第十章排列组合和概率(第1课)加法原理和乘法原理(1)

合集下载

排列组合问题之—加法原理和乘法原理

排列组合问题之—加法原理和乘法原理

排列组合问题之—加法原理和乘法原理华图教育梁维维加法原理和乘法原理是排列组合问题的基本思想,绝大多数的排列组合问题都会应用到这两个原理,所以对加法、乘法原理广大考生要充分的了解和掌握。

1.加法原理加法原理:做一件事情,完成它有N类方式,第一类方式有M1种方法,第二类方式有M2种方法,……,第N类方式有M(N)种方法,那么完成这件事情共有M1+M2+……+M(N)种方法。

例如:从长春到济南有乘火车、飞机、轮船3种交通方式可供选择,而火车、飞机、轮船分别有k1,k2,k3个班次,那么从武汉到上海共有N=k1+k2+k3种方式可以到达。

加法原理指的是如果一件事情是分类完成的,那么总的情况数等于每类情况数的总和,比如如下的题目:【例1】利用数字1,2,3,4,5共可组成⑴多少个数字不重复的三位数?⑵多少个数字不重复的三位偶数?【解析】⑴百位数有5种选择;十位数不同于百位数有4种选择;个位数不同于百位数和十位数有3种选择.所以共有5×4×3=60个数字不重复的三位数。

【解析】⑵先选个位数,共有两种选择:2或4.在个位数选定后,十位数还有4种选择;百位数有3种选择.所以共有2×4×3=24个数字不重复的三位偶数。

在公务员考试当中,排列组合也是考察比较多的一个问题,国考和联考当中也对加法原理做了考察。

例如如下的两道题:【例2】某班同学要订A、B、C、D四种学习报,每人至少订一种,最多订四种,那么每个同学有多少种不同的订报方式?( )A.7种B.12种C.15种D.21种【解析】不同的订报方式对于同学可以选择订一种、两种、三种、四种这样四类,第一类,选择一种有4种订报方式,第二类选订两种有6种订报方式,第三类选定三种有4种订报方式,第四类四种都订有1种订报方式。

所以每个同学有4+6+4+1=15种订报方式。

对于加法原理大家要掌握的是分类思想,对于分类问题要掌握加法原理。

总的情况数等于每类的情况数加和。

排列组合基础知识

排列组合基础知识

排列组合基础知识排列组合基础知识一、两大原理1.加法原理(1)定义:做一件事,完成它有n 类方法,在第一类方法中有1m 中不同的方法,第二类方法中有2m 种不同的方法......第n 类方法中n m 种不同的方法,那么完成这件事共有n m m m N +++= (21)种不同的方法。

(2)本质:每一类方法均能独立完成该任务。

(3)特点:分成几类,就有几项相加。

2.乘法原理(1)定义做一件事,完成它需要n 个步骤,做第一个步骤有1m 中不同的方法,做第二个步骤有2m 种不同的方法......做第n 个步骤有n m 种不同的方法,那么完成这件事共有n m m m N ...21=种不同的方法。

(2)本质:缺少任何一步均无法完成任务,每一步是不可缺少的环节。

(3)特点:分成几步,就有几项相乘。

二、排列组合1.排列(1)定义:从n 个不同的元素中,任取m 个(n m ≤)元素,按照一定的顺序排成一列,叫做从n 个不同的元素中,选取m 个元素的一个排列,排列数记为m n P ,或记为m n A 。

(2)使用排列的三条件①n 个不同元素;②任取m 个;③讲究顺序。

(3)计算公式)!(!)1)....(2)(1(m n n m n n n n A m n -=+---= 尤其:!,,110n P n P P n n n n ===2.组合(1)定义:从n 个不同的元素中,任取m 个(n m ≤)元素并为一组,叫做从n 个不同的元素中,选取m 个元素的一个组合,组合数记为m n C 。

(2)使用三条件①n 个不同元素;②任取m 个;③并为一组,不讲顺序。

(3)计算公式12)...1()1)...(1()!(-+--=-==m m m n n n m n m n P P C m m m n mn尤其:m n n m n n n n n C C C n C C -====,1,,110例1.由0,1,2,3,4,5可以组成多少个没有重复数字的五位奇数?A.226B.246C.264D.288解析:由于首位和末位有特殊要求,应优先安排,以免不合要求的元素占了这两个位置,末位有13C 种选择,然后排首位,有14C 种选择,左后排剩下的三个位置,有34A 种选择,由分步计数原理得:13C 14C 34A =288例2.旅行社有豪华游5种和普通游4种,某单位欲从中选择4种,其中至少有豪华游和普通游各一种的选择有()种。

排列组合问题2:加法原理和乘法原理

排列组合问题2:加法原理和乘法原理

加法原理和乘法原理导言:加法原理和乘法原理,是排列组合中的二个基本原理,在解决计数问题中经常运用。

把握这两个原理,并能正确区分这两个原理,至关重要。

一、概念(一)加法原理如果完成某件事共有几类不同的方法,而每类方法中,又有几种不同的方法,任选一种方法都可以完成此事,那么完成这件事的方法总数就等于各种方法的总和,这一原理称为加法原理。

例:从甲地到乙地,一天中火车有4班,汽车有2班,轮船有3班,那么,一天中乘坐这些交通工具从甲地到乙地,共有多少种不同的走法?解析:把乘坐不同班次的车、船称为不同的走法。

要完成从甲地到乙地这件事,可以乘火车,也可以乘汽车,还可以乘轮船,一天中,乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法。

而乘坐火车、汽车、轮船中的任何一班次,都可以从甲地到乙地,符合加法原理。

所以从甲地到乙地的总的走法=乘火车的4种走法+乘汽车的2种走法+乘轮船的3种走法=9种不同的走法(二)乘法原理如果做某件事,需要分几个步骤才能完成,而每个步骤又有几种不同的方法,任选一种方法都不能完成这件事,那么完成这件事的方法总数,就等于完成各步骤方法的乘积。

例:用1、2、3、4这四个数字可以组成多少个不同的三位数?解析:要完成组成一个三位数这件事,要分三个步骤做,首先选百位上的数,再选十位上的数,最后选个位上的数。

选百位上的数这一步骤中,可选1、2、3、4任何一个,共4种方法选十位上的数这一步骤中,可选除百位上已选好那个数字之外的三个数字,共3种方法选个位上的数这一步骤中,可选除百、十位上已选好的两个数字之外的另两个数字,共2种方法单独挑上面的任何一步中的任何一种方法,都不能组成一个三位数,符合乘法原理所以,可以组成:4×3×2=24(个)不同的三位数二、加法原理和乘法原理的区别什么时候使用加法原理,什么时候使用乘法原理,最关键是要把握住加法原理与乘法原理的区别。

从上面两个例子我们容易发现,加法原理与乘法原理最大的区别就是:如果完成一件事有几类方法,不论哪一类方法,都能完成这件事时,运用加法原理,简称为“分类-----加法”;如果完成一件事要分几个步骤,而无论哪一个步骤,都只是完成这件事的一部分,只有每一步都完成了,这件事才得以完成,这里运用乘法原理,简称为“分步----乘法”。

计数原理与排列组合知识点总结

计数原理与排列组合知识点总结

计数原理与排列组合知识点总结计数原理和排列组合是高中数学中重要的概念和工具,在各种数学问题的解决过程中起到了重要的作用。

本文将对计数原理和排列组合的相关知识点进行总结和介绍。

一、计数原理计数原理通过分析一个问题中的各个步骤或条件,来确定解决问题的方式和策略。

常用的计数原理有加法原理、乘法原理、容斥原理和抽屉原理等。

1. 加法原理加法原理适用于多个事件发生的情况,它指出如果一个事件发生的方式有m种,另一个事件发生的方式有n种,那么这两个事件发生的总方式数为m+n。

2. 乘法原理乘法原理适用于多个事件发生的情况,它指出如果一个事件发生的方式有m种,另一个事件发生的方式有n种,则这两个事件发生的总方式数为m×n。

3. 容斥原理容斥原理适用于计算多个集合的并集的情况。

它指出如果有n个集合,分别有A1,A2,...,An个元素,那么这n个集合的并集中元素的个数为:|A1∪A2∪...∪An| = Σ|Ai| - Σ|Ai∩Aj| + Σ|Ai∩Aj∩Ak| - ... + (-1)^(n-1)|A1∩A2∩...∩An|。

4. 抽屉原理抽屉原理也称为鸽笼原理,它指出如果有m+1个物体放入m个抽屉中,那么至少会有一个抽屉中放入两个或两个以上的物体。

二、排列组合排列组合是计数原理的一个重要应用,用于解决选择和安排问题。

它包括排列和组合两个不同的概念。

1. 排列排列是指从一组元素中按一定顺序选取若干元素的方式,其中元素的选取不可重复。

常见的排列问题有全排列和有限排列。

- 全排列是指将一组元素全部进行排列,例如3个元素的全排列有3! = 3×2×1 = 6种。

- 有限排列是指从一组元素中选取若干个元素进行排列,其中元素的选取数目有限。

例如从3个元素中选取2个进行排列,有3×2 = 6种不同的排列方式。

2. 组合组合是指从一组元素中选择若干元素的方式,其中元素的选取不按顺序进行,而是以集合的形式呈现。

排列组合与概率原理及解题技巧

排列组合与概率原理及解题技巧

排列组合与概率原理及解题技巧一、基础知识1.加法原理:做一件事有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事一共有N=m 1+m 2+…+m n 种不同的方法。

2.乘法原理:做一件事,完成它需要分n 个步骤,第1步有m 1种不同的方法,第2步有m 2种不同的方法,……,第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×…×m n 种不同的方法。

3.排列与排列数:从n 个不同元素中,任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m ≤n)元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用m n A 表示,mn A =n(n-1)…(n-m+1)=)!(!m n n -,其中m,n ∈N,m ≤n,注:一般地0n A =1,0!=1,nn A =n!。

4.N 个不同元素的圆周排列数为nA n n =(n-1)!。

5.组合与组合数:一般地,从n 个不同元素中,任取m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。

从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用mn C 表示:.)!(!!!)1()1(m n m n m m n n n C m n -=+--=6.组合数的基本性质:(1)m n n m n C C -=;(2)11--+=n nm n m n C C C ;(3)kn k n C C kn =--11;(4)n nk k n n nnnC C C C 2010==+++∑= ;(5)111++++-=+++k m k k m k k k k k C C C C ;(6)kn m n m k k n C C C --=。

乘法原理和加法原理

乘法原理和加法原理

乘法原理和加法原理首先,我们来介绍乘法原理。

乘法原理是指如果一个事件发生的方式有m种,另一个事件发生的方式有n种,那么这两个事件同时发生的方式有mn种。

乘法原理常常用于计算多个事件同时发生的总数。

例如,如果有一条裤子有3种颜色,一件衬衫有2种颜色,那么一套搭配的上衣和裤子的方式有32=6种。

在实际生活中,乘法原理也常常用于计算排列组合、密码锁密码的可能性等。

接下来,我们来介绍加法原理。

加法原理是指如果一个事件发生的方式有m种,另一个事件发生的方式有n种,且这两个事件没有共同的发生方式,那么这两个事件发生的总方式有m+n种。

加法原理常常用于计算多个事件中至少有一个发生的总数。

例如,某人去购物可以选择去商场或者超市,那么他购物的方式有2种。

在实际生活中,加法原理也常常用于计算不同情况下的总数,比如考试中选择题的得分可能性等。

乘法原理和加法原理在解决实际问题时常常需要结合使用。

比如,某人有3种颜色的上衣和2种颜色的裤子可以搭配,他又有4种颜色的鞋子可以选择,那么他搭配上衣、裤子和鞋子的方式有324=24种。

这个例子中就是使用了乘法原理。

又比如,某人去购物可以选择去商场或者超市,他又可以选择购买衣服或者食品,那么他购物的方式有2+2=4种。

这个例子中就是使用了加法原理。

总结来说,乘法原理和加法原理是数学中的两个基本计数原理,在实际生活和工作中也有着广泛的应用。

通过学习和掌握乘法原理和加法原理,我们可以更好地解决实际问题,提高计算能力和逻辑思维能力。

希望大家通过本文的介绍,对乘法原理和加法原理有更深入的了解,并能够灵活运用于实际生活和工作中。

高中数学第十章-排列组合

高中数学第十章-排列组合

高三数学总复习................................................................高考复习科目:数学 高中数学总复习(九)复习内容:高中数学第十章-排列组合 复习范围:第十章 编写时间:2004-7修订时间:总计第三次 2005-4 一、两个原理.1. 乘法原理、加法原理.2. 可.以有..重复..元素..的排列. 从m 个不同元素中,每次取出n 个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n 位上选取元素的方法都是m 个,所以从m 个不同元素中,每次取出n 个元素可重复排列数m·m·… m = m n .. 例如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解:nm 种) 二、排列.1. ⑪对排列定义的理解.定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ⑫相同排列.如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同. ⑬排列数.从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n个不同元素中取出m 个元素的一个排列数,用符号m n A 表示.⑭排列数公式:),,()!(!)1()1(N m n n m m n n m n n n A m ∈≤-=+--=注意:!)!1(!n n n n -+=⋅ 规定0! = 1111--++=⋅+=m n m n m n m m m n m n mA A C A A A 11--=m n m n nA A 规定10==n n n C C 2. 含有可重元素......的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排列个数等于!!...!!21k n n n n n=.例如:已知数字3、2、2,求其排列个数3!2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数?其排列个数1!3!3==n .三、组合.1. ⑪组合:从n 个不同的元素中任取m (m≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.⑫组合数公式:)!(!!!)1()1(m n m n C m m n n n A A C m n mmmn m n -=+--==⑬两个公式:①;m n n m n C C -= ②mn m n m n C C C 11+-=+①从n 个不同元素中取出m 个元素后就剩下n-m 个元素,因此从n 个不同元素中取出 n-m 个元素的方法是一一对应的,因此是一样多的就是说从n 个不同元素中取出n-m 个元素的唯一的一个组合.(或者从n+1个编号不同的小球中,n 个白球一个红球,任取m 个不同小球其不同选法,分二类,一类是含红球选法有1m n 111m n C C C --=⋅一类是不含红球的选法有m n C )②根据组合定义与加法原理得;在确定n+1个不同元素中取m 个元素方法时,对于某一元素,只存在取与不取两种可能,如果取这一元素,则需从剩下的n 个元素中再取m-1个元素,所以有C 1-m n ,如果不取这一元素,则需从剩余n 个元素中取出m 个元素,所以共有C m n 种,依分类原理有mn m n m n C C C 11+-=+.⑭排列与组合的联系与区别.联系:都是从n 个不同元素中取出m 个元素.区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系. ⑮①几个常用组合数公式n n n n n n C C C 2210=+++ 11111121153142011112++--++++++-+=+==++=+++=+++k n k n k n kn m n m m n m m m m m m n n n n n n n n C n C k nCkC C C C C C C C C C C C②常用的证明组合等式方法例. i. 裂项求和法. 如:)!1(11)!1(!43!32!21+-=++++n n n (利用!1)!1(1!1n n n n --=-) ii. 导数法. iii. 数学归纳法. iv. 倒序求和法.v. 递推法(即用m n m n m n C C C 11+-=+递推)如:413353433+=+++n n C C C C C .vi. 构造二项式. 如:n nn n n n C C C C 222120)()()(=+++ 证明:这里构造二项式n n n x x x 2)1()1()1(+=++其中nx 的系数,左边为22120022110)()()(n n n n n n n n n n n n n n n n C C C C C C C C C C C +++=⋅++⋅+⋅+⋅-- ,而右边nn C 2= 四、排列、组合综合.1. I. 排列、组合问题几大解题方法及题型: ①直接法. ②排除法.③捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”,例如,一般地,n 个不同元素排成一列,要求其中某)(n m m ≤个元素必相邻的排列有m m m n m n A A ⋅+-+-11个.其中11+-+-m n m n A 是一个“整体排列”,而mm A 则是“局部排列”.又例如①有n 个不同座位,A 、B 两个不能相邻,则有排列法种数为-2n A 2211A A n ⋅-.②有n 件不同商品,若其中A 、B 排在一起有2211A A nn ⋅--. ③有n 件不同商品,若其中有二件要排在一起有112--⋅n n n A A . 注:①③区别在于①是确定的座位,有22A 种;而③的商品地位相同,是从n 件不同商品任取的2个,有不确定性.④插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”.例如:n 个元素全排列,其中m 个元素互不相邻,不同的排法种数为多少?mm n m n m n A A 1+---⋅(插空法),当n – m+1≥m, 即m≤21+n 时有意义.⑤占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则. ⑥调序法:当某些元素次序一定时,可用此法.解题方法是:先将n 个元素进行全排列有n n A 种,)(n m m 个元素的全排列有m m A 种,由于要求m 个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到去调序的作用,即若n 个元素排成一列,其中m 个元素次序一定,共有m mn n A A 种排列方法.例如:n 个元素全排列,其中m 个元素顺序不变,共有多少种不同的排法? 解法一:(逐步插空法)(m+1)(m+2)…n = n !/ m !;解法二:(比例分配法)mm n n A A /.⑦平均法:若把kn 个不同元素平均分成k 组,每组n 个,共有k knnn n k n kn A C C C )1(-⋅.例如:从1,2,3,4中任取2个元素将其平均分成2组有几种分法?有3!224=C (平均分组就用不着管组与组之间的顺序问题了)又例如将200名运动员平均分成两组,其中两名种子选手必在一组的概率是多少? (!2/102022818C C C P =)注意:分组与插空综合. 例如:n 个元素全排列,其中某m 个元素互不相邻且顺序不变,共有多少种排法?有mmm m n m n m n A A A /1+---⋅,当n – m+1 ≥m, 即m≤21+n 时有意义. ⑧隔板法:常用于解正整数解组数的问题.例如:124321=+++x x x x 的正整数解的组数就可建立组合模型将12个完全相同的球排成一列,在它们之间形成11个空隙中任选三个插入3块摸板,把球分成4个组.每一种方法所得球的数目依次为4321,,,x x x x 显然124321=+++x x x x ,故(4321,,,x x x x )是方程的一组解.反之,方程的任何一组解),,,(4321y y y y ,对应着惟一的一种在12个球之间插入隔板的方式(如图所示)故方程的解和插板的方法一一对应. 即方程的解的组数等于插隔板的方法数311C .注意:若为非负数解的x 个数,即用n a a a ,...,21中i a 等于1+i x ,有A a a a A x x x x n n =-+-+-⇒=+++1...11...21321,进而转化为求a 的正整数解的个数为1-+n n A C .⑨定位问题:从n 个不同元素中每次取出k 个不同元素作排列规定某r 个元素都包含在内,并且都排在某rx 1x 2x 3x 4个指定位置则有rk r n r r A A --.例如:从n 个不同元素中,每次取出m 个元素的排列,其中某个元素必须固定在(或不固定在)某一位置上,共有多少种排法?固定在某一位置上:11--m n A ;不在某一位置上:11---m n m n A A 或11111----⋅+m n m m n A A A (一类是不取出特殊元素a ,有m n A 1-,一类是取特殊元素a ,有从m-1个位置取一个位置,然后再从n-1个元素中取m-1,这与用插空法解决是一样的)⑩指定元素排列组合问题.i. 从n 个不同元素中每次取出k 个不同的元素作排列(或组合),规定某r 个元素都包含在内 。

加乘原理和排列组合

加乘原理和排列组合

加乘原理和排列组合排列与元素的顺序有关,组合与顺序无关.如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合.(一)两个基本原理是排列和组合的基础(1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法.(2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n 步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法.这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理.这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来.(二)排列和排列数(1)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.从排列的意义可知,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序必须完全相同,这就告诉了我们如何判断两个排列是否相同的方法.(2)排列数公式:从n个不同元素中取出m(m≤n)个元素的所有排列当m=n时,为全排列Pnn=n(n-1)(n-2)…3·2·1=n!(三)组合和组合数(1)组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合.从组合的定义知,如果两个组合中的元素完全相同,不管元素的顺序如何,都是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合.(2)组合数:从n个不同元素中取出m(m≤n)个元素的所有组合的个这里要注意排列和组合的区别和联系,从n个不同元素中,任取m(m≤n)个元素,“按照一定的顺序排成一列”与“不管怎样的顺序并成一组”这是有本质区别的.一、排列组合部分是中学数学中的难点之一,原因在于(1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力;(2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解;(3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大;(4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。

概率论与数理统计课件:1-3 概率论的基本概念 排列组合的有关知识

概率论与数理统计课件:1-3 概率论的基本概念  排列组合的有关知识
N (S) 203
P(B) 3 C277C2100C1100 N(S)
4、 随机取数问题
例1.4.6 从1到200这200个自然数中任取一个, (1)求取到的数能被6整除的概率 (2)求取到的数能被8整除的概率 (3)求取到的数既能被6整除也能被8整除的概率
解:N(S)=200, N(1)=[200/6]=33,
三. 古典概率的一些典型计算
1. 随机抽样模型
例1.4.2 在 N 件产品中包含了 D 件次品,分别采取无放 回与有放回这两种抽样方式从中随机取出 n 件产品,求恰
好取出了 k (k≤D)件次品的概率。
解. ① ( 无放回抽样的情况 ) 把所有的产品编号,样本空间构造成: 从 N 件不同 产品中同时取出 n 件产品的所有的二项组合方式; 因此,样本空间里的样本点总数一共有CNn 。
计算每个盒子里最多只有一个小球的概率。
解. 由于每个小球都可以被放进 N 个盒子中的任何 一个,因此根据无限制的放球模型,样本空间中 包含的样本点总数有 N n 个;
每个盒里最多一个小球,即有限制的放球模型,
包含的样本点个数是 PNn 个。因此, 每个小球都各占一个盒子的概率是 p
=
PNn ——

Nn
n 20 23 30 40 50 64 80
100
p 0.411 0.507 0.706 0.891 0.970 0.997 0.999 0.9999997
利用乘法原理,“ 取出的 n 件产品中包含了 k 件 次品 ” 这个随机事件的讨论分解成两个步骤:
D件次品中 取 k 个次品
CDk
N – D件合格品
取出 n – k 件
CN

n D

排列组合的加法原理和乘法原理

排列组合的加法原理和乘法原理

排列组合的加法原理和乘法原理
排列组合的加法原理和乘法原理是组合数学中经常用到的基本原理,其含义如下:
加法原理:如果一个事件可以分为若干个互不重叠的子事件,且这些子事件中至少有一个发生,那么这个事件的发生总数等于子事件发生总数的和。

乘法原理:如果一个事件可以分为若干个相互独立的子事件,那么这个事件的发生总数等于各个子事件的可能性数相乘。

在排列组合中,用加法原理计算事件的总数通常用于计算多个事件中至少有一个事件发生的情况,而用乘法原理计算事件的总数则通常用于计算多个事件同时发生的情况。

例如,如果有3个任务需要完成,分别需要从4个人中选出1
个人来完成,那么根据乘法原理,完成这3个任务的方案数为:
4 × 4 × 4 = 64
如果这3个任务只需要有1个完成,那么根据加法原理,完成这3个任务的方案数为:
4 + 4 + 4 = 12
总的来说,排列组合的加法原理和乘法原理是组合数学中非常基础的概念,对于解决各种组合计数问题都有很大的帮助。

数学知识点 第十章 排列组合

数学知识点 第十章 排列组合

高中数学第十章-排列组合二项定理考试内容:分类计数原理与分步计数原理. 排列.排列数公式.组合.组合数公式.组合数的两个性质. 二项式定理.二项展开式的性质. 考试要求:(1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题. (2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题.(3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题.(4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题.§10. 排列组合二项定理 知识要点一、两个原理.1. 乘法原理、加法原理.2. 可.以有..重复..元素..的排列. 从m 个不同元素中,每次取出n 个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n 位上选取元素的方法都是m 个,所以从m 个不同元素中,每次取出n 个元素可重复排列数m·m·… m = m n .. 例如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解:nm 种)二、排列.1. ⑴对排列定义的理解.定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ⑵相同排列.如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同.⑶排列数.从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号mn A 表示.⑷排列数公式:),,()!(!)1()1(N m n n m m n n m n n n A m ∈≤-=+--=注意:!)!1(!n n n n -+=⋅ 规定0! = 1111--++=⋅+=m n m n m n m m m n m n mA A C A A A 11--=m n m n nA A 规定10==n n n C C 2. 含有可重元素......的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排列个数等于!!...!!21k n n n n n =.例如:已知数字3、2、2,求其排列个数3!2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数?其排列个数1!3!3==n .三、组合.1. ⑴组合:从n 个不同的元素中任取m (m≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.⑵组合数公式:)!(!!!)1()1(m n m n C m m n n n A A C mn mmm n mn-=+--== ⑶两个公式:①;m n n mn CC -= ②m n m n m n C C C11+-=+①从n 个不同元素中取出m 个元素后就剩下n-m 个元素,因此从n 个不同元素中取出 n-m 个元素的方法是一一对应的,因此是一样多的就是说从n 个不同元素中取出n-m 个元素的唯一的一个组合.(或者从n+1个编号不同的小球中,n 个白球一个红球,任取m 个不同小球其不同选法,分二类,一类是含红球选法有1m n 111m n C C C --=⋅一类是不含红球的选法有mn C )②根据组合定义与加法原理得;在确定n+1个不同元素中取m 个元素方法时,对于某一元素,只存在取与不取两种可能,如果取这一元素,则需从剩下的n 个元素中再取m-1个元素,所以有C 1-m n ,如果不取这一元素,则需从剩余n 个元素中取出m 个元素,所以共有C mn 种,依分类原理有mn m n m n C C C11+-=+.⑷排列与组合的联系与区别.联系:都是从n 个不同元素中取出m 个元素.区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系. ⑸①几个常用组合数公式 n n nn n n C C C 2210=+++ 11111121153142011112++--++++++-+=+==++=+++=+++k n k n k n k n m n m m n m m m m m m n n n n n n n n C n C k nC kC C C C C C C C C C C C②常用的证明组合等式方法例. i. 裂项求和法. 如:)!1(11)!1(!43!32!21+-=++++n n n (利用!1)!1(1!1n n n n --=-) ii. 导数法. iii. 数学归纳法. iv. 倒序求和法.v. 递推法(即用m n m n m n C C C 11+-=+递推)如:413353433+=+++n n C C C C C . vi. 构造二项式. 如:nn n n n n C C C C 222120)()()(=+++证明:这里构造二项式n n n x x x 2)1()1()1(+=++其中n x 的系数,左边为22120022110)()()(n n n n n n n n n n n n n n n n C C C C C C C C C C C +++=⋅++⋅+⋅+⋅-- ,而右边nn C 2= 四、排列、组合综合.1. I. 排列、组合问题几大解题方法及题型: ①直接法. ②排除法.③捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”,例如,一般地,n 个不同元素排成一列,要求其中某)(n m m ≤个元素必相邻的排列有m m m n m n A A ⋅+-+-11个.其中11+-+-m n m n A 是一个“整体排列”,而m m A 则是“局部排列”.又例如①有n 个不同座位,A 、B 两个不能相邻,则有排列法种数为-2n A 2211A A n ⋅-. ②有n 件不同商品,若其中A 、B 排在一起有2211A A nn ⋅--. ③有n 件不同商品,若其中有二件要排在一起有112--⋅n n n A A . 注:①③区别在于①是确定的座位,有22A 种;而③的商品地位相同,是从n 件不同商品任取的2个,有不确定性.④插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”.例如:n 个元素全排列,其中m 个元素互不相邻,不同的排法种数为多少?mm n m n m n A A 1+---⋅(插空法),当n – m+1≥m, 即m≤21+n 时有意义.⑤占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则.⑥调序法:当某些元素次序一定时,可用此法.解题方法是:先将n 个元素进行全排列有n n A 种,)(n m m 个元素的全排列有m m A 种,由于要求m 个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到去调序的作用,即若n 个元素排成一列,其中m 个元素次序一定,共有m mn n A A 种排列方法.例如:n 个元素全排列,其中m 个元素顺序不变,共有多少种不同的排法?解法一:(逐步插空法)(m+1)(m+2)…n = n !/ m !;解法二:(比例分配法)mm n n A A /.⑦平均法:若把kn 个不同元素平均分成k 组,每组n 个,共有kkn nn n k n kn AC C C )1(-⋅.例如:从1,2,3,4中任取2个元素将其平均分成2组有几种分法?有3!224=C (平均分组就用不着管组与组之间的顺序问题了)又例如将200名运动员平均分成两组,其中两名种子选手必在一组的概率是多少? (!2/102022818C C C P =)注意:分组与插空综合. 例如:n 个元素全排列,其中某m 个元素互不相邻且顺序不变,共有多少种排法?有mm mm n mn m n A A A /1+---⋅,当n – m+1 ≥m, 即m≤21+n 时有意义.⑧隔板法:常用于解正整数解组数的问题.例如:124321=+++x x x x 的正整数解的组数就可建立组合模型将12个完全相同的球排成一列,在它们之间形成11个空隙中任选三个插入3块摸板,把球分成4个组.每一种方法所得球的数目依次为4321,,,x x x x 显然124321=+++x x x x ,故(4321,,,x x x x )是方程的一组解.反之,方程的任何一组解),,,(4321y y y y ,对应着惟一的一种在12个球之间插入隔板的方式(如图所示)故方程的解和插板的方法一一对应. 即方程的解的组数等于插隔板的方法数311C .注意:若为非负数解的x 个数,即用n a a a ,...,21中i a 等于1+i x ,有A a a a A x x x x n n =-+-+-⇒=+++1...11...21321,进而转化为求a 的正整数解的个数为1-+n n A C .⑨定位问题:从n 个不同元素中每次取出k 个不同元素作排列规定某r 个元素都包含在内,并且都排在某r 个指定位置则有rk r n r r A A --.例如:从n 个不同元素中,每次取出m 个元素的排列,其中某个元素必须固定在(或不固定在)某一位置上,共有多少种排法?固定在某一位置上:11--m n A ;不在某一位置上:11---m n m n A A 或11111----⋅+m n m m n A A A (一类是不取出特殊元素a ,有mn A 1-,一类是取特殊元素a ,有从m-1个位置取一个位置,然后再从n-1个元素中取m-1,这与用插空法解决是一样的) ⑩指定元素排列组合问题.i. 从n 个不同元素中每次取出k 个不同的元素作排列(或组合),规定某r 个元素都包含在内 。

组合数学初步——排列与组合的加法和乘法原理

组合数学初步——排列与组合的加法和乘法原理

第三章 问题求解第1节 组合数学初步1、排列与组合历史1772年,旺德蒙德以[n]p 表示由n 个不同的元素中每次取p 个的排列数。

而欧拉则于1771年以及于1778年以表示由n 个不同元素中每次取出p 个元素的组合数。

至1872年,埃汀肖森引入了以表相同之意,这组合符号(SignsofCombinations)一直沿用至今。

1830年,皮科克引入符号nCr 以表示由n 个元素中每次取出r 个元素的组合数;1869年或稍早些,剑桥的古德文以符号nPr 表示由n 个元素中每次取r 个元素的排列数,这用法亦延用至今。

按此法,nPn 便相当於现在的n!。

1880年,鲍茨以nCr 及nPr 分别表示由n 个元素取出r 个的组合数与排列数;至1899年,克里斯托尔以nPr 及nCr 分别表示由n 个不同元素中每次取出r 个不重复元素的排列数与组合数,并以nHr 表示相同意义下之可重复的排列数,这三种符号也通用至今。

两个基本原理是排列和组合的基础(1)加法原理:做一件事,完成它可以有n 类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n 类办法中有mn 种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn 种不同方法。

(2)乘法原理:做一件事,完成它需要分成n 个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n 步有mn 种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn 种不同的方法。

这里要注意区分两个原理,要做一件事,完成它若是有n 类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n 个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理。

这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来。

排列组合(加法与乘法原理)

排列组合(加法与乘法原理)

第1讲排列组合(加法与乘法原理)1、加法原理:完成一件工作共有N类方法.在第一类方法中有m1种不同地方法,在第二类方法中有m2种不同地方法,……,在第N类方法中有mn种不同地方法,那么完成这件工作共有N=m1+m2+m3+…+mn种不同方法.运用加法原理计数,关键在于合理分类,不重不漏.要求每一类中地每一种方法都可以独立地完成此任务;两类不同办法中地具体方法,互不相同(即分类不重);完成此任务地任何一种方法,都属于某一类(即分类不漏).合理分类也是运用加法原理解决问题地难点,不同地问题,分类地标准往往不同,需要积累一定地解题经验.2、乘法原理:完成一件工作共需N个步骤:完成第一个步骤有m1种方法,完成第二个步骤有m2种方法,…,完成第N个步骤有mn种方法,那么,完成这件工作共有m 1×m2×…×mn种方法.运用乘法原理计数,关键在于合理分步.完成这件工作地N个步骤,各个步骤之间是相互联系地,任何一步地一种方法都不能完成此工作,必须连续完成这N步才能完成此工作;各步计数相互独立;只要有一步中所采取地方法不同,则对应地完成此工作地方法也不同.运用两个原理解决地都是比较复杂地计数问题,在解题时要细心、耐心、有条理地分析问题.计数时要注意区分是分类问题还是分步问题,正确运用两个原理.灵活机动地分层重复使用或综合运用两个原理,可以巧妙解决很多复杂地计数问题.例1:(1)教室图书角放有4种不同地故事书,有7种不同地漫画书,从中取一本,共有多少种不同地取法?(2)教室图书角放有4种不同地故事书,有7种不同地漫画书,从中各取一本,共有多少种不同地取法?练习:(1)由镇往县城有3条路,由县城往长青山旅游区有4条路,由镇区经县城去长青山有几种不同地走法?(2)某人到食堂去买饭菜,食堂里有4种荤菜,3种蔬菜,2种汤.他要各买一样,共有多少种不同地买法?例2:用1角、2角和5角地三种人民币(每种地张数没有限制)组成1元钱,有多少种方法?练习:现有一架天平和1g,3g,9g,27g地砝码各一个,能称出多少种不同地重量?例3:各数位地数字之和是24地三位数共有多少个?练习:在所有四位数中,各位上地数之和等于34地数有种.例4:(1)用1 、2、 3、 4 四个数字,可以组成个不同地四位数;(2)用1、 9 、9 、5 四个数字,可以组成个不同地四位数.练习:(1)用1、2、3、4、5、6六个数字,可以组成多少个不同地四位数?(2)用1、2、3、4、5、6六个数字,可以组成多少个不同地四位偶数?(3)用0、1、2、3、4、5六个数字,可以组成多少个不同地四位数?(4)用0、1、2、3、4、5六个数字,可以组成多少个不同地四位偶数?例5:一本书有235页,打印页码共用了多少个数字码?其中有多少个数字“1”?练习:一本书打印页码共用了6889个数字码,这本书有多少页?例6:下图中有7个点和10条线段,一只甲虫要从A点沿着线段爬到B点,要求任何线段和点不得重复经过.问:这只甲虫最多有几种不同地走法?练习:(1)如图所示,从甲地到乙地,最近地道路有几条?(2)如果沿图中地线段,以最短地路程,从A点出发到B点,共有多少种不同地走法?巩固练习:1、学生饭堂有主食3种,副食有6种.从主食或副食中挑一种配成盒饭,可以配成()种.2:学生饭堂有主食3种,副食有6种.从主、副食中各挑一种配成盒饭,可以配成()种.3:小明有7种红色画纸,4种蓝色画纸,3种黄色画纸,如果每种颜色取一张,有()种取法.4:小明有7种红色画纸,4种蓝色画纸,3种黄色画纸,如果要取一张画纸,有()种取法.5.从1写到100,一共用了个“5”这个数字.6:小红有不同地上衣4件,下装5种,鞋子3双,问小红能有()种不同地穿着方法?7.数字和是4地三位数有个.8:小芳要买数学、语文、外语地参考书各一本,他看见书架上数学书有3种,语文书有2种,外语书有2种可供选择,她有()种不同地选择方法?9.用一个5分币、四个2分币,八个1分币买一张蛇年8分邮票,共有种付币方式.10.“IMO”是国际数学奥林匹克地缩写,把这三个字母写成三种不同颜色,现有五种不同颜色地笔,按上述要求能写出种不同颜色搭配地“IMO”.11:公园里有小红旗4款,小白旗5款,小蓝旗6款,如果三种颜色地小旗各取一款,有()不同地取法.12.电影院有六个门,其中A、B、C、D门只供退场时作出口,甲、乙门作为入口也作为出口.共有种不同地进出路线.版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.Users may use the contents or services of this article for personal study, research or appreciation, and othernon-commercial or non-profit purposes, but at the same time, they shall abide by the provisions of copyright law and other relevant laws, and shall not infringe upon the legitimate rights of this website and its relevant obligees. In addition, when any content or service of this article is used for other purposes, written permission and remuneration shall be obtained from the person concerned and the relevant obligee.转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.Reproduction or quotation of the content of this article must be reasonable and good-faith citation for the use of news or informative public free information. It shall not misinterpret or modify the original intention of the content of this article, and shall bear legal liability such as copyright.。

概率论与数理统计公式全

概率论与数理统计公式全
如果同时有 , ,则称事件A与事件B等价,或称A等于B:A=B。
A、B中至少有一个发生的事件:A B,或者A+B。
属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者 ,它表示A发生而B不发生的事件。
A、B同时发生:A B,或者AB。A B=Ø,则表示A与B不可能同时发生,称事件A与事件B互不相容或者互斥。基本事件是互不相容的。
记为(X,Y)~N(
由边缘密度的计算公式,可以推出二维正态分布的两个边缘分布仍为正态分布,
即X~N(
但是若X~N( ,(X,Y)未必是二维正态分布。
(10)函数分布
Z=X+Y
根据定义计算:
对于连续型,fZ(z)=
两个独立的正态分布的和仍为正态分布( )。
n个相互独立的正态分布的线性组合,仍服从正态分布。
若 ,则 的分布函数为
。。
参数 、 时的正态分布称为标准正态分布,记为 ,其密度函数记为
, ,
分布函数为

是不可求积函数,其函数值,已编制成表可供查用。
Φ(-x)=1-Φ(x)且Φ(0)= 。
如果 ~ ,则 ~ 。

(6)分位数
下分位表: ;
上分位表: 。
(7)函数分布
离散型
已知 的分布列为

的分布列( 互不相等)如下:
①可分离变量
②正概率密度区间为矩形
二维正态分布
=0
随机变量的函数
若X1,X2,…Xm,Xm+1,…Xn相互独立,h,g为连续函数,则:
h(X1,X2,…Xm)和g(Xm+1,…Xn)相互独立。
特例:若X与Y独立,则:h(X)和g(Y)独立。

加法原理和乘法原理及多重集的排列组合PPT课件

加法原理和乘法原理及多重集的排列组合PPT课件

ppt精选版
3
加法原理应用
• 例:一名学生想选修一门数学课程或者一门生物课程。现有4门数学 课程和3门生物课程作为该生的选课范围,那么该生的选择有几种?
• 解:应用加法法则:4+3=7(种)
ppt精选版
4
乘法原理
乘法原理(multiplication principle)
•令S是元素的序偶(a,b)的集合,其中第一个元素来自大小为p的一个 集合,而对于a的每个选择,元素b存在着q种选择。于是S的大小为p×q; |S|=p×q •如果某事件能分成连续n步完成,第一步有r1种方式完成,且不管第一 步以何种方式完成,第二步都始终有r2种方式完成,而且无论前两步以 何种方式完成,第三步都始终有r3种方式完成,以此类推,那么完成这 件事共有r1×r2×…×rn种方式 •注意,运用乘法原则,后步结果可随前步结果而变化,但每一步完成方 式的数量却是固定不变,不依赖任何一步。
个子集,该子集由S得n个元素中的r个组成,即S的元素一个r-子集。

如果r>n,则
C
r n
=0
•如果r≤n,Crn Nhomakorabean! r!(n r)!
ppt精选版
10
集合组合的应用
• 例:平面上给出25个点,没有3个点共线。这些点确定多少条直线?
确定多少个三角形?
• 解:因为没有3个点处于同一条直线上,每一对点就确定一条直线。
13
多重集组合
•如果S是1个多重集,那么S的r-组合数S中的r个元素的一个无序选择。 因此,S的一个r-组合本身就是一个多重集——S的一个含r个元素的子多
重集。
•令S为具有k种类型元素的一个多重集,每种元素均具有无限的重复数。

排列组合的一些公式及推导(非常详细易懂)

排列组合的一些公式及推导(非常详细易懂)

排列组合的一些公式及推导(非常详细易懂)绪论:加法原理、乘法原理分类计数原理:做一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,…,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+…+mn 种不同的方法。

分步计数原理:完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×⋯×mn种不同的方法。

区别:分类计数原理是加法原理,不同的类加起来就是我要得到的总数;分步计数原理是乘法原理,是同一事件分成若干步骤,每个步骤的方法数相乘才是总数。

排列问题排列数从n个不同元素种取出m(m≤n)个元素的所有不同排列的个数,叫做从n个不同元素种取出m个元素的排列数,用符号Amn表示。

排列数公式Amn=n(n−1)(n−2)⋯(n−m+1)=n!(n−m)!,n,m∈N∗,并且m≤n(规定0!=1)推导:把n个不同的元素任选m个排序,按计数原理分步进行:取第一个:有n种取法;取第二个:有(n−1)种取法;取第三个:有(n−2)种取法;……取第m个:有(n−m+1)种取法;根据分步乘法原理,得出上述公式。

排列数性质Amn=nAm−1n−1 可理解为“某特定位置”先安排,再安排其余位置。

Amn=mAm−1n−1+Amn−1 可理解为:含特定元素的排列有mAm−1n−1,不含特定元素的排列为Amn−1。

组合问题组合数从n个不同元素种取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素种取出m个元素的组合数,用符号Cmn表示。

组合数公式Cmn=AmnAmm=n(n−1)(n−2)⋯(n−m+1)m!=n!m!(n−m)!,n,m∈N∗,并且m≤nC0n=Cnn=1证明:利用排列和组合之间的关系以及排列的公式来推导证明。

将部分排列问题Amn分解为两个步骤:第一步,就是从n个球中抽m个出来,先不排序,此即组合数问题Cmn;第二步,则是把这m个被抽出来的球排序,即全排列Amm。

排列组合之加法与乘法原理

排列组合之加法与乘法原理

丙地
丁地
点评
• 解题的关键是从总体上看做这件事情是 “分类完成”,还是“分步完成”。“分类 完成”用“加法原理”;“分步完成”用“乘 法原理”。
练习
• 某班级有男三好学生5人,女三好学生4人。 • (1)从中任选一人去领奖, 有多少种不同的选 法? • (2) 从中任选男、女三好学生各一人去参加 座谈会,有多少种不同的选法?
如上图,从A到C分2步: 第一步,由A到B,有2条路; 第二步,由B到C,有3条路。 所以,从A到C共有 2×3=6 条路。
加法原理与乘法原理
• 加法原理和乘法原理是解排列组合题目的最基本 的出发点。 • 要做一件事,完成它有n类办法,是分类问题,每 一类中的每一个方法都是独立的,因此用加法原 理; • 要做一件事,需要分n个步骤,步与步之间是连续 的,只有将分成的若干个互相联系的步骤,依次 相继完成,这件事才算完成,因此用乘法原理。 • 完成一件事的分“类”和分“步”是有本质区别 的,因此也将两个原理区分开来。

• 从甲地到乙地,可以乘火车,也可以乘汽车,还 可以乘轮船。一天中,火车有4 班,汽车有2班, 轮船有3班。那么一天中乘坐这些交通工具从甲地 到乙地共有多少种不同的走法? • 分析:从甲地到乙地有3类方法, 第一类方法, 乘火车,有4种方法; 第二类方法, 乘汽车,有2种方法; 第三类方法, 乘轮船, 有3种方法; 所以,从甲地到乙地共有4+2+3=9种方法。
回答下面的问题 : 1. 本节课学习了那些主要内容? 答: 加法原理和乘法原理。 2. 加法原理和乘法原理的共同点是什么?不同点是什么? 答: 共同点是, 它们都是研究完成一件事情, 共有多少种 不同的方法。 不同点是, 它们研究完成一件事情的方式不同, 加 法原理是“分类完成”, 即任何一类办法中的任何一个 方法都能完成这件事。乘法原理是“分步完成”, 即这 些方法需要分步,各个步骤顺次相依,且每一步都完成了, 才能完成这件事情。这也是本节课的重点。

2013 高考数学 排列组合与概率知识点 排列组合典型题 基本方法 技巧

2013 高考数学 排列组合与概率知识点 排列组合典型题 基本方法  技巧

排列组合与概率经典教案两个基本原理:1.加法原理(分类计数原理):做一件事,完成它有n 类办法,在第一类办法中有1m 种不同的方法, 在第二类办法中有2m 种不同的方法, ……,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:n m m m m N +⋅⋅⋅+++=321种不同的方法.2.乘法原理(分步计数原理): 做一件事,完成它有n 个步骤,做第一步有1m 种不同的方法, 做第二步有有2m 种不同的方法, ……, 做第n 步有n m 种不同的方法,那么完成这件事共有: n m m m m N ⨯⋅⋅⋅⨯⨯⨯=321种不同的方法.特别注意:分类是独立的、一次性的;分步是连续的、多次的。

三组基本概念:1.排列1)排列:从n 个不同元素中取出m(m ≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列。

2)排列数:从n 个不同元素中取出m(m ≤n)个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数。

通常用m n A 表示。

特别地,当n m =时,称为全排列,当n m 时,称为选排列。

2. 组合1)组合:从n 个不同元素中取出m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合。

2)组合数:从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,记作m n C 。

3. 事件与概率 1)事件的分类:(1)必然事件:在一定的条件下必然要发生的事件;(2)不可能事件:在一定的条件下不可能发生的事件;(3)随机事件:在一定的条件下可能发生也可能不发生的事件。

2)一些特殊事件:(1)等可能事件:对于每次随机试验来说,只可能出现有限个不同的试验结果;另外,所有不同的试验结果,它们出现的可能性是相等的。

(2)互斥事件:不可能同时发生的两个事件,我们把它称为互斥事件。

如果事件A 1,A 2,…,A n 中的任何两个都是互斥事件,那么就说事件A 1,A 2,…,A n 彼此互斥。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:10.1加法原理和乘法原理(一)教学目的:1了解学习本章的意义,激发学生的兴趣.2.理解分类计数原理与分步计数原理,培养学生的归纳概括能力.3.会利用两个原理分析和解决一些简单的应用问题.教学重点:分类计数原理(加法原理)与分步计数原理(乘法原理)教学难点:分类计数原理(加法原理)与分步计数原理(乘法原理)的准确理解授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:两个基本原理是排列、组合的开头课,学习它所需的先行知识跟学生已熟知的数学知识联系很少,排列、组合的计算公式都是以乘法原理为基础的,而一些较复杂的排列、组合应用题的求解,更是离不开两个基本原理,所以在教学目标中特别提出要使学生学会准确地应用两个基本原理分析和解决一些简单的问题对于学生陌生的知识,在开头课中首先作一个大概的介绍,使学生有一个大致的了解是十分必要的基于这一想法,在引入新课时,首先是把这一章将要学习的内容,以及与其它科目的关系做了介绍,同时也引入了课题正确使用两个基本原理的前提是要学生清楚两个基本原理使用的条件;分类用加法原理,分步用乘法原理,单纯这点学生是容易理解的,问题在于怎样的,目的就在于帮助学生对这一知识的理解与应用两个原理是教与学重点,又具有相当难度.加法和乘法在小学就会,那么,在中学再学它与以往有什么不同?不同在于小学阶段重在运算结果的追求,而忽视了其过程中包含的深层次思想;两个原理恰恰深刻反映了人类计数最基本的“大事化小”,即“分解”的思想.更具体地说就是把事物分成类或分成步去数.“分类”、“分步”,看似简单,不难理解,却是全章的理论依据和基本方法,贯穿始终,所以,是举足轻重的重点.两个原理,要能在各种场合灵活应用并非易事,所以,着实有其难用之处教学过程:一、复习引入:一次集会共50人参加,结束时,大家两两握手,互相道别,请你统计一下,大家握手次数共有多少?某商场有东南西北四个大门,当你从一个大门进去又从另一个大门出来,问你共有多少种不同走法?揭示本节课内容:等我们学了这一部分内容后,这些问题会很容易解决而这部分内容是代数中一个独立的问题,与旧知识联系很少,但它是以后学习二项式定理、概率学、统计学等知识的基础内容从本节课开始,我们将要学习中学代数内容中一个独特的部分——排列、组合它们研究对象独特,研究问题的方法不同一般虽然份量不多,但是与旧知识的联系很少,而且它还是我们今后学习概率论的基础,统计学、运筹学以及生物的选种等都与它直接有关至于在日常的工作、生活上,只要涉及安排调配的问题,就离不开它今天我们就来学习本章的两个基本原理(这是排列、组合的第一节课,把这一章的内容作一个大概的介绍,能使学生从一开始就对将要学习的知识有一个初步的了解,并为本章的学习研究打下思想基础)二、讲解新课:1.问题一(1-1)从甲地到乙地,可以乘火车,也可以乘汽车,一天中火车有3班,汽车有2班,那么一天中,乘坐这些交通工具从甲地到乙地共有多少种方法?分析:因为一天中乘火车有3种走法,乘汽车有2种走法,每一种走法都可以从甲地到乙地,所以,共有3+2=5种不同的走法,如图所示(1-2) 从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船一天中,火车有4 班, 汽车有2班,轮船有3班那么一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法?分析:从甲地到乙地有3类方法:第一类方法,乘火车,有4种方法;第二类方法,乘汽车,有2种方法;第三类方法,乘轮船,有3种方法;所以,从甲地到乙地共有4+2+3=9种方法 分类计数原理(加法原理):做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有12n N m m m =+++ 种不同的方法3.问题二(2-1)从甲地到乙地,要从甲地先乘火车到丙地,再于次日从丙地乘汽车到乙地,一天中,火车有3班,汽车有2班,那么两天中,从甲地到乙地共有多少种不同的走法? 甲地乙地火车汽车轮船分析:因为乘火车有3种走法,乘汽车有2种走法,所以,乘一次火车再接着乘一次汽车从甲地到乙地,共有326⨯=种不同走法,如图所示,所有走法:火车1──汽车1;火车1──汽车2;火车2──汽车1;火车2──汽车2;火车3──汽车1;火车3──汽车2(2-2)如图,由A 村去B 村的道路有2条,由B 村去C 村的道路有3条从A 村经B 村去C 村,共有多少种不同的走法?分析: 从A 村经 B 村去C 村有2步, 第一步, 由A 村去B 村有2种方法, 第二步, 由B 村去C 村有3种方法,所以 从A 村经 B 村去C 村共有 2×3 = 6 种不同的方法4.分步计数原理(乘法原理):做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =⨯⨯⨯ 种不同的方法5.原理浅释分类计数原理(加法原理)中,“完成一件事,有n 类办法”,是说每种办法“互斥”,即每种方法都可以独立地完成这件事,同时他们之间没有重复也没有遗漏.进行分类时,要求各类办法彼此之间是相互排斥的,不论那一类办法中的哪一种方法,都能独立完成这件事.只有满足这个条件,才能直接用加法原理,否则不可以.分步计数原理(乘法原理)中,“完成一件事,需要分成n 个步骤”,是说每个步骤都不足以完成这件事,这些步骤,彼此间也不能有重复和遗漏.如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要依次完成所有步骤才能完成这件事,而各步要求相互独立,即相对于前一步的每一种方法,下一步都有m 种不同的方法,那么完成这件事的方法数就可以直接用乘法原理. 可以看出“分”是它们共同的特征,但是,分法却大不相同.两个原理的公式是: 12n N m m m =+++, 12n N m m m =⨯⨯⨯这种变形还提醒人们,分类和分步,常是在一定的限制之下人为的,因此,在这里我们大有用武之地:可以根据解题需要灵活而巧妙地分类或分步.强调知识的综合是近年的一种可取的现象.两个原理,可以与物理中电路A村C村B村的串联、并联类比.两个基本原理的作用:计算做一件事完成它的所有不同的方法种数两个基本原理的区别:一个与分类有关,一个与分步有关;加法原理是“分类完成”,乘法原理是“分步完成”三、讲解范例:例1.书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书,(1)从书架上任取1本书,有多少种不同的取法?(2)从书架的第1、2、3层各取1本书,有多少种不同的取法?解:(1)从书架上任取1本书,有3类办法:第1类办法是从第1层取1本计算机书,有4种方法;第2类是从第2层取1本文艺书,有3种方法;第3类办法是从第3层取1本体育书,有2种方法根据分类计数原理,不同取法的种数是4+3+2=9种所以,从书架上任取1本书,有9种不同的取法;(2)从书架的第1、2、3层各取1本书,可以分成3个步骤完成:第1步从第1层取1本计算机书,有4种方法;第2步从第2层取1本艺术书,有3种方法;第3步从第3层取1本体育书,有2种方法根据分步计数原理,从书架的⨯⨯=种第1、2、3层各取1本书,不同取法的种数是43224所以,从书架的第1、2、3层各取1本书,有24种不同的取法例2.一种号码拨号锁有4个拨号盘,每个拨号盘上有从0到9共10个数字,这4个拨号盘可以组成多少个四位数号码?解:每个拨号盘上的数字有10种取法,根据分步计数原理,4个拨号盘上N=⨯⨯⨯=,各取1个数字组成的四位数字号码的个数是1010101010000所以,可以组成10000个四位数号码例3.要从甲、乙、丙3名工人中选出2名分别上日班和晚班,有多少种不同的选法?解:从3名工人中选1名上日班和1名上晚班,可以看成是经过先选1名上日班,再选1名上晚班两个步骤完成,先选1名上日班,共有3种选法;上日班的工人选定后,上晚班的工人有2种选法根据分步技数原理,不同的选法数N=⨯=种,6种选法可以表示如下:是326日班晚班甲乙甲丙乙甲乙丙丙甲丙乙所以,从3名工人中选出2名分别上日班和晚班,6种不同的选法例4.甲厂生产的收音机外壳形状有3种,颜色有4种,乙厂生产的收音机外壳形状有4种,颜色有5种,这两厂生产的收音机仅从外壳的形状和颜色看,共有所少种不同的品种?解:收音机的品种可分两类:⨯=第一类:甲厂收音机的种类,分两步:形状有3种,颜色有4种,共3412种;⨯=第二类:乙厂收音机的种类,分两步:形状有4种,颜色有5种,共4520种+=个品种所以,共有122032说明:分类和分步计数原理,都是关于做一件事的不同方法的种数的问题区别在于:分类计数原理针对“分类”问题,其中方法相互独立,用其中任何一种方法都可以做完这件事;分步计数原理针对“分步”问题,各个步骤中方法相互独立,只有各个步骤都完成才算完成了这件事四、课堂练习:1 .书架上层放有6本不同的数学书,下层放有5本不同的语文书(1) 从中任取一本,有多少种不同的取法?(2)从中任取数学书与语文书各一本,有多少种不同的取法?解:(1)从书架上任取一本书,有两种方法:第一类可从6本数学书中任取一本,有6种方法;第二类可从5本语文书中任取一本,有5种方法;根据加法原理可得共有 5+6=11 种不同的取法(2) 从书架上任取数学、语文书各一本,可以分成两步完成:第一步任取一本数学书,有6种方法;第二步任取一本语文书,有5种方法根据乘法原理可得共有5×6=30种不同取法2.某班级有男学生5人,女学生4人(1)从中任选一人去领奖, 有多少种不同的选法?(2) 从中任选男、女学生各一人去参加座谈会,有多少种不同的选法?解:(1) 完成从学生中任选一人去领奖这件事,共有2类办法,m = 5种不同的方法;第一类办法,从男学生中任选一人,共有1m = 4种不同的方法第二类办法,从女学生中任选一人,共有2所以, 根据加法原理, 得到不同选法种数共有 N = 5 + 4 = 9 种(2) 完成从学生中任选男、女各一人去参加座谈会这件事, 需分2步完成,m= 5种方法;第一步,选一名男学生,有1m= 4种方法;第二步,选一名女学生,有2所以,根据乘法原理, 得到不同选法种数共有 N = 5 × 4 = 20 种由例1可知:解题的关键是从总体上看做这件事情是“分类完成”,还是“分步完成”“分类完成”用“加法原理”;“分步完成”用“乘法原理”3. 满足A∪B={1,2}的集合A、B共有多少组?分析一:A、B均是{1,2}的子集:φ,{1},{2},{1,2},但不是随便两个子集搭配都行,本题尤如含A、B两元素的不定方程,其全部解分为四类:1)当A=φ时,只有B={1,2},得1组解;2)当A={1}时,B={2}或B={1,2},得2组解;3)当A={2}时,B={1}或B={1,2},得2组解;4)当A={1,2}时,B=φ或{1}或{2}或{1,2},得4组解.根据分类计数原理,共有1+2+2+4=9组解.分析二: 设A、B为两个“口袋”,需将两种元素(1与2)装入,任一元素至少装入一个袋中,分两步可办好此事:第1步装“1”,可装入A不装入B,也可装入B 不装入A,还可以既装入A又装入B,有3种装法;第2步装2,同样有3种装法.根据分步计数原理共有3×3=9种装法,即原题共有9组解.4.从甲地到乙地有2条路可通,从乙地到丙地有3条路可通;从甲地到丁地有4条路可通, 从丁地到丙地有2条路可通从甲地到丙地共有多少种不同的走法?答案:2×3+4×2=14五、小结:本节课主要介绍了两个基本原理,解题时应紧扣原理,弄清事情完成的前后经过,分清是分类还是分步,或分类中含分步、分步中含分类无论是分类、分步,关键是做到不重不漏六、课后作业:七、板书设计(略)八、课后记:。

相关文档
最新文档