圆锥曲线的最值问题常见类型及解法
圆锥曲线的最值问题常见类型及解法演示文稿
x2 y2 1 4
上点的最大距离,
并求出此时椭圆上的点的坐标。
分析:
本题可以根据椭圆的方程设出满足条件的 点的坐标,然后根据两点间的距离公式借 助于二次函数求出此最大值,并求出点的 坐标。
例3
求点 P(0,3 )到椭圆
2
x2 y2 1 4
上点的最大距离,
并求出此时椭圆上的点的坐标。
解:
设点
Q(x,y)为椭圆
x2 4
y2
1
上的任意一点,
则 PQ 2 (x 0)2 (y 3)2
2
又因为x2 = 4- 4y2
所以
PQ
2
4 4y 2
y2
3y
9 4
3y 2
3y
25 4
3(y 1 )2 7 2
(-1≤y≤1)
所以 PQ 的最大值为 7 此时, y 1,x 3
2
即此时Q的坐标为:( 3, 1)、( 3, 1)
2
2
思考题:
求:点P(0,m),使其到椭圆x2 y 2 1上的 4
最大距离是 7。
变式训练:
已知双曲线C:x2 y2 1 ,P为C
4
上任一点,点A(3,0),则|PA|的最小 值为________.
类
例1: 已知抛物线y2=4x,以抛物线上两点
型
A(4,4)、B(1,-2)的连线为底边的△ABP,其顶点P 在抛物线的弧AB上运动,求: △ABP的最大面
略解: 圆心到直线L的距离d1=
16 32 22
16 13 13
r 所以圆上的点到直线的最短距离为 d=d1-
16 13 2 13
问题:直线L的方程改为 3x-2y-6=0, 其结果又如何?
圆锥曲线专题:最值与范围问题的6种常见考法(解析版)
圆锥曲线专题:最值与范围问题的6种常见考法一、圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:1、几何法:通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;2、代数法:把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.二、最值问题的一般解题步骤三、参数取值范围问题1、利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;2、利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;3、利用隐含的不等关系建立不等式,从而求出参数的取值范围;4、利用已知的不等关系构造不等式,从而求出参数的取值范围;5、利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.题型一距离与长度型最值范围问题【例1】已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,焦距为2,点E 在椭圆上.当线段2EF 的中垂线经过1F 时,恰有21cos EF F ∠.(1)求椭圆的标准方程;(2)直线l 与椭圆相交于A 、B 两点,且||2AB =,P 是以AB 为直径的圆上任意一点,O 为坐标原点,求||OP 的最大值.【答案】(1)2212x y +=;(2)max ||OP 【解析】(1)由焦距为2知1c =,连结1EF ,取2EF 的中点N ,线段2EF 的中垂线经过1F 时,1||22EF c ∴==,221212cos ,.1,F N EF F F N F F ∠∴∴-2122,2EF a EF EF a ∴=-∴=+=∴由所以椭圆方程为2212x y +=;(2)①当l 的斜率不存在时,AB 恰为短轴,此时||1OP =;②当l 的斜率存在时,设:l y kx m =+.联立2212x y y kx m ⎧+=⎪⎨⎪=+⎩,得到222(21)4220k x kmx m +++-=,∴△2216880k m =-+>,122421km x x k -+=+,21222221m x x k -=+.21AB x x =-=2==,化简得2222122k m k +=+.又设M 是弦AB 的中点,121222()221my y k x x m k +=++=+∴()2222222241,,||212121km m k M OM k k k m -+⎛⎫= ⎪⎝⎭+⋅++,∴()()()222222222412141||22212221k k k OM k k k k +++=⋅=++++,令2411k t += ,则244||43(1)(3)4t OM t t t t===-++++∴||1OM =- (仅当t =,又||||||||1OP OM MP OM +=+2k =时取等号).综上:max ||OP =【变式1-1】已知抛物线21:4C y x =的焦点F 也是椭圆22222:1(0)x y C a b a b+=>>的一个焦点,1C 与2C 的公共弦长为3.(1)求椭圆2C 的方程;(2)过椭圆2C 的右焦点F 作斜率为(0)k k ≠的直线l 与椭圆2C 相交于A ,B 两点,线段AB 的中点为P ,过点P 做垂直于AB 的直线交x 轴于点D ,试求||||DP AB 的取值范围.【答案】(1)22143x y +=;(2)1(0,)4【解析】(1)抛物线21:4C y x =的焦点F 为(1,0),由题意可得2221c a b =-=①由1C 与2C 关于x 轴对称,可得1C 与2C 的公共点为2,33⎛± ⎝⎭,可得2248193a b +=②由①②解得2a =,b ,即有椭圆2C 的方程为22143x y+=;(2)设:(1)l y k x =-,0k ≠,代入椭圆方程,可得2222(34)84120k x k x k +-+-=,设1(A x ,1)y ,2(B x ,2)y ,则2122834kx x k +=+,212241234k x x k -=+,即有()312122286223434k ky y k x x k k k k -+=+-=-=++,由P 为中点,可得22243()3434k kP k k -++,,又PD 的斜率为1k -,即有222314:3434k k PD y x k k k ⎛⎫--=-- ++⎝⎭,令0y =,可得2234k x k=+,即有22034k D k ⎛⎫⎪+⎝⎭可得2334PD k ==+又AB ==2212(1)34k k +=+,即有DP AB =,由211k +>,可得21011k <<+,即有104<,则有||||DP AB 的取值范围为1(0,)4.【变式1-2】已知曲线C 上任意一点(),P x y2=,(1)求曲线C 的方程;(2)若直线l 与曲线C 在y 轴左、右两侧的交点分别是,Q P ,且0OP OQ ⋅=,求22||OP OQ +的最小值.【答案】(1)2212y x -=;(2)8【解析】(1)设())12,F F ,2=,等价于12122PF PF F F -=<,∴曲线C 为以12,F F 为焦点的双曲线,且实轴长为2,焦距为故曲线C 的方程为:2212y x -=;(2)由题意可得直线OP 的斜率存在且不为0,可设直线OP 的方程为()0y kx k =≠,则直线OQ 的方程为1=-y x k ,由2212y x y kx ⎧-=⎪⎨⎪=⎩,得222222222x k k y k ⎧=⎪⎪-⎨⎪=⎪-⎩,所以()2222221||2k OP x y k+=+=-,同理可得,()2222212121||1212k k OQ k k⎛⎫+ ⎪+⎝⎭==--,所以()()()22222222211111||||22121k k k OP OQ k k -+-++===++()()22222222112222228||||OQ OP OP OQ OP OQOP OQ OP OQ ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥+=++=++≥+= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,当且仅当2OP OQ ==时取等号,所以当2OP OQ ==时,22||OP OQ +取得最小值8.【变式1-3】已知抛物线()2:20E x py p =>的焦点为F ,过点F 且倾斜角为3π的直线被E 所截得的弦长为16.(1)求抛物线E 的方程;(2)已知点C 为抛物线上的任意一点,以C 为圆心的圆过点F ,且与直线12y =-相交于,A B两点,求FA FB FC ⋅⋅的取值范围.【答案】(1)24x y =;(2)[)3,+∞【解析】(1)由抛物线方程得:0,2p F ⎛⎫ ⎪⎝⎭,可设过点F 且倾斜角为3π的直线为:2py =+,由222p y x py⎧=+⎪⎨⎪=⎩得:220x p --=,由抛物线焦点弦长公式可得:)12122816y y p x x p p ++=++==,解得:2p =,∴抛物线E 的方程为:24x y =.(2)由(1)知:()0,1F ,准线方程为:1y =-;设AFB θ∠=,圆C 的半径为r ,则2ACB θ∠=,FC CA CB r ===,1133sin 2224AFBSFA FB AB AB θ∴=⋅=⋅=,又2sin AB r θ=,3FA FB r ∴⋅=;由抛物线定义可知:11c CF y =+≥,即1r ≥,333FA FB FC r ∴⋅⋅=≥,即FA FB FC ⋅⋅的取值范围为[)3,+∞.题型二面积型最值范围问题20y -=与圆O 相切.(1)求椭圆C 的标准方程;(2)椭圆C 的上顶点为B ,EF 是圆O 的一条直径,EF不与坐标轴重合,直线BE 、BF 与椭圆C 的另一个交点分别为P 、Q ,求BPQ 的面积的最大值及此时PQ 所在的直线方程.【答案】(1)2219x y +=;(2)()max278BPQ S=,PQ 所在的直线方程为115y x =±+【解析】20y -=与圆O相切,则1b =,由椭圆的离心率223c e a ==,解得:29a =,椭圆的标准方程:2219x y +=;(2)由题意知直线BP ,BQ 的斜率存在且不为0,BP BQ ⊥,不妨设直线BP 的斜率为(0)k k >,则直线:1BP y kx =+.由22119y kx x y =+⎧⎪⎨+=⎪⎩,得22218911991k x k k y k -⎧=⎪⎪+⎨-⎪=⎪+⎩,或01x y =⎧⎨=⎩,所以2221819,9191k k P k k ⎛⎫-- ⎪++⎝⎭.用1k -代替k ,2229189,9k k Q k k ⎛⎫-+ ⎝+⎪⎭则21891k PB k ==+2189BQ k==+,22222111818162(1)22919(9)(19)BPQ k k k S PB BQ k k k k +=⋅=⋅=++++△342221162()162()99829982k k k k k k k k ++==++++,设1k k μ+=,则21621622764829(2)89BPQ S μμμμ∆==≤+-+.当且仅当649μμ=即183k k μ+==时取等号,所以()max278BPQ S=.即21128(()49k k kk-=+-=,1k k -=直线PQ的斜率222222291911191918181010919PQk k k k k k k k k k k k k ---+-⎛⎫++===-= ⎪⎝⎭--++PQ所在的直线方程:1y =+.【变式2-1】在平面直角坐标系xOy 中,ABC 的周长为12,AB ,AC 边的中点分别为()11,0F -和()21,0F ,点M 为BC 边的中点(1)求点M 的轨迹方程;(2)设点M 的轨迹为曲线Γ,直线1MF 与曲线Γ的另一个交点为N ,线段2MF 的中点为E ,记11NF O MF E S S S =+△△,求S 的最大值.【答案】(1)()221043x y y +=≠;(2)max 32S =【解析】(1)依题意有:112F F =,且211211262MF MF F F ++=⨯=,∴121242MF MF F F +=>=,故点M 的轨迹C 是以()11,0F -和()21,0F 为焦点,长轴长为4的椭圆,考虑到三个中点不可共线,故点M 不落在x 上,综上,所求轨迹方程:()221043x y y +=≠.(2)设()11,M x y ,()22,N x y ,显然直线1MF 不与x 轴重合,不妨设直线1MF 的方程为:1x ty =-,与椭圆()221043x y y +=≠方程联立整理得:()2234690t y ty +--=,()()22236363414410t t t ∆=++=+>,112634t y y t +=+,1129034y y t =-<+,11111122NF O S F y y O ==△,112122211112222MF E MF F S S F F y y ==⋅=△△,∴()()1112122111Δ22234NF O MF E S S S y y y y t =+=+=-=⋅=+△△令()2344u t u =+≥,则()S u ϕ====∵4u ≥,∴1104u <≤,当114u =,即0=t 时,∴max 32S =,∴当直线MN x ⊥轴时,∴max 32S =.【变式2-2】已知双曲线()222210x y a a a-=>的右焦点为()2,0F ,过右焦点F 作斜率为正的直线l ,直线l 交双曲线的右支于P ,Q 两点,分别交两条渐近线于,A B 两点,点,A P 在第一象限,O 为原点.(1)求直线l 斜率的取值范围;(2)设OAP △,OBP ,OPQ △的面积分别是OAP S △,OBP S △,OPQS ,求OPQ OAP OBPS S S ⋅△△△的范围.【答案】(1)()1,+∞;(2)).【解析】(1)因为双曲线()222210x y a a a-=>的右焦点为()2,0F ,故2c =,由222c a a =+得22a =,所以双曲线的方程为,22122x y -=,设直线l 的方程为2x ty =+,联立双曲线方程得,()222222121021420Δ0120t x y t y ty t x ty y y ⎧⎧-≠⎪-=⎪⇒-++=⇒>⇒<⎨⎨=+⎪⎪⋅<⎩⎩,解得01t <<,即直线l 的斜率范围为()11,k t=∈+∞;(2)设()11,P x y ,渐近线方程为y x =±,则P 到两条渐近线的距离1d ,2d 满足,22111212x yd d-⋅==而21221AAxy x tx ty yt⎧⎧=⎪⎪=⎪⎪-⇒⎨⎨=+⎪⎪=⎪⎪-⎩⎩,OA==21221BBxy x tx ty yt⎧⎧=⎪⎪=-⎪⎪+⇒⎨⎨=+-⎪⎪=⎪⎪+⎩⎩,OB==所以12122112221OAP OBPS S OA d OB d d dt⋅=⋅⋅⋅=-△△由()2222214202x y t y tyx ty⎧-=⇒-++=⎨=+⎩,12OPQ OFP OFQ P QS S S OF y y=+=-△△△所以,OPQOAP OBPSS S=⋅△△△,∵01t<<,∴)2OPQOAP OBPSS S∈⋅△△△.【变式2-3】已知抛物线()2:20E y px p=>的焦点为F,P为E上的一个动点,11,2⎛⎫⎪⎝⎭Q与F在E的同一侧,且PF PQ+的最小值为54.(1)求E的方程;(2)若A点在y轴正半轴上,点B、C为E上的另外两个不同点,B点在第四象限,且AB,OC互相垂直、平分,求四边形AOBC的面积.(人教A版专题)【答案】(1)2y x=;(2)【解析】(1)作出E的准线l,方程为2px=-,作PR l⊥于R,所以PR PF=,即PR PQ+的最小值为54,因为11,2⎛⎫⎪⎝⎭Q与F在E的同一侧,所以当且仅当P,Q,R三点共线时PR PQ+取得最小值,所以5124p+=,解得0.5p=,所以E的方程为2y x=;(2)因为AB,OC互相垂直、平分,所以四边形AOBC是菱形,所以BC x⊥轴,设点()0,2A a,所以2BC a=,由抛物线对称性知()2,B a a-,()2,C a a,由AO OB =,得2a=a =所以菱形AOBC 的边AO =23h a ==,其面积为3S AO h =⋅==题型三坐标与截距型最值范围问题【例3】已知双曲线C :()222210,0x y a b a b-=>>过点(),渐近线方程为12y x =±,直线l 是双曲线C 右支的一条切线,且与C 的渐近线交于A ,B 两点.(1)求双曲线C 的方程;(2)设点A ,B 的中点为M ,求点M 到y 轴的距离的最小值.【答案】(1)2214x y -=;(2)2【解析】(1)由题设可知2281112a b b a ⎧-=⎪⎪⎨⎪=⎪⎩,解得21a b =⎧⎨=⎩则C :2214x y -=.(2)设点M 的横坐标为0M x >当直线l 斜率不存在时,则直线l :2x =易知点M 到y 轴的距离为2M x =﹔当直线l 斜率存在时,设l :12y kx m k ⎛⎫=+≠± ⎪⎝⎭,()11,A x y ,()22,B x y ,联立2214x y y kx m ⎧-=⎪⎨⎪=+⎩,整理得()222418440k x kmx m -+++=,()()222264164110k m k m ∆=--+=,整理得2241k m =+联立2204x y y kx m ⎧-=⎪⎨⎪=+⎩,整理得()22241840k x kmx m -++=,则122288841km km k x x k m m+=-=-=--,则12402Mx x kx m +==->,即0km <则222216444Mk x m m==+>,即2M x >∴此时点M 到y 轴的距离大于2;综上所述,点M 到y 轴的最小距离为2.【变式3-1】若直线:l y =22221(0,0)x y a b a b -=>>的一个焦点,且与双曲线的一条渐近线平行.(1)求双曲线的方程;(2)若过点B (0,b )且与x 轴不平行的直线和双曲线相交于不同的两点M ,N ,MN 的垂直平分线为m ,求直线m 与y 轴上的截距的取值范围.【答案】(1)2213x y -=;(2)(4,)+∞.【解析】(1)直线323:33l y =-过x 轴上一点(2,0),由题意可得2c =,即224a b +=,双曲线的渐近线方程为b y x a=±,由两直线平行的条件可得b a =1a b ==,即有双曲线的方程为2213x y -=.(2)设直线1(0)y kx k =+≠,代入2213x y -=,可得22(13)660k x kx ---=,设1122(,),(,)M x y N x y ,则12122266,1313k x x x x k k +==--,MN 中点为2231,1313kk k ⎛⎫ --⎝⎭,可得MN 的垂直平分线方程为221131313k y x k k k ⎛⎫-=-- ⎪--⎝⎭,令0x =,可得2413y k =-,由223624(13)0k k ∆=+->,解得232k <,又26031k <-,解得231k <,综上可得,2031k <<,即有2413k -的范围是(4,)+∞,可得直线m 与y 轴上的截距的取值范围为(4,)+∞.【变式3-2】已知动圆C 过定点(2,0)A ,且在y 轴上截得的弦长为4,圆心C 的轨迹为曲线Γ.(1)求Γ的方程:(2)过点(1,0)P 的直线l 与F 相交于,M N 两点.设PN MP λ=,若[]2,3λ∈,求l 在y 轴上截距的取值范围.【答案】(1)24y x =;(2)⎡-⎣【解析】(1)设(,)C x y ,圆C 的半径为R ,则()()22222220R x x y =+=-+-整理,得24y x=所以Γ的方程为24y x =.(2)设1122(,),(,)M x y N x y ,又(1,0)P ,由PN MP λ=,得()()22111,1,x y x y λ-=--21211(1)x x y y λλ-=-⎧∴⎨=-⎩①②由②,得12222y y λ=,∵2211224,4y x y x ==∴221x x λ=③联立①、③解得2x λ=,依题意有0λ>(2,N N ∴-或,又(1,0)P ,∴直线l 的方程为())11y x λ-=-,或())11y x λ-=--,当[2,3]k ∈时,l 在y轴上的截距为21λ-或21λ--,21=[2,3]上是递减的,21λ≤≤-,21λ-≤-≤-∴直线l 在y轴上截距的取值范围为⎡--⎣.【变式3-3】已知两个定点A 、B 的坐标分别为()1,0-和()1,0,动点P 满足AP OB PB ⋅=(O 为坐标原点).(1)求动点P 的轨迹E 的方程;(2)设点(),0C a 为x 轴上一定点,求点C 与轨迹E 上点之间距离的最小值()d a ;(3)过点()0,1F 的直线l 与轨迹E 在x 轴上方部分交于M 、N 两点,线段MN 的垂直平分线与x 轴交于D 点,求D 点横坐标的取值范围.【答案】(1)24y x =;(2)(),22a a d a a ⎧<⎪=⎨≥⎪⎩;(3)()3,+∞【解析】(1)设(),P x y ,()1,AP x y =+,()1,0OB =,()1,PB x y =--,()1101AP OB x y x ⋅=+⨯+⨯=+,B P =AP OB PB ⋅=,则1x +,所以2222121x x x x y ++=-++,即24y x =.(2)设轨迹E :24y x =上任一点为()00,Q x y ,所以2004y x =,所以()()222200004CQ x a y x a x =-+=-+()()20200220x a x a x =--+≥,令()()()220000220g x x a x a x =--+≥,对称轴为:2a -,当20a -<,即2a <时,()0g x 在区间[)0,∞+单调递增,所以00x =时,()0g x 取得最小值,即2min 2CQ a =,所以min CQ a =,当20a -≥,即2a ≥时,()0g x 在区间[)0,2a -单调递减,在区间[)2,a -+∞单调递增,所以02x a =-时,()0g x 取得最小值,即()22min 2244CQ a a a =--+=-,所以minCQ =,所以(),22a a d a a ⎧<⎪=⎨≥⎪⎩(3)当直线l 的斜率不存在时,此时l :0x =与轨迹E 不会有两个交点,故不满足题意;当直线l 的斜率存在时,设l :1y kx =+,()11,M x y 、()22,N x y ,代入24y x =,得2+14y y k =⨯,即2440ky y -+=,所以124y y k +=,124y y k =,121212211242y y y y x x k k k k k--+-+=+==-,因为直线l 与轨迹E 在x 轴上方部分交于M 、N 两点,所以0∆>,得16160k ->,即1k <;又M 、N 两点在x 轴上方,所以120y y +>,120y y >,即40k>,所以0k >,又1k <,所以01k <<,所以MN 中点1212,22x x y y ++⎛⎫⎪⎝⎭,即2212,kk k ⎛⎫- ⎪⎝⎭,所以垂直平分线为22121y x k k k k ⎛⎫-=--+ ⎝⎭,令0y =,得222111152248x k k k ⎛⎫=-+=-+ ⎪⎝⎭,因为01k <<,所以11k >,所以21115248x k ⎛⎫=-+ ⎪⎝⎭在11k >时单调递增,所以22111511522134848k ⎛⎫⎛⎫-+>-+= ⎪ ⎪⎝⎭⎝⎭,即3x >,所以D 点横坐标的取值范围为:()3,+∞.题型四斜率与倾斜角最值范围问题【例4】设12F F 、分别是椭圆2214x y +=的左、右焦点.(1)若P 是该椭圆上的一个动点,求125=4PF PF ⋅-,求点P 的坐标;(2)设过定点(0,2)M 的直线l 与椭圆交于不同的两点A 、B ,且AOB ∠为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.【答案】(1)⎛ ⎝⎭;(2)2,2⎛⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭.【解析】(1)由题意知,2,1,a b c ===所以())12,F F ,设(,)(0,0)P m n m n >>,则22125(,),)34PF PF m n m n m n ⋅=-⋅-=+-=-,又2214m n +=,有222214534m n m n ⎧+=⎪⎪⎨⎪+-=-⎪⎩,解得1m n =⎧⎪⎨=⎪⎩,所以P ;(2)显然0x =不满足题意,设直线l 的方程为2y kx =+,设()()1122,,A x y B x y ,,22221(14)1612042x y k x kx y kx ⎧+=⎪⇒+++=⎨⎪=+⎩,22(16)4(41)120k k ∆=-+⨯>,解得234k >,①1212221612,4141k x x x x k k +=-=++,则212121212(2)(2)2()4y y kx kx k x x k x x =++=+++,又AOB ∠为锐角,则cos 0AOB ∠>,即0OA OB ⋅>,12120x x y y +>,所以21212121212(1)2()4x x y y y y k x x k x x +==++++2222212(1)1624(4)40414141k k k k k k k +⋅-=-+=>+++,解得204k <<,②由①②,解得322k -<<或322k <<,所以实数k的取值范围为(2,-.【变式4-1】已知椭圆:Γ22221(0x y a b a b +=>>)的左焦点为F ,其离心率22e =,过点F垂直于x 轴的直线交椭圆Γ于P ,Q两点,PQ (1)求椭圆Γ的方程;(2)若椭圆的下顶点为B ,过点D (2,0)的直线l 与椭圆Γ相交于两个不同的点M ,N ,直线BM ,BN 的斜率分别为12,k k ,求12k k +的取值范围.【答案】(1)2212x y +=;(2)()1211,,2222k k ⎛⎫⎛+∈-∞⋃-⋃+∞⎪ ⎝⎭⎝【解析】(1)由题可知2222222c e a bPQ a a b c⎧==⎪⎪⎪==⎨⎪=+⎪⎪⎩,解得11a b c ⎧=⎪=⎨⎪=⎩.所以椭圆Γ的方程为:2212x y +=.(2)由题可知,直线MN 的斜率存在,则设直线MN 的方程为(2)y k x =-,11(,)M x y ,22(,)N x y .由题可知2212(2)x y y k x ⎧+=⎪⎨⎪=-⎩,整理得2222(21)8820k x k x k +-+-=22222(8)4(21)(81)8(21)0k k k k ∆=--+-=-->,解得22k ⎛∈- ⎝⎭.由韦达定理可得2122821k x x k +=+,21228221k x x k -=+.由(1)知,点(0,1)B -设椭圆上顶点为A ,(0,1)A ∴,12DA k k ≠=-且12DB k k ≠=,∴()()1212121212211111k x k x y y k k x x x x -+-++++=+=+()()()221221228121212228212k k k x x k k k k x x k -⋅-++=+=+-+()242111212,,221212122k k k k k k ⎛⎫⎛=-==-∈+∞⋃-∞⋃ ⎪ +++⎝⎭⎝∴12k k +的取值范围为()11,,2222⎛⎫⎛-∞⋃-⋃+∞ ⎪ ⎝⎭⎝.【变式4-2】)已知椭圆1C 的方程为22143x y +=,双曲线2C 的左、右焦点分别为1C 的左、右顶点,而2C 的左、右顶点分别是1C 的左、右焦点.(1)求双曲线2C 的方程;(2)若直线:2l y kx =+与双曲线2C 恒有两个不同的交点A 和B ,且1OA OB ⋅>(其中O 为原点),求k 的取值范围.【答案】(1)2213y x -=(2)(()1,1-【解析】(1)由题,在椭圆1C 中,焦点坐标为()1,0-和()1,0;左右顶点为()2,0-和()2,0,因为双曲线2C 的左、右焦点分别为1C 的左、右顶点,而2C 的左、右顶点分别是1C 的左、右焦点,所以在双曲线2C 中,设双曲线方程为22221x ya b-=,则221,4a c ==,所以2223b c a =-=,所以双曲线2C 的方程为2213y x -=(2)由(1)联立22213y kx y x =+⎧⎪⎨-=⎪⎩,消去y ,得()223470k x kx -++=①;消去x ,得()2223121230k y y k -+-+=②设()()1122,,,A x y B x y ,则12,x x 为方程①的两根,12,y y 为方程②的两根;21212227123,33k x x y y k k -+⋅=⋅=--,21212227123133k OA OB x x y y k k -+⋅=⋅+⋅=+>--,得23k >或21k <③,又因为方程①中,()22216384k k k ∆=-4⨯7-=-12+>0,得27k <④,③④联立得k的取值范围(()1,1⋃-⋃【变式4-3】已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值.【答案】(1)24y x =;(2)最大值为13.【解析】(1)抛物线2:2(0)C y px p =>的焦点,02p F ⎛⎫⎪⎝⎭,准线方程为2p x =-,由题意,该抛物线焦点到准线的距离为222p p p ⎛⎫--== ⎪⎝⎭,所以该抛物线的方程为24y x =;(2)[方法一]:轨迹方程+基本不等式法设()00,Q x y ,则()00999,9PQ QF x y ==--,所以()00109,10P x y -,由P 在抛物线上可得()()200104109y x =-,即20025910y x +=,据此整理可得点Q 的轨迹方程为229525=-y x ,所以直线OQ 的斜率000220001025925910OQ y y y k y x y ===++,当00y =时,0OQ k =;当00y ≠时,0010925OQ k y y =+,当00y >时,因为0092530y y +≥,此时103OQ k <≤,当且仅当00925y y =,即035y =时,等号成立;当00y <时,0OQ k <;综上,直线OQ 的斜率的最大值为13.[方法二]:【最优解】轨迹方程+数形结合法同方法一得到点Q 的轨迹方程为229525=-y x .设直线OQ 的方程为y kx =,则当直线OQ 与抛物线229525=-y x 相切时,其斜率k 取到最值.联立2,29,525y kx y x =⎧⎪⎨=-⎪⎩得22290525k x x -+=,其判别式222940525⎛⎫∆=--⨯= ⎪⎝⎭k ,解得13k =±,所以直线OQ 斜率的最大值为13.题型五向量型最值范围问题【例5】在平面直角坐标系xOy 中,已知双曲线221:142x y C -=与椭圆222:142x y C +=,A ,B分别为1C 的左、右顶点,点P 在双曲线1C 上,且位于第一象限.(1)直线OP 与椭圆2C 相交于第一象限内的点M ,设直线PA ,PB ,MA ,MB 的斜率分别为1k ,2k ,3k ,4k ,求1234k k k k +++的值;(2)直线AP 与椭圆2C 相交于点N (异于点A ),求AP AN ⋅的取值范围.【答案】(1)0;(2)()16,+∞【解析】(1)方法1:设直线():0OP y kx k =>,联立22142y kxx y =⎧⎪⎨-=⎪⎩,消y ,得()22124k x -=,所以20120k k >⎧⎨->⎩,解得202k <<,设()()1111,0,0P x y x y >>,则11x y ⎧=⎪⎪⎨⎪=⎪⎩,所以P ⎛⎫.联立22142y kxx y =⎧⎪⎨+=⎪⎩,消y ,得()22124k x +=,设()()2222,0,0M x y x y >>,则22x y ⎧=⎪⎪⎨⎪=⎪⎩,所以M ⎛⎫.因为()2,0A -,()2,0B ,所以211111221112821124224412k y y x y k k k x x x k k-+=+===-+---,222223422222821124224412ky y x y k k k x x x k k ++=+==--+--+,所以1234110k k k k k k ⎛⎫+++=+-= ⎪⎝⎭.方法2设()()1111,0,0P x y x y >>,()()2222,0,0M x y x y >>,因为()2,0A -,()2,0B ,所以11111221112224y y x yk k x x x +=+=-+-,22223422222224y y x yk k x x x +=+=-+-.因为点P 在双曲线1C 上,所以2211142x y -=,所以221142x y -=,所以1121x k k y +=.因为点Q 在椭圆线2C 上,所以2222142x y +=,所以222242x y -=-,所以2342x k k y +=-.因为O ,P ,M 三点共线,所以1212y y x x =,所以121234120x x k k k k y y +++=-=.(2)设直线AP 的方程为2y kx k =+,联立22224y kx k x y =+⎧⎨-=⎩,消y ,得()()22222184210k x k x k -+++=,解得12x =-,2224212k x k +=-,所以点P 的坐标为222424,1212k k k k ⎛⎫+ ⎪--⎝⎭,因为点P 位于第一象限,所以222420124012k k k k ⎧+>⎪⎪-⎨⎪>⎪-⎩,解得202k <<,联立22224y kx k x y =+⎧⎨+=⎩,消y ,得()()22222184210k x k x k +++-=,解得32x =-,2422412kx k -=+,所以点N 的坐标为222244,1212k k k k ⎛⎫- ++⎝⎭,所以()22222224161422444221212121214k k k k kAP AN AP AN k k k k k +⎛⎫⎛⎫+-⋅=⋅=--+⋅= ⎪⎪-+-+-⎝⎭⎝⎭,设21t k =+,则312t <<,所以22161616314(1)48384t tAP AN t t t t t ⋅===---+-⎛⎫-+ ⎪⎝⎭.因为函数3()4f x x x=+在区间31,2⎛⎫⎪⎝⎭上单调递增,所以当312t <<时,3748t t <+<,所以30841t t ⎛⎫<-+< ⎪⎝⎭,所以1616384t t >⎛⎫-+ ⎪⎝⎭,即16AP AN ⋅>,故AP AN ⋅的取值范围为()16,+∞.【变式5-1】已知O为坐标原点,椭圆2222:1(0)x yC a ba b+=>>的离心率为3,且经过点P.(1)求椭圆C的方程;(2)直线l与椭圆C交于A,B两点,直线OA的斜率为1k,直线OB的斜率为2k,且1213k k=-,求OA OB⋅的取值范围.【答案】(1)22193x y+=;(2)[3,0)(0,3]-.【解析】(1)由题意,223611caa b⎧=⎪⎪⎨⎪+=⎪⎩,又222a b c=+,解得3,a b==所以椭圆C为22193x y+=.(2)设()()1122,,,A x yB x y,若直线l的斜率存在,设l为y kx t=+,联立22193y kx tx y=+⎧⎪⎨+=⎪⎩,消去y得:()222136390+++-=k x ktx t,22Δ390k t=+->,则12221226133913ktx xktx xk-⎧+=⎪⎪+⎨-⎪=⎪+⎩,又12k k=121213y yx x=-,故121213=-y y x x且120x x≠,即2390-≠t,则23≠t,又1122,y kx t y kx t=+=+,所以()()()222222222121212221212122691133939313-+++++-+==+=+==---+k t tkx t kx t kt x x ty y t kkk ktx x x x x x tk,整理得222933=+≥t k,则232≥t且Δ0>恒成立.221212121212222122393333133313--⎛⎫⋅=+=-==⋅=⋅=-⎪+⎝⎭t tOA OB x x y y x x x x x xk t t,又232≥t,且23≠t,故2331[3,0)(0,3)⎛⎫-∈-⎪⎝⎭t.当直线l的斜率不存在时,2121,x x y y==-,又12k k=212113-=-yx,又2211193x y+=,解得2192x=则222111233⋅=-==OA OB x y x.综上,OA OB ⋅的取值范围为[3,0)(0,3]-.【变式5-2】已知双曲线22221(00)x y C a b a b-=>>:,的离心率为2,F 为双曲线的右焦点,直线l 过F 与双曲线的右支交于P Q ,两点,且当l 垂直于x 轴时,6PQ =;(1)求双曲线的方程;(2)过点F 且垂直于l 的直线'l 与双曲线交于M N ,两点,求MP NQ MQ NP ⋅⋅+的取值范围.【答案】(1)2213y x -=;(2)(],12-∞-【解析】(1)依题意,2c a =,当l 垂直于x 轴时,226b PQ a==,即23b a =,即223c a a -=,解得1a =,b =2213y x -=;(2)设:2PQ l x my =+,联立双曲线方程2213y x -=,得:()22311290m y my -++=,当0m =时,()()()()2,3,2,3,0,1,0,1P Q M N --,12MP NQ MQ NP ⋅+⋅=-,当0m ≠时,设()()()()11223344,,,,,,,P x y Q x y M x y N x y ,因为直线PQ 与双曲线右支相交,因此1229031y y m =<-,即m ⎛⎫⎛∈⋃ ⎪ ⎝⎭⎝⎭,同理可得234293m y y m =-,依题意()()MP NQ MF FP NF FQ MF NF FP FQ =+⋅+=⋅+⋅⋅,同理可得,()()MQ NP MF FQ NF FP MF NF FP FQ =+⋅+⋅=⋅+⋅,而()212342111FP FQ MF NF m y y y y m ⎛⎫⋅+⋅=+++ ⎪⎝⎭,代入122931y y m =-,234293m y y m =-,()()()()()()222242224222919118163633133103133m m m m m FP FQ MF NF m m m m m m ++-+++⋅+⋅=+==----+--,分离参数得,2429663103m FP FQ MF NF m m ⋅+⋅=---+,因为3333m ⎛⎫⎛∈⋃ ⎪ ⎝⎭⎝⎭,当210,3m ⎛⎫∈ ⎪⎝⎭时,由22110,3m m ⎛⎫+∈+∞ ⎪⎝⎭,()22966,61310FP FQ MF NF m m ⋅+⋅=-∈-∞-⎛⎫+- ⎪⎝⎭,所以()()2,12MP NQ MQ N FP FQ MF NF P ⋅=⋅+⋅∈∞-⋅-+,综上可知,MP NQ MQ NP ⋅⋅+的取值范围为(],12-∞-.【变式5-3】已知抛物线()2:20E x py p =>的焦点为F ,直线4x =分别与x 轴交于点P ,与抛物线E 交于点Q ,且54QF PQ =.(1)求抛物线E 的方程;(2)如图,设点,,A B C 都在抛物线E 上,若ABC 是以AC 为斜边的等腰直角三角形,求AB AC ⋅uu u r uuu r的最小值.【答案】(1)24x y =;(2)32【解析】(1)设点()04,Q y ,由已知000216524py p y y =⎧⎪⎨+=⎪⎩,则8102p p p +=,即24p =.因为0p >,则2p =,所以抛物线E 的方程是24x y =.(2)设点()222312123123,,,,,444x x x A x B x C x x x x ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,直线AB 的斜率为()0k k >,因为AB BC ⊥,则直线BC 的斜率为1k-.因为AB BC =,则1223x x x x -=-,得()2312x x k x x -=-,①因为22121212444x x x x k x x -+==-,则124x x k +=,即124x k x =-,②因为223223231444x x x x k x x -+-==-,则234x x k +=-,即324x x k =--③将②③代入①,得()2242420x k k x k+--=,即()()322212120k k x k kk-+---=,则()()32211k xk k -=+,所以()()()()22222122··cos 451421AB AC AB AC AB x x k k x k ︒===-+=-+()()()()()2332222411614111k k k k k k k k ⎡⎤-+⎢⎥=-+=++⎢⎥⎣⎦因为212k k +≥,则()22214k k +≥,又()22112k k++≥,则()()3222121k k k +≥+,从而()()3222121kk k +≥+当且仅当1k =时取等号,所以AB AC 的最小值为32.题型六参数型最值范围问题【例6】已知点()()1122,,,M x y N x y 在椭圆222:1(1)xC y a a+=>上,直线,OM ON 的斜率之积是13-,且22212x x a +=.(1)求椭圆C 的方程;(2)若过点()0,2Q 的直线与椭圆C 交于点,A B ,且(1)QB t QA t =>,求t 的取值范围.【答案】(1)2213x y +=;(2)(]1,3【解析】(1)椭圆方程改写为:2222x a y a +=,点()()1122,,,M x y N x y 在椭圆上,有222211a y a x =-,222222a y a x =-,两式相乘,得:()()()222222222241142122122a a a y y a x a x x x x x --==-++,由22212x x a +=,得222212241a y y x x =,由直线,OM ON 的斜率之积是13-,得121213y y x x =-,即222212129y y x x =,∴49a =,23a =,椭圆C 的方程为:2213x y +=.(2)过点()0,2Q 的直线若斜率不存在,则有()0,1A ,()0,1B -,此时3t =;当过点()0,2Q 的直线斜率存在,设直线方程为2y kx =+,由22213y kx x y =+⎧⎪⎨+=⎪⎩,消去y ,得()22131290k x kx +++=,直线与椭圆C 交于点,A B 两点,∴()2221249(13)36360k k k ∆=-⨯⨯+=->,得21k >设()()1122,,,A x y B x y '''',(1)QB t QA t =>,21x x t '='由韦达定理12122121212(1)13913k x x t x k x x tx k ''''-⎧+==+⎪⎪+⎨⎪⋅+'='=⎪⎩,消去1x ',得()229131441t k t ⎛⎫=+ ⎪⎝⎭+,由21k >,2101k<<,∴()2311641t t <<+,由1t >,解得13t <<,综上,有13t <≤,∴t 的取值范围为(]1,3【变式6-1】已知A 、B 分别是椭圆2222:1(0)x y C a b a b+=>>的左右顶点,O 为坐标原点,=6AB ,点2,3⎛⎫⎪⎝⎭5在椭圆C 上.过点()0,3P -,且与坐标轴不垂直的直线交椭圆C 于M 、N 两个不同的点.(1)求椭圆C 的标准方程;(2)若点B 落在以线段MN 为直径的圆的外部,求直线的斜率k 的取值范围;(3)当直线的倾斜角θ为锐角时,设直线AM 、AN 分别交y 轴于点S 、T ,记PS PO λ=,PT PO μ=,求λμ+的取值范围.【答案】(1)22195x y +=;(2)227,,1,332k ⎛⎫⎛⎫⎛⎫∈-∞-⋃⋃+∞ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(3)4,23⎛⎫ ⎪⎝⎭【解析】(1)因为=6AB ,所以=3a ;又点2,3⎛⎫ ⎪⎝⎭5在图像C 上即()22252319b⎛⎫⎪⎝⎭+=,所以b 所以椭圆C 的方程为22195x y +=;(2)由(1)可得()3,0B ,设直线3l y kx =-:,设11(,)M x y 、22(,)N x y ,由22=-3=195y kx x y ⎧⎪⎨+⎪⎩得22(59)54360k x kx +-+=,22(54)436(59)0k k ∆=-⨯⨯+>解得23k >或23k <-①∵点()3,0B 在以线段MN 为直径的圆的外部,则0BM BN ⋅>,又12212254+=5+936=5+9k x x k x x k ⎧⎪⎪⎨⎪⎪⎩②211221212(3,)(3,)(1)3(1)()180BM BN x y x y k x x k x x ⋅=--=+-+++>,解得1k <或72k >由①②得227,,1,332k ⎛⎫⎛⎫⎛⎫∈-∞-⋃⋃+∞ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)设直线3l y kx =-:,又直线的倾斜角θ为锐角,由(2)可知23k >,记11(,)M x y 、22(,)N x y ,所以直线AM 的方程是:()1133y y x x =++,直线AN 的方程是:()2233y y x x =++.令=0x ,解得113+3y y x =,所以点S 坐标为1130,+3y x ⎛⎫ ⎪⎝⎭;同理点T 为2230,+3y x ⎛⎫⎪⎝⎭.所以1130,3+3y PS x ⎛⎫=+ ⎪⎝⎭,2230,3+3y PT x ⎛⎫=+ ⎪⎝⎭,()0,3PO =.由PS PO λ=,PT PO μ=,可得:11333+3y x λ+=,22333+3y x μ+=,所以1212233y yx x λμ+=++++,由(2)得1225495k x x k +=+,1223695x k x =+,所以()()()1212121212122311333338229kx x k x x kx kx x x x x x x λμ--++-+-+=++=+++++()222254231189595254936369595k k k k k k k k ⎛⎫⋅+-- ⎪++⎝⎭=+⎛⎫++ ⎪++⎝⎭21012921k k k +=-⨯+++()()2110291k k +=-⨯++101291k =-⨯++,因为23k >,所以5131,0315k k +><<+,10142,2913k ⎛⎫-⨯+∈ ⎪+⎝⎭,故λμ+的范围是4,23⎛⎫⎪⎝⎭.【变式6-2】设A ,B 为双曲线C :22221x y a b-=()00a b >>,的左、右顶点,直线l 过右焦点F 且与双曲线C 的右支交于M ,N 两点,当直线l 垂直于x 轴时,AMN 为等腰直角三角形.(1)求双曲线C 的离心率;(2)已知4AB =,若直线AM ,AN 分别交直线1x =于P ,Q 两点,若()0D t ,为x 轴上一动点,当直线l 的倾斜角变化时,若PDQ ∠为锐角,求t 的取值范围.【答案】(1)2;(2){2t t <-或}4t >【解析】(1)由双曲线C :22221x y a b-=()00a b >>,可得:右焦点(),0F c ,将x c =代入2222:1(0,0)x y C a b a b -=>>中,2by a=±,当直线l 垂直于x 轴时,AMN 为等腰直角三角形,此时AF FM =,即2b ac a+=,整理得:220a ac b +-=,因为222b c a =-,所以2220a ac c +-=,方程两边同除以2a 得:220e e +-=,解得:2e =或1-(舍去),所以双曲线C 的离心率为2;(2)因为24AB a ==,所以2a =,因为2c e a ==,解得4c =,故22212b c a =-=,所以双曲线的方程为221412x y -=,当直线l 的斜率存在时,设直线l 的方程为:()4y k x =-,与双曲线联立得:()22223816120kxk x k -+--=,设()()1122,,,M x y N x y ,则212283k x x k +=-,212216123k x x k +=-,则()()()221212121244416y y k x x k x x x x =--=-++⎡⎤⎣⎦222221612321633k k k k k ⎛⎫+=-+ ⎪--⎝⎭22363k k -=-,因为直线l 过右焦点F 且与双曲线C 的右支交于,M N 两点,所以22121222816124,433k k x x x x k k ++=>=>--,解得:23k >,直线()11:22y AM y x x =++,则1131,2y P x ⎛⎫ ⎪+⎝⎭,同理可求得:2231,2y Q x ⎛⎫⎪+⎝⎭,所以11,213y D x P t ⎪+⎛⎫=- ⎝⎭,22,213y D x Q t ⎪+⎛⎫=- ⎝⎭,因为PDQ ∠为锐角,所以()()12221192202D y y x Q t x P D t ⋅=+-+>++,即()1122122109224y y x x x t x t +-+++>+,所以22222221203693161216433k k k k t k t k -⨯-++--+++>-所以21290t t +-->即()219t ->,解得2t <-或4t >;当直线l 的斜率不存在时,将4x =代入双曲线可得6y =±,此时不妨设()()4,6,4,6M N -,此时直线:2AM y x =+,点P 坐标为()1,3,同理可得:()1,3Q -,所以()1,3DP t =-,()1,3DQ t =--,因为PDQ ∠为锐角,所以2280DP DQ t t ⋅=-->,解得2t <-或4t >;综上所述,t 的取值范围{2t t <-或}4t >【变式6-3】22122:1y x C a b-=上的动点P 到两焦点的距离之和的最小值为22:2(0)C x py p =>的焦点与双曲线1C 的上顶点重合.(1)求抛物线2C 的方程;(2)过直线:(l y a a =为负常数)上任意一点M 向抛物线2C 引两条切线,切点分别为AB ,坐标原点O 恒在以AB 为直径的圆内,求实数a 的取值范围.【答案】(1)24x y =;(2)40a -<<.【解析】(1)由已知:双曲线焦距为,则长轴长为2,故双曲线的上顶点为(0,1),即为抛物线焦点.∴抛物线2C 的方程为24x y =;(2)设(,)M m a ,2111(,)4A x x ,2221(,)4B x x ,故直线MA 的方程为211111()42y x x x x -=-,即21142y x x x =-,所以21142a x m x =-,同理可得:22242a x m x =-,∴1x ,2x 是方程242a xm x =-的两个不同的根,则124x x a =,2212121()416OA OB x x x x a a ∴⋅=+=+,由O 恒在以AB 为直径的圆内,240a a ∴+<,即40a -<<.。
圆锥曲线求最值方法总结及典型例题
圆锥曲线最值问题—5大方面最值问题是圆锥曲线中的典型问题,它是教学的重点也是历年高考的热点。
解决这类问题不仅要紧紧把握圆锥曲线的定义,而且要善于综合应用代数、平几、三角等相关知识。
以下从五个方面予以阐述。
一.求距离的最值例1.设AB 为抛物线y=x 2的一条弦,若AB=4,则AB 的中点M 到直线y+1=0的最短距离为 , 解析:抛物线y=x 2的焦点为F (0 ,41),准线为y=41-,过A 、B 、M 准线y=41-的垂线,垂足分别是A 1、B 1、M 1, 则所求的距离d=MM 1+43=21(AA 1+BB 1) +43=21(AF+BF) +43≥21AB+43=21×4+43=411, 当且仅当弦AB 过焦点F 时,d 取最小值411, 评注:灵活运用抛物线的定义和性质,结合平面几何的相关知识,使解题简洁明快,得心应手。
二.求角的最值例2.M ,N 分别是椭圆12422=+y x 的左、右焦点,l 是椭圆的一条准线,点P 在l 上,则∠MPN 的最大值是 .解析:不妨设l 为椭圆的右准线,其方程是22=x ,点)0)(,22(00>y y P ,直线PM 和PN 倾斜角分别为βα和.∵)0,2(),0,2(N M -∴,232220tan 00y y k PM =+-==α22220tan 00y y k PN =--==β于是)tan(tan αβ-=∠MPN 2321232tan tan 1tan tan 0000y y y y ⋅+-=+-=αβαβ 33622262262200200=≤+=+=y y y y ∵)2,0[π∈∠MPN ∴6π≤∠MPN 即∠MPN 的最大值为6π. 评注:审题时要注意把握∠MPN 与PM 和PN 的倾斜角之间的内在联系.三、求几何特征量代数和的最值例3.点M 和F 分别是椭圆192522=+y x 上的动点和右焦点,定点B(2,2).⑴求|MF|+|MB|的最小值. ⑵求45|MF|+|MB|的最小值. 解析:易知椭圆右焦点为F(4,0),左焦点F ′(-4,0),离心率e=54,准线方程x=±425. ⑴|MF| + |MB| = 10―|MF ′ | + |MB| =10―(|MF ′|―|MB|)≥10―|F ′B|=10―210.故当M ,B ,F ′三点共线时,|MF|+|MB|取最小值10―210.⑵过动点M 作右准线x=425的垂线,垂足为H , 则54||||==e MH MF ⇒||54|H |MF M =. 于是45|MF|+|MB|=|MH|+|MB|≥|HB|=417. 可见,当且仅当点B 、M 、H 共线时,45|MF|+|MB|取最小值417. 评注:从椭圆的定义出发,将问题转化为平几中的问题,利用三角形三边所满足的基本关系,是解决此类问题的常见思路。
圆锥曲线最值问题方法总结
圆锥曲线最值问题方法总结
圆锥曲线最值问题方法总结
圆锥曲线最值问题涉及到求解曲线上最大值或最小值的问题,在数学和物理学中经常应用。
以下是一些常用的解决方法:
1. 初等法
初等法是指通过观察和推理,利用数学基本法则和基本知识来解题的方法。
初等法的优点是简单易懂,适用范围广,但受限于个人数学基础,对复杂问题求解不够实用。
2. 使用微积分
微积分是解决圆锥曲线最值问题最常用的方法之一。
通过求取曲线函数的导数,并令导数为零,可以得到函数可能的最值点。
对于一些复杂的问题,需要用到高阶导数和一些特殊的微积分技巧。
3. 利用几何形状特征
圆锥曲线具有不同的几何形状特征,如椭圆的长轴和短轴,双曲线的渐近线和焦点等等。
利用这些特征,可以通过画图等方式确定曲线的最值点。
4. 使用向量分析
向量分析是一种基于微积分的高级数学方法,通过对曲线方程进行向量运算,可以求解曲线的最大值或最小值。
5. 应用拉格朗日乘数法
拉格朗日乘数法是一种求解约束条件的最值问题的方法,也可以应用于圆锥曲线最值问题中。
通过合理选择拉格朗日乘数,可以得到曲线的最值点。
总之,对于圆锥曲线最值问题的求解,需要综合运用多种数学工具和方法,以最快、最简单、最准确的方式解决问题。
(完整版)解圆锥曲线问题常用方法及性质总结
解圆锥曲线问题常用方法+椭圆与双曲线的经典结论+椭圆与双曲线的对偶性质总结解圆锥曲线问题常用以下方法:1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。
(2))0,0(12222>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k by a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.椭圆与双曲线的对偶性质总结椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y ya b +=.6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。
圆锥曲线解题中几种分式型函数最值的求法
圆锥曲线解题中几种分式型函数最值的求法在圆锥曲线解题中,我们常常会遇到各种分式型函数,并需要求出函数的最值。
本文将介绍几种常见的分式型函数最值求解方法,帮助读者更好地解决相关问题。
一、分式函数求极值的常见方法在解析几何中,我们常常遇到形如f(x) = P(x) / Q(x) 的分式函数,其中P(x)和Q(x)分别是x的多项式函数。
要求解该分式函数的最值,可以使用以下几种方法:1. 利用导数法求解导数法是最常用的方法之一。
通过求解函数的导数,再通过导数的性质来确定函数的最值点。
具体步骤如下:(1)求出函数f(x)的导数f'(x);(2)求解f'(x)=0的解,即为函数f(x)的驻点;(3)将驻点和函数的定义域的端点进行比较,找出函数的最值。
2. 利用等价变形法求解有时,我们可以通过等价变形将分式函数转化为新的形式,从而更容易求解最值。
常见的等价变形方法有:(1)分子分母同乘以相同的因式,从而将分式函数简化成更简单的形式;(2)将分式函数展开为多项式,然后通过求解多项式的最值来求解分式函数的最值;(3)将分式函数分解成若干个部分,然后通过分别求解每个部分的最值,再综合得出总的最值。
二、若干种分式型函数的最值求法1. 高斯型函数高斯型函数是一种形如f(x) = e^(-ax^2 + bx + c)的分式函数。
其中a, b, c为常数。
对于这种类型的函数,我们可以通过以下步骤来求解最值:(1)求出函数的导数f'(x);(2)求解f'(x) = 0的解,即为函数的驻点;(3)将驻点与函数定义域的端点进行比较,找出函数的最值。
2. 有理分式型函数有理分式型函数是指分子和分母都是多项式函数的函数。
对于这种类型的函数,我们可以使用以下方法来求解最值:(1)对函数进行等价变形,将分子分母简化为最简形式;(2)找出函数的定义域以及分母为零的点,剔除无定义的点;(3)求解导数f'(x)=0的解,即为函数的驻点;(4)将驻点与函数定义域的端点进行比较,找出函数的最值。
高考数学专题复习:圆锥曲线中的最值(范围)问题
[解] (1)由题意知 M(0,-4),F0,p2 ,圆 M 的半径 r=1,所以|MF|-r=4,即
p 2
+4-1=4,解得 p=2.
(2)由(1)知,抛物线方程为 x2=4y,
由题意可知直线 AB 的斜率存在,设 Ax1,x421
,Bx2,x422
,直线 AB 的方程为
y=kx+b,
联立得yx=2=k4xy+,b, 消去 y 得 x2-4kx-4b=0, 则 Δ=16k2+16b>0 (※),x1+x2=4k,x1x2=-4b,
寻找不等关系的突破口 (1)利用判别式来构造不等式,从而确定所求范围; (2)利用已知参数的取值范围,求新参数的范围,解这类问题的核心是在两个参数 之间建立相等关系; (3)利用隐含的不等关系,从而求出所求范围; (4)利用已知不等关系构造不等式,从而求出所求范围; (5)利用函数值域的求法,确定所求范围.
联立方程x42+y2=1, 得(m2+4)y2+8my+12=0. 由 Δ=64m2-48(m2+4)>0,得 m2>12, 所以 y1y2=m21+2 4 .
λ=|MA|·|MB|= m2+1 |y1|· m2+1 |y2|
=(m2+1)·|y1y2|=12(mm2+2+41) =121-m23+4 . 由 m2>12,得 0<m23+4 <136 ,所以349 <λ<12.
已知椭圆 C:xa22
+by22
=1(a>b>0)的离心率 e=
3 2
,直线 x+
3
y-1=0 被以椭圆 C
的短轴为直径的圆截得的弦长为 3 .
(1)求椭圆 C 的方程;
(2)过点 M(4,0)的直线 l 交椭圆于 A,B 两个不同的点,且 λ=|MA|·|MB|,求 λ 的取值
呕心整理圆锥曲线中的7类最值问题
呕心整理圆锥曲线中的7类最值问题呕心整理圆锥曲线中的7类最值问题圆锥曲线最值问题是高考中的一类常见问题,解此类问题与解代数中的最值问题方法类似,由于圆锥曲线的最值问题与曲线有关,所以利用曲线性质求解是其特有的方法。
下面介绍7种常见求解方法1【二次函数法】将所求问题转化为二次函数最值问题,再利用配方法或均值不等式或判别式等方法求解。
【典型例题1】过动直线x+2y=p 与定直线2x-y=a 的交点(其中(0,3]p a ∈)的等轴双曲线系22x y λ-=中,当p 为何值时,λ达到最大值与最小值?分析:求出交点坐标代入双曲线,可得λ的二次函数表达式,再利用函数方法求解。
解:由22{x y a x y p-=+=, 得交点22(,)55p a p aQ +-, 交点Q 坐标代入双曲线,22x y λ∴=-= 2222()()55p a p a +--=221(383)25p ap a -++ =221425[3()].2533a a p --+(0,3]P a ∈. 当 43a p =, 2max 13a λ=,又03p a <≤,445,333a a a p ∴-<-≤45||33a ap ∴-≤;当p=3a 时,min 0.λ=[点悟] 把所求的最值表示为函数,再寻求函数在给定区间上的最值,但要注意函数的定义域。
【变式训练1】已知A ,B ,C 三点在曲线y =x 上,其横坐标依次为1,m,4(1<4),<="" bdsfid="103" p="">当△ABC 的面积最大时,m 等于( )A .3 B.94 C.52 D.32答案 B 解析由题意知A (1,1),B (m ,m ),C (4,2).直线AC 所在的方程为x -3y +2=0,点B 到该直线的距离为d =|m -3m +2|10.S △ABC =12|AC |·d =12×10×|m -3m +2|10=12|m -3m +2|=12|(m -32)2-14|. ∵m ∈(1,4),∴当m =32时,S △ABC 有最大值,此时m =94.故选B.【变式训练2】抛物线y =ax 2与直线y =kx +b (k ≠0)交于A ,B 两点,且此两点的横坐标分别为x 1,x 2,直线与x 轴交点的横坐标是x 3,则恒有( )A .x 3=x 1+x 2B .x 1x 2=x 1x 3+x 2x 3C .x 1+x 2+x 3=0D .x 1x 2+x 2x 3+x 3x 1=0 答案 B解析由方程组y =ax 2,y =kx +b ,得ax 2-kx -b =0,可知x 1+x 2=k a ,x 1x 2=-ba ,x 3=-bk ,代入各项验证即可得B 正确,故选B.2【不等式法】列出最值关系式,利用均值不等式“等号成立”的条件求解。
解答圆锥曲线最值问题的几个“妙招”
圆锥曲线最值问题侧重于考查圆锥曲线的定义、几何性质、方程,以及直线与圆锥曲线的位置关系.圆锥曲线问题的命题形式较多,常见的有求某条线段的最值、图形面积的最值、参数的最值、离心率的最值、点到曲线的最小距离等.下面结合几道例题,来谈一谈解答此类问题的“妙招”.一、利用几何图形的性质圆锥曲线中的圆、直线、椭圆、双曲线、抛物线均为平面几何图形.在解答圆锥曲线最值问题时,可根据题意画出几何图形,并添加合适的辅助线,将问题看作平面几何问题,利用平面几何图形的性质,如圆锥曲线的几何性质、等腰三角形的性质、平行四边形的性质,以及正余弦定理、勾股定理等来解题.例1.设F 1,F 2为椭圆x 2a 2+y 2b2=1(a >b >0)的两个焦点,若椭圆上存在一点Q ,使∠F 1QF 2=120°,求椭圆离心率e 的最小值.解:设P (x 1,y 1),F 1(-c ,0),F 2(c ,0),由椭圆的焦点弦公式得,|PF 1|=a +ex 1,|PF 2|=a -ex 1,在ΔPF 1F 2中,由余弦定理可得:cos 120°=|PF 1|2+|PF 2|2-|F 1F 2|2|PF 1|∙|PF 2|=(a +ex 1)2+(a -ex 1)2-4c 22(a +ex 1)∙(a -ex 1)=-12,可得:x 1=4c 2-3a 2e 2,由椭圆的范围可知-a ≤x 1≤a ,可得0≤4c 2-3a 2e2≤a 2,解得e =c a≥,即椭圆离心率的最小值为.解答本题,关键要抓住椭圆的几何性质:椭圆的范围为-a ≤x ≤a ,-b ≤y ≤b .在根据余弦定理和焦点弦公式求得x 1后,根据椭圆的范围建立关系式0≤4c 2-3a 2e2≤a 2,即可求得椭圆离心率的取值范围.例2.椭圆x 24+y 23=1的左焦点为F ,直线x =m与椭圆相交于A ,B 两点,当ΔFAB 的周长最大时,求ΔFAB 的面积.解:设椭圆的右焦点为E ,连接BE ,AE,如图所示.由椭圆的定义得:AF +AE =BF +BE =2a ,则C ΔFAB =AB +AF +BF =AB +(2a -AE )+(2a -BE )=4a +AB -AE -BE .在ΔAEB 中,AE +BE ≥AB ,所以AB -AE -BE ≤0,当AB 过点E 时取等号.所以AB +BF +AF =4a +AB -BE ≤4a ,即直线x =m 过椭圆的右焦点E 时,ΔFAB 的周长最大.将x =1代入椭圆x 24+y 23=1得y =±32,即AB =3.因此,当ΔFAB 的周长最大时,S ΔFAB =3.我们首先根据题意作图,并添加合适的辅助线,即可根据椭圆的定义建立线段AF 、AE 、BF 、BE 之间的几何关系;然后根据三角形的性质:两边之和大45。
圆锥曲线最值范围定值(总结)
l
与椭圆x2+ 2
y2=1 有两个不同的交点 P 和 Q.
(1)求 k 的取值范围;
(2)设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数m,使得
向量O→P+O→Q与A→B共线?如果存在,求m值;如果不存在,请说明理由.
解 (1)由已知条件,知直线 l 的方程为 y=kx+ 2, 代入椭圆方程,得x22+(kx+ 2)2=1,整理得12+k2x2+2 2kx+1=0.① 由直线 l 与椭圆有两个不同的交点 P 和 Q,得 Δ=8k2-412+k2=4k2-2>0,
a
2
思路二:利用二次方程有实根
由椭圆定义知 | PF1 | | PF2 | 2a ,又由 F1PF2 90 知 PF1 |2 | PF2 |2 | F1F2 |2 4c2 , 则可得 | PF1 || PF2 | 2(a 2 c2 ) ,这样| PF1 | 与| PF2 | 是方程 u 2 2au 2(a 2 c2 ) 0 的两个
证明 由题意,知 F1(-1,0),F2(1,0), 设 B(x1,y1),E(x2,y2),C(x3,y3),D(x4,y4), 直线 y=k(x-1),代入x92+y82=1, 得 8yk+12+9y2-72=0,即(8+9k2)y2+16ky-64k2=0, 则 y1+y2=-8+169kk2,y1y2=-8+649k2k2. 同理,将 y=k(x-1)代入 y2=4x,得 ky2-4y-4k=0, 则y3+y4=4k,y3y4=-4,
a2 ,即 0
2c 2 a 2 e2
a 2 ,所以 e [
2 ,1). 2
思路五:利用基本不等式
由椭圆定义,有 2a | PF1|| PF2 | ,平方后得
圆锥曲线中参数范围与最值问题(解析版)
圆锥曲线中参数范围与最值问题【方法技巧与总结】1.求最值问题常用的两种方法(1)几何法:题中给出的条件有明显的几何特征,则考虑用几何图形性质来解决,这是几何法.(2)代数法:题中给出的条件和结论的几何特征不明显,则可以建立目标函数,再求该函数的最值.求函数的最值常见的方法有基本不等式法、单调性法、导数法和三角换元法等,这就是代数法.2.求参数范围问题的常用方法构建所求几何量的含参一元函数,形如AB =f k ,并且进一步找到自变量范围,进而求出值域,即所求几何量的范围,常见的函数有:(1)二次函数;(2)“对勾函数”y =x +ax(a >0);(3)反比例函数;(4)分式函数.若出现非常规函数,则可考虑通过换元“化归”为常规函数,或者利用导数进行解决.这里找自变量的取值范围在Δ>0或者换元的过程中产生.除此之外,在找自变量取值范围时,还可以从以下几个方面考虑:①利用判别式构造不等关系,从而确定参数的取值范围.②利用已知参数的范围,求出新参数的范围,解题的关键是建立两个参数之间的等量关系.③利用基本不等式求出参数的取值范围.④利用函数值域的求法,确定参数的取值范围.【题型归纳目录】题型一:弦长最值问题题型二:三角形面积最值问题题型三:四边形面积最值问题题型四:弦长的取值范围问题题型五:三角形面积的取值范围问题题型六:四边形面积的取值范围问题题型七:向量数量积的取值范围问题题型八:参数的取值范围【典例例题】题型一:弦长最值问题例1.已知圆O :x 2+y 2=r 2的任意一条切线l 与椭圆M :x 26+y 23=1都有两个不同的交点A ,B .(1)求圆O 半径r 的取值范围;(2)是否存在圆O ,满足OA ⊥OB 恒成立?若存在,求出圆O 的方程及|OA |∙|OB|的最大值;若不存在,说明理由.【解析】解:(1)要使圆O :x 2+y 2=r 2的任意一条切线l 与椭圆M :x 26+y 23=1都有两个不同的交点,则圆必在椭圆的内部,∴0<r <3.(2)设圆的切线方程y =kx +m ,由y =kx +m x 26+y 23=1,得(1+2k 2)x 2+4km x +2m 2-6=0.设A (x 1,y 1),B (x 2,y 2),x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-61+2k 2.y 1y 2=(kx 1+m )(kx 2+m )=m 2-6k 21+2k 2.∵OA ⊥OB ,∴x 1x 2+y 1y 2=0⇒m 2=2k 2+2,⋯①∵y =kx +m 与圆O :x 2+y 2=r 2相切,∴r 2=m 21+k 2⋯②由①②得r 2=2,此时圆的方程为:x 2+y 2=2,当切线的斜率不存在时,切线方程为x =±2A (2,2),B (2,-2)或A (-2,2),B (-2,-2)满足条件∴圆的方程为:x 2+y 2=2∵|AB |=1+k 2(x 1+x 2)2-4x 1x 2=221+14k 2+1k2+4≤3,当直线AB 的斜率不存在或为0时,|AB |=22.∴|AB |≤3∵OA ⊥OB ,∴|OA |∙|OB |=r ∙AB ,|OA |∙|OB|的最大值32.例2.平面直角坐标系xoy 中,椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的离心率为22,过椭圆右焦点F 作两条相互垂直的弦,当其中一条弦所在直线斜率为0时,两弦长之和为6.(1)求椭圆的方程;(2)A ,B 是抛物线C 2:x 2=4y 上两点,且A ,B 处的切线相互垂直,直线AB 与椭圆C 1相交于C ,D 两点,求弦|CD |的最大值.【解析】解:(1)∵椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的离心率为22,过椭圆右焦点F 作两条相互垂直的弦,当其中一条弦所在直线斜率为0时,两弦长之和为6,∴e =c a =222a +2b 2a =6a 2=b 2+c 2,解得a =2,b =c =2,∴椭圆方程为x 24+y 22=1.(2)设直线AB 为:y =kx +m ,A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4),由y =kx +mx 2=4y,得x 2-4kx -4m =0,则x 1+x 2=4k ,x 1x 2=-4m ,由x 2=4y ,得y ′=x2,故切线PA ,PB 的斜率分别为k PA =x 12,k PB =x22,再由PA ⊥PB ,得k PA ∙k PB =-1,∴x 12∙x 22=x 1x 24=-4m 4=-m =-1,解得m =1,这说明直线AB 过抛物线C 1的焦点F ,由y =kx +1x 24+y 22=1,得(1+2k 2)x 2+4kx -2=0,∴|CD |=1+k 2∙(4k )2-4(1+2k 2)∙(-2)1+2k2=1+k 2∙8(1+4k 2)1+2k 2≤3.当且仅当k =±22时取等号,∴弦|CD |的最大值为3.例3.设椭圆C :x 2a 2+y 2b2=1(a >b >0)经过点23,263 ,且其左焦点坐标为(-1,0).(Ⅰ)求椭圆的方程;(Ⅱ)过椭圆的右焦点作两条相互垂直的直线l ,m ,其中l 交椭圆于M ,N ,m 交椭圆于P ,Q ,求|MN |+|PQ |的最小值.【解析】解:(Ⅰ)∵椭圆C :x 2a 2+y 2b2=1(a >b >0)经过点23,263 ,且其左焦点坐标为(-1,0),∴c =1,2a =259+249+19+249=4,∴b =a 2-c 2=3,∴椭圆的方程为:x 24+y 23=1.⋯(4分)(Ⅱ)①当直线l 1,l 2中有一条直线的斜率不存在时,|MN |+|PQ |=7.⋯(5分)②当直线l 1的斜率存在且不为0时,设直线l 1的方程y =k (x -1),设M (x 1,y 1),N (x 2,y 2),由y =k (x -1)x 24+y 23=1,得(3+4k 2)x 2-8k 2x +4k 2-12=0,∴x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2,|MN |=(1+k 2)(x 1-x 2)2=1+k 2∙(x 1+x 2)2-4x 1x 2=12(1+k 2)3+4k 2,设直线l 2的方程为y =-1k (x -1),同理得:|PQ |=12(1+k 2)4+3k 2,所以|MN |+|PQ |=84(k 2+1)2(4+3k 2)(3+4k 2),⋯(9分)设t =k 2+1,则t >1,所以1t =12时,|MN |+|PQ |有最小值487<7.综上,|MN |+|PQ |的最小值是487.⋯(12分)变式1.已知点Q (2,1)在椭圆C :x 2a 2+y 2b2=1(a >b >0)上,且点Q 到C 的两焦点的距离之和为42.(1)求C 的方程;(2)设圆O :x 2+y 2=85上任意一点P 处的切线l 交C 于点M ,N ,求|OM |⋅|ON |的最小值.【解析】解:(1)由题意可得4a 2+1b2=1,且2a =42,解得a =22,b =2,所以椭圆C 的方程为x 28+y 22=1;(2)当直线MN 的斜率不存在时,可设切线方程为x =405,代入椭圆x 2+4y 2=8,可得M 2105,2105 ,N 2105,-2105 ,则OM ⋅ON =0,且|OM |⋅|ON |=165;当直线MN 的斜率存在时,设切线的方程为y =kx +m ,由切线与圆x 2+y 2=85相切,可得|m |1+k 2=85,化为5m 2=8+8k 2,由y =kx +m 与椭圆方程联立,可得(1+4k 2)x 2+8km x +4m 2-8=0,设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-81+4k 2,OM ⋅ON=x 1x 2+y 1y 2=x 1x 2+(kx 1+m )(kx 2+m )=(1+k 2)x 1x 2+km (x 1+x 2)+m 2=(1+k 2)⋅4m 2-81+4k 2+km -8km 1+4k 2 +m 2,代入m 2=8+8k 25,可得OM ⋅ON =0,即OM ⊥ON ,由OP ⊥MN ,所以|OM |⋅|ON |=|OP |⋅|MN |=85|MN |,而|MN |=1+k 2⋅(x 1+x 2)2-4x 1x 2=1+k 2⋅64k 2m 2(1+4k 2)2-4(4m 2-8)1+4k 2=1+k 2⋅42+8k 2-m 21+4k 2=1+k 2⋅425+32k 251+4k 2=410516k 4+17k 2+116k 4+8k 2+1=4105⋅1+9k 216k 4+8k 2+1≥4105,当k =0时,上式取得等号.所以|OM |⋅|ON |的最小值为85⋅4105=165.变式2.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,焦距为2,点E 在椭圆上.当线段EF 2的中垂线经过F 1时,恰有cos ∠EF 2F 1=2-12.(1)求椭圆的标准方程;(2)直线l 与椭圆相交于A 、B 两点,且|AB |=2,P 是以AB 为直径的圆上任意一点,O 为坐标原点,求|OP |的最大值.【解析】解:(1)由焦距为2知c =1,连结EF 1,线段EF 2的中垂线经过F 1时,∴|EF 1|=2c =2,∵cos ∠EF 2F 1=2-12.∴|F 2N ||F 1F 2|=2-12.∴|F 2N |=2-1,∴|EF 2|=22-2,∴2a =|EF 1|+|EF 2|=22,∴a =2,由所以椭圆方程为x 22+y 2=1;(2)①当l 的斜率不存在时,AB 恰为短轴,此时|OP |=1;②当l 的斜率存在时,设l :y =kx +m .联立x 22+y 2=1y =kx +m,得到(2k 2+1)x 2+4km x +2m 2-2=0,∴△=16k 2-8m 2+8>0,x 1+x 2=-4km 2k 2+1,x 1x 2=2m 2-22k 2+1.∵|AB |=1+k 2⋅22⋅1+2k 2-m 22k 2+1=2,化简得m 2=2k 2+12k 2+2.又设M 是弦AB 的中点,∴M -2km 2k 2+1,m 2k 2+1 ,|OM |2=4k 2+1(2k 2+1)2⋅m 2,∴|OM |2=4k 2+1(2k 2+1)2⋅2k 2+12k 2+2=4k 2+1(2k 2+1)(2k 2+2),令4k 2+1=t ≥1,则|OM |2=4t (t +1)(t +3)=4t +3t+4≤423+4=4-23,∴|OM |≤4-23=3-1(仅当t =3时取等),又∵|OP |≤|OM |+|MP |=|OM |+1≤3(仅当k 2=3-14时取等号).综上,|OP |max =3.题型二:三角形面积最值问题例4.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率是22,F 1,F 2分别是椭圆C 的左、右焦点.以线段|F 1F 2|为直径的圆的内接正三角形的边长为6.(1)求椭圆C 的标准方程;(2)已知点P (6,26),直线l :y =x +m 与椭圆C 交于A ,B 两点,求ΔPAB 面积的最大值.【解析】解:(1)由题意可知,e =c a =22,6sin60°=2c ,所以a =2,c =2,所以b 2=a 2-c 2=2,所以椭圆C 的标准方程为:x 24+y 22=1;(2)方法一:设点A (x 1,y 1),B (x 2,y 2),由x 24+y 22=1y =x +m,消去y ,整理得:3x 2+4mx +2m 2-4=0,则△=16m 2-12×(2m 2-4)=-8m 2+48>0,所以m 2<6,所以-6<m <6,所以x 1+x 2=-4m 3,x 1x 2=2m 2-43,所以|AB |=1+k 2(x 1+x 2)2-4x 1x 2=1+1⋅-4m 3 2-4×2m 2-43=46-m 23,P (6,26)到直线l :x -y +m =0的距离为d =|6-26+m |12+(-1)2=|m -6|2,所以S ΔPAB =12×|AB |×d =12×46-m 23|m -6|2=23(6-m )6-m 2,设6-m =t ∈(0,26),则m =6-t ,所以S ΔPAB =23⋅t ⋅-(t -6)2+6=23t 2(-t 2+26t )=23-t 4+26t 3,令g (t )=-t 4+26t 3,t ∈(0,26),则g ′(t )=-4t 3+66t 2=2t 2(-2t +36),当0<t <362时,g ′(t )>0,g (t )单调递增,当362<t <26时,g ′(t )<0,g (t )单调递减,故当t =362,即m =-62时,g (t )取得最大值,即S ΔPAB 取得最大值,所以S ΔPAB 最大值为23×6+62 6-62 2=362,所以ΔPAB 面积的最大值362.方法二:同方法一,S ΔPAB =23(6-m )(6-m )(6+m )=23(6-m )3(6+m ),由(6-m )3(6+m )=13(6-m )3(36+3m )≤13×3(6-m )+36+3m 4 4=354,当且仅当6-m =36+3m ,即m =-62时,取等号,所以S ΔPAB ≤23×354=362,所以ΔPAB 面积的最大值362.例5.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)经过点D (2,0),E 1,32 两点.(1)求椭圆C 的方程;(2)若直线l :y =kx +m 与椭圆C 交于不同两点A ,B ,点G 是线段AB 的中点,点O 为坐标原点,设射线OG 交椭圆C 于点Q ,且OQ =λOG.①证明:λ2m 2=4k 2+1;②求ΔAOB 的面积S (λ)的解析式,并计算S (λ)的最大值.【解析】(1)解:∵椭圆C :x 2a 2+y 2b2=1(a >b >0)经过点D (2,0),E 1,32 两点,∴4a 2=11a 2+34b 2=1 ,解得a =2,b =1,∴椭圆方程为x 24+y 2=1.(2)①证明:令A (x 1,y 1),B (x 2,y 2),由y =kx +mx 2+4y 2=4,消去y ,得(1+4k 2)x 2+8km x +4m 2-4=0,∴△=(8km )2-4(1+4k 2)(4m 2-4)>0x 1+x 2=-8km 1+4k 2x 1x 2=4m 2-41+4k 2 ,即m 2<1+4k 2x 1+x 2=-8km1+4k 2x 1x 2=4m 2-41+4k 2,∴y 1+y 2=k (x 1+x 2)+2m =k (-8km )1+4k 2+2m =2m1+4k 2,又由中点坐标公式,得G -4km 1+4k 2,m1+4k 2,根据OQ =λOG ,得Q -4λkm 1+4k 2,λm 1+4k 2,将其代入椭圆方程,有4λ2k 2m 2(1+4k 2)2+λ2m 2(1+4k 2)2=1,化简得:λ2m 2=4k 2+1.②解:由①得m ≠0,λ>1,∵|x 1-x 2|=-8km 1+4k 2 2-4×4m 2-41+4k 2=41+4k 2-m 21+4k 2,在ΔAOB 中,S ΔAOB =12|m ||x 1-x 2|,∴S (λ)=2|m |λ2m 2-m 2λ2m 2=2λ2-1λ2,λ>1,令λ2-1=t ,t >0,则S =2t t 2+1=2t +1t<221=1(当且仅当t =1时,即λ=2时取“=” )∴当λ=2时,S (λ)=2λ2-1λ2取得最大值,其最大值为1.例6.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的短轴顶点分别为A ,B ,且短轴长为2,T 为椭圆上异于A ,B 的任意一点,直线TA ,TB 的斜率之积为-13.(1)求椭圆C 的方程;(2)设O 为坐标原点,圆O :x 2+y 2=34的切线l 与椭圆C 相交于P ,Q 两点,求ΔPOQ 面积的最大值.【解析】解:(1)由题意可知2b =2,b =1,A (0,1),B (0,-1),设T (x 0,y 0),满足x 20a2+y 20=1,由k TA ⋅k TB =y 0-1x 0⋅y 0+1x 0=y 20-1x 20=-1a2=-13,则a 2=3,所以椭圆C 的方程:x 23+y 2=1;(2)设直线PQ 的方程:x =my +t ,P (x 1,y 1),Q (x 2,y 2),由O 到直线PQ 的距离d =|t |1+m2=32,即t 2=34(1+m 2),联立方程组x =my +tx 23+y 2=1,消去x ,整理得(m 2+3)y 2+2mty +t 2-3=0,则△=(2mt )2-4(m 2+3)(t 2-3)=12(m 2-t 2+3)=3(m 2+9)>0,y 1+y 2=-2mt m 2+3,y 1y 2=t 2-3m 2+3,则|PQ |=1+m 2(y 1+y 2)2-4y 1y 2=3×(1+m 2)(m 2+9)(m 2+3)2,由(1+m 2)(m 2+9)(m 2+3)2=13×(3+3m 2)(m 2+9)(m 2+3)2≤13×3+3m 2+m 2+92 2(m 2+3)2=43,当且仅当3+3m 2=m 2+9,即m 2=3,m =±3时取等号,所以|PQ |=3×(1+m 2)(m 2+9)(m 2+3)2≤3×23=2,所以ΔPOQ 面积S =12×|PQ |×32≤12×2×32=32,所以ΔPOQ 面积的最大值32.变式3.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的焦距为22,且经过点32,12 .(1)求椭圆C 的方程;(2)过点P (0,2)的直线交椭圆C 于A 、B 两点,求ΔAOB (O 为原点)面积的最大值.【解析】解:(1)由2c =22⇒c =2⇒a 2-b 2=2,①由椭圆C 经过点32,12 ,得94a 2+14b2=1,②,联立①②,解得b =1,a =3,∴椭圆C 的方程是x 23+y 2=1.(2)由题意可知直线AB 一定存在斜率,设其方程为y =kx +2,联立y =kx +2x 23+y 2=1,消去y ,得(1+3k )x 2+12kx +9=0,则△=144k 2-36(1+3k 2)>0,得k 2>1,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-12k 1+3k 2,x 1⋅x 2=91+3k 2,∴S ΔAOB =|S ΔPOB -S ΔPOA |=12×2×|x 1-x 2|=|x 1-x 2|,∵(x 1-x 2)2=(x 1+x 2)2-4x 1⋅x 2=-12k 1+3k 2 2-361+3k 2=36(k 2-1)(1+3k 2)2,设k 2-1=t (t >0),则(x 1-x 2)2=36t (3t +4)2=369t +16t +24≤3629t ×16t+24=34,当且仅当9t =16t ,即t =43时等号成立,此时k 2=73>1,符合题意,此时ΔAOB 面积取得最大值32.变式4.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为63,且点32,12 在椭圆C 上.(1)求椭圆C 的方程;(2)过点P (0,2)的直线l 交椭圆C 于A ,B 两点,求ΔAOB 的面积最大时l 的方程.【解析】解:(1)由题意可得e =c a =63,又a 2-b 2=c 2,点32,12 在椭圆C 上,可得94a 2+14b 2=1,解方程可得a =3,b =1,即有椭圆的方程为x 23+y 2=1;(2)设过点P (0,2)的直线l 的方程为x =m (y -2),代入椭圆方程,可得(3+m 2)y 2+4m 2y +4m 2-3=0,判别式为16m 4-4(3+m 2)(4m 2-3)>0,即有-1<m <1,设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=-4m 23+m 2,y 1y 2=4m 2-33+m 2,|AB |=1+m 2∙|y 1-y 2|=1+m 2∙16m 4(3+m 2)2-4(4m 2-3)3+m 2=61+m 2∙1-m 2(3+m 2)2,由O 到直线l 的距离d =|2m |1+m 2,则ΔAOB 的面积为S =12d ∙|AB |=6|m |∙1-m 2(3+m 2)2,令t =1-m 2,(0<t ≤1),即有S =6(1-t )t(4-t )2,由f (t )=t -t 2(t -4)2的导数为f ′(t )=7t -4(t -4)3,当0<t <47时,f (t )递增,47<t <1时,f (t )递减,当且仅当t =47,即m =±217,面积S 取得最大值,即有ΔAOB 的面积最大时l 的方程为x =±217(y -2).变式5.已知椭圆M :x 2a 2+y 2b 2=1(a >b >0)的一个焦点与短轴的两端点组成一个正三角形的三个顶点,且椭圆经过点2,22 .(1)求椭圆M 的标准方程;(2)直线l :x =ky +n 与椭圆M 相交于A ,B 两点,且以线段AB 为直径的圆过椭圆的右顶点C ,求ΔABC 面积的最大值.【解析】解:(1)根据题意,设椭圆的上下顶点为B 1(0,b ),B 2(0,-b ),左焦点为F 1(-c ,0),则△B 1B 2F 1是正三角形,所以2b =c 2+b 2=a ,则椭圆方程为x 24b 2+y 2b 2=1,将2,22 代入椭圆方程,可得24b 2+12b2=1,解得a =2,b =1,故椭圆的方程为:x 24+y 2=1;(2)由题意,设直线l 的方程为x =ky +n ,联立x 24+y 2=1x =ky +n,整理可得:(4+k 2)y 2+2kny +n 2-4=0,设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=-2kn 4+k 2,y 1y 2=n 2-44+k 2,因为以线段AB 为直径的圆过椭圆的右顶点C (2,0),所以CA ∙CB=0由CA =(x 1-2,y 1),CB =(x 2-2,y 2),则(x 1-2)(x 2-2)+y 1y 2=0,将x 1=ky 1+n ,x 2=ky 2+n 代入上式并整理得(1+k 2)y 1y 2+k (n -2)(y 1+y 2)+(n -2)2=0,则(1+k 2)(n 2-4)4+k 2+-2k 2n (n -2)4+k2+(n -2)2=0,化简可得(5n -6)(n -2)=0,解得:n =65,或n =2,因为直线x =ky +n 不过点C (2,0),所以n ≠2,故n =65所以直线l 恒过点65,0 .故S ΔABC =12|DC ||y 1-y 2|=122-65(y 1+y 2)2-4y 1y 2=25-125k 4+k 22-43625-4 4+k 2=82525(4+k 2)-26(4+k 2)2设t =14+k 20<t ≤14 ,则S ΔABC =825-36t 2+25t 在t ∈0,14 上单调递增,当t =14时,S ΔABC =825-36×116+25×14=1625,所以ΔABC 的面积的最大值为1625.变式6.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别是F 1,F 2,离心率e=12,请再从下面两个条件中选择一个作为已知条件,完成下面的问题:①椭圆C 过点1,32;②以点F 1为圆心,3为半径的圆与以点F 2为圆心,1为半径的圆相交,且交点在椭圆C 上(只能从①②中选择一个作为已知)(1)求椭圆C 的方程;(2)已知过点F 2的直线l 交椭圆C 于M ,N 两点,点N 关于x 轴的对称点为N ,且F 2,M ,N 三点构成一个三角形,求证直线MN 过定点,并求△F 2MN 面积的最大值.【解析】解:(1)选①:由题意知e =c a =121a2+94b 2=1a 2=b 2+c 2,∴a 2=4b 2=3 .所以椭圆C 的方程为x 24+y 23=1.选②:设圆F 1与圆F 2相交于点Q .由题意知:|QF 1|+|QF 2|=3+1=4.又因为点Q 在椭圆上,所以2a =4,∴a =2.又因为e =c a -12,∴c =1,∴b 2=3.所以椭圆C 的方程为x 24+y 23=1.(2)由题易知直线MN 斜率存在且不为0,因为F 2(1,0),故设直线MN 的方程为x =ty +1,设M (x 1,y 1),N (x 2,y 2),x =ty +1x 24+y 23=1,∴(3t 2+4)y 2+6ty -9=0,∴y 1+y 2=-6t 3t 2+4,y 1y 2=-93t 2+4,因为点N 关于x 轴的对称点为N ,所以N (x 2,-y 2),所以直线MN 的方程为y +y 2=y 1+y 2x 1-x 2(x -x 2),令y =0,∴x =x 2+y 2(x 1-x 2)y 1+y 2=x 1y 2+x 2y 1y 1+y 2.又x =ty +1,∴x =2ty 1y 2+y 1+y 2y 1+y 2=2ty 1y 2y 1+y 2+1=2t -93t 3+4-6t 3t 2+4+1=-18t 3t 2+4-6t3t 2+4=3+1=4.所以直线MN 过定点E (4,0),∴S △F 2MN=12×|F 2E |×|y 1+y 2|=12×3×-6t 3t 2+4=32×6|t |3t 2+4=32×63|t |+4|t |≤334.当且仅当3|t |=4|t |,即t =±233时,取等号.所以△F 2MN 面积的最大值为334.变式7.已知椭圆C :x 22+y 2=1的左、右焦点分别是F 1,F 2,过F 2的直线l 与椭圆相交于A ,B 两点.(1)若直线l 的倾斜角为45°,试求AB 的中点坐标;(2)求ΔABF 1面积的最大值及此时直线l 的方程.【解析】解:(1)椭圆x 22+y 2=1的左焦点F 1(-1,0),F 2(1,0),过F 2且倾斜角为45°的直线l 为y =x -1,设A (x 1,y 1),B (x 2,y 2),联立方程组:y =x -1x 22+y 2=1,消去y 得:3x 2-4x =0,则x 1+x 2=43,所以y 1+y 2=x 1+x 2-2=-23,则AB 的中点坐标为23,-13;(2)当直线l 垂直x 轴时,直线l 的方程为x =1,代入椭圆方程可得y =±22,此时|AB |=2,则S △ABF 1=12|AB ||F 1F 2|=12×2×2=2;当直线l 不垂直x 轴时,设直线方程为x =ty +1(t ≠0),联立x =ty +1x 22+y 2=1,得(t 2+2)y 2+2ty -1=0,∴y 1+y 2=-2t t 2+2,y 1y 2=-1t 2+2,∴|y 1-y 2|=(y 1+y 2)2-4y 1y 2=4t 2(t 2+2)2+4⋅1t 2+2=22⋅t 2+1t 2+2∴S △ABF 1=12|y 1-y 2|×2=|y 1-y 2|=22⋅t 2+1t 2+2,令t 2+1=m (m >1),则t 2=m 2-1,则S △ABF 1=22m m 2+1=22m +1m<222=2,综上:ΔABF 1面积的最大值为2,此时直线的方程为x =1.题型三:四边形面积最值问题例7.在直角坐标系xoy 中,已知点F 1(-1,0),F 2(1,0),动点P 满足:|OP +OF 2 |+|OP -OF 2 |=4.(1)求动点P 的轨迹C 的方程;(2)若分别过点(-1,0)、(1,0),作两条平行直线m ,n ,设m ,n 与轨迹C 的上半部分分别交于A 、B 两点,求四边形面积的最大值.【解析】解:(1)设点P (x ,y ),由点F 1(-1,0),F 2(1,0).动点P 满足:|OP -OF 1 |+|OP -OF 2 |=4.∴(x +1)2+y 2+(x -1)2+y 2=4.由椭圆定义可知点P 的轨迹是以点(1,0),(-1,0)为焦点,长轴长为4的椭圆,其方程为:x 24+y 23=1.(2)设直线m :x =ty -1,它与轨迹C 的另一个交点为D .由椭圆的对称性知:S ABF 1F 2=12(|AF 1|+|BF 2|)⋅d=12(|AF 1|+|DF 1|)⋅d =12|AD |d =S △ADF 2,x =ty -1与C 联立,消去x ,得(3t 2+4)y 2-6ty -9=0,△>0,|AD |=(1+t 2)[(y 1+y 2)2-4y 1y 2]=1+t 2⋅121+t 23t 2+4,又到的距离为d =21+t2,∴S △ADF 2=121+t 23t 2+4,令m =1+t 2≥1,则S △ADF 2=123m +1m ,∵y =3m +1m在[1,+∞)上单调递增∴当m =1即t =0时,S △ADF 2取得最大值3,所以四边形面积的最大值为3.例8.已知抛物线C :x 2=2py (p >0)的焦点为F ,直线y =kx +2与抛物线C 交于A ,B 两点,若k =1,则|BF |-|AF |=43.(1)求抛物线C 的方程;(2)分别过点A ,B 作抛物线C 的切线l 1、l 2,若l 1,l 2分别交x 轴于点M ,N ,求四边形ABNM 面积的最小值.【解析】解:(1)抛物线x 2=2py (p >0)的焦点为F 0,p2,设A (x 1,y 1),B (x 2,y 2),则AB 方程y =kx +2与抛物线方程联立,整理得x 2-2pkx -4p =0,x 1+x 2=2pk ,x 1x 2=-4p ,|x 1-x 2|=(x 1+x 2)2-4x 1x 2=4p 2k 2+16p若k =1,||BF |-|AF ||=|y 1-y 2|=k |x 1-x 2|=4p 2+16p =43,∴p =2,即抛物线C 的方程为x 2=4y .(2)(方法一)由(1)知y =x 24且x 1+x 2=4k ,x 1x 2=-8,|x 1-x 2|=4k 2+2,y =12x ,所以切线l 1的方程为y -y 1=12x 1(x -x 1)即y =12x 1x -14x 21,①同理切线l 2的方程为y =12x 2x -14x 22,②联立①②得x =x 1+x 22,y =14x 1x 2=-2,即切线l 1与l 2的交点为P x 1+x 22,-2 ,由切线l 1:y =12x 1x -14x 21,得M x 12,0 ,同理可得N x 22,0 ,∴S ΔPMN =12×2×x 12-x 22=12|x 1-x 2|=2k 2+2,又∵|AB |=1+k 2|x 1-x 2|=41+k 2k 2+2,点P 到直线AB 的距离为d =k (x 1+x 2)2+41+k 2=|2k 2+4|1+k 2,∴S ΔPAB =12|AB |d =4k 2+2|k 2+2|,(10分)∴四边形ABNM 的面积S =S ΔPAB -S ΔPMN =4k 2+2(k 2+2)-2k 2+2=2k 2+2(2k 2+3),令t =k 2+2≥2,则S =4t 3-2t ,t ≥2时,S =12t 2-2>0成立,S 单调递增,∴当t=2,即k=0时,四边形ABNM的面积的最小值为62.(方法二)由(1)知y=x24且x1+x2=4k,x1x2=-8,|x1-x2|=4k2+2,y =12x,所以切线l1的方程为y-y1=12x1(x-x1)即y=12x1x-14x21,同理切线l2的方程为y=12x2x-14x22,由切线l1:y=12x1x-14x21,得Mx12,0,同理可得N x22,0,记直线AB:y=kx+2与y轴交点T(0,2),∴SΔOAB=SΔOTA+SΔOTB=12|OT|(|x1|+|x2|)=12|OT||x1-x2|=|x1-x2|,SΔOAM=12|OM|∙|y1|=1 2x12|y1|=116|x31|,同理SΔOBN=116|x32|,∴四边形ABNM的面积S=SΔOAB+SΔOAM+SΔOBN=|x1-x2|+116|x31-x32|=|x1-x2|+116|x1-x2||x21+ x1x2+x22|=116|x1-x2|3-12|x1-x2|,记t=|x1-x2|≥42,则S=116t3-12t,∵S =316t2-12>0,S单调递增,∴当t=42即k=0时,四边形ABNM面积的最小值为62.例9.在平面直角坐标系xOy中,已知椭圆C:x2a2+y2b2=1(a>b>0)和抛物线D:y2=4x,椭圆C的左,右焦点分别为F1,F2,且椭圆C上有一点P满足|PF1|:|F1F2|:|PF2|=3:4:5,抛物线D的焦点为F2.(1)求椭圆C的方程;(2)过F2作两条互相垂直的直线l1和l2,其中直线l1交椭圆C于A,B两点,直线l2交抛物线D于P,Q两点,求四边形APBQ面积的最小值.【解析】解:(1)由题意可知,抛物线D:y2=4x的焦点为(1,0),因为抛物线D的焦点为F2,所以椭圆C的半焦距c=1,又椭圆C有一点P满足|PF1|:|F1F2|:|PF2|=3:4:5,所以椭圆C的离心率e=2c2a=|F1F2||PF1|+|PF2|=12,所以a=2,b=3,则求得椭圆C的方程是x24+y23=1.(2)当直线AB的斜率不存在时,直线PQ即为x轴,与抛物线只有一个交点,不满足条件;当直线AB的斜率为0时,A,B为椭圆长轴两端点,直线PQ⊥x轴,|PQ|=4,四边形APBQ的面积S=4×2=8;当直线AB的斜率k≠0时,设直线AB的方程为y=k(x-1),A(x1,y1),B(x2,y2),联立直线AB与椭圆C:y=k(x-1)x24+y23=1,消去y可得(3+4k2)x2-8k2x+4k2-12=0,则x1+x2=8k23+4k2,x1x2=4k2-123+4k2.则弦长|AB|=1+k2⋅|x1-x2|=1+k2⋅8k23+4k22-4⋅4k2-123+4k2=1+k2⋅144(k2+1)(3+4k2)2=12(1+k2)3+4k2,设P (x 3,y 3),Q (x 4,y 4),联立直线PQ 与抛物线D :y =-1k (x -1)y 2=4x,消去y 可得x 2-(4k 2+2)x +1=0,则x 3+x 4=4k 2+2,由抛物线的定义,弦长|PQ |=x 3+x 4+2=4k 2+2+2=4(k 2+1),由于AB ⊥PQ ,则四边形APBQ 的面积S =12×12(1+k 2)3+4k 2×4(k 2+1)=24(k 2+1)23+4k 2,令3+4k 2=t >3,则k 2=t -34,即S =32t +1t +2 ,令g (x )=32x +1x +2 ,则g (x )=321-1x2 ,可知x >3时,g(x )>0,则g (x )单调递增,则g (x )>g (3)=8,综上,当直线AB 斜率k =0时,四边形APBQ 面积有最小值8.变式8.已知椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的长轴长为4,离心率为12,一动圆C 2过椭圆C 1右焦点F ,且与直线x =-1相切.(1)求椭圆C 1的方程及动圆圆心轨迹C 2的方程;(2)过F 作两条互相垂直的直线,分别交椭圆C 1于P ,Q 两点,交曲线C 2于M ,N 两点,求四边形PMQN 面积的最小值.【解析】解:(1)由已知可得2a =4e =c a =12⇒a =2c =1 ⇒b 2=a 2-c 2=3,则所求椭圆方程C 1:x 24+y 23=1.由已知可得动圆圆心轨迹为抛物线,且抛物线C 的焦点为(1,0),准线方程为x =-1,则动圆圆心轨迹方程为C 2:y 2=4x .(2)当直线MN 的斜率不存在时,|MN |=4,此时PQ 的长即为椭圆长轴长,|PQ |=4,从而S PMQN =12|MN |⋅|PQ |=12×4×4=8.设直线MN 的斜率为k ,则k ≠0,直线MN 的方程为:y =k (x -1),直线PQ 的方程为y =-1k(x -1),设M (x 1,y 1),N (x 2,y 2),P (x 3,y 3),Q (x 4,y 4),由y =k (x -1)y 2=4x,消去y 可得k 2x 2-(2k 2+4)x +k 2=0,由抛物线定义可知:|MN |=|MF 2|+|NF 2|=x 1+1+x 2+1=2k 2+4k 2+2=4+4k2,由y =-1k (x -1)x 24+y 23=1 ,消去y 得(3k 2+4)x 2-8x +4-12k 2=0,从而|PQ |=1+-1k 2|x 3-x 4|=12(1+k 2)3k 2+4,∴S PMQN =12|MN |⋅|PQ |=124+4k 2 12(1+k 2)3k 2+4=24(1+k 2)23k 4+4k 2,令1+k 2=t ,∵k >0,则t >1,则S PMQN =12|MN |⋅|PQ |=24t 23(t -1)2+4(t -1)=24t 23t 2-2t -1=243-2t -1t23-2t -1t 2=4-1+1t 2∈(0,3),所以S PMQN =243-2t -1t2>8,所以四边形PMQN 面积的最小值为8.变式9.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别是F 1,F 2,P 是椭圆上的一点,I 为△PF 1F 2的内切圆圆心,S △PIF 1=2S △IF 1F 2-S △PIF 2,且△PF 1F 2的周长为6.(1)求椭圆C 的方程.(2)已知过点(0,1)的直线与椭圆C 交于A ,B 两点,若2OP =3(OA +OB ),求四边形OAPB 面积的最大值.【解析】解:(1)因为S △PIF 1=2S △IF 1F 2-S △PIF 2,所以|PF 1|+|PF 2|=2|F 1F 2|,即a =2c ①,又因为△PF 1F 2的周长为6,所以|PF 1|+|PF 2|+|F 1F 2|=6,即2a +2c =6②,由①②可得a =2,c =1,则b =3,所以椭圆的方程为x 24+y 23=1.(2)设直线AB 的方程为y =kx +1,A (x 1,y 1),B (x 2,y 2),则由y =kx +1x 24+y 23=1,联立消y 可得,(3+4k 2)x 2+8kx -8=0,△>0x 1+x 2=-8k3+4k 2x 1x 2=-83+4k 2,因为2OP=3(OA +OB ),所以S 四边形OAPB =3S ΔOAB ,所以S 四边形OAPB =32x 1-x 2 =321612k 2+6 3+4k 2=662k 2+13+4k 2,令2k 2+1=t ≥1,所以k 2=t 2-12,所以S 四边形OAPB =66t 2t 2+1=662t +1t,又因为y =2t +1t在区间[1,+∞)上单调递增,所以y ≥3,所以S 四边形OAPB ≤26.所以四边形OAPB 的面积最大值为26.题型四:弦长的取值范围问题例10.设F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,已知椭圆的长轴为22,P 是椭圆C 上一动点,PF 1 ⋅PF 2 的最大值为1.(1)求椭圆C 的方程;(2)过点(2,0)的直线l 交椭圆C 于A ,B 两点,M 为椭圆C 上一点,O 为坐标原点,且满足OA +OB =m OM ,其中m ∈455,433 ,求|AB |的取值范围.【解析】解:(1)由题意可得2a =22,即a =2,设P (x ,y ),F 1(-c ,0),F 2(c ,0),可得PF 1 ⋅PF 2=(-c -x ,-y )⋅(c -x ,-y )=(-c -x )(c -x )+y 2=x 2+y 2-c 2,x 2+y 2可看作P 与椭圆上的点的距离的平方,当P 位于椭圆的长轴的端点处,|OP |取得最大值a ,即有a 2-c 2=1,即b =1,可得椭圆的方程为x 22+y 2=1;(2)设过点(2,0)的直线l 的方程为y =k (x -2),联立椭圆方程x 2+2y 2=2,可得(1+2k 2)x 2-8k 2x +8k 2-2=0,则△=64k 4-4(1+2k 2)(8k 2-2)>0,即k 2<12,设A (x 1,y 1),B (x 2,y 2),M (s ,t ),则x 1+x 2=8k 21+2k 2,x 1x 2=8k 2-21+2k 2,y 1+y 2=k (x 1+x 2-4)=k 8k 21+2k 2-4 =-4k1+2k 2,由OA +OB =mOM ,即(x 1+x 2,y 1+y 2)=m (s ,t ),可得s =1m ⋅8k 21+2k 2,t =1m ⋅-4k1+2k 2,将(s ,t )代入椭圆方程可得12⋅1m 28k 21+2k 2 2+1m 2⋅-4k1+2k 22=1,解得m 2=16k 21+2k 2,由m 2∈165,163 ,解得k 2∈13,1 ,结合△>0则13≤k 2<12,则|AB |=1+k 2|x 1-x 2|=1+k 2⋅(x 1+x 2)2-4x 1x 2=1+k 2⋅64k 4(1+2k 2)2-4(8k 2-2)1+2k 2=22⋅1-k 2-2k 44k 4+4k 2+1=22⋅-12+2k 2+32k 4+k 2-1,设2k 2+3=u ,113≤u <4 ,即k 2=u -32,2k 2+32k 4+k 2-1=u (u -3)22+u -32-1=2u +4u -5,由u +4u 在113≤u <4递增,可得u +4u ∈15733,5 ,2u +4u-5∈-∞,-334 ,2+2k 2+32k 4+k 2-1∈-∞,-254 ,-12+2k 2+32k 4+k 2-1∈0,25 ,可得|AB |∈0,425 .例11.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点1,22 ,且焦距为2.(1)求椭圆C 的方程;(2)过点M (2,0)的直线l 交椭圆C 于点A ,B 两点,P 为椭圆C 上一点,O 为坐标原点,且满足OA +OB=tOP ,其中t ∈263,2 ,求|AB |的取值范围.【解析】解:(1)依题意椭圆C :x 2a 2+y 2b2=1(a >b >0)过点1,22 ,且焦距为2.有a 2=b 2+11a 2+12b 2=1⇒a 2=2b 2=1,所以椭圆C 的方程为x 22+y 2=1.(2)由题意可知该直线l 存在斜率,设其直线l 方程为y =k (x -2),由y =k (x -2)x 22+y 2=1,消去y 得(1+2k 2)x 2-8k 2x +8k 2-2=0,所以△=8(1-2k 2)>0,即k 2<12,设A (x 1,y 1),B (x 2,y 2),P (x ,y ),则x 1+x 2=8k 21+2k 2y 1+y 2=k (x 1+x 2-4)=-4k 1+2k 2.由OA +OB =tOP ,得P 8k 2t (1+2k 2),-4k t (1+2k 2),代入椭圆C 的方程x 22+y 2=1,得t 2=16k 21+2k 2,由263<t <2,得14<k 2<12,|AB |=1+k 2|x 1-x 2|=1+k 2⋅22⋅1-2k 21+2k2=22(1+2k 2)2+11+2k 2-1,令u =11+2k2,则u ∈12,23 ,所以|AB |=22u 2+u -1∈0,253.例12.在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为22,直线y =x 被椭圆C 截得的线段长为833.(I )求椭圆C 的方程.(Ⅱ)直线l 是圆O :x 2+y 2=r 2的任意一条切线,l 与椭圆C 交于A 、B 两点,若以AB 为直径的圆恒过原点,求圆O 的方程,并求出|AB |的取值范围.【解析】解:(Ⅰ)椭圆方程x 2a 2+y 2b2=1(a >b >0),a 2=b 2+c 2,∵e =c a =22,∴a 2=2c 2,∴a 2=2b 2,设直线与椭圆交于P ,Q 两点.不妨设P 点为直线和椭圆在第一象限的交点,又∵弦长为833,∴P 263,263,∴83a 2+83b 2=1,又a 2=2b 2,解得a 2=8,b 2=4,∴椭圆方程为x 28+y 24=1.(Ⅱ)(i )当切线l 的斜率不存在时,设x =r (或x =-r ),代入椭圆方程得:∴A r ,8-r 22,B r ,-8-r 22,∵以AB 为直径的圆恒过原点,∴OA ⊥OB ,∴r 2-8-r 22=0,∴r 2=83,∴圆O 的方程为x 2+y 2=83,此时|AB |=28-r 22=463(同理当x =-r 时,上述结论仍然成立),(ii )当切线l 的斜率存在时,设l 方程为:y =kx +m ,∵l 与圆O 相切∴|m |1+k2=r ,即m 2=(1+k 2)r 2,将直线方程代入椭圆方程并整理得:(1+2k 2)x 2+4km x +2m 2-8=0,①△=8k 2+4-m 2>0,②设A (x 1,y 1),B (x 2,y 2),则x 1,x 2是方程①的两个解,由韦达定理得:x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-81+2k 2,y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2=m 2-8k 21+2k 2,∵以AB 为直径的圆恒过原点,∴OA ⊥OB ,∴x 1x 2+y 1y 2=0,∴2m 2-81+2k 2+m 2-8k 21+2k 2=0,∴3m 2-8-8k 2=0,3m 2=8(1+k 2),又∵m 2=(1+k 2)r 2,∴3(1+k 2)r 2=8(1+k 2),∴r 2=83,此时m 2=83(1+k 2),代入②式后成立,∴圆O 的方程为x 2+y 2=83,此时|AB |=1+k 2⋅(x 1+x 2)2-4x 1x 2,=1+k 2⋅-4km 1+2k 2 2-4⋅2m 2-81+2k 2,=1+k 2⋅222k 2+1⋅8k 2+4-m 2,=463⋅1+k2⋅4k2+11+2k2,=463⋅4k4+5k2+11+2k2,=463⋅4k4+5k2+14k4+4k2+1,=463⋅1+k24k4+4k2+1;(i)若k=0,则|AB|=463,(ii)若k≠0,则|AB|=463⋅1+14k2+4+1k2∈463,23 ,综上,圆O的方程为x2+y2=83,|AB|的取值范围是463,23.变式10.已知抛物线C1:y2=4x的焦点F也是椭圆C2:x2a2+y2b2=1(a>b>0)的一个焦点,C1与C2的公共弦长为46 3.(Ⅰ)求椭圆C2的方程;(Ⅱ)过椭圆C2的右焦点F作斜率为k(k≠0)的直线l与椭圆C2相交于A,B两点,线段AB的中点为P,过点P做垂直于AB的直线交x轴于点D,试求|DP||AB|的取值范围.【解析】解:(Ⅰ)抛物线C1:y2=4x的焦点F为(1,0),由题意可得a2-b2=1①由C1与C2关于x轴对称,可得C1与C2的公共点为23,±263,可得49a2+83b2=1②由①②解得a=2,b=3,即有椭圆C2的方程为x24+y23=1;(Ⅱ)设l:y=k(x-1),k≠0,代入椭圆方程,可得(3+4k2)x2-8k2x+4k2-12=0,设A(x1,y1),B(x2,y2),则x1+x2=8k23+4k2,x1x2=4k2-123+4k2,即有y1+y2=k(x1+x2)-2k=8k33+4k2-2k=-6k3+4k2,由P为中点,可得P4k23+4k2,-3k3+4k2,又PD的斜率为-1k,即有PD:y--3k3+4k2=-1k x-4k23+4k2,令y=0,可得x=k23+4k2,即有Dk23+4k2,0 ,可得|PD|=k23+4k2-4k23+4k22+-3k3+4k22=3k4+k23+4k2,又|AB|=1+k2∙(x1+x2)2-4x1x2=1+k2∙8k23+4k22-4(4k2-12)3+4k2=12(1+k2) 3+4k2,即有|DP ||AB |=14k 2k 2+1=141-11+k 2,由k 2+1>1,可得0<11+k 2<1,即有0<141-11+k 2<14,则有|DP ||AB |的取值范围为0,14 .变式11.如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b2=1(a >b >0)的离心率为12,过椭圆右焦点F 作两条互相垂直的弦AB 与CD .当直线AB 斜率为0时,AB +CD =7.(1)求椭圆的方程;(2)求AB +CD 的取值范围.【解析】解:(1)由题意知,e =c a =12,CD =7-2a ,所以a 2=4c 2,b 2=3c 2,⋯2分因为点c ,7-4c2 在椭圆上,即c 24c 2+7-4c 2 23c 2=1,解得c =1.所以椭圆的方程为x 24+y 23=1.⋯6分(2)①当两条弦中一条斜率为0时,另一条弦的斜率不存在,由题意知AB +CD =7;⋯7分②当两弦斜率均存在且不为0时,设A (x 1,y 1),B (x 2,y 2),且设直线AB 的方程为y =k (x -1),则直线CD 的方程为y =-1k(x -1).将直线AB 的方程代入椭圆方程中,并整理得(3+4k 2)x 2-8k 2x +4k 2-12=0,所以x 1=4k 2-6k 2+13+4k 2,x 2=4k 2+6k 2+13+4k 2,所以AB =k 2+1|x 1-x 2|=12(k 2+1)3+4k 2.⋯10分同理,CD =121k2+1 3+4k2=12(k 2+1)3k 2+4.所以AB +CD =12(k 2+1)3+4k 2+12(k 2+1)3k 2+4=84(k 2+1)2(3+4k 2)(3k 2+4),⋯12分令t =k 2+1,则t >1,3+4k 2=4t -1,3k 2+4=3t +1,设f (t )=(4t -1)(3t +1)t 2=-1t 2+1t +12=-1t -12 2+494,因为t >1,所以1t ∈(0,1),所以f (t )∈12,494 ,所以AB +CD =84f (t )∈487,7.综合①与②可知,AB +CD 的取值范围是487,7.⋯16分.变式12.已知圆C 1的圆心在坐标原点O ,且恰好与直线l 1:x -2y +35=0相切,点A 为圆上一动点,AM ⊥x 轴于点M ,且动点N 满足ON =23OA +223-23OM ,设动点N 的轨迹为曲线C .(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线l 与椭圆C 相交于不同两点A ,B ,且满足OA ⊥OB (O 为坐标原点),求线段AB 长度的取值范围.【解析】解:(Ⅰ)设动点N (x ,y ),A (x 0,y 0),∵AM ⊥x 轴于点M ,∴M (x 0,0),设圆C 1的方程为x 2+y 2=r 2,由题意得r =|35|1+4=3,∴圆C 1的方程为x 2+y 2=9.由题意,ON =23OA +223-23 OM ,得(x ,y )=23(x 0,y 0)+223-23(x 0,0),∴x =223x 0y =23y 0 ,即x 0=322x y 0=32y,将A 322x ,32y代入x 2+y 2=9,得动点N 的轨迹方程为x 28+y 24=1;(Ⅱ)(1)假设直线l 的斜率存在,设其方程为y =kx +m ,联立y =kx +m x 2+2y 2=8,可得(1+2k 2)x 2+4km x +2m 2-8=0.∴△=64k 2-8m 2+32>0.x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-81+2k 2,(*)∵OA ⊥OB ,∴OA ⋅OB =0,则x 1x 2+(kx 1+m )(kx 2+m )=0,化简可得,(k 2+1)x 1x 2+km (x 1+x 2)+m 2=0.将(*)代入可得3m 2=8k 2+8.又∵|AB |=1+k 2|x 1-x 2|=1+k 264k 2-8m 2321+2k 2.将m 2=83(k 2+1)代入,可得|AB |=1+k 2⋅2×64k 23+3231+2k2=323⋅1+k 21+4k 4+4k 2=323⋅1+11k 2+4k 2+4≤23.∴当且仅当k 2=12,即k =±22时等号成立.又由k 21+4k 4+4k2≥0,∴|AB |≥323=463.∴463≤|AB |≤23.(2)若直线l 的斜率不存在,则OA 所在直线方程为y =x ,联立y =x x 2+2y 2=8 ,解得A 263,263,同理求得B 263,-263,求得|AB |=463.综上,得463≤|AB |≤23.变式13.已知椭圆x 2a 2+y 2b2=1的离心率为63,P (1,1)是椭圆上一点,直线y =13x +m 与椭圆交于A ,B 两点(B 在A 的右侧且不同于P 点)(Ⅰ)求椭圆方程;(Ⅱ)若直线PA 的斜率为1,求直线PB 的斜率;(Ⅲ)求|PA ||PB |的取值范围.【解析】解:(Ⅰ)由题意可得e =c a =631a 2+1b 2=1c 2=a 2-b 2,解得:a 2=4,b 2=43,所以椭圆的方程为:x 24+3y 24=1;(Ⅱ)设A (x 1,y 1),B (x 2,y 2),因为k PA =y 1-1x 1-1=1,所以直线PA 的方程为y -1=x -1,即y =x ,联立直线PA 与椭圆的方程:y =x x 2+3y 2-4=0 ,整理可得x 2=1,解得x =-1或x =1(舍),所以A (-1,-1),而A 在直线y =13x +m 上,所以m =-23,所以直线AB 的方程为y =13x -23,联立直线AB 与椭圆的方程y =13x -23x 2+3y 2-4=0,整理可得x 2-x -2=0,解得x =2或x =-1(舍),即B (2,0),所以直线PB 的斜率为0-12-1=-1;(Ⅲ)因为k PA +k PB =y 1-1x 1-1+y 2-1x 2-1=13x 1+m -1 (x 2-1)+13x 2+m -1 (x 1-1)(x 1-1)(x 2-1)=23x 1x 2+m -43 (x 1+x 2)-2(m -1)(x 1-1)(x 2-1),直线AB 与椭圆联立y =13x +m x 24+3y 24=1 整理可得:43x 2+2mx +3m 2-4=0,△=4m 2-4⋅43⋅(3m 2-4)>0,即m 2<169,且x 1+x 2=-32m ,x 1x 2=3(3m 2-4)4,①将其代入可得:k PA +k PB =23⋅34(3m 2-4)+m -43 -32m -2(m -1)(x 1-1)(x 2-1)=0,。
高中数学 圆锥曲线最值问题的的7种必考题型
圆锥曲线中的最值问题探究一.点的横(纵)坐标的最值例题1.定长为l (22b l a >)的线段AB 的端点在双曲线12222=by -a x 的右支上,求AB 中点M 的横坐标的最小值解析:如图,作出双曲线的右准线,过A,B 作AA′、BB′垂直于准线,垂足为A′,B′。
又过AB 的中点M 作MM′垂直于准线,垂足为M′.因为|MM′|=21(|AA′|+|BB′|),(1)据双曲线的第二定义:||||,=||||AF BF e eAA BB =''可得|AA′|=e 1|AF|,|BB′|=e1|BF|,将此二式代入(1),结合三角形两边之和大于第三边可得:|MM′|=e 21(|AF|+|BF|)≥e21|AB|,当且仅当A、F、B 三点共线时,即AB 过焦点F 时,有|AF|+|BF|=|AB|。
即'min |MM |=e 21|AB|=el 2,此时x―c a 2=e l 2=c al 2.即x=c a 2+222)2(2b a a l a c al ++=.AB 中点M的横坐标的最小值为:二.离心率最值例题2.设椭圆12222=+by a x (a >b >0)两焦点F 1、F 2,若椭圆上存在一点Q ,使∠F 1QF 2=120º,求椭圆离心率e 的最小值.解析:设1112(,),(,0),(,0),c 0P x y F c F c ->,则1121||,|PF a ex PF a ex =+=-在12PF F ∆中,由余弦定理得:22222201212111211||||||()()41cos1202||||2()()2PF PF F F a ex a ex c PF PF a ex a ex +-++--===-+-解得:22221243[0,]c a x a e -=∈,所以312c e a >=≥,即椭圆离心率e 的最小值为32FA'AB B 'MM 'Oyx变式:双曲线)0012222>>=-b a by a x ,(的左右焦点分别为21,F F ,若椭圆上存在点P,使得12||2||PF PF =,求双曲线离心率e 的最大值解析:由1212||2||||||=2PF PF PF PF a =⎧⎨-⎩得12||4||=2PF aPF a=⎧⎨⎩因为在12PF F ∆中,12||||>2c PF PF +,即422422a a c a a c+>⎧⎨-<⎩所以13c a<<又因为当三点一线时,422a a c+=所以综上得:离心率e 的取值范围是(1,3],即双曲线离心率e 的最大值为3三.线段长度最值例题3.已知椭圆1422=+y x G :,过点(),0m 作221x y +=的切线l 交椭圆G 于,A B 两点,求||AB 的最大值.解析:由题意得:点(),0m 在圆221x y +=上或在圆外,所以11-≤≥m m 或当1=m 时,切线1:=x l 由⎪⎩⎪⎨⎧=+=14122y x x 得⎪⎩⎪⎨⎧±==231y x ,故3||=AB ,同理1-=m 时,3||=AB 当11-<>m m 或时,设)(:m x k y l -=,),(),,(2211y x B y x A 因为直线l 与圆221x y +=相切,所以11||2=+k km ,即2221k m k +=由⎪⎩⎪⎨⎧=+-=14)(22y x m x k y 得0448)4122222=-+-+m k mx k x k (所以⎪⎩⎪⎨⎧+-=+=+>-+-=∆222212221222244144,4180)1)(41(1664k m k x x k m k x x m k k m k 所以]4))[(1(||212212x x x x k AB -++=24233m |m |m ||m |==≤++当且仅当3±=m 时取等号,综上可知:||AB 的最大值为2.F 1F 2A MxyO变式:若点P 在抛物线x y =2上,点Q 在圆1)322=+-y x (上,求||PQ 的最小值解析:12111411)25(1)3(1222-≥-+-=-+-=-≥x y x PC PQ 即||PQ 的最小值为12-四.多线段运算最值例题4.1F 、2F 分别是椭圆1162522=+y x 的左右焦点,)2,2(A 为定点,M 为椭圆上任意点,求2MF MA +的最小值。
圆锥曲线中的最值(范围)问题-(通用版)(解析版)
专题4 圆锥曲线中的最值(范围)问题解析几何中的最值(范围)问题,主要是结合直线与椭圆、直线与抛物线的位置关系的进行命题,要求证明、探索、计算线段长度(距离)或图形面积或参数等有关最值问题.从高考命题看,此类问题以主观题形式考查,多步设问,逐步深入考查分析问题解决问题的能力.圆锥曲线中的最值(范围)问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法(在选填题部分已重点讲解),即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、均值不等式方法等进行求解.而解答题部分主要使用代数法。
题型1 线段(距离)类的最值(范围)问题1.(2021·四川成都市·高三三模)已知椭圆2222:1(0)x y C a b a b +=>>的长轴长为,其离心率为2.(1)求椭圆C 的方程;(2)若A ,B 是椭圆C 上两点,且2AB =,求线段AB 中点M 到原点O 的最大距离.【答案】(1)2212x y +=;(21. 【分析】(1)根据椭圆的几何性质求出,,a b c 可得椭圆的标准方程;(2)当直线AB 斜率不存在时,0OM =;当直线AB 斜率存在时,设其方程为y kx m =+,联立直线与椭圆,根据弦长公式得到2222122k m k +=+,得到||OM 关于k 的函数关系式,再换元后根据基本不等式可求出结果.【详解】(1)由已知,2a =,所以a =又离心率为c a =,即a =,故1c =,进而1b =,所以椭圆C 的方程为2212x y +=.(2)设()11,A x y ,()22,B x y ,当直线AB 斜率不存在时,由题意可得AB 就是短轴,中点与原点重合,0OM =, 当直线AB 斜率存在时,设其方程为y kx m =+,由2222y kx m x y =+⎧⎨+=⎩,得()222214220k x kmx m +++-=, ()()()22222216421228210k m k m k m ∆=-⨯+-=+->,122421km x x k ∴+=-+,21222221m x x k -=+, 所以212122242()222121k m my y k x x m m k k +=++=-+=++, 222,2121km m M k k -⎛⎫∴ ⎪++⎝⎭,()()2222241||21k m OM k +∴=+,由2||221AB k ===+,化简得2222122k m k +=+, ()()()222222222412141||22212221k k k OM k k k k +++∴=⋅=++++, 令2411k t +=≥,则244||43(1)(3)4t OM t t t t==≤=-++++,当且仅当t =时取等号,||1OM ∴≤,max ||1OM ∴=,当且仅当214k =时取等号.即AB 中点M 到原点O1. 【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.(2021·浙江高三期末)如图,已知抛物线21:C x y =在点A 处的切线l 与椭圆222:12x C y 相交,过点A 作l 的垂线交抛物线1C 于另一点B ,直线OB (O 为直角坐标原点)与l 相交于点D ,记()11,A x y 、()22,B x y ,且1>0x .(1)求12x x -的最小值;(2)求DO DB的取值范围.【答案】(1)2;(2)40,17⎛⎫⎪⎝⎭. 【分析】(1)利用导数求出抛物线1C 在点A 处的切线方程,将切线方程与椭圆方程联立,由0∆>求出21x 的取值范围,求出直线AB 的方程,并将直线AB 的方程与抛物线1C 的方程联立,由韦达定理得出12112x x x +=-,再利用基本不等式可求得12x x -的最小值;(2)记点O 、B 到直线l 的距离分别为1d 、2d ,求出1d 、2d ,可得出12DO d DBd =,结合21x 的取值范围可求得DO DB的取值范围. 【详解】(1)对函数2yx 求导得2y x '=,所以抛物线1C 在点A 处的切线方程为()1112y y x x x -=-,即2112y x x x =-,联立21122212y x x x x y ⎧=-⎪⎨+=⎪⎩,得()2234111188220x x x x x +-+-=, 所以()()62411164418220x x x∆=-+->,解得2104x <<,所以直线AB 的方程为2111122y x x x =-++, 联立21121122y x x x x y⎧=-++⎪⎨⎪=⎩,得23111220x x x x x +--=,所以12112x x x +=-,所以12111222x x x x -=+≥=,当且仅当112x =时取等号,所以12x x -的最小值为2; (2)记点O 、B 到直线l 的距离分别为1d 、2d ,所以21d =,211211214124x x x x d ⎫+=+=⎪⎭, 所以()4112222121441414DOd x DB d x x ===⎛⎫++ ⎪⎝⎭,因为2104x <<,所以2114x +>, 所以222440,1714DODBx ⎛⎫=∈ ⎪⎝⎭⎛⎫+ ⎪⎝⎭,所以DO DB 的取值范围为40,17⎛⎫ ⎪⎝⎭. 【点睛】圆锥曲线中的取值范围问题的求解方法(1)函数法:用其他变量作为参数,建立函数关系,利用求函数值域的方法求解. (2)不等式法:根据题意建立含参数的不等式,通过解不等式求参数的取值范围. (3)判别式法:建立关于某变量的一元二次方程,利用根的判别式求参数的取值范围. (4)数形结合法:研究参数所表示的几何意义,利用数形结合思想求解.3.(2021·全国高三专题练习(理))设O 为坐标原点,M 是x 轴上一点,过点M 的直线交抛物线C :24y x =于点A ,B ,且4OA OB ⋅=-.(1)求点M 的坐标;(2)求232BM AM-的最大值.【答案】(1)()2,0;(2)2.【分析】(1)设211,4y A y ⎛⎫ ⎪⎝⎭,222,4y B y ⎛⎫ ⎪⎝⎭,(),0M m ,由4OA OB ⋅=-得到128y y =-,设直线:AB x ty m =+与抛物线方程联立,由根与系数的关系得到2m =,即可得到点M 的坐标;(2)由题意及弦长公式得到AM ,BM ,利用根与系数的关系得到221114AMBM+=,进而得232BM AM-的表达式,然后构造函数,利用函数的单调性求函数的最大值,即可得到232BM AM-的最大值.【详解】(1)设211,4y A y ⎛⎫ ⎪⎝⎭,222,4y B y ⎛⎫⎪⎝⎭,(),0M m , 则222212121212,,44416y y y y OA OB y y y y ⎛⎫⎛⎫⋅=⋅=+=- ⎪ ⎪⎝⎭⎝⎭,解得128y y =-,设直线:AB x ty m =+,联立方程,得2,4,x ty m y x =+⎧⎨=⎩得2440y ty m --=, 由根与系数的关系知,1248m y y -==-,所以2m =,故点M 的坐标为()2,0.(2)由(1)知,124y y t +=,128y y =-.易知1AM y =,2M B =, 所以()()22222212111111t y t y AM BM+=+++()()222122222121616141641y y t t y y t ++===++, 则222321132||3284BM BM BM AM BM BM ⎛⎫-= -⎪-=-- ⎪⎝⎭. 令()2328u f u u =--,2u >,则()3641f u u='-,所以()f u 在()2,4上单调递增,在()4,+∞上单调递减, 所以()()min 42f u f ==,即232BM AM-的最大值是2,当且仅当4BM =时取等号.【点睛】圆锥曲线中的最值问题是高考中的热点问题,常涉及不等式、函数的值域问题,综合性比较强,解法灵活多样,但主要有两种方法:一是几何方法,即利用圆锥曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是代数方法,即把要求最值的几何量或代数式表示为某个(些)参数的函数,然后利用函数、不等式的知识等进行求解.4.(2021·山西临汾市·高三二模(理))已知点()21Q ,在椭圆()2222:10x y C a b a b+=>>上,且点Q 到C的两焦点的距离之和为(1)求C 的方程;(2)设圆228:5O x y +=上任意一点P 处的切线l 交C 于点M ,N ,求OM ON ⋅的最小值.【答案】(1)22182x y +=;(2)165. 【分析】(1)由椭圆定义得a ,把已知点的坐标代入方程求得b ,从而得椭圆方程; (2)设直线方程为y kx b =+,1122(,),(,)M x y N x y ,由直线与圆相切得22588b k =+, 直线方程与椭圆方程联立,消元后应用韦达定理代入求得0OM ON ⋅=,得2MON π∠=,斜率不存在时求得,M N 点坐标后也得此结论,然后设(cos ,sin )M OM OM θθ,cos(),sin 22N ON ON ππθθ⎛⎫±±⎪⎝⎭,代入椭圆方程,然后计算2288OM ON ⋅得最大值,从而可得OM ON ⋅的最小值.【详解】(1)由题意2a =,a =(2,1)Q 在椭圆上,所以24118b+=,b = 椭圆方程为22182x y +=.(2)当直线MN斜率不存在时,直线方程为x =把x =y =M,N , 0OM ON ⋅=,所以2MON π∠=,同理x =2MON π∠=;当直线MN 斜率存在时,设直线方程为y kx b =+,1122(,),(,)M x y N x y ,=225880b k --=,(*) 由22182y kx b x y =+⎧⎪⎨+=⎪⎩得222(41)8480k x kbx b +++-=,则12221228414841kb x x k b x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩, 22121212121212()()(1)()OM ON x x y y x x kx b kx b k x x kb x x b ⋅=+=+++=++++22222222488588(1)414141b kb b k k kb b k k k ---⎛⎫=+⨯+⨯-+= ⎪+++⎝⎭, 由(*)得0OM ON ⋅=,所以2MON π∠=,综上,2MON π∠=,设xOM θ∠=,则2xON πθ∠=±,(cos ,sin )M OM OM θθ,cos(),sin 22N ON ON ππθθ⎛⎫±±⎪⎝⎭,因为,M N 在椭圆22182x y +=上,所以2222cos sin 182OM OM θθ+=,2228cos 4sin OMθθ=+,同理2228sin 4cos ONθθ=+,2222222288(cos 4sin )(sin 4cos )(13sin )(13cos )OMONθθθθθθ⋅=++=++222299139sin cos 4(2sin cos )4sin 244θθθθθ=++=+=+,2sin 2[0,1]θ∈,所以sin 21θ=时,2288OMON⋅取得最大值254,所以OM ON165=. 【点睛】本题考查求椭圆方程,考查直线与椭圆相交,考查直线相切.解题关键是首先利用设而不求的思想方法结合韦达定理求得2MON π∠=,然后设点的坐标(cos ,sin )M OM OM θθ,cos(),sin 22N ON ON ππθθ⎛⎫±±⎪⎝⎭,易得出OM ON ⋅的最小值.题型2面积类的最值(范围)问题1、(2021江西南昌高三模拟)已知椭圆()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,焦距为4,直线1l :by x c=与椭圆相交于A 、B 两点,2F 关于直线1l 的对称点E 在椭圆上.斜率为1-的直线2l 与线段AB 相交于点P ,与椭圆相交于C 、D 两点.(1)求椭圆的标准方程;(2)求四边形ACBD 面积的取值范围.【解析】(1)由椭圆焦距为4,设()12,0F -,()22,0F ,连结1EF ,设12EF F α∠=, 则b tan c α=,又222a b c =+,得,b csin cos a aαα==, ∴ ()121229012|+|90F F c sin a c e b c a EF EF b c a sin sin a aαα======++-+,解得222a bc c b c =+⇒==,28a =,所以椭圆方程为22184x y +=;(2)设直线2l 方程:+y x m =-,()11,C x y 、()22,D x y ,由22184+x y y x m ⎧+=⎪⎨⎪=-⎩,得2234280x mx m -+-=,所以1221243283x x m m x x ⎧+=⎪⎪⎨-⎪=⎪⎩, 由(1)知直线1l :y x =,代入椭圆得,A B ⎛ ⎝,得3AB =,由直线2l 与线段AB 相交于点P,得m ⎛∈ ⎝ ,12CD x =-===而21l k =-与11l k =,知21l l ⊥,∴ 12ACBD S AB CD =⨯=,由m ⎛∈ ⎝,得232,03m ⎛⎤-∈- ⎥⎝⎦3232,93⎛⎤ ⎥⎝⎦, ∴四边形ACBD 面积的取值范围3232,93⎛⎤⎥⎝⎦.2.(2021·浙江高三模拟)已知:抛物线21:2C y x =,曲线()222:104x C y x +=<,过2C 上一点P 作1C 的两条切线,切点分别为A .(1)若()2,0P -,求两条切线的方程;(2)求PAB △面积的取值范围.【答案】(1)()122y x =±+;(2)(]1,8. 【分析】(1)设所求切线的方程为()2y k x =+,将该直线的方程与抛物线的方程联立,由0∆=可求出k 的值,即可求得所求的两条切线的方程;(2)设()11,A x y 、()22,B x y 、()P m n ,,写出抛物线22y x =在点A 、B 处的切线方程,将点P 的坐标代入两切线方程,可求得直线AB 的方程,将直线AB 的方程与抛物线1C 的方程联立,列出韦达定理,利用三角形的面积公式可得出PAB △面积关于m 的表达式,利用函数思想可求得PAB △面积的取值范围. 【详解】(1)显然切线斜率存在,设切线方程为()2y k x =+,由()222y k x y x ⎧=+⎨=⎩,得2240-+=ky y k ,由204160k k ≠⎧⎨∆=-=⎩,得12k =±, 因此,两条切线的方程为()122y x =±+; (2)设()11,A x y 、()22,B x y 、()P m n ,,先证明出抛物线22y x =在其上一点()00,x y 处的切线方程为00y y x x =+.证明:联立0022y y x x y x=+⎧⎨=⎩,消去x 可得200220y y y x -+=,即220020y y y y -+=,即()200y y -=,解得0y y =,所以,直线00y y x x =+与抛物线22y x =相切于点()00,x y .所以,切线PA 的方程为11yy x x =+,可得11ny m x =+,切线PB 的方程为22yy x x =+,可得22ny m x =+,AB ∴的方程为ny m x =+,P 到AB的距离d =.由22ny m x y x=+⎧⎨=⎩,得2220y ny m -+=, 由韦达定理可得122y y n +=,122y y m =,()P m n ,为曲线2C 上一点,则2214m n +=,所以,2214m n =-且20m -≤<,AB ==220n m ->,()332222121224PABm SAB d n m m ⎛⎫=⋅==-=-- ⎪⎝⎭,20m -≤<,()(]22121451,444m m m --+=-++∈,则(]322121,84PABm S m ⎛⎫--∈⎪⎝⎭= .因此,PAB △面积的取值范围为(]1,8.【点睛】利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式;(5)代入韦达定理求解.3.(2021·浙江高三其他模拟)如图,已知椭圆2214x y +=的左、右顶点分别为A ,B ,()2,2P ,线段OP(O 为坐标原点)交椭圆于点C ,D 在线段OC 上(不包括端点),连接AD 并延长,交椭圆于另一点E ,连接PE 并延长,交椭圆于另一点F ,连接BF ,DF .记1S ,2S 分别为BCD △和BDF 的面积.(1)求OC 的值;(2)求12S S ⋅的最大值.【答案】(1;(2)25.【分析】(1)先根据点P 的坐标得到直线OP 的方程,并将其与椭圆的方程联立,求出点C 的坐标,再利用两点间的距离公式求OC 的值即可;(2)设出直线PF 的方程,将其与椭圆方程联立,结合根与系数的关系得到AF BD k k =,进而可得BCD △和BDF 的面积的表达式,最后利用基本不等式求最值即可. 【详解】解:(1)因为()2,2P ,所以直线OP 的方程为y x =,将直线OP 的方程与椭圆的方程联立,可得221,4x y y x⎧+=⎪⎨⎪=⎩解得x y ⎧=⎪⎪⎨⎪=⎪⎩或x y ⎧=⎪⎪⎨⎪=⎪⎩又由题意得点C位于第一象限,所以C.因此5OC ==. (2)由题意易知直线PF 的斜率一定存在且大于1,故设直线PF 的方程为()22y k x -=-(1k >),即22y kx k =+-,联立方程,得221,422,x y y kx k ⎧+=⎪⎨⎪=+-⎩化简得()()()2221416144830k x k k x k k ++-+-+=,由0∆>得()()()22216141444830k k k k k --+⨯-+>⎡⎤⎣⎦,即830k ->,得38k >,故1k >. 设()11,E x y ,()22,F x y ,则()()1222122161,144483.14k k x x k k k x x k ⎧-+=⎪+⎪⎨-+⎪=⎪+⎩易知()2,0A -,连接AF ,所以直线AE 的斜率112AE y k x =+,直线AF 的斜率222AF y k x =+,所以12122211AE AF x x k k y y +++=+()()()()()()1221122222222222x kx k x kx k kx k kx k ++-+++-=+-+- ()()()()12122212122242222(22)kx x x x k k x x k k x x k +++-=+-++-()()()()()()()()()222222284831622422144483822222214k k k k k k k k k k k k k k k -++-+-+=-++--+-+81648kk-=-2=.①因为点D 在直线y x =上,所以D D x y =,又()2,0B , 所以直线AD 的斜率2D AD D y k x =+,直线BD 的斜率2DBD D y k x =-,所以22112D D AD BD D D x x k k y y +-+=+=.② 又11AE AD k k =,③ 则由①②③可得11AF BDk k =,即AF BD k k =.设(),D m m(0m <<),则2122BDFBDAS S SBAm m ===⋅=. 又C,所以CD m m ⎫==-=-⎪⎭又点B 到直线CD 的距离d ==所以11122BDCS SCD d m m ⎫==⋅=-=-⎪⎭. 因此2122225S S m m ⎡⎤⎫⋅=-≤=⎪⎭⎢⎥⎣⎦,当且仅当m m =-,即5m =时等号成立,所以12S S ⋅的最大值是25. 【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.4.(2021·全国高三其他模拟)已知1A ,2A 分别为椭圆2222:1(0)x y C a b a b+=>>的左、右顶点,B 为椭圆C 的上顶点,点2A 到直线1A B,椭圆C 过点⎝.(1)求椭圆C 的标准方程;(2)设直线l 过点1A ,且与x 轴垂直,P ,Q 为直线l 上关于x 轴对称的两点,直线2A P 与椭圆C 相交于异于2A 的点D ,直线DQ 与x 轴的交点为E ,当2PA Q △与PEQ 的面积之差取得最大值时,求直线2A P 的方程.【答案】(1)22143x y +=;(2)360x -=或360x -=. 【分析】(1)由点到直线的距离得一个,a b 的关系式,已知点的坐标代入又得一个关系式,,两者联立解得,a b ,得椭圆方程;(2)设直线2A P 的方程为2(0)x my m =+≠,依次求得P 点,Q 点,D 点,E 点坐标,然后计算面积之差222PA Q PEQ PA E S S S -=△△△,再结合基本不等式求得最大值.由此可得直线方程.【详解】(1)由题意知2(,0)A a ,1(,0)A a -,(0,)B b ,则直线1A B 的方程为by x b a=+, 即0bx ay ab -+=,所以点2A 到直线1A B的距离d ==2234b a =.① 又椭圆C过点3⎛ ⎝,所以224213a b +=.② 联立①②,解得24a =,23b =,故椭圆C 的标准方程为22143x y +=.(2)由(1)知2(2,0)A ,直线l 的方程为2x =-.由题意知直线2A P 的斜率存在且不为0, 设直线2A P 的方程为2(0)x my m =+≠,联立2,2,x x my =-⎧⎨=+⎩解得2,4,x y m =-⎧⎪⎨=-⎪⎩即42,P m ⎛⎫-- ⎪⎝⎭,42,Q m ⎛⎫- ⎪⎝⎭.联立222(0),1,43x my m x y =+≠⎧⎪⎨+=⎪⎩消去x 整理得()2234120m y my ++=,解得0y =或21234m y m -=+. 由点D 异于点2A 可得2226812,3434m m D m m ⎛⎫-+- ⎪++⎝⎭, 所以直线DQ 的方程为222124684(2)203434m m x y m m m m ⎛⎫--+⎛⎫⎛⎫-+-+-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭, 令0y =,得226432E m x m -+=+,所以22222641223232m m A E m m -+=-=++, 所以2PA Q △与PEQ 的面积之差为222PA Q PEQ PA E S S S -=△△△. (利用点的对称关系,将面积差问题转化为求2PA E S △)因为2222112448||48222232323||||PA Em m S m m m m m -=⨯⋅⋅==≤+++△当且仅当m =时取等号.(在利用基本不等式求最值时,要特别注意“拆、拼、凑"等技巧)故当2PA Q △与PEQ 的面积之差取得最大值时,直线2A P的方程为360x +-=或360x -=. 【点睛】本题考查求椭圆方程,考查直线与椭圆相交问题,解题方法是解析几何的基本方法:设直线2AP 方程为2(0)x my m =+≠,直线与直线相交得交点坐标,直线与椭圆相交得交点坐标,然后求得三角形面积(之差),再结合基本不等式求得最大值,得出结论. 题型3斜率类的最值(范围)问题1.(2021·成都市高三模拟)设椭圆22213x y a +=(a >)的右焦点为F ,右顶点为A .已知113e OF OA FA +=,其中O 为原点,e 为椭圆的离心率.(1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H .若BF HF ⊥,且MOA MAO ∠≤∠,求直线l 的斜率的取值范围. 【解析】(1)设(),0F c ,由113eOF OA FA+=,即()113c c a a a c +=-,2223a c c -=,又2223a c b -==,所以21c =,因此24a =,所以椭圆的方程为22143x y +=.(2)设直线l 的斜率为k (0k ≠),则直线l 的方程为()2y k x =-.设()11,B x y ,()22,M x y ,()30,H y .在△MAO 中,MOA MAO MA MO ∠≤∠⇔≤,即()222222222x y x y -+≤+,化简得21x ≥. 由方程组()221432x y y k x ⎧+=⎪⎨⎪=-⎩,消去y ,整理得()2222431616120k x k x k +-+-=.于是2128643k x k -=+, 从而121243ky k =-+.由(1)知()1,0F ,所以()31,FH y =-,2229412,4343k k BF k k ⎛⎫-= ⎪++⎝⎭,由BF HF ⊥,得0BF HF ⋅=,所以2322129404343ky k k k -+=++,解得239412k y k-=, 因此直线MH 的方程为219412k y x k k-=-+.由方程组()2194122k y x k k y k x ⎧-=-+⎪⎨⎪=-⎩,消去y ,解得()222209121k x k +=+.于是()222091121k k +≥+,解得k ≤或k ≥, 所以直线l的斜率的取值范围为6,,4⎛⎡⎫-∞+∞ ⎪⎢ ⎪⎝⎦⎣⎭.【点评】由MOA MAO ∠≤∠,可得到不等式21x ≥,此时只要用k 去表示2x ,就能得到有关k 的不等式,这也是k 需要满足的唯一一个不等式,解这个不等式就能求出k 的取值范围.2.(2020·上海高三其他模拟)已知椭圆()2222:10x y C a b a b+=>>长轴的两顶点为A 、B ,左右焦点分别为1F 、2F ,焦距为2c 且2a c =,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为3.(1)求椭圆C 的方程;(2)在双曲线22:143x y T -=上取点Q (异于顶点),直线OQ 与椭圆C 交于点P ,若直线AP 、BP 、AQ 、BQ 的斜率分别为1k 、2k 、3k 、4k .试证明:1234k k k k +++为定值;(3)在椭圆C 外的抛物线K :24y x =上取一点E ,1EF 、2EF 的斜率分别为1'k 、2'k ,求121''k k 的取值范围.【答案】(1)22143x y +=;(2)证明过程见详解;(3)5(,0)(0,)24-⋃+∞. 【分析】(1)本小题先建立方程组2222223a cb a a b c=⎧⎪⎪=⎨⎪=+⎪⎩,再求出2a =,b =1c =,最后求出椭圆C 的方程即可;(2)本小题先得到112132x k k y +=-,再得到234232x k k y +=,接着判断1122x y x y =,最后得到结论即可; (3)本小题先用233(,)4y E y 表示出432123161''16y k k y -=,(2383y >且32y ≠-),再建立函数1()16t f t t =-求导得到()f t 的取值范围,最后求导121''k k 的取值范围. 【详解】(1)因为过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为3,所以223ba=,所以2222223a c b a a b c=⎧⎪⎪=⎨⎪=+⎪⎩,解得:2a =,b =1c =,所以椭圆C 的方程:22143x y +=; (2)由(1)可知:(2,0)A -、(2,0)B 、1(1,0)F -、2(1,0)F ,设点11(,)P x y ,则2211143x y +=,整理得:2211443y x -=-, 1111111122211111223422423y y x y x y x k k y x x x y +=+===-+---; 设点22(,)P x y ,则2222143x y -=,整理得:2222443y x -=, 2222222342222222223422423y y x y x y xk k y x x x y +=+===+--.又因为OP 与OQ 共线,所以12x x λ=,12y y λ=,所以1122x y x y =, 所以121212341212333()0222x x x x k k k k y y y y +++=-+=-+=,所以1234k k k k +++为定值; (3)设233(,)4y E y ,由2221434x y y x⎧+=⎪⎨⎪=⎩,解得:222383x y ⎧=⎪⎪⎨⎪=⎪⎩, 由E 在椭圆C 外的抛物线K :24y x =上一点,则2383y >, 则3123'14y k y =+,(2383y >且32y ≠-);3223'14y k y =-,(2383y >且32y ≠-), 则23331222433316''161144y y y k k y y y =⋅=--+,(2383y >且32y ≠-), 则432123161''16y k k y -=,(2383y >且32y ≠-), 令23y t =,(83t >且4t ≠),设1()16t f t t =-,(83t >且4t ≠),则211'()016f t t =+>,所以1()16t f t t=-在8(,4)3,(4,)+∞上单调递增, 所以()f t 的取值范围:5(,0)(0,)24-⋃+∞,所以121''k k 的取值范围5(,0)(0,)24-⋃+∞. 【点睛】本题考查求椭圆的标准方程,圆锥曲线相关的定值问题、圆锥曲线相关的参数取值范围问题,是偏难题.3.(2021·广东茂名市·高三月考)已知点N 为圆1C :()22116x y ++=上一动点,圆心1C 关于y 轴的对称点为2C ,点M 、P 分别是线段1C N ,2C N 上的点,且20MP C N ⋅=,222C N C P =.(1)求点M 的轨迹方程;(2)过点()2,0A -且斜率为()0k k >的直线与点M 的轨迹交于A ,G 两点,点H 在点M 的轨迹上,GA HA ⊥,当2AG AH =2k <<.【答案】(1)22143x y +=;(2)证明见解析 【分析】(1)由已知可得214MC MC +=,可判断点M 在以12,C C 为交点的椭圆上,即可求出方程;(2)将直线方程代入椭圆,利用弦长公式可求出AG =,同理可得AH =知可得3246380k k k -+-=,利用导数结合零点存在性定理即可证明. 【详解】(1)222C N C P =,P ∴是2C N 的中点,20MP C N ⋅=,2MP C N ∴⊥,∴点M 在2C N 的垂直平分线上,2||MN MC ∴=,121||42MN MC MC MC +=+=>,∴点M 在以12,C C 为交点的椭圆上,且2,1a c ==,则b =M 的轨迹方程为22143x y +=; (2)可得直线AG 的方程为(2)(0)y k x k =+>, 与椭圆方程联立可得()2222341616120kxk x k +++-=,设()11,G x y ,则2121612(2)34k x k -⋅-=+,可得()21223434k x k-=+,则12234AG k =+=+,由题可得,直线AH 的方程为1(2)y x k =-+,故同理可得AH =由2AG AH =可得2223443k k k=++,即3246380k k k -+-=, 设32()4638f t t t t =-+-,则k 是()f t 的零点,22()121233(21)0f t t t t '=-+=-≥,则()f t 在()0,∞+单调递增,又260,(2)60f f =<=>,因此()f t 在()0,∞+有唯一零点,且零点k在)22k <<.【点睛】本题考查椭圆的轨迹方程,解题的关键是利用椭圆定义得出M 的轨迹为椭圆;考查参数范围的证明,解题的关键是利用弦长公式求出弦长,利用已知得出3246380k k k -+-=,再利用导数证明.4.(2021·全国高三月考(文))已知椭圆2222:1(0)x y C a b a b+=>>的两个焦点分别为1F ,2F ,过点1F 的直线l 与椭圆C 交于M ,N 两点(点M 位于x 轴上方),2MNF ,12MF F △的周长分别为8,6. (1)求椭圆C 的方程;(2)若1||MF m MN =,且2334m ≤<,设直线l 的倾斜角为θ,求sin θ的取值范围. 【答案】(1)22143x y +=;(2)0,3⎛ ⎝⎦. 【分析】(1)根据椭圆的定义可得2MNF ,12MF F △的周长分别为4,22a a c +,结合222a b c =+可得答案.(2)根据题意设出直线l 的方程与椭圆方程联立,写出韦达定理,由1||MF m MN =,得出11MF F N,得出,M N的纵坐标12,y y 的关系,从而可求出答案.【详解】(1)设椭圆C 的半焦距为c ,因为2MNF ,12MF F △的周长分别为8,6,所以根据椭圆的定义得22248226a a c a b c =⎧⎪+=⎨⎪=+⎩,解得21a c b ⎧=⎪=⎨⎪=⎩.所以椭圆C 的方程为22143x y +=.(2)由条件1||MF m MN =,且2334m ≤<,则12MF MF >,所以直线l 的斜率存在. 根据题意,可设直线l 的方程为(1)(0).y k x k =+>.联立22(1)143y k x x y =+⎧⎪⎨+=⎪⎩,消去x ,得()22234690k y ky k +--=,则()2214410k k ∆=+>,设()11,M x y ,()22,N x y ,则122634k y y k +=+①,2122934k y y k-=+②, 又1||MF m MN =,且2334m ≤<,则11[2,3)1MF m F N m =∈-.设1mmλ=-,[2,3)λ∈,则11MF F N λ=,所以12y y λ③,把③代入①得()226(1)34k y k λ=-+,()126(1)34ky k λλ-=-+,并结合②可得()2212222236934(1)34k k y y k kλλ--==+-+,则22(1)434kλλ-=+,即214234k λλ+-=+, 因为12λλ+-在[2,3)λ∈上单调递增,所以114223λλ≤+-<,即21442343k ≤<+,且0k >,解得02k <≤,即0tan 2θ<≤,所以0sin 3θ<≤. 故sin θ的取值范围是0,3⎛ ⎝⎦.【点睛】本题考查求椭圆方程和直线与椭圆的位置关系,解答本题的关键是由122634ky y k +=+,2122934k y y k-=+,又1||MF m MN =,且2334m ≤<,则11[2,3)1MF m F N m =∈-,得出关系求解,属于中档题.题型4向量类的最值(范围)问题1.(2021·陕西咸阳市·高三三模(理))已知12B B 、分别是椭圆22221(0)x y a b a b+=>>短轴两端点,离心率为12,P 是椭圆C 上异于1B 、2B 的任一点,12PB B △的面积最大值为(1)求椭圆C 的标准方程; (2)过椭圆C 右焦点F 的直线l 交椭圆C 于M N 、两点,O 为坐标原点,求OM ON +的取值范围.【答案】(1)22143x y +=;(2)[]0,2. 【分析】(1)根据题中条件,列出方程组求出,a b ,即可得出椭圆方程;(2)先讨论直线l 的斜率为0的情况,可求出0OM ON +=;再讨论直线的斜率不为0的情况,直线l 的方程为:1x my =+,()11,M x y ,()22,N x y ,联立直线与椭圆方程,利用韦达定理,以及向量模的坐标表示,得到(2OM ON +=.【详解】(1)由题意可得:22212ab c a a b c ⎧=⎪⎪=⎨⎪=+⎪⎩,解得2a b =⎧⎪⎨=⎪⎩;所以椭圆C 的方程为221.43x y +=(2)当直线l 的斜率为0时,0OM ON +=,0OM ON +=当直线的斜率不为0时,因为()1,0F ,设直线l 的方程为:1x my =+,与椭圆C 交于()11,M x y ,()22,N x y , 由221,431,x y x my ⎧+=⎪⎨⎪=+⎩消去x 得()22:34690m y my ++-=, 所以1221226,349,34m y y m y y m ⎧+=-⎪⎪+⎨⎪=-⎪+⎩,()()22236363414410m m m ∆=++=+>,又()()12121212,2,OM ON x x y y my my y y +++=+++=, 所以(OM ON my +===令2110,344t m ⎛⎤=∈ ⎥+⎝⎦,则()()()222222223433449164313434m m t t t m m t ++++===+++, 因为二次函数243y t t =+在10,4t ⎛⎤∈ ⎥⎝⎦上显然单调递增,所以(]2430,1y t t =+∈,因此((]20,2OM ON +=;综上知,[]0,2OM ON +∈.【点睛】求解椭圆中弦长、向量的模长等问题时,一般需要联立直线与椭圆方程,利用韦达定理,结合弦长公式或两点间距离公式、向量模的坐标表示等,表示出所求的量,再结合基本不等式或利用函数单调性等,即可求解.2.(2021·安徽高三月考(理))已知椭圆()2222:10x y Ca b a b+=>>的左焦点为F,过点F 的直线l 与椭圆交于A ,B 两点,当直线l x ⊥轴时,AB =tan AOB ∠=(1)求椭圆C 的方程;(2)设直线l l '⊥,直线l '与直线l 、x 轴、y 轴分别交于点M 、P 、Q ,当点M 为线段AB 中点时,求PM PFPO PQ⋅⋅的取值范围.【答案】(1)2212x y +=;(2)()1,+∞.【分析】(1,2AOB AOF ∠=∠,进而根据几何关系解得1bc ==,a =即可得答案;(2)由题设():1l y k x =+,与椭圆联立方程得2222,2121k k M k k ⎛⎫- ⎪++⎝⎭,进而得直线22212:2121kk l y x k k k ⎛⎫'-=-+ ⎪++⎝⎭,所以22,021k P k ⎛⎫- ⎪+⎝⎭,进而根据几何关系得2PM PF PM ⋅=,2PO PQ PO ⋅=,进而将问题转化为求22PM PO的取值范围问题求解即可.【详解】解:(1)由题意可知(),0F c -,直线l x⊥轴时,22b AB a==22tan tan 1tan AOF AOB AOF ∠∠==-∠tanAOF ∠=, ∵0,2AOF π⎛⎫∠∈⎪⎝⎭,∴2tan 2b AF a AOF FO c∠===,解得:1bc ==,a =C 的方程为2212x y +=.(2)设()11,A x y ,()22,B x y ,依题意直线l 斜率一定存在且不为零,设():1l y k x =+,代入椭圆方程得:()2222214220kx k x k +++-=,则2122421k x x k -+=+,()121222221k y y k x x k +=++=+.故2222,2121k k M k k ⎛⎫- ⎪++⎝⎭, 直线22212:2121kk l y x k k k ⎛⎫'-=-+ ⎪++⎝⎭,令0y =,则22,021k P k ⎛⎫- ⎪+⎝⎭, ∵PMMF ⊥,OQ PO ⊥,∴2PM PF PM ⋅=,2PO PQ PO ⋅=,∴222222222222222221212111121k k k PMk k k PM PF k k k PO PQ POk k ⎛⎫--⎛⎫-+ ⎪ ⎪+++⋅+⎝⎭⎝⎭====+⋅⎛⎫- ⎪+⎝⎭, ∵()20,k ∈+∞,∴()2111,k +∈+∞,∴ ()1,PM PFPO PQ⋅∈+∞⋅. 【点睛】本题考查椭圆的性质求方程,直线与椭圆的位置关系求范围问题,考查运算求解能力,化归转化能力,是中档题.本题第二问解题的关键在于根据PMMF ⊥,OQ PO ⊥得2PM PF PM ⋅=,2PO PQ PO ⋅=,进而将问题转化为22PM PO范围的求解.3.(2021·浙江高三其他模拟)如图,椭圆()2222:10x y C a b a b+=>>的左顶点为A ,离心率为12,长轴长为4,椭圆C 和抛物线()2:20F y px p =>有相同的焦点,直线:0l x y m -+=与椭圆交于M ,N 两点,与抛物线交于P ,Q 两点.(1)求抛物线F 的方程;(2)若点D ,E 满足AD AM AN =+,AE AP AQ =+,求AD AE ⋅的取值范围.【答案】(1)24y x =;(2)144,4877AD AE ⎛⋅∈+⎝⎭. 【分析】(1)根据题意可得2a =,1c =,再根据12p=即可求解. (2)将直线:0l x y m -+=与椭圆方程联立,设()11,M x y ,()22,N x y,利用韦达定理可得864,77m m AD ⎛⎫=- ⎪⎝⎭,再将直线:0l x y m -+=与抛物线方程联立设()33,P x y ,()44,Q x y ,利用韦达定理可得()82,4AE m =-,再由从而可得216963277AD AE m m ⋅=-+,配方即可求解.【详解】(1)因为椭圆C 的离心率为12,长轴长为4,2412a c a =⎧⎪⎨=⎪⎩,,,所以2a =,1c =,因为椭圆C 和抛物线F 有相同的焦点,所以12p=,即2p =,所以抛物线F 的方程为24y x =. (2)由(1)知椭圆22:143x y C +=,由221430x yx y m ⎧+=⎪⎨⎪-+=⎩,,得22784120x mx m ++-=, ()22164474120m m ∆=-⨯⨯->,得27m <,m <<设()11,M x y ,()22,N x y ,则1287mx x +=-,所以()1212627m y y x x m +=++=. 易知()2,0A -,所以()1212864,4,77m m AD AM AN x x y y ⎛⎫=+=+++=-⎪⎝⎭. 由240y x x y m ⎧=⎨-+=⎩,,得()22240x m x m +-+=.()2222440m m ∆=-->,得1m <. 设()33,P x y ,()44,Q x y ,则3442x x m +=-,所以()343424y y x x m +=++=,所以()()34344,82,4AE AP AQ x x y y m =+=+++=-.所以()864,82,477m m AD AE m ⎛⎫⋅=-⋅- ⎪⎝⎭()28616964824327777m m m m m ⎛⎫=-⋅-+⨯=-+ ⎪⎝⎭,1m <<, 易知函数216963277y m m =-+在()m ∈上单调递减,所以144,487AD AE ⎛⋅∈ ⎝⎭. 【点睛】求解圆锥曲线中最值或范围问题的一般方法:一是建立关系,二是求最值或范围,即先由题设条件建立关于所求目标的函数关系式,再对目标函数求最值,如本题中需先将直线方程分别与椭圆、抛物线方程联立,利用根与系数的关系将AD ,AE 用m 表示出来,再结合m 的范围及函数的单调性求AD AE ⋅的取值范围.4.(2021·海南海口市·高三模拟)已知抛物线的顶点是坐标原点O ,焦点F 在x 轴正半轴上,过F 的直线l 与抛物线交于A 、B 两点,且满足3OA OB ⋅=-.(1)求抛物线的方程;(2)在x 轴负半轴上一点(),0M m ,使得AMB ∠是锐角,求m 的取值范围.【答案】(1)24y x =;(2)(),1-∞-.【分析】(1)设抛物线方程()220y px p =>,直线l 的方程2px ty =+,联立方程组结合韦达定理可得12y y 、12x x ,再由平面向量数量积的坐标表示即可得p ,即可得解;(2)由题意结合平面向量数量积的概念可转化条件为0MA MB ⋅>,进而可得22234m m t m-->恒成立,解不等式22304m m m --<即可得解.【详解】(1)设抛物线方程()220y px p =>,直线l 的方程2p x ty =+, 联立消去x 得222p y p ty ⎛⎫=+⎪⎝⎭,即2220y pty p --=,>0∆, 设()11,A x y ,()22,B x y ,则122y y pt +=,212y y p =-,所以()22121212122224p p pt p x x ty ty t y y y y ⎛⎫⎛⎫=++=+++ ⎪⎪⎝⎭⎝⎭()22222244pt p p t p pt =⋅-+⋅+=,所以22212123344p OA OB x x y y p p ⋅=+=-=-=-,解得2p =或2p =-(舍去), 故所求抛物线方程为24y x =;(2)因为AMB ∠是锐角,所以0MA MB ⋅>恒成立,即()()12120x m x m y y --+>, 所以()21212120x x m x x m y y -+++>,由(1)得121=x x ,124y y =-,124y y t +=,()2121242x x t y y p t +=++=+,所以()2214240m t m -++->,而0m <,所以22234m m t m-->对于t R ∀∈恒成立,所以22304m m m --<,又0m <,所以2230m m m ⎧-->⎨<⎩,解得1m <-,所以m 的取值范围为(),1-∞-.【点睛】本题考查了平面向量数量积的应用及直线与抛物线的综合应用,考查了转化化归思想与运算求解能力,属于中档题.题型5坐标类的最值(范围)问题1.(2021·上海静安区·高三二模)已知椭圆2212x y +=的左焦点为F ,O 为坐标原点.(1)求过点F 、O ,并且与抛物线28y x =的准线相切的圆的方程;(2)设过点F 且不与坐标轴垂直的直线交椭圆于A 、B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 的横坐标的取值范围.【答案】(1)(221924x y ⎛⎫++= ⎪⎝⎭或(221924x y ⎛⎫++= ⎪⎝⎭;(2)1,0.2⎛⎫- ⎪⎝⎭【分析】(1)求得点()1,0F -,可知圆心M 在直线12x =-上,设点1,2Mt ⎛⎫- ⎪⎝⎭,根据已知条件得出关于实数t 的等式,求出t 的值,即可得出所求圆的方程;(2)设直线AB 的方程为()()10y k x k =+≠,设点()11,A x y 、()22,B x y ,将直线AB 的方程与椭圆的方程联立,列出韦达定理,求出线段AB 的垂直平分线方程,可求得点G 的横坐标,利用不等式的基本性质可求得点G 的横坐标的取值范围.【详解】(1)抛物线28y x =的准线为2x =-,椭圆2212x y +=的左焦点为()1,0F -,圆过点F 、O ,∴圆心M 在直线12x =-上.设1,2Mt ⎛⎫- ⎪⎝⎭,则圆的半径为()13222r ⎛⎫=---= ⎪⎝⎭. 由OM r =32=,解得t =于是,所求圆的方程为(221924x y ⎛⎫++= ⎪⎝⎭或(221924x y ⎛⎫++=⎪⎝⎭; (2)设直线AB 的方程为()()10y k x k =+≠,联立()22112y k x x y ⎧=+⎪⎨+=⎪⎩,整理可得()2222124220k x k x k +++-=, 因为直线AB 过椭圆的左焦点F ,所以方程()2222124220kxk x k +++-=有两个不相等的实根.设点()11,A x y 、()22,B x y ,设AB 的中点为()00,N x y ,则2122412k x x k+=-+,202221k x k =-+,()002112k y k x k =+=+.直线AB 的垂直平分线NG 的方程为()001y y x x k-=--, 令0y =,则222002222211212121242G k k k x x ky k k k k =+=-+=-=-+++++. 因为0k ≠,所以10.2G x -<<故点G 的横坐标的取值范围1,02⎛⎫- ⎪⎝⎭. 【点睛】圆锥曲线中的取值范围问题的求解方法(1)函数法:用其他变量作为参数,建立函数关系,利用求函数值域的方法求解. (2)不等式法:根据题意建立含参数的不等式,通过解不等式求参数的取值范围. (3)判别式法:建立关于某变量的一元二次方程,利用根的判别式求参数的取值范围. (4)数形结合法:研究参数所表示的几何意义,利用数形结合思想求解.2.(2021·新疆高三其他模拟(理))已知抛物线()2204y px p =<<的焦点为F ,点P 在抛物线上,点P的纵坐标为6,且10PF =.(1)求抛物线的标准方程;(2)若A ,B 为抛物线上的两个动点(异于P 点)且AP AB ⊥,求点B 纵坐标的取值范围.【答案】(1)24y x =;(2)2y <-或14y ≥.【分析】(1)根据抛物线的焦半径公式求解即可;(2)先根据抛物线的方程及点P 的纵坐标求得()9,6P ,再根据AP AB ⊥得到()2121261660y y y y ++++=,利用判别式0∆≥,得到22y ≤-或214y ≥,最后验证当22y =-时,12y =-,与题意不符,最后得到点B 的纵坐标y 的取值范围. 【详解】解:(1)设(),6p P x ,则36182P x p p==, 由102p pPF x =+=,得18102p p +=,解得2p =或18,∵04p <<,所以2p =.∴24y x =.(2)由(1)得()9,6P ,设()11,A x y ,()22,B x y ,由题意可知:直线AP ,AB 的斜率存在, 设为AP k ,AB k ,且1211212221211216699444AP AB y y y y y y k k y y y x x x ----⋅=⨯=⨯----()()1214416y y y =⨯=-++, 整理得()2121261660y y y y ++++=,由题意知0∆≥,即()()222641660y y ∆=+-+≥∴22212280y y --≥即22y ≤-或214y ≥,又当22y =-时,211440y y ++=,∴12y =-,与题意不符,舍去,综上所述,点B 的纵坐标2y 的取值范围为22y <-或214y ≥.【点睛】抛物线方程中,字母p 的几何意义是抛物线的焦点F 到准线的距离,2p等于焦点到抛物线顶点的距离.牢记它对解题非常有益.3.(2021·上海金山区·高三一模)已知点P 在抛物线2:4C y x =上,过点P 作圆222:(3)M x y r-+=(0r <≤)的两条切线,与抛物线C 分别交于A 、B 两点,切线PA 、PB 与圆M 分别相切于点E 、F .(1)若点P 到圆心M 的距离与它到抛物线C 的准线的距离相等,求点P 的坐标;(2)若点P 的坐标为(1,2),且r =PE PF ⋅的值;(3)若点P 的坐标为(1,2),设线段AB 中点的纵坐标t ,求t 的取值范围. 【答案】(1)(2,或(2,-;(2)3;(3)[10,6)--.【分析】(1)设出P 点的坐标,根据已知条件列方程组,解方程组求得P 点坐标. (2)先求得||PE 和||PF ,然后结合向量数量积运算求得PE PF ⋅.(2)设出过P 的圆的切线方程,利用圆心到直线的距离等于半径列方程,化简写出根与系数关系,联立切线和抛物线的方程,求得,A B 的纵坐标,由此求得线段AB 中点的纵坐标t 的表达式,进而求得t 的取值范围.【详解】(1)设点P 的坐标为(,)x y ,则241y x x ⎧==+,解得2x y =⎧⎪⎨=⎪⎩2x y =⎧⎪⎨=-⎪⎩,即点P的坐标为(2,或(2,-;(2)当点P 的坐标为(1,2),且r =||PM ==,在直角三角形PME中,||PE ==,且30MPE ∠=︒,同理,||PF =30MPF ∠=︒,从而||||co cos 603s PE PF PE PF EPF ∠=⋅⋅︒==;(3)由题意知切线PA 、PB 的斜率均存在且不为零,设切线方程为2(1)y k x -=-,r =,得222(4)840r k k r -++-=,。
呕心整理圆锥曲线中的7类最值问题
呕心整理圆锥曲线中的7类最值问题圆锥曲线最值问题是高考中的一类常见问题,解此类问题与解代数中的最值问题方法类似,由于圆锥曲线的最值问题与曲线有关,所以利用曲线性质求解是其特有的方法。
下面介绍7种常见求解方法1【二次函数法】将所求问题转化为二次函数最值问题,再利用配方法或均值不等式或判别式等方法求解。
【典型例题1】过动直线x+2y=p 与定直线2x-y=a 的交点(其中(0,3]p a ∈)的等轴双曲线系22x y λ-=中 , 当p 为何值时,λ达到最大值与最小值?分析:求出交点坐标代入双曲线,可得λ的二次函数表达式,再利用函数方法求解。
解:由22{x y ax y p -=+=, 得 交点22(,)55p a p aQ +-, 交点Q 坐标代入双曲线,22x y λ∴=-= 2222()()55p a p a +--=221(383)25p ap a -++ =221425[3()].2533a a p --+(0,3]P a ∈. 当 43a p =, 2max 13a λ=,又 03p a <≤,445,333a a a p ∴-<-≤45||33a ap ∴-≤; 当p=3a 时,min 0.λ=[点悟] 把所求的最值表示为函数,再寻求函数在给定区间上的最值,但要注意函数的定义域。
【变式训练1】已知A ,B ,C 三点在曲线y =x 上,其横坐标依次为1,m,4(1<m <4),当△ABC 的面积最大时,m 等于( )A .3 B.94 C.52 D.32答案 B 解析 由题意知A (1,1),B (m ,m ),C (4,2).直线AC 所在的方程为x -3y +2=0,点B 到该直线的距离为d =|m -3m +2|10.S △ABC =12|AC |·d =12×10×|m -3m +2|10=12|m -3m +2|=12|(m -32)2-14|.∵m ∈(1,4),∴当m =32时,S △ABC 有最大值,此时m =94.故选B.【变式训练2】抛物线y =ax 2与直线y =kx +b (k ≠0)交于A ,B 两点,且此两点的横坐标分别为x 1,x 2,直线与x 轴交点的横坐标是x 3,则恒有( )A .x 3=x 1+x 2B .x 1x 2=x 1x 3+x 2x 3C .x 1+x 2+x 3=0D .x 1x 2+x 2x 3+x 3x 1=0 答案 B解析 由方程组⎩⎨⎧y =ax 2,y =kx +b ,得ax 2-kx -b =0,可知x 1+x 2=k a ,x 1x 2=-ba ,x 3=-bk ,代入各项验证即可得B 正确,故选B.2【不等式法】列出最值关系式,利用均值不等式“等号成立”的条件求解。
圆锥曲线的最值问题常见类型及解法
例1: 在圆x2+y2=4上求一点P,使它到直线L:3x-2y-16=0的距离最短。
略解:
圆心到直线L的距离d1=
所以圆上的点到直线的最短距离为 d=d1-r
问题:直线L的方程改为 3x-2y-6=0, 其结果又如何?
16 32 22
16 13 13
16 13 2 13
思考: 例1是否还有其他解题方法?
∵ |AF’|=
[1(4) ]2 1 26
∴ |MF|+|MA| 的最大值为 问题:本题解题到此结束了吗?
10 26
最小值为
10 26
变式训练:
1 . 已知P点为抛物线
上的点,那么P点到点Q(2,-1)的距离与P点到抛物线焦点的距
离之和的最小值为 _ __,此时P点坐标为
y_. 2 4 x
y
x Q
3
,面积为
的等腰梯形. (1)求椭圆的方程; (2)过点F1的直线和椭圆交于两点A、B,求
33
F2AB面积的最大值.
练习、设椭圆中心在坐标原点A(2,0)、B(0,1)是它的两个顶点,直线 两点,求四边形AEBF面积的最大值.
ykx (k0)
y
与椭圆交于E、F
思维导图: 用k表示四边形的面积
B F
yx2 3
解:设椭圆与
平y行的切x线方程2为 3
y xb
y xb
x2 2
y2
1
3x2 4bx2b2 20 (1) (4b)2 43(2b2 2) 0
b 3
1)当b
3时,代入(1)得dmin
6; 2
2)当b
3时,代入(1)得dmax
3 6. 2
变式训练:
解圆锥曲线问题常用的八种方法及七种常规题型
解圆锥曲线问题常用的八种方法与七种常规题型总论:常用的八种方法1、定义法2、韦达定理法3、设而不求点差法4、弦长公式法5、数形结合法6、参数法(点参数、K 参数、角参数)7、代入法8、充分利用曲线系方程法七种常规题型(1)中点弦问题(2)焦点三角形问题(3)直线与圆锥曲线位置关系问题(4)圆锥曲线的有关最值(范围)问题 (5)求曲线的方程问题1.曲线的形状已知--------这类问题一般可用待定系数法解决。
2.曲线的形状未知-----求轨迹方程(6) 存在两点关于直线对称问题 (7)两线段垂直问题常用的八种方法1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、设而不求法解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有0220=+k b y a x 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x2 y2 1 4
上点的最大距离,
并求出此时椭圆上的点的坐标。
分析:
本题可以根据椭圆的方程设出满足条件的 点的坐标,然后根据两点间的距离公式借 助于二次函数求出此最大值,并求出点的 坐标。
例3
求点 P ( 0,3 )到椭圆
2
x2 y2 1 4
上点的最大距离,
并求出此时椭圆上的点的坐标。
解: 设点 Q(x,y)为椭圆 x2 y2 1 上的任意一点,
当所求的最值是圆锥曲线上点到某条 直线的距离的最值时,可以通过作与这条 直线平行的圆锥曲线的切线,则两平行线 间的距离就是所求的最值,切点就是曲线 上取的最值时的点。
例1:
在圆x2+y2=4上求一点P,使它到直线L:3x-2y-16=0 的距离最短。
略解: 圆心到直线L的距离d1=
16 32 22
问题:本题解题到此结束了吗?
最小值为 10 26
变式训练:
1 . 已知P点为抛物线 y 2 4 x 上的点,那
么P点到点Q(2,-1)的距离与P点到抛物线焦
点的距离之和的最小值为 _ __,此时P点坐
标为
_.
y
x Q
2、已知抛物线y=x2,动弦AB的长为2,求AB中点纵坐标 的最小值.
解法: 设 A (x 1 ,y 1 )B ,(x 2 y 2 )A ,中 B M (x 点 0 ,y 0 )
圆锥曲线的最值问题常见类型及解法
高考地位:
最值问题是高考的热点,而圆锥曲线 的最值问题几乎是高考的必考点,不仅会 在选择题或填空题中进行考察,在综合题 中也往往将其设计为试题考查的核心。
类型一:两条线段最值问题
利用圆锥曲线的定义求解 根据圆锥曲线的定义,把所求的最值转化 为平面上两点之间的距离、点线之间的距离等, 这是求圆锥曲线最值问题的基本方法。
2M NAD BC ,MN 2 py01 4y0,
y
B M
ADBC2(1 4y0)
AF
o
x
D
NC
AD A,F BC BF
1 AFBF2(4y0)
AB 中 ,A F F B FA B 2
(A | | F |B|) F m in 2即y0min
3 4
类型二:圆锥曲线上点到某条直线的距离
的最值
切线法
要使|MF|+|MA|最大,即要使|MA|-|MF’|最大, 连AF’,延长交椭圆于M’ 则| |MA|-|MF’| | ≤ |AF’| 当且仅当M,A,F’三点共线时,等号成立。 ∴ |MA|-|MF’|的最大值为 |AF’|,这时M与M’ 重合
∵ |AF’|= [1(4) ]2 1 26 ∴ |MF|+|MA| 的最大值为 10 26
关键:用好圆锥曲线的定义
例1、已知点F是双曲线 x 2 y 2 1 的左焦点,定点 4 12
A(1,4),P是双曲线右支上动点,则 PF PA
的最小值为
.
yA
思维导图:
P
根据双曲线的定义,建立点A、
P与两焦点之间的关系
F
x
两点之间线段最短
例1、已知点F是双曲线 x 2 y 2 1 的左焦点,定点 4 12
若有,求出最值并指出点M的坐标
分析:
如图,由椭圆的定义:椭圆上的点到两个 定点之间的距离为定值
|MF|+|MF’|=10
|MF|+|MA|=10- |MF’|+|MA|=10+ (|MA|-|MF’|)≤10+ |AF’|
因此,当|AF’|最大时, |MA|+|MF|是最大值。 具体解题过程如下:
解: 设椭圆的左焦点为F’ 则F’的坐标为(-4,0) 由椭圆的定义得: |MF|+|MF’|=10 |MF|+|MA|=10- |MF’|+|MA|
o
x
切线与直线 y x 2 3 的距离为
最值,切点就是所求的点.
例2、求椭圆 x 2 y 2 1 上的点到直线 y x 2 3的距 2
离的最大值和最小值,并求取得最值时椭圆上点的坐标.
解:设椭圆与 y x 2 3平行的切线方程为 y x b
y xb
x2 2
y2
1
3x2 4bx2b2 20 (1) (4b)2 43(2b2 2) 0
A(1,4),P是双曲线右支上动点,则 PF PA
的最小值为
.
yA
解析:设双曲线右焦点为F/
P
PF PA
PF PF PA PF F
x
2a PA PF
4 AF 9
例2: 已知椭圆
x2
y2
1的右焦点F,且有定点A(1,1),
25 9
又点M是椭圆上一动点。问|MA|+|MF|是否有最值,
最 大 距7。 离 是
变式训练:
已知双曲线C:x 2 y 2 1 ,P为C
4
上任一点,点A(3,0),则|PA|的最小 值为________.
类 例1: 已知抛物线y2=4x,以抛物线上两点 型 A(4,4)、B(1,-2)的连线为底边的△ABP,其顶点P
b 3
1)当b
3时,代入(1)得dmin
6; 2
2)当b
3时,代入(1)得dmax
3 6. 2
变式训练:
动点P在抛物线 y 2 x 上,则点P 到直线 y x4 的距离最小时,P点的坐
标为_________.
类型三:圆锥曲线上点到x轴(Y轴)上某
定点的距离的最值
例3
求点 P ( 0,3 )到椭圆 2
∴m2=52, m=±2 13
∴圆上的点到直线的最短距离即为两平行直线间的距离
162 13 1613
dmin
2
13
13
例2、求椭圆 x 2 y 2 1 上的点到直线 y x 2 3的距 2
离的最大值和最小值,并求取得最值时椭圆上点的坐标.
思维导图:
y
求与 y x 2 3平行的椭圆
的切线Leabharlann 16 13 13r 所以圆上的点到直线的最短距离为 d=d1-
16 13 2 13
问题:直线L的方程改为 3x-2y-6=0, 其结果又如何?
思考: 例1是否还有其他解题方法?
另解:设平行于直线L且与圆相切的直线方程:3x-2y+m=0 代入圆x2+y2=4整理得:13x2+6mx+m2-16=0 ∵直线与圆相切 ∴△=36 m2-52(m2-16)=0
4
则 PQ 2 (x0)2 (y3)2
2
又因为x2 = 4- 4y2
所以
PQ
2
44y2 y2 3y93y2 3y25
4
4
3(y1)2 7 2
(-1≤y≤1)
所以 PQ 的最大值为
7
此时, y1,x 3
2
即此时Q的坐标为:(3, 1) 、( 3, 1)
2
2
思考题:
求 : P(0点 ,m)使 , 其 到 x2椭 y2圆 1上 的 4