东华理工大学 物理练习试卷答案 刚体力学

合集下载

东华理工大学物理练习册答案

东华理工大学物理练习册答案

一质点作简谐振动,周期为T.当它由平衡位置向x轴正方向运动时,
(C) T /6.
4.(5186)
(D) T /4.[ C ]
已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间
单位为秒.则此简谐振动的振动方程为:
2 2 (B). x2 (A).x2 cos ( t- ) cos( t )
1.(0580)
振动习题
一长为l的均匀细棒悬于通过其一端的光滑水平固定轴上,(如图
所示),作成一复摆.已知细棒绕通过其一端的轴的转动惯量,此 摆作微小振动的周期为
(A)
(C) .
l 2 g
2l 2 3g
(B) . 2
(D) .

O
l 2g
l
l 3g
A
[ C]
y y A
2.(3031) 已知一质点沿y轴作简
t (s)
4.(3013) 一单摆的悬线长l = 1.5 m,在顶端固定点的竖直下方0.45 m处有 一小钉,如图示.设摆动很小,则单摆的左右两方振幅之比 A1/A2的近似值为_______________ . 0.84
0.45 m l
小钉
5.(3570) 1 一物体同时参与同一直线上的两个简谐振动: x 0 . 05 cos( 4 t ) 1 3 2 (SI) ,x 合成振动的振幅为 0 . 03 cos( 4 t- ) (SI) 2 3 __________________m . 0.02
x (cm) t (s) 1
2 2 3 3 O 3 3 -1 4 2 4 2 (C). cos ( t- ) -2 x2 cos( t ) (D).x2 3 3 3 3
4 1 (E) .x2 cos ( t- ) 3 4

大学物理试题库刚体力学word文档

大学物理试题库刚体力学word文档

第三章 刚体力学一、刚体运动学(定轴转动)---角位移、角速度、角加速度、线量与角量的关系1、刚体做定轴转动,下列表述错误的是:【 】A ;各质元具有相同的角速度;B :各质元具有相同的角加速度;C :各质元具有相同的线速度;D :各质元具有相同的角位移。

2、半径为的飞轮,从静止开始以20rad/s 2的角加速度做定轴转动,则t=2s 时,飞轮边缘上一点的切向加速度τa =____________,法向加速度n a =____________,飞轮转过的角位移为_________________。

3、刚体任何复杂的运动均可分解为_______________和 ______________两种运动形式。

二、转动惯量1、刚体的转动惯量与______________ 和___________________有关。

2、长度为L ,质量为M 的均匀木棒,饶其一端A 点转动时的转动惯量J A =_____________,绕其中心O 点转动时的转动惯量J O =_____________________。

3、半径为R 、质量为M 的均匀圆盘绕其中心轴(垂直于盘面)转动的转动惯量J=___________。

4、两个匀质圆盘A 和B 的密度分别是A ρ和B ρ,若B A ρρ>,但两圆盘的质量和厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为A J 和B J 则:【 】(A )B A J J >; (B )B A J J < (C )B A J J = (D )不能确定三、刚体动力学----转动定理、动能定理、角动量定理、角动量守恒1、一长为L 的轻质细杆,两端分别固定质量为m 和2m 的小球,此系统在竖直平面内可绕过中点O 且与杆垂直的水平光滑固定轴(O 轴)转动.开始时杆与水平成60°角,处于静止状态.无初转速地释放以后,杆球这一刚体系统绕O 轴转动.系统绕O 轴的转动惯量J =___________.释放后,当杆转到水平位置时,刚体受到的合外力矩M =____ __;角加速度____ __.2、一个能绕固定轴转动的轮子,除受到轴承的恒定摩擦力矩M r 外,还受到恒定外力矩M 的作用.若M =20 N ·m ,轮子对固定轴的转动惯量为J =15 kg ·m 2.在t =10 s 内,轮子的角速度由=0增大到=10 rad/s ,则M r =_______. 3、【 】银河系有一可视为物的天体,由于引力凝聚,体积不断收缩。

《大学物理学》刚体部分练习题解答

《大学物理学》刚体部分练习题解答

解答一、选择题:1.B2.B3.B4.C5.D6.D7.B8.C9.A 10. D 11.A 12.D 13.A 14.B 15.A三.计算题1.解:由于组合轮是一个整体,有12J J J =+。

应用牛顿运动定律:对物体A ,1111m g T m a -=;对物体B ,2222T m g m a -=,对组合轮,应用转动定律:12T R T r J α-=。

考虑到:1a R α=,2a r α=,解得:121221212122221212m R m r a g R J J m R m r m R m r a g r J J m R m r -⎧=⋅⎪+++⎪⎨-⎪=⋅⎪+++⎩;21222112212122121122221212J J m r m R rT m gJ J m R m r J J m R m R rT m gJ J m R m r ⎧+++=⋅⎪+++⎪⎨+++⎪=⋅⎪+++⎩。

2.解:由于飞轮的质量全部分布在轮缘上,有:2J m R =;而力矩为恒力矩,有:()3200102/6020/53rad s t ωππα-⋅===; 闸瓦给飞轮的正压力: 1.25 2.5'0.5l F FN F l ⨯⨯===, ∴0.42.50.250.25f M NR F F μ==⋅⨯=;由转动定律:M J α=,有:2f M mR α=→2200.25600.253F π=⋅⋅,有314F N =。

3. 解:由角动量守恒定律:200()2J m r J ωω+=,得 2J m r =。

由于 :310/m kg s t-=所以 :5323235105s 1101100.1110m J t r ----⨯====⨯⨯⨯⨯⨯ 4.解:设圆盘相对于地面的角速率为0ω,则人相对于地面的角速率为0vRωω∆=+。

应用角动量守恒定律:200J mR ωω+=,有:22000vJ mR mR Rωω∆++⋅=, 解得: 202mR vJ mR Rω∆=-⋅+。

大学物理(第四版)课后习题及答案 刚体

大学物理(第四版)课后习题及答案 刚体

题4.1:一汽车发动机曲轴的转速在s 12内由13min r 102.1-⋅⨯均匀的增加到13min r 107.2-⋅⨯。

(1)求曲轴转动的角加速度;(2)在此时间内,曲轴转了多少转?题4.1解:(1)由于角速度ω =2πn (n 为单位时间内的转数),根据角加速度的定义td d ωα=,在匀变速转动中角加速度为()200s rad 1.132-⋅=-=-=tn n t πωωα(2)发动机曲轴转过的角度为()t n n t t t 0020221+=+=+=πωωαωθ在12 s 内曲轴转过的圈数为 圈390220=+==t n n N πθ 题4.2:某种电动机启动后转速随时间变化的关系为)1(0τωωte --=,式中10s rad 0.9-⋅=ω,s 0.2=τ。

求:(1)s 0.6=t 时的转速;(2)角加速度随时间变化的规律;(3)启动后s 0.6内转过的圈数。

题4.2解:(1)根据题意中转速随时间的变化关系,将t = 6.0 s 代入,即得100s 6.895.01--==⎪⎪⎭⎫⎝⎛-=ωωωτte(2)角加速度随时间变化的规律为220s 5.4d d ---===tte e t ττωωα(3)t = 6.0 s 时转过的角度为 rad 9.36d 1d 60060=⎪⎪⎭⎫⎝⎛-==⎰⎰-s tst e t τωωθ 则t = 6.0 s 时电动机转过的圈数圈87.52==πθN 题4.3:如图所示,一通风机的转动部分以初角速度0ω绕其轴转动,空气的阻力矩与角速度成正比,比例系数C 为一常量。

若转动部分对其轴的转动惯量为J ,问:(1)经过多少时间后其转动角速度减少为初角速度的一半?(2)在此时间内共转过多少转?题4.3解:(1)通风机叶片所受的阻力矩为ωM C -=,由转动定律αM J =,可得叶片的角加速度为JC t ωωα-==d d (1) 根据初始条件对式(1)积分,有⎰⎰-=ωωω00d d d t t J C t由于C 和J 均为常量,得t JC e-=0ωω当角速度由0021ωω→时,转动所需的时间为2ln CJt = (2)根据初始条件对式(2)积分,有⎰⎰-=tt JC t e00d d ωθθ即CJ 20ωθ=在时间t 内所转过的圈数为 CJ N πωπθ420==题4.4:一燃气轮机在试车时,燃气作用在涡轮上的力矩为m N 1003.23⋅⨯,涡轮的转动惯量为2m kg 0.25⋅。

东华理工大学 物理练习试卷答案 刚体力学

东华理工大学 物理练习试卷答案 刚体力学

J 00 J
J0 2mR2 /5,
2
J 2m( R / 2 )2 /5
40
2 T0 T 4 0 4
14. 一块方板,可以绕通过其一个水平边的光滑
固定轴自由转动.最初板自由下垂.今有一小团粘 土,垂直板面撞击方板,并粘在板上。对粘土和 方板系统,如果忽略空气阻力,在碰撞中守恒的 绕木板转轴的角动量 量是 ________________. (动能、 绕木板转轴的角动量、 机械能、 动量)
E p EK J
1 2
EK EP 0
2
Ep J
1 2
2
M J
即角速度从小到大,角加速度从大到小
7、一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个 人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴 的摩擦,此系统 [ C ] (A)动量守恒. (B)机械能守恒. (C) 对转轴的角动量守恒. (D) 动量、机械能和角动量都守恒. (E) 动量、机械能和角动量都不守恒.
2m 得 k 2 L 2 mg df dmg rdr 2
L
dM rdf
2m g 2 2 M dM r dr m gL 2 L 3 0
L
18.如图所示,一轻绳绕过一轻滑轮,绳的一端被一质量为m 的 人抓住,绳的另一端悬挂一质量为 m / 2的物体,定滑轮的质 量为 M ,半径为R,可视为匀质圆盘。设人从静止开始相对绳 匀速向上爬行时,绳子与滑轮间无相对滑动, 求物体上升的加速度。
8、如图所示,一静止的均匀细棒,长为L、质量为M,可绕通过 棒的端点且垂直于棒长的光滑固定轴O在水平面内转动,转动 1 ML 惯量为 。一质量为m、速率为v的子弹在水平面内沿与棒 3 1 v 垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率 2 B 为 ,则此时棒的角速度应为[ ]。 1

大学物理第三章刚体力学基础习题答案 ppt课件

大学物理第三章刚体力学基础习题答案 ppt课件

12
3
联立可得: v M 3mu
M 3m
6mu
M 3m
l
3-18 MkJJd
dt
t
0
k J
dt
0
2
0
d
t J ln 2 k
3-19 设子弹射入后圆盘的角速度为ω,由角动量守恒得
mv0R(mR2大1 2学m 物理0R 第三2)章刚体力学基础习题
2mv0 2mRm0R
6
答案
质点运动与刚体定轴转动对照表
转速,此时相应的角速度为 0。当关闭电源后,经
过t2时间风扇停转。已知风扇转子的转动惯量为 J, 并假定摩擦力矩和电机的电磁力矩均为常量,试根据 已知量推算电机的电磁力矩。
解: 设电机的电磁力矩为M,摩擦力矩为Mf
MMf J1 Mf J2
1
0 t1
2
0 t2
MJ(12)
J0
(1 t1
1 t2
)
大学物理第三章刚体力学基础习题
(1)物体自静止下落,5s内下降的距离; (2)绳中的张力。
解:
mgTma
TRJ 1 MR2 a
2R a 2mg5.0m 6s2
M2m
T 1 Ma 2
h1at2 63.2m 2
Tm (ga)3.9 7 N
大学物理第三章刚体力学基础习题
14
答案
3-8 长为l,质量为M的匀质杆可绕通过杆一端O的 水平光滑固定轴转动,转动惯量为 1 M l 2 ,开始时杆
16
答案
质点运动
刚体定轴转动
质量
m
力 第二定律
F
Fma
F dp
转动惯量 J r2dm m

《大学物理》刚体的转动练习题及答案

《大学物理》刚体的转动练习题及答案

《大学物理》刚体的转动练习题及答案一、简答题:1、为什么刚体绕定轴转动的动能的改变只与外力矩有关,而与内力矩无关?答案:对刚体,由于刚体内各质点间相对位移始终为零,内力总是成对出现,每对内力大小相等,方向相反,在一直线上,故内力矩做功之和一定为零,故刚体绕定轴转动的动能的改变与内力矩无关。

2、简述刚体定轴转动的角动量守恒定律并给出其数学表达式?答案:刚体定轴转动时,若所受合外力矩为零或不受外力矩,则刚体的角动量保持不变。

3、下列物理量中,哪些量与原点的选择有关:(1) 速度,(2) 位矢,(3) 位移,(4) 角动量,(5) 动量 答案:与原点有关的物理量为:位矢,角动量。

4、质量、半径相同的两个圆盘,第一个质量分布均匀,第二个大部分质量分布在盘边缘,当它们以相同的角速度绕通过盘中心的轴转动时,哪个盘的转动动能大?为什么?答案:第二个盘的动能大。

因为由刚体转动动能221ωJ E k =知,在角速度一样时,转动惯量大的动能大;又因为2121mR J =,22mR J ≈,第二个转动惯量较大,所以转动动能较大。

5、在某一瞬时,刚体在一外力矩作用下,其角速度可以为零吗? 其角加速度可以为零吗?答案:由刚体转动定律αJ M =,知,在某一瞬时,刚体在一外力矩作用下,其角加速度不可以为零;由dtd ωα=,有⎰+=t dt 00αωω,可知其角速度此时可以为零。

6、写出刚体绕定轴转动的转动定律文字表达与数学表达式?答案:刚体绕定轴转动的转动定律:刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比。

表达式为:αJ M =。

7、简述刚体定轴转动时的特点有哪些, 常用哪些物理量来描述刚体的转动?答案:刚体定轴转动的特点:转轴相对参照系固定,刚体内所有点都具有相同的角位移、角速度、角加速度;质点在垂直转轴的平面内运动,且作圆周运动。

刚体的转动通常用转动惯量J 、力矩M 、角加速度α、角动量L 等来描述。

大学物理-刚体力学习题解答

大学物理-刚体力学习题解答

1大学物理-刚体力学习题解答一、选择题1、 B,r v⨯=ω 2、 C, 3 、B, 4 、C, 5、 B, 平轴的力矩和为零,θθsin 2cos lmgNl =,所以2)tan (θmg N =。

6 、B, 7、 A, 32202mgR rdr R mrgrgdm M Rf μππμμ===⎰⎰ 8、 B ,在碰撞过程中,小球和摆对O 轴的角动量守恒,所以有1011sin 100mlv l v m=θ,220v v = 二、填空题1.t 108-==θω ,10-==θβ ,所以s rad s t 62.0==ω;22.010s rad s t -==β; s m R v m R s t 35.0,2.0====ω;()25.0,2.05s m R a m R s t -====βτ;()225.0,2.018s m R a m R s t n ====ω 2s m 18-⋅。

2.刚体对转轴转动惯性大小的量度;2I r dm =⎰;质量、质量分布、转轴的位置。

3.mLv 。

4.()()k t mgv j gt v i v j gt t v i t v v r L αααααcos 21sin cos 21sin cos 200020000-=-+⨯⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+=⨯=;k t mgv dt L d αcos 00-=;k t mgv dtL d Mαcos 00-==。

5.角动量;04ω 。

6.同时到达。

7.32g。

8.20012I ω。

三、计算题,1、设1m 向下运动,2m 向上运动,对两物体应用牛顿定律列方程有:1111m g T m a -=,2222T m g m a -=,对鼓轮应用转动定律有:11220T r T r -= ,(因为鼓轮的质量忽略不计) 设鼓轮的角加速度为β,则有:11a r β= ,22a r β= 。

联立求解以上各式得:21122221122m r m r g m r m r β-=+ ;若1m 向上运动,2m 向下运动,则 2211221122m r m r g m r m r β-=+ 。

大学物理第3章刚体和流体试题及答案.docx

大学物理第3章刚体和流体试题及答案.docx

第3章刚体和流体一、选择题1. 飞轮绕定轴作匀速转动吋,飞轮边缘上任一点的[](A)切向加速度为零,法向 加速度不为零(B) 切向加速度不为零,法向加速度为零 (C) 切向加速度和法向加速度均为零 (D) 切向加速度和法向加速度均不为零2. 刚体绕一定轴作匀变速转动时,刚体上距转轴为r 的任一点 的[](A)切向加速度和法向加速度均不随时间变化(B) 切向加速度和法向加速度均随时间变化 (C) 切向加速度恒定,法向加速度随时间变化 (D) 切向加速度随时间变化,法向加速度恒定T3-1-2 图3. 一飞轮从静止开始作匀加速转动吋,飞轮边缘上一点的法向加速度禺和切向加速 度a f -的值怎样? [](A) a n 不变,a,为 0(C) a n 增尢a,为04. 当飞轮作加速转动时,飞轮上到轮心距离不等的二点的切向加速度a,和法向加速度偽是否相同?[](A) a,相同,a n 相同(C)e •不同,禺相同(C) 刚体的质量对给定转轴的空间分布(D)转轴的位置6. 关于刚体的转动惯量丿,下列说法中正确的是 [](A)轮子静止时其转动惯量为零(B)若加A >〃B ,则4>J B(C) 只要m 不变,则J 一定不变(D)以上说法都不正确7. 下列各因素中,不影响刚体转动惯量的是 I](A)外力矩(B)刚体的质量(B) a n 不变,a,不变(D) 增大,a,不变(B) a,相同,a n 不同(D) a,不同,a n 不同5.刚体的转动惯量只决定于[](A)刚体的质量(B)刚体的质量的空I'可分布(C) 刚体的质量分布(D)转轴的位置& 关于刚体的转动惯量,以下说法中错误的是[](A)转动惯量是刚体转动惯性大小的量度(B)转动惯量是刚体的固有属性,具有不变的量值(C)转动惯量是标量,对于给定的转轴,刚体顺时针转动和反时针转动时,其转动惯量的数值相同(D)转动惯量是相对量,随转轴的选取不同而不同9.两个质量分布均匀的圆盘A和B的密度分别为厂八和厂B,如果有厂A >金,但两圆盘的总质量和厚度相同.设两圆盘对通过盘心垂直于盘面的轴的转动惯量分别为丿A和儿, 则有:[1(A)丿A>J B(B)J A<J B(C) %=J B(D)不能确定丿A、丿B哪个大10.M个半径相同、质量相等的细圆坏A和B, A环的质量均匀分布,B环的质量分布不均匀,它们对通过环心并与环面垂直的轴的转动惯量分別为厶和丿B,则有:[ ](A) A>J B(B)J A<J B(C) 几=几(D)不能确定J八、哪个大11.一均匀圆环质量为内半径为R\,外半径为心,圆环绕过12. 一正方形均匀薄板,已知它对通过中心并与板面乖直的轴的转动惯量为J ・如果以1(B) _2 J(C)J(D)不能确定13•地球的质量为g 太阳的质量为地心与太阳中心的距离为&引力常数为G 地球绕太阳转动的轨道角动量的大小为14•冰上芭蕾舞运动员以一只脚为轴旋转吋将两臂收拢,则 [](A)转动惯量减小(B)转动动能不变(C)转动角速度减小(D)角动量增大速度为15. 一滑冰者,开始自转吋其角必,转动惯量为丿°当他将手臂收回时,其转动惯量减少为3 j,则它的角速度将变为11[1 (A) -K4)(B)_ 必 (C) 3144)3V316. 绳的一端系一质量为m 的小球,在光滑的水平桌面上作匀速圆周运动.若从桌面中心孔向下拉绳子,则小球的I ] (A)角动量不变 (B)角动量增加中心且乖直 暈是11](A) 3M R(22- /?!2)(B) 21 122(C) M R( 2 -T3-1-11 图M/?(22+ /?!2) /?! )2 (D) MR (2+ /?! )2其一条对角线为轴,它的转动惯量为2](A) _3 J (D)必丁圆环面的转轴的转动惯 T3-1-12 图T3-1-16 图(D)动量减少(C) 动量不变17. 刚体角动量守恒的充分而必耍的条件是 r 1(A )刚体不受外力矩作用 (B )刚体所受的合外力和合外力矩均为零(C)刚体所受合外力矩为零(D)刚体的转动惯量和角速度均保持不变18. 绕定轴转动的刚体转动时,如果它的角速度很大,则 [](A)作用在刚体上的力一定很大 (B)作用在刚体上的外力矩一定很大(C) 作用在刚体上的力和力矩都很大(D)难以判断外力和力矩的大小19. 一个可绕定轴转动的刚体,若受到两个大小相等、方向相反但不在一条直线上的恒力作用,而且力所在的平面不与转轴平行,刚体将怎样运动? [](A)静止(B)匀速转动(C) 匀加速转动(D)变加速转动20. 儿个力同时作用在一个具有固定转轴的刚体上.如果这儿个力的矢量和为零,则 物体 [](A)必然不会转动 (B)转速必然不变(C) 转速必然改变 (D)转速可能不变,也可能变 21. 两个质量相同、飞行速度相同的球A 和B,其中A 球无转动,B 球转动,假设要 把它们接住,所作的功分别为內和金,则: [1(A) 4>人2 (B)A }<A 2(C)A )= A 2(D)无法判定22. 一个半径为R 的水平圆盘恒以角速度"作匀速转动.一质量为m 的人要从圆盘 边 缘走到圆盘中心,圆盘2 I J (A) _L mR w2T3-1-22 图23. 在外力矩为零的情况下,将一个绕定轴转动的物体的转动惯量减小一半,则物体的 [1(A)角速度将增加三倍(B)角速度不变,转动动能增大二倍(C) 转动动能增大一倍(D)转动动能不变,角速度增大二倍24. 银河系中一均匀球体天体,其半径为R,绕其对称轴自转的周期为T.由于引力凝 聚作用,其体积在不断收缩.则一万年以后应有:对他所作的功为(B)2(C)mR 1 W-(D) -mBrw 2[](A)自转周期变小,动能也变小(B)自转周期变小,动能增大(C)自转周期变大,动能增大(D)自转周期变大,动能减小25. 人造地球卫星绕地球作椭圆轨道运动.卫星轨道近地点和远地点分别为A 和B, 用厶和瓦分别表示卫星对地心的角动量及其动能的瞬时值,则应有 r ] (A) L A > L B , E^A > E RB(B) L A =厶〃,E^A < E 匕B(C) L A = L B ,E U > E RB(D) L A < L B ,Eg < E RB26. 一运动小球与另一质量相等的静止小球发生对心弹性碰撞,则碰撞后两球运动方 向间的夹角 [](A)小于 90° (B)等于 90°(C) 大于90°(D)条件不足无法判定27. 一质量为M 的木块静止在光滑水平面上,质量为M 的子弹射入木块后又穿出來.子弹在射入和穿出的过程中, M[ ](A)子弹的动量守恒o —[(C ) 子弹的角动量守恒(D) 子弹的机械能守恒T3-1-27 图(B)子弹和木块系统的动fi:守恒,机械能不守恒这一过程的分析是 [](A)子弹的动能守恒止于光滑水平面上的木块后随木块一起运动.对于(B) 子弹、木块系统的机械能守恒 (C) 子弹、木块系统水平方向的动量守恒 (D) 子弹动能的减少等于木块动能的增加T3-1-28图29. 一块长方形板可以其一个边为轴自由转动,最初板自由下垂•现有一小团粘土垂 直于板面撞击板,并粘在板上.对粘土和板系统,如果不计空气阻力, 在碰撞过程中守恒的塑是 I ](A)动能(B)绕长方形板转轴的角动量(C) 机械能(D)动量30. 在下列四个实例中,物体机械能不守恒的实例是 I J(A)质点作圆锥摆运动(B) 物体在光滑斜面上自由滑下(C) 抛出的铁饼作斜抛运动(不计空气阻力) (D) 物体在拉力作用下沿光滑斜面匀速运动31. 在系统不受外力作用的非弹性碰撞过程屮 [](A)动能和动量都守恒(B)动能和动量都不守恒(C) 动能不守恒,动量守恒(D)动能守恒,动量不守恒32. 下面说法屮正确的是 [](A)物体的动量不变,动能也不变(B) 物体的动量不变,角动量也不变(C) 物体的动量变化,角动量也一定变化 (D) 物体的动能变化,动量却不一定变化33. 人造地球卫星绕地球作椭圆轨道运动.若忽略空气阻力和其他星球的作用,在卫星 的运行过程中[](A)卫星的动量守恒,动能守恒(B) 卫星的动能守恒,但动量不守恒(C) 卫星的动能不守恒,但卫星对地心的角动量守恒 (D) 卫星的动量守恒,但动能不守恒2& — 子弹以水 M平速度v 射入一静T3-1-29 图34.人站在摩擦可忽略不计的转动平台上,双臂水平地举起二哑铃,当人在把此二哑铃水平地收缩到胸前的过程中,人与哑铃组成的系统有[](A)机械能守恒,角动量守恒(B)机械能守恒,角动量不守恒(C) 机械能不守恒,角动量守恒(D)机械能不守恒,角动量不守恒35.—人手拿两个哑铃,两臂平伸并绕右足尖旋转,转动惯量几角速度为若此人2突然将两臂收冋,转动惯量变为亍丿.如忽略摩擦力,则此人收臂后的动能与收臂前的动能之比为[ ](A) 1 : 9 (B) 1 : 3 (C)9:l (D) 3 : 136.将唱片放在绕定轴转的电唱机转盘上时,若忽略转轴摩擦,则以唱片和转盘为体系的[](A)总动能守恒(B)总动能和角动量都守恒(C) 角动量守恒(D)总动能和角动量都不守恒37.均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,如T3-1-37图所示.今使棒从水平位置由静止开始白由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?[ ](A)角速度从小到大,角加速度从大到小(B)角速度从小到大,角加速度从小到大(C)角速度从大到小,角加速度从大到小(D)角速度从大到小,角加速度从小到大T3-I-37图38.有两个力作用在一个有固定转轴的刚体上:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中:J(A)只有⑴是正确的(B)(1)、(2)正确,(3)、(4)错误(C)(1)、(2)、(3)都正确,(4)错误(D)(1)、(2)、(3)、(4)都正确39.一圆盘正绕垂直于盘而的水平光滑固定轴0转动,如图射来两个质量相同、速度大小相同,方向相反并在一条直线m上的子弹,子弹射入圆盘并II留在盘内,则子弹射入后的瞬间,圆盘的角速度M/[ ](A)增大(C)减小(B)不变(D)不能确泄T3-1-39 图40. 光滑的水平血上有长为2/、质量为m 的匀质细杆,可绕过其中点O 且垂直]_于桌面的竖直固定轴自由转动,转动惯量为3mZ 2 .起初杆静止.有一质量为m 的小 球沿桌面正对着杆的一端,在垂直于杆长的方向上,以速率v 运动,如右图所示.当小球与杆端发生 碰撞后,就与杆粘在一起随杆转动,则这一系统碰撞后的转动角速度是lv 2vT3-2-3 图[](A) I2_ (B) _3/3v(C )一4/T3-1-40图二、填空题3V(D) 一1. 半径为r 的圆环平放在光滑水平面上,环上有一甲虫,环和甲虫的质量相等,并且原先都是静止的.以后甲虫相对于圆环以等速率T3-2-1 图爬行,当甲虫沿圆环爬完一周时,圆环绕其中心转过的角度是 __________ •2. 一质量为60 kg 的人站在一质量为60 kg 、半径为1米的均 匀圆盘的边缘,圆盘可绕与盘面相乖直的中心竖直轴无摩擦地转动.系统 原来是静止的,后来人沿圆盘边缘走动,当他相对于圆盘的走动速 圆盘的角速度大小为 ______________ •度为2m.s"时,T3-2-2 图3. 一匀质杆质量为税、长为I,通过一端并与杆成q 角的轴的转动惯量为 ___________T3-2-5 图T3-2-4 图4. 两个完全一样的飞轮,当用98N 的拉力作用时,产生角加速度5;当挂一重98N的重物时,产生角加速度b 2.则b 、和b 2的关系为 ____________ .5. 两人各持一均匀直棒的一端,棒重w, —人突然放手,在此瞬间,另一人感到手上承受的力变为 __________ •一 一 - 一 =(4L - 3J ) m,则该力对坐标原点的6. 一力F = (3z + 5;) N,其作用点的矢径为r力矩为 ___________ .7. 一质量为m 的质点沿着一条空间曲线运动,该曲线在直角坐标系下的定义式为 F =^zcos wtL + hsinwt^j ,其屮a 、b 、"皆为常数.则此质点所受的对原点的力矩-M= ___________ ;该质点对原点的角动量厶二 ______________8. 一转动惯量为丿的圆盘绕一固定轴转动,起初角速度为必,设它所受阻力矩与转动角速度成正比M 二-kw 伙为正常数).则在它的角速度从%)变为_1 %)过程中阻力矩2所作的功为 __________ .9. 质量为32 kg 、半径为0.25 m 的均质飞轮,其外观为圆盘形状.当飞轮作角速度为12rad.s-'的匀速率转动时,它的转动动能为 ____________ .10. 一「氏为I 、质量可以忽略的直杆,两端分别固定有质量为2m 和m 的小球,杆可绕通过其小心o 且与杆垂直的水平光滑固定轴在铅直平而内 转Im 图所示.释放后,杆绕0轴转动,则当杆转到水平位置时,该系统所受的合外力矩的 大小M 二 ,此吋该系统角加速度的大小b= _________ .11. 在一水平放置的质量为加、长度为I 的均匀细杆上, 套着一个质量也为m 的套管(可看作质点),套管用细线拉住, 它到竖直的光滑固定轴00'的距离为亍/ ,杆和套管所组成的 速度 系统以角 %绕OO'轴转 动,如图所 示.若在转动过程屮细线被拉断,套管将 沿着杆滑1动.在套管滑动过程屮,该系统转动的角3动.开始杆与水平方向成某一角度g,处于静止状态, T3-2-9 图3速度iv 与套管轴的距离x 的函数关系为 ________________ ・(已知杆本身对OO ,轴的转 动惯量为ml 2)12. 长为/、质量为M 的匀质杆可绕通过杆一端0的水平光滑 固定轴转动,转动惯量为3M/2,开始时杆竖直下垂,如右图所示•现 v 有一质量为m 的子弹以水平速度一。

大学物理第3章刚体力学习题解答

大学物理第3章刚体力学习题解答

第3章 刚体力学习题解答3.13 某发动机飞轮在时间间隔t 内的角位移为):,:(43s t rad ct bt at θθ-+=。

求t 时刻的角速度和角加速度。

解:23212643ct bt ct bt a dtd dtd -==-+==ωθβω3.14桑塔纳汽车时速为166km/h ,车轮滚动半径为0.26m ,发动机转速与驱动轮转速比为0.909, 问发动机转速为每分多少转?解:设车轮半径为R=0.26m ,发动机转速为n 1, 驱动轮转速为n 2, 汽车速度为v=166km/h 。

显然,汽车前进的速度就是驱动轮边缘的线速度,909.0/2212Rn Rn v ππ==,所以:min/1054.1/1024.93426.014.3210166909.02909.013rev h rev n R v ⨯=⨯===⨯⨯⨯⨯π3.15 如题3-15图所示,质量为m 的空心圆柱体,质量均匀分布,其内外半径为r 1和r 2,求对通过其中心轴的转动惯量。

解:设圆柱体长为h ,则半径为r ,厚为dr 的薄圆筒的质量dm 为:2..dm h r dr ρπ=对其轴线的转动惯量dI z 为232..z dI r dm h r dr ρπ==212222112..()2r z r I h r r dr m r r ρπ==-⎰ 3.17 如题3-17图所示,一半圆形细杆,半径为 ,质量为 ,求对过细杆二端轴的转动惯量。

解:如图所示,圆形细杆对过O 轴且垂直于圆形细杆所在平面的轴的转动惯量为mR 2,根据垂直轴定理z x y I I I =+和问题的对称性知:圆形细杆对过轴的转动惯量为12mR 2,由转动惯量的可加性可求得:半圆形细杆对过细杆二端轴的转动惯量为:214AA I mR '=3.18 在质量为M ,半径为R 的匀质圆盘上挖出半径为r 的两个圆孔,圆孔中心在半径R 的中点,求剩余部分对过大圆盘中心且与盘面垂直的轴线的转动惯量。

大学物理刚体力学测试题答案

大学物理刚体力学测试题答案

选择题答案及解析
• 答案:D
• 解析:根据刚体的转动惯量公式,对于一个质量均匀分布的细杆,其转动惯量与质量、长度和质心到转轴的距离有关。故 D选项正确。
选择题答案及解析
• 答案:A • 解析:根据刚体的动能定理,当刚
体受到的合外力矩不为零时,刚体 的角速度会发生变化。故A选项正 确。
填空题答案及解析
有挑战性
部分题目难度较大,需要学生具备较强的分 析问题和解决问题的能力。
测试题答案解析总结
要点一
详细解析
每道题目都附有详细的答案解析,帮助学生理解解题思路 和方法。
要点二
举一反三
答案解析中还提供了相关题型的解题技巧,有助于学生触 类旁通。
THANKS
感谢观看
难题
考查学生的综合运用能力和创新思维,难度较大,需要较高的解题技巧。
测试题目的目标
01
检验学生对刚体力学基本概念和公式的掌握程度。
02
评估学生对刚体力学知识的应用能力。
提高学生的综合运用能力和创新思维。
03
02
测试题内容选Leabharlann 题选择题1答案:C1
选择题2答案:B
2
选择题3答案:D
3
填空题
填空题1答案
• 答案
10 N·m
• 解析
根据刚体的转动动能公式,当刚体的转动惯量为1 kg·m²,角速度为10 rad/s时,其转 动动能为0.5×1×10²=50 J。由于题目中要求的是力矩,因此需要将动能转换为力矩,
即50 J=10 N·m。故填空题1的答案是10 N·m。
填空题答案及解析
• 答案
2 kg·m²
04
测试题总结
测试题特点总结

华理工大学大学物理习题之 刚体力学习题详解

华理工大学大学物理习题之 刚体力学习题详解

习题三一、选择题1.一根长为l 、质量为M 的匀质棒自由悬挂于通过其上端的光滑水平轴上。

现有一质量为m 的子弹以水平速度v 0射向棒的中心,并以v 0/2的水平速度穿出棒,此后棒的最大偏转角恰为90︒,则v 0的大小为 [ ](A; (B; (C(D )22163M glm 。

答案:A 解:11122,1122J J J J Mg l ωωωω=+⎧⎪⎨=⋅⎪⎩ 22211, 243l m l J m J M l ⎛⎫=== ⎪⎝⎭ 0012/2v v l l ω==,0021/21/22v v l l ωω===,111121()2J J J J ωωωω-== 21122J Mgl ω=, 2112J J Mgl J ω⎛⎫⋅= ⎪⎝⎭, 22114J Mgl Jω= 22202244143v ml l Mgl Ml ⎛⎫ ⎪⎝⎭=⋅,Mgl M v m =⋅202163,2202163M v gl m =,所以 340gl m Mv =2.圆柱体以80rad/s 的角速度绕其轴线转动,它对该轴的转动惯量为24kg m ⋅。

在恒力矩作用下,10s 内其角速度降为40rad/s 。

圆柱体损失的动能和所受力矩的大小为 [ ](A )80J ,80N m ⋅; (B )800J ,40N m ⋅;(C )4000J ,32N m ⋅;(D )9600J ,16N m ⋅。

答案:D解:800=ω,40=ω,10=t ,4J =2201122k E J J ωω-∆=- 22011()4(64001600)9600(J)22k E J ωω∆=-=⨯⨯-=M 恒定,匀变速,所以有0t ωωα=-,0tωωα-=,08040416N m 10M J J tωωα--==⋅=⨯=⋅3.一个转动惯量为J 的圆盘绕一固定轴转动,初角速度为0ω。

设它所受阻力矩与转动角速度成正比M k ω=- (k 为正常数)。

刚体力学试卷答案详解

刚体力学试卷答案详解

J Aω A + J BωB = ( J A + J B )ω
J Aω A + J BωB = ( J A + J B )ω J Aω A ∵ ωB = 0 ⇒ ω = = 20.9 rad / s (J A + JB )
转速为
n = 200 转/分
(2). A轮受到的冲量矩为 轮受到的冲量矩为
L = ∫ M Adt = J A (ω − ω A0 ) = −4.19 × 102 N ⋅ m ⋅ s
பைடு நூலகம்
mg − T = ma mg ⇒a= TR = J α m+M /2 a = Rα (加速度为常数 加速度为常数) 加速度为常数
R
T T m


v = v0 + at
mgt v = at = m+M /2
而 v0 = 0
mg
12. 解:设棒质量为m,当棒与水平面成 600 角 设棒质量为 , 并开始下落时, 并开始下落时,由转动定律
第四套
一、选择题: 选择题: 1. C
刚体转动
引力为有心力,故角动量守恒 引力为有心力,故角动量守恒; 引力对卫星作功,可改变卫星动能。 引力对卫星作功,可改变卫星动能。
2. C
T M
A T'
B F
T ' = T < Mg = F
T ' R = J α A < FR = J α B
α A < αB
Mg
9. 10.
J = 4m(3l ) 2 + 3m(2l ) 2 + 2ml 2 = 50ml 2
J ω − mvR = ( J + mR 2 )ω ' J ω − mvR ω' = ( J + mR 2 )

大学物理刚体力学测试题答案

大学物理刚体力学测试题答案
an R2 Rt2 0.30.52t2 0.30.52160.4 ms2
3
3.质量均为 m 的三个小球用长为 l 的三根轻质的刚性杆连成一个
刚体。建立坐标系如图所示,将刚体置于 OYZ 平面内,则此刚体:
( 量1为)_对__1_O_mX__l轴_2 _的__转。动惯量为____45__m__l _2 __;(2)对
(4)
2
(4)式代入(1)式得
a
2 m 'g m 2m '
(5)
a 2 m 'g R (m 2 m ') R
(5)式代入(4)式,得
T
mm' m 2m'
g
2 .如 图 所 示 , 一 长 为 L = 0 .4 0 m 的 均 匀 木 棒 , 质 量 M = 1 .0 k g , 可 绕 水 平
25rads 10s 时的角速度为
1 ,在 10s 内转过的角度
为 125rad 。
由静止开始的匀加速转动运动学公式
角速度 0tt2.51025rads1 角(位角移度)0t1 2t21 2t21 22.5102125rad
2.半径为 30cm 的飞轮,从静止开始以 0.5rad s 2 的角加速度
(A)动量大小不变,动能变,角动量变
(B)动量大小变,动能不变,角动量变
(C)动量大小与动能都变,角动量不变
(D)三者都不变
rO
质点受有心力作用,合外力矩为零,
质点角动量守恒
F
Lm r恒 量
绳下拉过程半径r变小,速度v变大, 动量mv变大,动能变大
1.一砂轮由静止开始作匀加速运动,角加速度 2.5rad s 2 。则
轴 O 在 竖 直 面 内 转 动 。开 始 时 ,棒 自 然 地 竖 直 悬 垂 ,现 有 质 量 m = 8 .0 g

华东理工大学大学物理第三章答案

华东理工大学大学物理第三章答案
α= 3g 2 l 1 l = ( ml 2 )α 2 3
30°
mg
图 3-8
π 2 0
(2)由动能定理
ω=
A = ∫ Mdθ = ∫ mg
2A = J 3g l
1 1 l cos θdθ = mgl = Jω 2 2 2 2
(3)棒、地球系统机械能守恒
mg l 1 sin 30 0 = Jω′ 2 2 2 l 3g 3 = g 2 2l 4 ω′ = 3g 2l
ω = ω0 + v R J 0 ω 0 + J 1 (ω 0 +
J 1 = mR 2
2
由角动量守恒得
v )=0 R
ω0 = −
mR 2 v × = −9.52 × 10 − 2 (1 / s) J 0 + mR 2 R
23
大学物理练习册题解
13、如图所示,空心圆环可绕竖直轴AC自由转动,转 动惯量为J0,环的半径为R,初始角速度为ω0,质量为 m的小球静止于环内A点。由于微小干扰,小球向下滑 到B点时,环的角速度与小球相对于环的速度各为多 大?(设环内壁光滑) 解:小球、圆环对 AC 轴角动量守恒
α= 0 − ω0 t ( 2)
0.5m
0.75m 闸瓦
(1)
d
′ 力矩之和为零(杆静止) 杆对 o1
F(l1 + l 2 ) − Nl1 = 0 (3) (4) 飞轮对 O 的力矩: − Fr ⋅ R = Jα Fr = μN (5)
由(1) 、 (2) 、 (3) 、 (4) 、 (5)得
F= l1 l Jα × = 1 l1 + 2 μR l1 + 2 mR 2 ω0 t = l1 ⋅ mRω 0 = 314( N ) μR l1 + 2 μt

大学物理习题参考解答物理习题参考解答刚体基本运动_转动定律_动能定理

大学物理习题参考解答物理习题参考解答刚体基本运动_转动定律_动能定理

选择题_03图示单元四 刚体基本运动 转动动能 1一 选择题01. 一刚体以每分钟60转绕z 轴做匀速转动(ω沿转轴正方向)。

设某时刻刚体上点P 的位置矢量为345r i j k =++,单位210m -,以210/m s -为速度单位,则该时刻P 点的速度为: 【 B 】(A) 94.2125.6157.0v i j k =++;(B) 25.118.8v i j =-+;(C) 25.118.8v i j =--;(D) 31.4v k =。

02. 轮圈半径为R ,其质量M 均匀布在轮缘上,长为R ,质量为m 的均质辐条固定在轮心和轮缘间,辐条共有2N 根。

今若将辐条数减少N 根但保持轮对通过轮心,垂直于轮平面轴的转动惯量保持不变,则轮圈的质量为 【 D 】(A)12N m M +; (B) 6N m M +; (C) 23N m M +; (D) 3Nm M +。

03. 如图所示,一质量为m 的均质杆长为l ,绕铅直轴OO '成θ角转动,其转动惯量为 【 C 】(A)2112ml ;(B) 221sin 4ml θ;(C) 221sin 3ml θ; (D) 213ml 。

04. 关于刚体对轴的转动惯量,下列说法中正确的是 【 C 】 (A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关; (B) 取决于刚体的质量和质量的空间分布,与轴的位置无关; (C) 取决于刚体的质量、质量的空间分布和轴的位置;(D) 只取决于转轴的位置,与刚体的质量和质量的空间分布无关。

05. 两个匀质圆盘A 和B 的密度分别为A ρ和B ρ,若A B ρρ>,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为A J 和B J ,则 【 B 】(A) A B J J >; (B) B A J J >;(C) A B J J =; (D) A J 和B J 哪个大,不能确定。

大学物理练习册习题及答案4

大学物理练习册习题及答案4

习题及参考答案第3章 刚体力学参考答案思考题3-1刚体角动量守恒的充分而必要的条件是 (A )刚体不受外力矩的作用。

(B )刚体所受合外力矩为零。

(C)刚体所受的合外力和合外力矩均为零。

(D)刚体的转动惯量和角速度均保持不变。

答:(B )。

3-2如图所示,A 、B 为两个相同的绕着轻 绳的定滑轮。

A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg 。

设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮 轴的摩擦,则有(A )βA = βB (B )βA > βB(C )βA < βB (D )开始时βA = βB ,以后βA < βB 答:(C )。

3-3关于刚体对轴的转动惯量,下列说法中正确的是(A )只取决于刚体的质量,与质量的空间分布和轴的位置无关。

(B)取决于刚体的质量和质量的空间分布,与轴的位置无关。

(C )取决于刚体的质量、质量的空间分布和轴的位置。

(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无 答:(C )。

3-4一水平圆盘可绕通过其中心的固定铅直轴转动,盘上站着一个人,初始时整个系统处于静止状态,当此人在盘上随意走动时,若忽略轴的摩擦,则此系统(A)动量守恒; (B)机械能守恒;(C)对转轴的角动量守恒;(D)动量、机械能和角动量都守恒; (E)动量、机械能和角动量都不守恒。

答:(C )。

3-5光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点o 且垂直于杆的竖直光滑固定轴自由转动,其转动惯量为213mL,起初杆静止,桌面上有两个质量均为m 的小球,各自在AMF思考题3-2图v思考题3-5图垂直于杆的方向上,正对着杆的一端,以相同速率v相向运动,如图所示,当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为(A)23Lv(B)45Lv(C)67Lv(D)89Lv(E)127Lv答:(C)。

-刚体力学-答案-推荐下载

-刚体力学-答案-推荐下载
n kt 有 0
t 时角速度为
d

2.解:设 绳 中 张 力 为 T 对于重物按牛顿第二定律有 m2g–T=m2a
0
t
kdt
0ekt
(1)
1
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因在此时刻悬绳未断的一端的速度为 0,从而在质心的加速度和角加速度 之间有如下关系:
2l
ac l
得绳中张力
1 T mg . 4
16.质量为0.05 kg的小块物体,置于一光滑水平桌面上.有一绳 一端连接此物,另一端穿过桌面中心的小孔.该物体原以3 rad/s的角速度在距孔0.2 m的圆周上转动.今将绳从小孔缓慢 往下拉,使该物体之转动半径减为0.1 m.则物体的角速度 12rad s 1 . =____________
5、关于刚体对轴的转动惯量,下列说法中正确的是 [ C ] A)只取决于刚体的质量,与质量的空间分布和轴的位置无关 B)取决于刚体的质量和质量的空间分布,与轴的位置无关. C)取决于刚体的质量、质量的空间分布和轴的位置. D)取决于转轴的位置,与刚体的质量和质量的空间分布无关
6. 均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转 动,如图所示。今使棒从水平位置由静止开始自由下落,在棒摆 动到竖直位置的过程中,下述说法哪一种是正确的 [ ] A (A)角速度从小到大,角加速度从大到小; A O (B)角速度从小到大,角加速度从小到大; (C)角速度从大到小,角加速度从大到小; (D)角速度从大到小,角加速度从小到大; 解 取水平位置为势能零点
mv . ML
(B)
3m v . 2 ML
(C)
5m v .3 ML
(D)
7mv .4 ML
2
v
O 俯视图
v
9、一根质量为m、长度为l的细而均匀的棒,其下端绞接在水平面 上,并且竖直立起,如果让它自由落下,则棒将以角速度撞击地面, 如图所示.如果将棒截去一半,初始条件不变,则棒撞击地面的角 B 速度为:[ ]。 2 (B) . 2 (C) . (A) . (D) . 2
3、几个力同时作用在一个具有固定转轴的刚体上,如果这几个
力的矢量和为零,则此刚体 [ A)必然不会转动
D ]
B)转速必然不变
C)转速必然改变
D)转速可能改变,也可能不变。
4、 一个物体正在绕固定光滑轴自由转动, [ D ] A)它受热膨胀或遇冷收缩时,角速度不变. B)它受热时角速度变大,遇冷时角速度变小. C)它受热或遇冷时,角速度均变大. D)它受热时角速度变小,遇冷时角速度变大.
TR J a R
12.长 L、质量 m 的均匀杆对 z 轴的转动惯量为________ 7mL2/48
z
A
解一:
L 4
o
L
m
C
m 2 7 J z l dm l dl m L2 L 48 L 4
B
2
3L 4
1 m L 1 3m 3L 7 2 解二: J z J oA J oB mL 3 4 4 3 4 4 48 L 1 2 7 L 2 解三: J J m mL m mL z C 4 12 4 48
2 mv0 l R cos J Biblioteka m ( l R ) O
v0
m

R
l
mv0 (l R) cos J m(l R)2
mg
l 11 2 2 ml 2 23
m l 1 1 m l 2 2 ( ) g ( ) [ ( )( ) ] 2 4 2 3 2 2
二、填空题 10.一个作定轴转动的轮子,对轴的转动惯量 J 2.0kg m2,正以角 速度 0 匀速转动。现对轮子加一恒定的力矩 M 7.0 N m ,经过8 1 秒,轮子的角速度为 0 ,则 0 =14rad s 11.一个半径为 R ,可绕水平轴转动的定滑轮上绕有一根细绳,绳 的下端挂有一质量为 m 的物体。绳的质量可以忽略,绳与定滑轮 之间无相对滑动。若物体的下落加速度为 a , 则定滑轮对轴的转动惯量 J = g a J mR 2 a mg T ma
刚体力学
一 选择题 1 、一个人坐在有光滑固定转轴的转动平台上,双臂水平 握二哑铃.在该人把此二哑铃水平收缩到胸前的过程中,人、 哑铃与转动平台组成的系统的.[ C ] A)机械能守恒,角动量守恒. B)机械能守恒,角动量不守恒. C)机械能不守恒,角动量守恒. D)机械能不守恒,角动量也不守恒.
2.一轻绳绕在有水平轴的定滑轮上,滑轮的转动惯量为J,绳 下端挂一物体.物体所受重力为P,滑轮的角加速度为β .若将 物体去掉而以与P相等的力直接向下拉绳子,滑轮的角加速度β 将[C ] (A) 不变. (B) 变小. (C) 变大. (D) 如何变化无法判断.
J 00 J
J0 2mR2 /5,
2
J 2m( R / 2 )2 /5
40
2 T0 T 4 0 4
14. 一块方板,可以绕通过其一个水平边的光滑
固定轴自由转动.最初板自由下垂.今有一小团粘 土,垂直板面撞击方板,并粘在板上。对粘土和 方板系统,如果忽略空气阻力,在碰撞中守恒的 绕木板转轴的角动量 量是 ________________. (动能、 绕木板转轴的角动量、 机械能、 动量)
M R m
k

19.解 1 2 1 1 2 2 (1) mgx sin 2 mv 2 J 2 kx v R
1 J MR 2 2
M R m
2mgx sin kx 2 v mM /2 dv dv dx dv mg sin kx a v dt dx dt dx mM /2
解 1)
m dm dr L
z
df dm g
dM rdf
L
r
df
dm

o
m 1 M dM r gdr m gL L 2 0
解2)设杆的线密度
kr
r
z
df
dm
dm dr kr dr
L

o
由 m dm
0
1 2 krdr kL 2
2m 得 k 2 L 2 mg df dmg rdr 2
L
dM rdf
2m g 2 2 M dM r dr m gL 2 L 3 0
L
18.如图所示,一轻绳绕过一轻滑轮,绳的一端被一质量为m 的 人抓住,绳的另一端悬挂一质量为 m / 2的物体,定滑轮的质 量为 M ,半径为R,可视为匀质圆盘。设人从静止开始相对绳 匀速向上爬行时,绳子与滑轮间无相对滑动, 求物体上升的加速度。
(2) dv
dx
x xm
k

mg sin mgx sin 0 xm , vmax k m M /2
(3) v
x xmax
0 xmax
2mg sin k
20.如图所示,一半径为R的匀质小木球固结在一长度为l的匀质细 棒的下端,且可绕水平光滑固定轴O转动,今有一质量为m,速 度为 的子弹,沿着与水平面成角的方向射向球心,且嵌于球心。 已知小木球、细棒对通过O水平轴的转动惯量的总和为J。 求:子弹嵌入球心后系统的共同角速度。 碰撞过程中系统的角动量守恒。 解:
2 2
2
2
13、 有一半径为R的均匀球体,绕通过其一直径的光滑固定轴 匀速转动,转动周期为T0.如它的半径由R自动收缩为 R / 2 ,则 球体收缩后的转动周期 T0/4 .(球体对于通过直径的轴的 转动惯量为 J 2mR2 / 5 ,式中m和R分别为球体的质量和半径.)
设J 0 和0、J 和分别为收缩前后球体的 转动惯量和角速度,有
15. 如图所示,将一根质量为 m 的长杆用细绳从两端水平地挂 起来,其中一根绳子突然断了,另一根绳内的张力是 mg/4 . [解] 设杆长为2l ,质心运动定理和 角动量定理给出绳断的一刹那的运动 方程: mg T ma
c
Tl J c
1 1 2 2 m(2l ) ml 。 式中转动惯量J c 12 3
E p EK J
1 2
EK EP 0
2
Ep J
1 2
2
M J
即角速度从小到大,角加速度从大到小
7、一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个 人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴 的摩擦,此系统 [ C ] (A)动量守恒. (B)机械能守恒. (C) 对转轴的角动量守恒. (D) 动量、机械能和角动量都守恒. (E) 动量、机械能和角动量都不守恒.
r1mv1 r2mv2
v r
mr12 1 mr22 2
r12 1 2 2 41 r2
三 计算题
17. 质量为 m ,长为 L 的细杆在水平粗糙桌面 上绕过其一端的竖直轴旋转,杆与桌面间的摩擦系 数为 ,求摩擦力矩。 1) 杆的质量均匀分布 2) 杆的密度与离轴距离成正比
8、如图所示,一静止的均匀细棒,长为L、质量为M,可绕通过 棒的端点且垂直于棒长的光滑固定轴O在水平面内转动,转动 1 ML 惯量为 。一质量为m、速率为v的子弹在水平面内沿与棒 3 1 v 垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率 2 B 为 ,则此时棒的角速度应为[ ]。 1
2
(A)
mg T1 ma
m m T2 g a 2 2 1 T1 T2 R ( MR 2 ) 2
a R
m a g M 3m
19.如图,滑轮质量为M,半径为R,物体质量m,弹簧劲度系数 k,斜面倾角均为已知。开始时扶住物体m,使系统保持静止, 弹簧无伸缩,然后放开。求: (1)物体下滑距离为x时的速度为多少? (2)下滑距离x为多大时,物体的速度为最大,最大速度为多少? (3)物体下滑的最大距离为多大?(设绳子与滑轮间无相对滑 动)
相关文档
最新文档