角函数的定义是解答此题的关键.【答案】10【分析】作BH AC ⊥于H .由四边形ABCD 是矩形,推出OA OC OD OB ===,设5OA OC OD OB a ====,由余切函数,可得4BH a =,3OH a =,由题意:12104402a a ⨯⨯⨯=,求出a 即可解决问题.【详解】解:如图,作BH AC ⊥于H .∵四边形ABCD 是矩形,∴OA OC OD OB ===,设5OA OC OD OB a ====,则10AC a =.∵根据题意得:3cot 4OH BOH BH ∠==, ∴4BH a =,3OH a =,由题意:12104402a a ⨯⨯⨯=,∴1a =,∴10AC =.故答案为10.【点睛】本题考查了矩形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题. 10.(2023·上海·九年级假期作业)已知:在ABC 中,60A ∠=︒,45B ∠=︒,8AB =.则ABC 的面积为____(结果可保留根号).【答案】48−【分析】过C 作CD AB ⊥于D ,利用直角三角形的性质求得CD 的长.已知AB 的长,根据三角形的面积公式即可求得其面积.【详解】解:过C 作CD AB ⊥于D ,在Rt ADC 中,90CDA ∠=︒Q ,∴tan tan 60CD DAC AD =∠=︒=即AD 在Rt BDC 中,45B ∠=︒, 45BCD ∴∠=︒, CD BD ∴=.8AB DB DA CD =+==,12CD ∴=−.118(124822ABC S AB CD ∴=⨯=⨯⨯−=−故答案为:48−【点睛】本题考查解直角三角形,直角三角形的性质及三角形的面积公式,熟练掌握通过作三角形的高,构造直角三角形是解题的关键.分别在DEF 的边,ABE 沿直线 【答案】67【分析】根据题意和翻折的性质可得ABCABE 是等腰直角三角形,ABC 是等腰直角三角形,所以AC BE ∥,得23DA AC DE HE ==,设2AC AE x ==,则3HE x =,4AD x =,所以7FE x =,6DE x =,然后根据锐角三角函数即可解决问题.【详解】解:如图所示:90DEF ∠=︒,45EBA ∠=︒,ABE ∴是等腰直角三角形,AE BE ∴=,ABE 沿直线AB 翻折,翻折后的点E 落在DEF 内部的点C ,ABC ∴是等腰直角三角形,∴∥AC BE ,∴23DA AC DE HE ==,FH AD =,设2AC AE x ==,则3HE x =,4AD x =,7FE x ∴=,6DE x =, ∴67DE FE =,6cot 7DE D FE ∴==. 故答案为:67.【点睛】本题考查了翻折变换,解直角三角形,解决本题的关键是掌握翻折的性质. 统考二模)在ABC 中,,那么ABC 的重心到【答案】4【详解】解:如下图所示,设点D 为BC 的中点,点E 为三角形的重心,∵AB AC =,∴AD BC ⊥,∵152BD BC ==,5cos 13B =,cos BD B AB = ∴13AB =,∴12AD ==,∵点E 为三角形的重心,∴21AE ED =, ∴4ED =,∵AD BC ⊥,∴ABC 的重心到底边的距离为4,故答案为:4.【点睛】本题考查解直角三角形、三角形重心的性质和勾股定理,解题的关键是熟知重心到顶点的距离与重心到对边中点的距离之比为2:1. 13.(2023·上海·一模)平面直角坐标系内有一点()1,2P ,那么OP 与x 轴正半轴的夹角为α,tan α=________.【答案】2【分析】过点P 作PA x ⊥轴于点A ,由P 点的坐标得PA 、OA 的长,根据正切函数的定义得结论.【详解】解:过点P 作PA x ⊥轴于点A ,如图:∵点PA x ⊥,∴2PA =,1OA =,∴2an 21t PA OA α===.故答案为:2.【点睛】本题考查了点在平面直角坐标系里的意义及解直角三角形.解决本题的关键是构造直角三角形. 一模)如图,已知在ABC 中, 【答案】95【分析】如图,设AP m =.证明AP MQ m ==,根据3cos cos 5A CMQ =∠=,构建方程求解.。

4 解直角三角形

4  解直角三角形

∵ tan B b , b 30,
a

a
b tan
B
30 tan 25。
64.
新课讲解
例 4. 在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分
别为a,b,c,且c=100,∠A=26°44′.求这个三角形 的其他元素.(长度精确到0.01) 解:已知∠A,可根据∠B=90°-∠A得到∠B的大小.而 已知斜边,必然要用到正弦或余弦函数. ∵∠A=26°44′,∠C=90°, ∴∠B=90°-26°44′=63°16′.
新课讲解
典例分析
分析:紧扣解直角三角形中“知二求三”的特征进行解答 .
解: ①能够求解;②不能求解;③能够求解; ④能够求解;⑤能够求解 .
答案:C
新课讲解
典例分析
例 2. 已知在Rt△ABC中,∠C=90°,∠A,∠B,∠C 的对边分别为a,b,c,且c=5,b=4,求这个三角 形的其他元素.(角度精确到1′)
∴∠ B=90° - ∠ A=60° .
∵ tan A= a ,
b

3= a , 3 12
∴ a= 4 3.
c 2a 8 3.
新课讲解
( 2)在 Rt △ ABC 中,∠ C=90°,∠ A=60°,
∴∠ B=90° - ∠ A=30° .
∵ sin A= a , ∴ 3 = a ,
c
26
∴ a 3 3.
, cos
B
B的邻边 斜边
正切:tan
A
A的对边 A的邻边
,tan
B
B的对边 B的邻边
当堂小练
在Rt△ABC中, ∠C=90° , ∠A,∠B,∠C所对的边分别为a, b, c,根据下列条 件求出直角三角形的其他元素(角度精确 到1° ): (1) 已知 a = 4, b =8;

解直角三角形-ppt课件

解直角三角形-ppt课件



,∴




∴CH = ,
∴AH=

∴AB=2AH=



.

=

,∵∠B=30°,

=



26.3 解直角三角形
重 ■题型 解双直角三角形

例 如图,在 Rt△ABC 中,∠C=90°,D 是 AC 上一



点,BD=10
,∠BDC=45°,sinA=
,求 AD 的长.

∴S






AB·AE= ×4×4 =8 ,


CD·DE= ×5 ×15=
四边形 ABDC=S△CDE-S△ABE=






(方法二)如图 2,过点 A 作 AF⊥CD 于点 F,过点
B 作 BG⊥AF 于点 G,则∠ABG=30°,
∴AG=


AB=2,BG= − =2 ,
况讨论,求出不同情况下的答案.
26.3 解直角三角形
■方法:运用割补法求不规则图形的面积


割补法是求不规则图形面积问题的最常用方法,割补法

巧 包含三个方面的内容:一是分割原有图形成规则图形;二

拨 是通过作辅助线将原有图形补为规则图形;三是分割和补
形兼而有之.
26.3 解直角三角形
例 如图,在四边形 ABDC 中,∠ABD=120°,AB⊥AC,


2

=25
26.3 解直角三角形
变式衍生 如图,在Rt△ABC中,∠ACB=90°,D 是 AB

解直角三角形

解直角三角形

解直角三角形直角三角形是指其中一个内角为90度的三角形。

解直角三角形,就是通过已知的信息,求取直角三角形的各边长或者角度的过程。

下面将介绍两种解直角三角形的常用方法:勾股定理和三角函数。

一、勾股定理勾股定理是解直角三角形最基本的方法之一。

它表明,直角三角形的斜边长度的平方等于另外两边长度的平方之和。

设直角三角形的两个边长分别为a和b,斜边长为c,则有勾股定理的表达式为:c² = a² + b²利用勾股定理可以解决以下两种问题:1. 已知两条边的长度,求解第三条边的长度:若直角三角形的两条边分别为3cm和4cm,求解斜边的长度c。

根据勾股定理的表达式可得:c² = 3² + 4²c² = 9 + 16c² = 25c = √25c = 5所以,斜边的长度为5cm。

2. 已知一条边的长度和斜边的长度,求解另一条边的长度:若直角三角形的斜边长度为5cm,一条边的长度为3cm,求解另一条边的长度b。

根据勾股定理的表达式可得:5² = 3² + b²25 = 9 + b²16 = b²b = √16b = 4所以,另一条边的长度为4cm。

二、三角函数除了勾股定理外,三角函数也是解直角三角形的重要方法。

在直角三角形中,正弦、余弦和正切是最常用的三角函数。

下面以解决两个常见的问题为例介绍三角函数的运用。

1. 已知一条边的长度和夹角,求解另一条边的长度:若直角三角形的一条边长为6cm,夹角为30°,求解另一条边的长度a。

根据正弦函数的定义可得:sin(30°) = a / 6a = 6 * sin(30°)a ≈ 3所以,另一条边的长度约为3cm。

2. 已知两条边的长度,求解夹角的大小:若直角三角形的两条边分别为4cm和7cm,求解夹角θ。

根据正弦函数的定义可得:sin(θ) = 4 / 7θ = arcsin(4 / 7)通过计算可得,θ约为42.48°。

解直角三角形五种常见类型

解直角三角形五种常见类型

解直角三角形五种常见类型解直角三角形是中考的重要内容之一,直角三角形边、角关系的知识是解直角三角形的基础.解直角三角形时,要注意三角函数的选取,避免计算复杂.在解题中,若求解的边、角不在直角三角形中,应先添加辅助线,构造直角三角形.类型一、已知两直角边解直角三角形【例1】如图,在Rt△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,a=2,b=6,解这个直角三角形.类型二、已知一直角边和斜边解直角三角形【例2】如图,∠ACB=90°,AB=13,AC=12,∠BCM=∠BAC,求sin ∠BAC的值和点B到直线MC的距离.类型三、已知一直角边和一锐角解直角三角形【例3】如图,在△ABC中,∠B=90°,∠C=30°, AB=3.(1)求AC的长;(2)求BC的长类型四、已知斜边和一锐角解直角三角形【例4】如图,在Rt△ABC中,∠C=90°,∠B=45°,a,b,c分别为∠A,∠B,∠C的对边,c=10,解这个直角三角形类型五、已知非直角三角形中的边(或角或三角函数值)解直角三角形题型一:化斜三角形为直角三角形问题(化斜为直法)【例5】如图,在△ABC中,点D是AB的中点,DC⊥AC,1,求∠A的三角函数值.且tan ∠BCD=3题型2:化解四边形问题为解直角三角形问题【例6】【中考·北京】如图,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=2,BE=22 .求CD的长和四边形ABCD的面积.题型3、化解方程问题为解直角三角形问题【例7】已知a,b,c分别是△ABC中∠A,∠B,∠C的对边,关于x 的一元二次方程a(1-x2)+2bx+c(1+x2)=0有两个相等的实数根,且3c=a+3b.(1)判断△ABC的形状;(2)求sin A+sin B的值.。

《解直角三角形》 教学设计

《解直角三角形》 教学设计

《解直角三角形》教学设计一、教学目标1、知识与技能目标理解直角三角形中五个元素的关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形。

能够根据已知条件,选择合适的锐角三角函数求解直角三角形中的未知元素。

2、过程与方法目标通过对实际问题的分析和求解,培养学生将实际问题转化为数学问题的能力,以及运用数学知识解决实际问题的意识。

经历解直角三角形的过程,提高学生的分析问题和解决问题的能力,以及运算能力。

3、情感态度与价值观目标激发学生学习数学的兴趣,体会数学在实际生活中的广泛应用。

通过解决实际问题,培养学生的合作精神和创新意识,增强学生的自信心。

二、教学重难点1、教学重点解直角三角形的概念及解法。

运用直角三角形的边角关系解实际问题。

2、教学难点如何将实际问题中的数量关系转化为直角三角形中的元素关系。

选择合适的锐角三角函数求解直角三角形。

三、教学方法讲授法、讨论法、练习法、多媒体辅助教学法四、教学过程1、导入新课通过展示一些实际生活中的直角三角形的例子,如建筑物的倾斜度、山坡的坡度等,引出解直角三角形的概念。

2、讲授新课(1)直角三角形的元素介绍直角三角形的五个元素:三条边(斜边、两条直角边)和两个锐角。

(2)直角三角形的边角关系回顾勾股定理:$a^2 + b^2 = c^2$(其中$a$、$b$为直角边,$c$为斜边)。

介绍两个锐角之间的关系:两锐角互余,即$\angle A +\angle B = 90^{\circ}$。

复习锐角三角函数:正弦($\sin A =\frac{a}{c}$)、余弦($\cos A =\frac{b}{c}$)、正切($\tan A =\frac{a}{b}$)。

(3)解直角三角形明确解直角三角形的定义:由直角三角形中除直角外的已知元素,求出所有未知元素的过程。

讲解解直角三角形的一般思路:已知两条边,可先利用勾股定理求出第三条边,再利用锐角三角函数求出两个锐角。

专题训练(八)解直角三角形常见的七种方法

专题训练(八)解直角三角形常见的七种方法

专题训练(八) 解直角三角形常见的七种方法►方法一已知两边解直角三角形1.在△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,根据下面的条件解直角三角形.(1)b=6,c=2 2;(2)a=4,b=4 3.2.如图8-ZT-1,已知AD为△BAC的角平分线,且AD=2,AC=3,∠C=90°,求BC的长及AB的长.图8-ZT-1►方法二已知一边和一个锐角解直角三角形3.在△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,根据下列条件解直角三角形.(1)∠A=60°,a=6;(2)∠A=30°,b=10 3.4.已知:如图8-ZT -2,在Rt △ABC 中,∠C =90°,AC =3,D 为BC 边上一点,且BD =2AD ,∠ADC =60°,求△ABC 的周长.(结果保留根号)图8-ZT -2► 方法三 已知一边和一锐角的三角函数值解直角三角形5.2018·自贡改编如图8-ZT -3,在△ABC 中,CH ⊥AB 于点H ,BC =12,tan A =34,∠B =30°;求AC 和AB 的长.图8-ZT -36.如图8-ZT -4,在△ABC 中,∠ACB =90°,sin A =45,BC =8,D 是AB 的中点,过点B 作直线CD 的垂线,垂足为E .(1)求线段CD 的长; (2)求cos ∠DBE 的值.图8-ZT -4►方法四“化斜为直法”解三角形7.如图8-ZT-5,在△ABC中,∠A=30°,∠B=45°,AC=2 3.求AB的长.图8-ZT-58.如图8-ZT-6,在△ABC中,CD是边AB上的中线,∠B是锐角,且sin B=22,tan A=12,AC=3 5.(1)求∠B的度数及AB的长;(2)求tan∠CDB的值.图8-ZT -6► 方法五 “参数法”解直角三角形9.2018·马鞍山一模如图8-ZT -7,在△ABD 中,AC ⊥BD 于点C ,BC CD =32,E 是AB的中点,tan D =2,CE =1,求sin ∠ECB 的值和AD 的长.图8-ZT -7► 方法六 “等角代换法”解直角三角形10.2018·当涂县六校联考如图8-ZT -8,在四边形ABCD 中,AC ,BD 是它的对角线,相交于点O ,∠ABC =∠ADC =90°,∠BCD 是锐角,BD =BC .求证:sin ∠BCD =BD AC.图8-ZT -8► 方法七 “等比代换法”解直角三角形11.如图8-ZT -9所示,在平面直角坐标系xOy 中,直线AB 与x 轴、y 轴分别交于点B ,A ,与反比例函数的图象交于点C ,D ,CE ⊥x 轴于点E ,tan ∠ABO =12,OB =4,OE =2.(1)求该反比例函数的表达式;(2)求直线AB对应的函数表达式.图8-ZT-9教师详解详析1.解:(1)在Rt △ABC 中,由勾股定理,得a =c 2-b 2=8-6= 2. ∵tan B =b a =62=3,∴∠B =60°,∴∠A =90°-∠B =30°.(2)∵在△ABC 中,∠C =90°,a =4,b =4 3, ∴c =a 2+b 2=8.∵sin A =a c =48=12,∴∠A =30°,∴∠B =90°-∠A =60°.2.解:∵AD =2,AC =3,∠C =90°, ∴cos ∠CAD =AC AD =32,∴∠CAD =30°.∵AD 为△BAC 的角平分线, ∴∠BAC =2∠CAD =60°,∴BC =AC ·tan ∠BAC =3×tan60°=3×3=3. ∵△ABC 是直角三角形,∴AB =BC 2+AC 2=9+3=2 3.3.解:(1)∠B =90°-∠A =90°-60°=30°. ∵sin A =a c ,∴c =6sin60°=632=4 3.∵sin B =bc,∴b =4 3×sin30°=4 3×12=2 3.(2)∠B =90°-∠A =90°-30°=60°. ∵tan A =ab,∴a =10 3×tan30°=10 3×33=10. ∵sin A =a c ,∴c =10sin30°=1012=20.4.解:在Rt △ADC 中,∵sin ∠ADC =ACAD ,∴AD =AC sin ∠ADC =3sin60°=2,∴BD =2AD =4. ∵tan ∠ADC =ACDC ,∴DC =AC tan ∠ADC =3tan60°=1,∴BC =BD +DC =5.在Rt △ABC 中,AB =AC 2+BC 2=2 7,∴△ABC 的周长=AB +BC +AC =2 7+5+ 3. 5.解:在Rt △BCH 中,∵BC =12,∠B =30°, ∴CH =12BC =6,BH =BC 2-CH 2=6 3.在Rt △ACH 中,tan A =34=CHAH ,∴AH =8,∴AC =AH 2+CH 2=10,6.解:(1)在△ABC 中,∵∠ACB =90°, ∴sin A =BC AB =45.又∵BC =8,∴AB =10.∵D 是AB 的中点,∴CD =12AB =5.(2)在Rt △ABC 中,∵AB =10,BC =8, ∴AC =AB 2-BC 2=6.∵D 是AB 的中点,∴BD =5,S △BDC =S △ADC ,∴S △BDC =12S △ABC ,即12CD ·BE =12·12AC ·BC ,∴BE =6×82×5=245.在Rt △BDE 中,cos ∠DBE =BE BD =2455=2425.7.解:过点C 作CD ⊥AB 于点D ,∴∠ADC =∠BDC =90°. ∵∠B =45°, ∴∠BCD =∠B =45°, ∴CD =BD .∵∠A =30°,AC =2 3, ∴CD =3, ∴BD =CD = 3.由勾股定理,得AD =AC 2-CD 2=3,答:AB 的长是3+ 3.8.解:(1)如图,过点C 作CE ⊥AB 于点E .设CE =x .在Rt △ACE 中,∵tan A =CE AE =12,∴AE =2x ,∴AC =x 2+(2x )2=5x , ∴5x =3 5,解得x =3,∴CE =3,AE =6.在Rt △BCE 中,∵sin B =22,∴∠B =45°, ∴△BCE 为等腰直角三角形, ∴BE =CE =3,∴AB =AE +BE =9. (2)∵CD 是边AB 上的中线, ∴BD =12AB =4.5,∴DE =BD -BE =4.5-3=1.5, ∴tan ∠CDE =CE DE =31.5=2,即tan ∠CDB 的值为2. 9.解:∵AC ⊥BD , ∴∠ACB =∠ACD =90°. ∵E 是AB 的中点,CE =1, ∴BE =CE =1,AB =2CE =2,∴∠B =∠ECB . ∵BC CD =32, ∴设BC =3x ,则CD =2x . 在Rt △ACD 中,tan D =2, ∴ACCD=2, ∴AC =4x .在Rt △ACB 中,由勾股定理,得AB =AC 2+BC 2=5x , ∴sin ∠ECB =sin B =AC AB =45.由AB =2,得x =25,∴AD =AC 2+CD 2=(4x )2+(2x )2=2 5x =2 5×25=4 55.10.证明:如图,过点B 作AD 的垂线BE 交DA 的延长线于点E ,延长CB 与DA 交于点F .∵∠ABC =∠ADC =90°,∴∠ADC +∠ABC =180°,∠FBA =∠FDC , ∴∠BCD +∠BAD =180°, ∠EAB =∠BCD .∵∠F =∠F ,∠FBA =∠FDC , ∴△FBA ∽△FDC ,∴FB FD =F AFC ,∴FB F A =FD FC. ∵∠F =∠F ,∴△FBD ∽△F AC ,∴∠FDB =∠BCA . ∵∠BED =∠ABC =90°, ∴△BED ∽△ABC ,∴BD AC =BEAB=sin ∠EAB =sin ∠BCD , 即sin ∠BCD =BDAC.11.解:(1)∵OB =4,OE =2, ∴EB =OB +OE =6. ∵tan ∠ABO =AO OB =12=CEEB ,∴CE =3,AO =2,∴A (0,2),B (4,0),C (-2,3). 设反比例函数的表达式为y =kx .∵点C 在反比例函数的图象上, ∴将点C (-2,3)代入,得k =-6, 即反比例函数的表达式为y =-6x.(2)设直线AB 对应的函数表达式为y =k 1x +b .将A (0,2),B (4,0)代入y =k 1x +b ,可得b =2,k 1=-12,∴直线AB 对应的函数表达式为y =-12x +2.。

解直角三角形教案精选5篇

解直角三角形教案精选5篇

解直角三角形教案精选5篇解直角三角形教案篇一一、教学目标〔一〕知识教学点使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.〔二〕能力训练点通过综合运用勾股定理,直角三角形的'两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.〔三〕德育渗透点渗透数形结合的数学思想,培养学生良好的学习习惯.二、教学重点、难点和疑点1.重点:直角三角形的解法.2.难点:三角函数在解直角三角形中的灵活运用.3.疑点:学生可能不理解在的两个元素中,为什么至少有一个是边.三、教学过程〔一〕明确目标1.在三角形中共有几个元素?2.直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?〔1〕边角之间关系如果用表示直角三角形的一个锐角,那上述式子就可以写成。

〔2〕三边之间关系a2+b2=c2〔勾股定理〕〔3〕锐角之间关系∠A+∠B=90°.以上三点正是解直角三角形的依据,通过复习,使学生便于应用.〔二〕整体感知教材在继锐角三角函数后安排解直角三角形,目的是运用锐角三角函数知识,对其加以复习稳固.同时,本课又为以后的应用举例打下根底,因此在把实际问题转化为数学问题之后,就是运用本课——解直角三角形的知识来解决的.综上所述,解直角三角形一课在本章中是起到承上启下作用的重要一课.〔三〕重点、难点的学习与目标完成过程1.我们已掌握Rt△ABC的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素〔至少有一个是边〕后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个元素中必有一条边呢?激发了学生的学习热情.2.教师在学生思考后,继续引导“为什么两个元素中至少有一条边?〞让全体学生的思维目标一致,在作出准确答复后,教师请学生概括什么是解直角三角形?〔由直角三角形中除直角外的两个元素,求出所有未知元素的过程,叫做解直角三角形〕.3.例题例1在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且c=287.4,∠B=42°6′,解这个三角形.解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比拟各种方法中哪些较好完成之后引导学生小结“一边一角,如何解直角三角形?〞答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比拟可靠,防止第一步错导致一错到底.例2在Rt△ABC中,a=104.0,b=20.49,解这个三角形.在学生独立完成之后,选出最好方法,教师板书.4.稳固练习解直角三角形是解实际应用题的根底,因此必须使学生熟练掌握.为此,教材配备了练习针对各种条件,使学生熟练解直角三角形,并培养学生运算能力.说明:解直角三角形计算上比拟繁锁,条件好的学校允许用计算器.但无论是否使用计算器,都必须写出解直角三角形的整个过程.要求学生认真对待这些题目,不要马马虎虎,努力防止出错,培养其良好的学习习惯.〔四〕总结与扩展1.请学生小结:在直角三角形中,除直角外还有五个元素,知道两个元素〔至少有一个是边〕,就可以求出另三个元素.2.出示图表,请学生完成abcAB1√√2√√3√b=acotA√4√b=atanB√5√√6a=btanA√√7a=bcotB√√8a=csinAb=ccosA√√9a=ccosBb=csinB√√10不可求不可求不可求√√注:上表中“√〞表示。

第二节解直角三角形

第二节解直角三角形

第二节解直角三角形第二节解直角三角形知识要点已知三角形的某些元素求其它元素的问题称为解三角形,解一般的三角形至少需要已知三个元素(其中至少要有一条边)在直角三角形中,一个元素(直角)是已知的,只需要知道其他两个元素(其中至少要有一条边),就可以求出该三角形的其他元素(边长和角)及面积,这类问题称为“解直角三角形”.一、直角三角形中的边角关系解直角三角形包括“已知一边一角”和“已知两边”两类情况,都可以利用三角比的边角关系或勾股定理来解.例题精讲例1△中,∠C=°,AC=BC,点D在BC上,∠DAC=°已知AD=6,求BD的长.举一反三1-1旗杆上的绳子从顶端垂到地面还多8米.当把绳子下端沿地面拉直后,绳子与地面成45°角,则与绳子长度最接近的整数值是()A.27;B.28;C.29;D.301-2在△中,∠C=°,点D在BC上,BD=4,AD=BC,cos∠ADC =(2)求sinB的值.点评在直角三角形中,已知某锐角的三角比但相关的两条线段都不知道,则必需引入比例系数k,再按题意根据等量关系列出方程求k.注意不可直接写DC=3,AD=5,因为比例系数k并不一定等于1(在本题中比例系数k=2).1-3△中,AD是边BC上的高,E为边AC的中点,BC=14,AD=12,sinB=0.8(1)求线段DC的长;(2)求tan∠EDC的值.点评在斜三角形中,要求某锐角内角的三角比,可通过作垂线构造直角三角形,或通过相等角的代换将该角转移到直角三角形中,寻找新的关系.二、等腰三角形中的边角关系根据三线合一定理,作底边上的高线可以把等腰三角形分成两个全等的直角三角形,从而把解等腰三角形的问题化为解直角三角形的问题例2△ABC中,AB=AC,BC=6,(1)求边AB的长;(2)求边AC上的高.求三角形的面积也是解三角形的内容之一,下面看一道利用三角比计算三角形面积的问题.举一反三2-1在△中,AB=AC=10,∠B=°,求△的面积.点评由本题中的方法二可归纳出新的面积公式:,其中为AB、AC的夹角2-2已知△中,AB=AC=10,△的面积为,求顶角A的大小.点评在已知三角形面积的问题中,经常要按照以上两种情况进行分类讨论.2-3在△中,AB=AC=10,BC=12.(1)求∠B的正切值;(2)求∠A的正弦值.三、一般三角形的边角关系例3在△ABC中,∠A=°,∠C=°,AB=12. (1)求边AC的长;(2)求sinC.点评(1)对于一般三角形,通过作一条高可以把它分成两个直角三角形,如果原三角形中含特殊角,那么尽量不要把特殊角分开,在本例中,如果一上来就作AE⊥BC,固然在Rt△ABE中由AB=12,∠B=60°可以求出AE和BE,接着在Rt△ACE中都是非特殊角,计算无法进行下去了.(2)本题的计算结果使我们又获得了一个“扩大的特殊角”的三角比:sin75°=.举一反三3-1已知在△中,∠B、∠C都是锐角,BC=20,,,求AC的长.3-2在△中,D在边BC上,BD=2CD,且AD⊥AB,若,求∠B的度数.点评本题中的两个条件“∠BAD=90°和“tan∠CAD=”不在同一个三角形中,添辅助线的目的就是要把这两个条件集中到同一个直角三角形中.3—3在上海旅游节期间举办了彩车巡回展览活动.上海锦江集团制作的彩车上有一副钢制的三脚架安置在一辆平板车上,如图2—2一15所示,平板车底板离地面为1.6米,三脚架为△ABC,其中BC长20米,∠B和∠C分别为45°和30°.彩车要穿过南北高架路驶往外滩,已知南京路成都路道口的高架路离地面高8米,延安路成都路道口的高架路离地面高10米.这辆彩车在这两处道口是否都能安全通过?(参考数据:≈1.732)点评抛开题目的实际背景,本题的数学含义是:“在△ABC中,已知BC=20,∠B=45°,∠C=30°,求高AD.”解题中以AD=x为中间量,根据BD+DC=BC建立方程求解.四、复合图形中的边角关系在这里,“复合图形”是指由有两个三角形拼合或叠合而成的图形°四边形被它的一条对角线分成两个三角形,因此解四边形的问题可以化归为解三角形的问题.例4已知四边形ABCD中,BC=CD=DB,∠ADB=°,,求S△ABD:S△BCD.举一反三4-1将两块三角板如图放置,其中∠C=∠EDB=°,∠A=45°,∠E=30°,AB=DE=6求重叠部分四边形DBCF的面积.点评用“割补法”求四边影DBCF的面积可以有两种方法:一是由点C作垂线CG上AB于G,把四边形DBCF分成Rt△BCG和梯形DGCF;二是如本题中的解法,看作是两个等腰直角三角形(△ABC和△ADF)的面积之羞.后者只需要求出AD和AC’的长,是同一种图形的面积相减,因此后一种解法比前者顺畅.将两块三角板换一种叠法得到下面的问题.4-2将一副三角板如图放置,其中∠A=∠BCD=°,AB=AC,∠DBC=°,已知BC=6,求它们重叠部分△EBC的面积.4-3已知△ABC是边长为a的等边三角形,△DBC是以BC为斜边的等腰直角三角形,求线段AD的长.点评不给图形的题目,往往藏有玄机.在自己画图的过程中要仔细考虑:这个图有没有不同的画法?要不要进行分类讨论?内容提炼1.解直角三角形时,除了“已知两边求第三边”用勾股定理、“已知一个锐角求另一个锐角”用“两锐角互余”之外,其它各种情况都可以用三角比的定义求解;2.解斜三角形时,我们把它化为直角三角形来解,经常遇到的题目有两类:①已知两边夹角解三角形.如图2—2—22,△ABC中,已知AC=b,AB=c,∠A=a,可作高CD⊥AB,则CD=b·sina,AD=b·cosb,BD=c—bcosa,再在Rt△BCD中用勾股定理求,利用三角比定义tanB=,最后求出∠C=180°一∠A一∠B·②已知两角一边解三角形.如图2—2—23,△ABC中,已知∠A=a,∠B=,AB=c,作高CD,设CD=x,列方程xcota+xcot=c,得x=求出CD后计算习题精炼1.△ABC中,∠C=°,已知以下边或角的大小不能解该三角形的是()A.∠A、a;B.∠B、c;C.∠A、∠B;D.a、c2.△ABC中,∠A=90°,若AB=c,∠B=;B.;C.;D.3.若△ABC的两条边长分别为AB=20cm,AC=30cm,S△ABC=150cm2,则∠A的度数为()A.30°;B.60°;C.30°或150°;D.60°或120°4.Rt△中,∠C=°,若AC=6,,则AB=.5.△中,∠A=°,若∠B=θ,AC=b,则AB=(用θ和b的三角比表示)6.△AB中,若AB=AC=10cm,BC=12cm,则tanB=.7.如图,△ABC中,若AB=AC,∠A=90°,BD是角平分线,则tanDBC=.8.△中,若AB=AC=,BC=6,则∠BAC=度9.在ABC中,=0°,B=AC,将ABC绕着点B旋转使点落在直线B上C','C'=________.中,∠C=°,CD是边AB上的中线,,BC=6.(1)求CD的长;(2)求sin∠BCD.11.如图,在△中,已知∠A、∠B都是锐角,,BC=20,,AB=29,求△ABC的面积.12.如图,梯形ABCD中,AB∥CD,∠B=°,点F在BC上,∠AFD =°,已知AB=8,DC=3,tan∠BAD=2.(1)求AD的长;(2)求tan∠FAD.互动探究如图,Rt△中,AB=AC,∠BAC=°,D、E分别为AB、AC上的点,AE=BD,联结DE、BE.(1)当AD=2DB时,分别计算tan∠ADE和tan∠EBC的值.从这个计算结果你能得出什么结论?(2)以第(1)小题中的探究结论为条件,求的值.2014/11/29第8页共8页74-84。

解直角三角形知识点及典型例题

解直角三角形知识点及典型例题

板块一 解直角三角形一、解直角三角形的概念根据直角三角形中已知的量(边、角)来求解未知的量(边、角)的过程就是解直角三角形.二、直角三角形的边角关系如图,直角三角形的边角关系可以从以下几个方面加以归纳:cba CBA⑴ 三边之间的关系:222a b c += (勾股定理); ⑵ 锐角之间的关系:90A B ∠+∠=︒; ⑶ 边角之间的关系:sin a A c =,cos b A c =,tan a A b =,cot b A a=. 三、 解直角三角形的四种基本类型⑴ 已知斜边和一直角边(如斜边c ,直角边a ),由sin aA c=求出A ∠,则90B A ∠=︒-∠,b =; ⑵ 已知斜边和一锐角(如斜边c ,锐角A ),求出90B A ∠=︒-∠,sin a c A =,cos b c A =;⑶ 已知一直角边和一锐角(如a 和锐角A ),求出90B A ∠=︒-∠,cot b a A =,sin ac A=;⑷ 已知两直角边(如a 和b ),求出c =tan aA b=,得90B A ∠=︒-∠.具体解题时要善于选用公式及其变式,如sin a A c =可写成sin a c A =,sin ac A =等.四、解直角三角形的方法解直角三角形的方法可概括为:“有斜(斜边)用弦(正弦,余弦),无斜用切(正切,余切),宁乘毋除,取原避中”.这几句话的意思是:当已知或求解中有斜边时,就用正弦或余弦;无斜边时,就用正切或余切;当所求的元素既可用乘法又可用除法时,则用乘法,不用除法;既可由已知数据又可用中间数据求得时,则用原始数据,尽量避免用中间数据. 直角三角形两锐角间的三角函数关系(五)解直角三角形的技巧及注意点在Rt ABC ∆中,90A B ∠+∠=︒,故s in c o s (90)c o s A A B =︒-=,cos sin A B =,tan cot A B =,cot tan A B =.利用这些关系式,可在解题时进行等量代换,以方便解题.(六)如何解直角三角形的非基本类型的题型对解直角三角形的非基本类型的题型,通常是已知一边长及一锐角三角函数值,可通过解方程(组)来转化解直角三角形为四种基本类型求解;(1)如果有些问题一时难以确定解答方式,可以依据题意画图帮助分析;(2)对有些比较复杂的问题,往往要通过作辅助线构造直角三角形,作辅助线的一般思路是: ①作垂线构成直角三角形;②利用图形本身的性质,如等腰三角形顶角平分线垂直于底边等.【例1】 在三角形ABC 中,903010C A AB ∠=︒∠=︒=,,,则AC 的长度为( )A. B. C. D.【例2】 已知Rt ABC ∆中,90C ∠=︒,根据下列条件解直角三角形:60A ∠=︒,4b =;【例3】 已知Rt ABC ∆中,90C ∠=︒,根据下列条件解直角三角形:60A ∠=︒,6a b +=;【例4】 已知Rt ABC ∆中,90C ∠=︒,根据下列条件解直角三角形:45A ∠=︒,12S ∆=.【例5】 如图,在Rt ABC ∆中,已知1CD AB BC ⊥=,,如果40BCD ∠=︒,求AC 的长度D C BA【例6】 如图,在Rt ABC ∆中,已知1CD AB BC ⊥=,,如果1tan 3BCD ∠=,求CD 的长度D C BA【例7】 如图所示,在ABC ∆中,90C ∠=︒,D 是AC 边上的一点,且53AD DB CD ===,,求t a n CBD ∠和sin A 的值.DCB A【例8】 如图,在凯里市某广场上空飘着一只汽球P ,A B ,是地面上相距90米的两点,它们分别在汽球的正西和正东,测得仰角45PAB ∠=︒,仰角30PBA ∠=︒,求汽球P 的高度(精确到0.1米,3=1.732)PACPBA【例9】 在Rt ABC ∆中,90C ∠=︒,若sin tan A B =,求cos A 的值.【例10】 在Rt ABC ∆中,90C ∠=︒,若cos cot A B =,求sin A 的值.【例11】 在三角形ABC 中,90C ∠=︒,a b c ,,分别是A B C ∠∠∠,,的对边,已知603B a b ∠=︒+=+,求a b ,【例12】 如图,在ABC ∆中,已知20AB AC BC ===,ABC ∆中各内角的度数 DCBA【例13】 如图,已知:ABC ∆是等腰直角三角形,90ACB ∠=︒,过BC 的中点D 作DE AB ⊥,垂足为E ,连接CE ,求sin ACE ∠的值.FED CBA【例14】 如图所示,天空中有一静止的广告气球C ,从地面A 点测得C 的仰角为45°,从地面B 点测得C 的仰角为60°.已知20AB =米,点C 和直线AB 在同一铅垂平面上,求气球离地面的高度CD (结果保留根号).DCBA【例16】 已知:如图,ABC ∆中,45B AB ∠=︒=,,D 是BC 上一点,53AD CD ==,,求ADC ∠的度数及AC 的长.C BA板块二 解直角三角形应用(七)直角三角形中其他重要概念⑴ 仰角与俯角:在视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.如图⑴.⑵ 坡角与坡度:坡面的垂直高度h 和水平宽度l 的比叫做坡度(或叫做坡比),用字母表示为hi l=,坡面与水平面的夹角记作α,叫做坡角,则tan hi lα==.坡度越大,坡面就越陡.如图⑵. ⑶ 方向角(或方位角):方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达为北(南)偏东(西)××度.如图⑶.图(3)图(2)图(1)俯角仰角视线视线水平线铅垂线2. 解直角三角形应用题的解题步骤及应注意的问题:⑴ 分析题意,根据已知条件画出它的平面或截面示意图,分清仰角、俯角、坡角、坡度、水平距离、垂直距离等概念的意义;⑵ 找出要求解的直角三角形.有些图形虽然不是直角三角形,但可添加适当的辅助线,把它们分割成一些直角三角形和矩形(包括正方形);⑶ 根据已知条件,选择合适的边角关系式解直角三角形;⑷ 按照题目中已知数据的精确度进行近似计算,检验是否符合实际,并按题目要求的精确度取近似值,注明单位.(一)、仰角俯角【例17】 如图,一艘核潜艇在海面下500米A 点处测得俯角为30︒正前方的海底有黑匣子信号发出,继续在同一深度直线航行4000米后再次在B 点处测得俯角为60︒正前方的海底有黑匣子信号发出,求海底黑匣子C 点处距离海面的深度?(精确到米)海面60°30°D CBA【例18】 亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部M ,颖颖的头顶B 及亮亮的眼睛A 恰在一条直线上时,两人分别标定自己的位置C ,D .然后测出两人之间的距离 1.25m CD =,颖颖与楼之间的距离30m DN =(C D N 、、在一条直线上),颖颖的身高 1.6m BD =,亮亮蹲地观测时眼睛到地面的距离0.8m AC =.你能根据以上测量数据帮助他们求出住宅楼的高度吗?M【例19】 某旅游区有一个景观奇异的望天洞,D 点是洞的入口,游人从入口进洞游览后,可经山洞到达山顶的出口凉亭A 处观看旅游区风景,最后坐缆车沿索道AB 返回山脚下的B 处.在同一平面内,若测得斜坡BD 的长为100米,坡角10DBC ∠=︒,在B 处测得A 的仰角40ABC ∠=︒,在D 处测得A 的仰角85ADF ∠=︒,过D 点作地面BE 的垂线,垂足为C . ⑴ 求ADB ∠的度数; ⑵ 求索道AB 的长.(结果保留根号)【例20】 如图所示,山坡上有一棵与水平面垂直的大树,一场台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面.已知山坡的坡角23AEF ∠=︒,量得树干倾斜角38BAC ∠=︒,大树被折断部分和坡面所成的角604m ADC AD ∠=︒=,. ⑴求CAE ∠的度数;⑵求这棵大树折断前的高度.1.4 1.72.4==).A CDE FBGACDEFB【例21】 一次数学活动中,小迪利用自己制作的测角器测量小山的高度CD .已知她的眼睛与地面的距离为1.6米,小迪在B 处测量时,测角器中的60AOP ∠=°(量角器零度线AC 和铅垂线OP 的夹角,如图);然后她向小山走50米到达点F 处(点B F D ,,在同一直线上),这时测角器中的45EO P ''∠=°,那么小山的高度CD 约为( ) A.68米 B.70米 C.121米 D.123米( 1.732≈ 1.414≈供计算时选用)DPGCO A【例22】 如图,某公园入口处原有三级台阶,每级台阶高20cm ,深为30cm ,为方便残疾人士,拟将台阶改为斜坡,斜坡的坡角BCA ∠为12︒,设台阶的起点为A ,斜坡的起点为C ,求AC 的长度(精确到1cm )DC BA【例23】 课外实践活动中,数学老师带领学生测量学校旗杆的高度. 如图,在A 处用测角仪(离地高度1.5米)测得旗杆顶端的仰角为15︒,朝旗杆方向前进23米到B 处,再次测得旗杆顶端的仰角为30︒,求旗杆EG 的高度.C60°38°BDE23°AF【例24】 在一次数学活动课上,老师带领学生去测一条南北流向的河宽,如图所示,某学生在河东岸点A 处观测到河对岸水边有一点 C ,测得C 在A 北偏西31︒的方向上,沿河岸向北前行20米到达B 处,测得C 在B 北偏西45°的方向上,请你根据以上数据,帮助该同学计算出这条河的宽度.(参考数值:3tan315︒≈,1sin312︒≈)【例25】 如图,湖心岛上有一凉亭,现欲利用湖岸边的开阔平整地带,测量凉亭顶端到湖面所在平面的高度AB (见示意图),可供使用的工具有测倾器、皮尺.A⑴ 请你根据现有条件,设计一个测量凉亭顶端到湖面所在平面的高度AB 的方案,画出测量方案的平面示意图,并将测量的数据标注在图形上(所测的距离用m ,n …表示,角用α,β…表示,测倾器高度忽略不计);⑵ 根据你所测量的数据,计算凉亭到湖面的高度AB (用字母表示).【例26】 如图,某幢大楼顶部有一块广告牌CD ,甲乙两人分别在相距8米的A 、B 两处测得D 点和C 点的仰角分别为45︒和60︒,且A 、B 、E三点在一条直线上,若15BE =米,求这块广告牌的高度.(取1.73≈,计算结果保留整数)EDC BA60︒45︒【例27】 由山脚下的一点A 测得山顶D 的仰角是45︒,从A 沿倾斜角为30︒的山坡前进1500米到B ,再次测得山顶D 的仰角为60︒,求山高CD .DCBA【例28】 如图,在山脚的C 处测得山顶A 的仰角为45︒,沿着坡度为30︒的斜坡前进400米到D 处(即30,400DCB CD ∠=︒=米),测得A 的仰角为60︒,求山的高度AB .【例29】 如图所示,某学校拟建两幢平行的教学楼,现设计两楼相距30米,从A 点看C 点,仰角为5︒;从A点看D 点,俯角为30,解决下列问题:⑴ 求两幢楼分别高多少米?(结果精确到1米)⑵ 若冬日上午9:00太阳光的入射角最低为30(光线与水平线的夹角),问一号楼的光照是否会有影响?请说明理由,若有,则两楼间距离应至少相距多少米时才会消除这种影响?(结果精确到1米)(参考数据:tan50.0875≈ tan300.5774≈ cos30 1.732≈)DCDCB A【例30】 若每层楼高2.2米,问在例题的第⑵问中,在一号楼中至少住在第几层光照就不会受到二号楼的影响?F 30︒ED CBA【例31】 某住宅小区有一郑南朝向的居民楼,如图,该楼底层是高为6m 的超市,超市以上是居民住房,在该楼前方15m 处准备盖一幢高20m 的新楼,已知当地冬季正午的阳光与水平线夹角为32︒ ⑴超市以上居民住房采光是否受到影响?为什么?⑵若要使居民住房采光不受影响,两楼至少应相距多少米?(精确到0.1m )新楼居民楼新楼32°BADCBA【例32】 如图,“五一”期间在某商贸大厦上从点A 到点B 悬挂了一条宣传条幅,小明和小雯的家正好住在商贸大厦对面的家属楼上.小明在四楼D 点测得条幅端点A 的仰角为30︒,测得条幅端点B 的俯角为45︒;小雯在三楼C 点测得条幅端点A 的仰角为45︒,测得条幅端点B 的俯角为30︒.若设楼层高度CD 为3米,请你根据小明和小雯测得的数据求出条幅AB 的长.(结果精确到个位,参考数据1.732)【例33】 如图,某高层楼房与上海东方明珠电视塔隔江想望,甲、乙两学生分别在这楼房的A B ,两层,甲在A 层测得电视塔塔顶D 的仰角为α,塔底C 的俯角为β,乙在B 层测得塔顶D 的仰角为θ,由于塔底的视线被挡住,乙无法测得塔底的俯角,已知A B ,之间的高度差为a ,求电视塔高CD (用含a αβθ,,,的代数式表示)(二)、坡度角【例34】 为了加固一段河堤,需要运来砂石和土将堤面加宽1m ,使坡度由原来的1:2变成1:3,如图所示,已知原来背水坡长12BC m ,堤长100m ,那么需要运来砂石和土多少立方米?(参考数据3≈1.7,5≈2.7)CFEDBA【例35】 燕尾槽的横断面是等腰梯形,下图是个燕尾槽的横断面,其中燕尾角B 为55°,外口宽AD 为180 mm ,燕尾槽的深度为70 mm ,求它的里口宽BC (精确到1 mm )F EDCBA【例36】 创意设计”公司员工小王不慎将墨水泼在一张设计图纸上,导致其中部分图形和数据看不清楚(如图所示).已知图纸上的图形是某建筑物横断面的示意图,它是以圆O 的半径OC 所在的直线为对称轴的轴对称图形,A 是OD 与圆O 的交点.⑴请你帮助小王在下图中把图形补画完整;⑵由于图纸中圆O的半径r的值已看不清楚,根据上述信息(图纸中1:0.75i=是坡面CE的坡度),求r的值.【例37】一座建于若干年前的水库大坝的横断面如图所示,其中背水面的整个坡面是长为90米、宽为5米的矩形. 现需将其整修并进行美化,方案如下:①将背水坡AB的坡度由1:0.75改为;②用一组与背水坡面长边垂直的平行线将背水坡面分成9块相同的矩形区域,依次相间地种草与栽花.⑴求整修后背水坡面的面积;⑵如果栽花的成本是每平方米25元,种草的成本是每平方米20元,那么种植花草至少需要多少元?DCBA【例38】城市规划期间,欲拆除一电线杆AB,如图所示,已知距电线杆AB水平距离14m的D处有一大坝,背水坡CD的坡度为2,坝高CF为2m,在坝顶C处测得杆顶A的仰角为30︒,D、E之间是宽为2m的人行道,试问:在拆除电线杆AB时,为确保行人安全,是否需要将此人行道封上?请说明理由(在地面上,以点B为圆心.以AB的长为半径的圆形区域为危险区域).FE人行道DCB A【例39】 如图,甲、乙两建筑物的水平距离为30m ,从乙的顶部A 测得甲的顶部C 的仰角为60︒,测得甲的底部D 的俯角为30︒,求两建筑物的高.B【例40】 在建筑楼梯时,设计者要考虑楼梯的安全程度.如图1,虚线为楼梯的斜度线,斜度线与地板的夹角为倾角θ,一般情况下,倾角θ愈小,楼梯的安全程度愈高.如图2,设计者为提高楼梯的安全程度,要把楼梯的倾角由1θ减至2θ,这样楼梯占用地板的长度由1d 增加到2d ,已知11440d m θ=∠=︒,,236θ∠=︒,求楼梯占用地板的长度增加了多少?(精确到0.01 m . 参考数据:tan36°=0.7256, tan40°=0.8391.)θ地板地板【例41】 武当山风景管理区,为提高游客到某景点的安全性,决定将到达该景点的步行台阶进行改善,把倾角由44︒减至32︒,已知原台阶AB 的长为5米(BC 所在地面为水平面). ⑴ 改善后的台阶会加长多少?(精确到0.01米)⑵ 改善后的台阶多占多长一段地面?(精确到0.01米)44︒32︒CBA【例42】 我市某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地,如图所示.BC AD ∥,斜坡40AB =米,坡角60BAD ∠=︒,为防夏季因瀑雨引发山体滑坡,保障安全,学校决定对山坡进行改造.经地质人员勘测,当坡角不超过45时,可确保山体不滑坡,改造时保持坡脚A 不动,从坡顶B 沿BC 削进到E 处,问BE 至少是多少米(结果保留根号)?ABD CEF G ECDBA(三)、方位角【例43】 如图,AC 是某市环城路的一段,AE BF CD ,,都是南北方向的街道,其与环城路AC 的交叉路口分别是A B C ,,.经测量花卉世界D 位于点A 的北偏东45°方向、点B 的北偏东30°方向上, 2AB km =,15DAC ∠=︒. (1)求B D ,之间的距离; (2)求C D ,之间的距离.中山路文化路和平路环城路环城路和平路文化路中山路BCD45°30°15°15°30°45°ODC BABCA44︒【例44】 如图所示,某轮船以30海里/时的速度航行,在A 点处测得海面上的哨所P 在南偏东60︒,向北航行40分钟后到达B 点,测得哨所P 在南偏东30︒,轮船改变为北偏东60︒的航向再航行2小时到达C 点,若在PC 上存在一点M ,点M 在点B 的南偏东60︒处,且在点M 的周围有方圆15海里的暗礁区,问轮船从B 点到C 点的航行中有无触礁的危险?是否需要改变航向?EDB A【例45】 为缓解“停车难”的问题,某单位拟建造地下停车库,设计师提供了车库入口设计示意图,按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入,为标明限高,请你计算图中CE 的长(精确到0.1m )【例46】 如图所示,某船以每小时36海里的速度向正东航行,在A 点测得某岛C 在北偏东60°方向上,航行半小时后到B 点,测得该岛在北偏东30°方向上,已知该岛周围16海里内有暗礁. (1)试说明B 点是否在暗礁区域外.(2)若继续向东航行,有无触礁危险?请说明理由.东【例47】 如图,公路MN 和公路PQ 在P 处交会,且30QPN ∠=︒,点A 处有一所学校,160m AP =,假设拖拉机行使时,周围100m 以内会受到噪音的影响,那么当拖拉机在公路MN 上沿PN 的方向以10m/s 的速度行使时,⑴ 学校是否会受到噪音的影响?为什么?⑵若学校会受到噪音的影响,受影响的时间是多少?【例48】 随着科学技术的发展,机器人已经能按照设计的指令完成各种动作,在坐标平面上,根据指令[s ,]α(0a ≥,0360α︒≤<︒)机器人能完成下列动作:先原地顺时针旋转角度α,再朝其面对的方向沿直线行走距离s.⑴填空:如图,若机器人在直角坐标系的原点,且面对y轴的正方向,现要使其移动到点(2A,2),则给机器人发出的指令应是_________⑵机器人在完成上述指令后,发现(6P,0)处有一小球正向坐标原点做匀速直线运动,已知小球的滚动速度与机器人行走的速度相同,若忽略机器原地旋转时间,请你给机器人发一个指令,使它能最快截住小球.(如图,点C为机器人最快截住小球的位置)(角度精确到度;参考数据:sin490.75︒≈,cos370.80︒≈,tan370.75︒≈,tan390.80︒≈)NyxPOANyxPO CBA【例49】第⑵问中,将“小球的滚动速度与机器人行走的速度相同”改为“小球速度为机器人的2”,则要在最短时间内截住小球应下的指令为.【例50】如图,在某海域内有三个港口A、D、C.港口C在港口A北偏东60︒方向上,港口D在港口A北偏西60︒方向上.一艘船以每小时25海里的速度沿北偏东30︒的方向驶离A港口3小时后到达B点位置处,此时发现船舱漏水,海水以每5分钟4吨的速度渗入船内.当船舱渗入的海水总量超过75吨时,船将沉入海中.同时在B处测得港口C在B处的南偏东75︒方向上.若船上的抽水机每小时可将8吨的海水排出船外,问此船在B处至少应以怎样的航行速度驶向最近的港口停靠,才能保证船在抵达港口前不会沉没(要求计算结果保留根号)?并指出此时船的航行方向.【例51】渔船上的渔民在A处看见灯塔M在北偏东60︒方向,这艘渔船以28海里/时的速度向正东航行,半小时到B处.在B处看见灯塔M在北偏东15︒方向,求此时灯塔M与渔船的距离.北东北15︒60︒MBA北东北60︒15︒NM BA【例52】 如图,某剧组在东海拍摄广告风光片,拍摄基地位于A 处,在其正南方向15海里处一小岛B ,在B的正东方向20海里处有一小岛C ,小岛D 位于AC 上,且距小岛A 有10海里. ⑴ 求A ∠的度数(精确到1︒)和点D 到BC 的距离;⑵ 摄制组甲从A 处乘甲船出发,沿A B C →→的方向匀速航行,摄制组乙从D 处乘乙船出发,沿南偏西方向匀速直线航行,已知甲船的速度是乙船速度的2倍,若两船同时出发并且在B 、C 间的F 处相遇,问相遇时乙船航行了多少海里?(结果精确到0.1海里)北C B北EC B【例53】 海面上B 处有一货轮正在向正南方向航行,其航行路线是当它到达正南方C 时,在驶向正西方的目的地A 处,且200CA CB ==海里,在AB 中点O 处有一客轮,其速度为货轮的一半,现在客轮要截住货轮取一件货物,于是选择某一航向行驶去截住货轮,那么当客轮截住客轮时至少航行了多少海里,它所选择了怎样的方向角?(路程保留整数海里,角度精确到度)【例54】 为保卫祖国的海疆,我人民解放军海军在海岸线上相距20n mile 的A B ,两地设立观测站,按国际惯例,海岸线以外12n mile 范围内均为我国领海,外国船只除特许外,不得私自进入我国领海,某日,观测员发现一外国船只行驶至P 处,在A 观测站测得P 在北偏东27︒,同时在B 观测站测得P 在北偏西56︒,问此时是否需要向此未经特许的船只发出警告,命令其退出我国领海?(参考数据:932sin63tan632sin34tan341053︒≈︒≈︒≈︒≈,,,)56°27°PBA【例55】 台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力.据气象观测,距沿海某城市A 的正南方向220km 的B 处有一台风中心,其中心最大风力为12级,每远离台风中心20km ,风力就减弱一级,该台风中心现在以15km/h 的速度沿北偏东30︒方向往C 移动,且台风中心风力不变,若城市所受风力达到四级,则称受台风影响. ⑴ 该城市是否会受这次台风影响?请说明理由.⑵ 若受台风影响,那么台风影响该城市的持续时间会有多长? ⑶ 该城市受台风影响的最大风力是几级?(四)其它【例56】 公园里有一块形如四边形ABCD 的草地,测得10BC CD ==米,120B C ∠=∠=︒,45A ∠=︒.请你求出这块草地的面积.DCBA【例57】 如图,不透明圆锥体DEC 放在水平面上,在A 处灯光照射下形成影子,设BP 过底面圆的直径,已知圆锥体的高为,底面半径为2m ,4BE m =⑴求B ∠的度数;⑵若2ACP B ∠=∠,求光源A 距水平面的高度PEDCBA【例58】 小明发现在教学楼走廊上有一拖把以15︒的倾斜角斜靠在栏杆上,严重影响了同学们的行走安全.他自觉地将拖把挪动位置,使其的倾斜角为75︒,如果拖把的总长为1.80m ,则小明拓宽了行路通道_________m .(结果保留三个有效数字,参考数据:sin150.26︒≈,cos150.97︒≈)【例59】 如图1,一架长4米的梯子AB 斜靠在与地面OM 垂直的墙壁ON 上,梯子与地面的倾斜角α为60︒.⑴ 求AO 与BO 的长;⑵ 若梯子顶端A 沿NO 下滑,同时底端B 沿OM 向右滑行.① 如图2,设A 点下滑到C 点,B 点向右滑行到D 点,并且:2:3AC BD =,试计算梯子顶端A 沿NO 下滑多少米;② 如图3,当A 点下滑到'A 点,B 点向右滑行到'B 点时,梯子AB 的中点P 也随之运动到'P 点.若'15POP ∠=︒,试求'AA 的长.图1图2图3【例60】 如图1、图2,是一款家用的垃圾桶,踏板AB (与地面平行)或绕定点P (固定在垃圾桶底部的某一位置)上下转动(转动过程中始终保持''AP A P BP B P ==,).通过向下踩踏点A 到'A (与地面接触点)使点B 上升到点'B ,与此同时传动杆BH 运动到''B H 的位置,点H 绕固定点D 旋转(DH 为旋转半径)至点'H ,从而使桶盖打开一个张角'HDH ∠.如图3,桶盖打开后,传动杆''H B 所在的直线分别与水平直线AB DH 、垂直,垂足为点M C 、,设''H C B M =.测得6cm 12cm '8cm AP PB DH ===,,.要使桶盖张开的角度'HDH ∠不小于60︒,那么踏板AB 离地面的高度至少等于多少cm ?(结果保留两位有效数字)图3图2B【例61】 如图,在ABC ∆中,90C ∠=︒,AB的垂直平分线MN 交AC 于点D ,连结BD ,若3cos 5BDC ∠=, 求tan A 的值.(图1)NM DCA【例62】 如图所示,已知在Rt ABC ∆中,90ACB ∠=︒,3sin 5B =,D 是BC 上一点,DE AB ⊥,垂足为E ,CD DE =,9AC CD +=.求:⑴ BC 的长;⑵ CE 的长.EDCBA【例63】 如图,某居民小区内A B ,两楼之间的距离30MN =米,两楼的高都是20米,A 楼在B 楼正南,B楼窗户朝南.B 楼内一楼住户的窗台离小区地面的距离2DN =米,窗户高 1.8CD =米.当正午时刻太阳光线与地面成30角时,A 楼的影子是否影响B 楼的一楼住户采光?若影响,挡住该住户窗户多高?若不影响,请说明理由.(1.4141.732=2.236=)【例64】 如图,水坝的横截面为梯形ABCD ,坝顶宽6m AD =,坡面CD =,AB 的坡度为,135ADC ∠=︒,求水坝的横截面积.DBA【例65】 水坝的横截面是等腰梯形ABCD ,坝顶宽6AD m =,坝高4m ,斜坡AB 的坡度为1:2,现要将水坝加高2m ,要求坝顶宽度不变,背水坡AB 改为EG 后,坡度改为1:2.5,如图,按这样的要求,加固一条长为50m 的水坝,需要多少土方?Q HR G FEDCB A【例66】 如图所示,甲、乙两只捕捞船同时从A港出海捕鱼,甲船以每小时的速度沿北偏西60︒方向前进,乙船以每小时15km 的速度沿东北方向前进,甲船航行2h 到达C 处,发现渔具丢在乙船上,于是甲船快速(匀速)沿北偏东75︒的方向追赶,结果两船在B 处相遇. ⑴ 甲船从C 处追上乙船用了多长时间? ⑵ 甲船追赶乙船的速度是多少?北【例67】 如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD ,建筑物周围没有开阔平整地带,建筑物顶端宽度AD 、高度DC 都可以直接测得,从A D C ,,三点都可看到塔顶H⑴试根据现有条件,充分利用矩形建筑物,设计一个测量塔顶端到地面高度HG 的方案,具体要求如下:①可供使用的测量工具有皮尺、测角器;②测量数据尽可能少;③在所给图形上,画出你设计的测量平面图,并将应测数据标记在图形上(如果测A D ,间距离,用m 表示,D C ,间距离,用n 表示;如果测角,用αβγ,,表示)⑵根据你测量的数据,计算塔顶端到地面的高度HG (用字母表示,测角器高度忽略不计)DBA【例68】 如图,某电信部门计划架设一条连结B C ,两地的电缆,测量人员在山脚A 地测得B C ,两地在同一方向,且两地的仰角分别为3045︒︒,,在B 地测得C 地的仰角为60︒,已知C 地比A 地高200米,且由于电缆的重力导致下坠,实际长度是两地距离的1.2倍,求电缆的长(精确到0.1米)。

中考数学解直角三角形

中考数学解直角三角形

中考数学解直角三角形一、定义:在一个直角三角形中,斜边上的高分两个直角三角形,其中一个与原三角形相似,另一个与原三角形轴对称。

二、解直角三角形的步骤:1、判断三角形的形状:在一个三角形中,最大的角是90°,所以只要有一个角是90°的三角形就是直角三角形。

2、已知直角边a和斜边c,求另一条直角边b:公式: a2 + b2 = c2或 b = √c2 – a2 (在实数范围内进行运算)。

3、已知直角三角形的一个锐角α和斜边c,求另一直角边b:公式: sinα = a / c或 a = c × sinα,求b: tanα = a / b 或 b = a / tanα。

4、判断一个三角形是否是直角三角形的方法:①有一个角是90°的三角形是直角三角形;②两边的平方和等于第三边的平方的三角形是直角三角形;③一边的中线等于这条中线的二分之一的三角形是直角三角形。

解直角三角形中考题在平面几何中,解直角三角形是中考必考知识点之一,也是初中数学的重点内容之一。

下面从以下几个方面来探讨解直角三角形在中考中的常见题型和解法。

一、锐角三角函数锐角三角函数是解直角三角形的基础知识,主要考查学生对三角函数的掌握程度。

一般题型为:已知一个锐角,求其它锐角的三角函数值。

例题:在Rt△ABC中,∠C=90°,BC=3,AC=4,则sinA=____,cosA=____,tanA=____。

解析:根据勾股定理可求得AB=5,再根据锐角三角函数的定义可求得答案。

二、解直角三角形解直角三角形是解直角三角形中最重要的题型,主要考查学生对勾股定理、锐角三角函数的掌握以及应用能力。

一般题型为:已知一直角三角形中的两个边长或一个边长和另一个角的三角函数值,求未知边的长度。

例题:在Rt△ABC中,∠C=90°,BC=3,sinA=0.6,求AC的长。

解析:根据已知条件可求得∠B的三角函数值,再利用勾股定理可求得AC的长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学科:数学 专题:解直角三角形
主讲教师:黄炜 北京四中数学教师
重难点易错点解析
金题精讲
题一
题面:解答下列问题
(1)已知:如图1,Rt ABC ∆中,90ACB ∠=︒,CD AB ⊥于D .若:3:1AD DB =,求A ∠; (2)已知:如图2,在△ABC 中,CD ⊥AC 于D ,sin ∠A =3
5
,tan ∠B =3, AB =2,求BC 的长.
题二
题面:已知:如图,∠C=∠ABD =90°,∠BAC=30°,AB=BD ,BC=1,求: (1)∠CAD= ______;
(2)∠CAD 的三角函数值.
A
满分冲刺
题一
题面:已知:如图,△ABC 中,∠A =30°,∠B =135°,AC =10cm . 求AB 及BC 的长.
题二
题面:已知:如图,在△ABC 中,AC =b ,BC =a ,锐角∠A =α,∠B =β. (1)求AB 的长;
(2)求证:
.sin sin β
αb
a =
题三
题面:已知:△ABC 中,∠A =30°,AC =10,25=BC ,求AB 的长.
讲义参考答案
重难点易错点解析
答案:90°-∠A ,c ·sin A , c ·cos A ;
o 90,
,;tan sin a a
A A A
-∠
tan ,90;a
A A b
=
-∠
sin ,90.a
A A c
=
-∠ 金题精讲
题一
答案:(1)30︒ (2)5
题二
答案:(1)75︒ (2)sin 4
CAD ∠=
,cos 4CAD ∠=,tan 2CAD ∠=满分冲刺
题一
答案: cm 25;cm )535(=-=BC AB 题二
答案:(1) AB =cos cos b a ⋅α+⋅β (2)略 题三
答案:535+或.535-。

相关文档
最新文档