【2020精品中考数学提分卷】武汉市蔡甸区初三三模数学试卷-+答案

合集下载

湖北省武汉市2020年中考数学评价检测试卷(三)(含答案)

湖北省武汉市2020年中考数学评价检测试卷(三)(含答案)

湖北省武汉市2020年中考数学评价检测试卷(三)一.选择题(每小题3分,满分30分)1.分式有意义的条件是( ) A .x ≠0 B .y ≠0 C .x ≠3 D .x ≠﹣32.有理数a 在数轴上对应的点如图所示,则a 、﹣a 、﹣1的大小关系是( )A .﹣a <﹣1<aB .﹣a <a <﹣1C .a <﹣1<﹣aD .﹣1<a <﹣a3.某市6月份日平均气温如所示,在平均气温这组数中众数和中位数分别是( )A .21,22B .21,21.5C .10,21D .10,224.如图所示,在平面直角坐标系中,点A 、B 、C 的坐标分别为(﹣1,3)、(﹣4,1)、(﹣2,1),将△ABC 沿一确定方向平移得到△A 1B 1C 1,点B 的对应点B 1的坐标是(1,2),则点A 1,C 1的坐标分别是 ( )A .A 1(4,4),C 1(3,2)B .A 1(3,3),C 1(2,1) C .A 1(4,3),C 1(2,3)D .A 1(3,4),C 1(2,2)5.书架上放着三本小说和两本散文,小明从中随机抽取两本,两本都是小说的概率是( )A .B .C .D .6.为打造三墩五里塘河河道风光带,现有一段长为180米的河道整治任务,由A、B两个工程小组先后接力完成,A工程小组每天整治12米,B工程小组每天整治8米,共用时20天,设A工程小组整治河道x米,B工程小组整治河道y米,依题意可列方程组()A.B.C.D.7.如图,在平面直角坐标系中,Rt△ABC的顶点A,B分别在y轴、x轴上,OA=2,OB=1,斜边AC∥x轴.若反比例函数y=(k>0,x>0)的图象经过AC的中点D,则k的值为()A.4 B.5 C.6 D.88.如图,是由相同大小的圆点按照一定规律摆放而成,按此规律,则第n个图形中圆点的个数为()A.n+1 B.n2+n C.4n+1 D.2n﹣19.如图,在等腰Rt△ABC中,∠C=90°,直角边AC长与正方形MNPQ的边长均为2cm,CA 与MN在直线l上.开始时A点与M点重合;让△ABC向右平移;直到C点与N点重合时为止.设△ABC与正方形MNPQ重叠部分(图中阴影部分)的面积为ycm2,MA的长度为xcm,则y与x之间的函数关系大致是()A.B.C.D.10.如图,A为⊙O外一点,AB与⊙O相切于B点,点P是⊙O上的一个动点,若OB=5,AB =12,则AP的最小值为()A.5 B.8 C.13 D.18二.填空题(满分18分,每小题3分)11.计算2sin245°﹣tan60°的结果是.12.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为.13.计算:﹣=.14.如图,平行四边形ABCD的对角线AC,BD交于O,EF过点O与AD,BC分别交于E,F,若AB=4,BC=5,OE=1.5,则四边形EFCD的周长.15.二次函数y=ax2+bx+3的图象经过点A(﹣2,0)、B(4,0),则一元二次方程ax2+bx =0的根是.16.如图,以△ABC的边AB为直径的⊙O恰好过BC的中点D,过点D作DE⊥AC于E,连结OD,则下列结论中:①OD∥BC;②∠B=∠C;③2OA=AC;④DE是⊙O的切线;⑤∠EDA =∠B,正确的序号是.三.解答题17.(8分)已知2m=a,8n=b,m,n,是正整数,求23m+6n.18.(8分)已知:如图,在△ABC中,CD⊥AB于点D,E是AC上一点且∠1+∠2=90°.求证:DE∥BC.19.(8分)科技发展,社会进步,中国己进入特色社会主义新时代,为实现“两个一百年”奋斗目标和中华民族伟大复兴的中国梦,需要人人奋斗,青少年时期是良好品格形成和知识积累的黄金时期.为此,大数据平台针对部分中学生品格表现和学习状况进行调查统计绘制如下统计图表,请根据图中提供的信息解决下列问题,类别:A品格健全,成绩优异;B尊敬师长,积极进取;C自控力差,被动学习;D沉迷奢玩,消极自卑.(1)本次调查被抽取的样本容量为;(2)“自控力差,被动学习”的同学有人,并补全条形统计图;(3)样本中D类所在扇形的圆心角为度;(4)东至县城内某中学有在校学生3330人,请估算该校D类学生人数.20.(8分)如图1,每个小正方形的边长都为1,点A、B、C在正方形网格的格点上,AB =5,AC=2,BC=.(1)请在网格中画出△ABC.(2)如图2,直接写出:①AC=,BC=.②△ABC的面积为.③AB边上的高为.21.(8分)如图1,△ABC内接于⊙O,点D是的中点,且与点C位于AB的异侧,CD交AB于点E.(1)求证:△ADE∽△CDA.(2)如图2,若⊙O的直径AB=4,CE=2,求AD和CD的长.22.(10分)某工厂制作A,B两种手工艺品,B每件获利比A多105元,获利30元的A 与获利240元的B数量相等.(1)制作一件A和一件B分别获利多少元?(2)工厂安排65人制作A,B两种手工艺品,每人每天制作2件A或1件B.现在在不增加工人的情况下,增加制作C.已知每人每天可制作1件C(每人每天只能制作一种手工艺品),要求每天制作A,C两种手工艺品的数量相等.设每天安排x人制作B,y人制作A,写出y与x之间的函数关系式.(3)在(1)(2)的条件下,每天制作B不少于5件.当每天制作5件时,每件获利不变.若每增加1件,则当天平均每件获利减少2元.已知C每件获利30元,求每天制作三种手工艺品可获得的总利润W(元)的最大值及相应x的值.23.(10分)如图,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等边三角形,点D 在边AB上.(1)如图1,当点E在边BC上时,求证DE=EB;(2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;(3)如图3,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=3.求CG的长.24.(12分)如图,在平面直角坐标系xOy中,将抛物线y=﹣x2+bx+c与直线y=﹣x+1相交于点A(0,1)和点B(3,﹣2),交x轴于点C,顶点为点F,点D是该抛物线上一点.(1)求抛物线的函数表达式;(2)如图1,若点D在直线AB上方的抛物线上,求△DAB的面积最大时点D的坐标;(3)如图2,若点D在对称轴左侧的抛物线上,且点E(1,t)是射线CF上一点,当以C、B、D为顶点的三角形与△CAE相似时,求所有满足条件的t的值.参考答案一.选择1.解:根据分式有意义的条件,得x﹣3≠0解得x≠3.故选:C.2.解:∵a<﹣1,∴a<﹣1<﹣a.故选:C.3.解:温度为21℃的有10天,最多,所以众数为21℃;∵共30天,∴中位数是第15和第16天的平均数,∴中位数为=22℃,故选:A.4.解:由点B(﹣4,1)的对应点B1的坐标是(1,2)知,需将△ABC向右移5个单位、上移1个单位,则点A(﹣1,3)的对应点A1的坐标为(4,4)、点C(﹣2,1)的对应点C1的坐标为(3,2),故选:A.5.解:画树状图为:(用A、B、C表示三本小说,a、b表示两本散文)共有20种等可能的结果数,其中从中随机抽取2本都是小说的结果数为6,所以从中随机抽取2本都是小说的概率==.故选:A.6.解:设A工程小组整治河道x米,B工程小组整治河道y米,依题意可得:,故选:A.7.解:∵AC∥x轴,OA=2,OB=1,∴A(0,2),∴C、A两点纵坐标相同,都为2,∴可设C(x,2).∵D为AC中点.∴D(x,2).∵∠ABC=90°,∴AB2+BC2=AC2,∴12+22+(x﹣1)2+22=x2,解得x=5,∴D(,2).∵反比例函数y=(k>0,x>0)的图象经过点D,∴k=×2=5.故选:B.8.解:观察图形的变化可知:第1个图形中圆点的个数为4+1=5;第2个图形中圆点的个数为4×2+1=9;第3个图形中圆点的个数为4×3+1=13;…发现规律,则第n个图形中圆点的个数为(4n+1).故选:C.9.解:当x≤2cm时,重合部分是边长为x的等腰直角三角形,面积为:y=x2,是一个开口向上的二次函数;当x>2时,重合部分是直角梯形,面积为:y=2﹣(x﹣2)2,是一个开口向下的二次函数.故选:C.10.解:连接OA交⊙O于点P,此时AP有最小值,∵AB为⊙O的切线,∴∠OBA=90°,∵OB=4,AB=12,∴==13,∴OP=5,则AP=13﹣5=8,故选:B.二.填空11.解:2sin245°﹣tan60°=2×﹣×=1﹣3=﹣2故答案为:﹣2.12.解:设原来红球个数为x个;则有=,解得x=20.故答案为20.13.解:原式=﹣=,故答案为:14.解:∵四边形ABCD 平行四边形,∴AB =CD =4,AD =BC =5,AO =OC ,∠OAD =∠OCF ,∠AOE =∠COF ,∴△OAE ≌△OCF ,∴OF =OE =1.5,CF =AE ,∴四边形EFCD 的周长=ED +CD +CF +OF +OE=ED +AE +CD +OE +OF=AD +CD +OE +OF=4+5+1.5+1.5=12.故填空答案:12.15.解:把A (﹣2,0),B (4,0)代入y =ax 2+bx +3得,解得,代入ax 2+bx =0得,﹣x 2+x =0,解得x 1=0,x 2=2. 故答案为:x 1=0,x 2=2.16.解:连接AD ,∵D 为BC 中点,点O 为AB 的中点,∴OD 为△ABC 的中位线,∴OD ∥BC ,①正确;∵AB 是⊙O 的直径,∴∠ADB =90°=∠ADC ,即AD ⊥BC ,又BD =CD ,∴△ABC为等腰三角形,∴∠B=∠C,②正确;∵DE⊥AC,且DO∥AC,∴OD⊥DE,∵OD是半径,∴DE是⊙O的切线,∴④正确;∴∠ODA+∠EDA=90°,∵∠ADB=∠ADO+∠ODB=90°,∴∠EDA=∠ODB,∵OD=OB,∴∠B=∠ODB,∴∠EDA=∠B,∴⑤正确;∵D为BC中点,AD⊥BC,∴AC=AB,∵OA=OB=AB,∴OA=AC,∴③不正确,故答案为:①②④⑤.三.解答17.解:∵2m=a,8n=b,∴2m=a,8n=23n=b,∴23m+6n=(2m)3×(23n)2=a3b2.18.证明:∵CD⊥AB(已知),∴∠1+∠3=90°(垂直定义).∵∠1+∠2=90°(已知),∴∠3=∠2(同角的余角相等).∴DE∥BC(内错角相等,两直线平行).19.解:(1)本次调查被抽取的样本容量为=520÷52%=1000,故答案为1000.(2)C组人数=1000﹣280﹣520﹣30=170(人),条形图如图所示:故答案为170.(3)D类所在扇形的圆心角=360°×=10.8°.故答案为10.8.(4)该校D类学生人数3330×3%≈100(人)20.解:(1)△ABC即为所求;(2)①AC==,BC==;②S△ABC=2×2﹣×1﹣1×2﹣1×2=,③如图2,AB边上的高为CD,垂足为D,=AB•CD=,∵S△ABC∵AB==,∴CD=,∴CD=.故答案为:、、、.21.解:(1)∵点D是的中点,∴∴∠ACD=∠BAD,∵∠ADE=∠CDA∴△ADE∽△CDA(2)连结BD,∵点D时的中点,∴AD=BD∵AB是⊙O的直径,∴∠ADB=90°,∴△ADB为等腰直角三角形,∴,由(1)得△ADE∽△CDA,∴,即AD2=CD•ED,∴,∴CD2﹣2CD﹣48=0,解得CD=8或﹣6.∴CD=8.22.解:(1)设制作一件A获利x元,则制作一件B获利(105+x)元,由题意得:,解得:x=15,经检验,x=15是原方程的根,当x=15时,x+105=120,答:制作一件A获利15元,制作一件B获利120元.(2)设每天安排x人制作B,y人制作A,则2y人制作C,于是有:y+x+2y=65,∴y=﹣x+答:y与x之间的函数关系式为∴y=﹣x+.(3)由题意得:W=15×2×y+[120﹣2(x﹣5)]x+2y×30=﹣2x2+130x+90y,又∵y=﹣x+∴W=﹣2x2+130x+90y=﹣2x2+130x+90(﹣x+)=﹣2x2+100x+1950,∵W=﹣2x2+100x+1950,对称轴为x=25,而x=25时,y的值不是整数,根据抛物线的对称性和增减性可得:当x=24或x=26时,W最大,当x=24时,y═﹣x+不是整数,不符合题意;当x=26时,W=﹣2×262+100×26+1950=3198元.最大此时制作A产品的13人,B产品的26人,C产品的26人,获利最大,最大利润为3198元.23.(1)证明:∵△CDE是等边三角形,∴∠CED=60°,∴∠EDB=60°﹣∠B=30°,∴∠EDB=∠B,∴DE=EB;(2)解:ED=EB,理由如下:取AB的中点O,连接CO、EO,∵∠ACB=90°,∠ABC=30°,∴∠A=60°,OC=OA,∴△ACO为等边三角形,∴CA=CO,∵△CDE是等边三角形,∴∠ACD=∠OCE,在△ACD和△OCE中,,∴△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,在△COE和△BOE中,,∴△COE≌△BOE,∴EC=EB,∴ED=EB;(3)取AB的中点O,连接CO、EO、EB,由(2)得△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌△BOE,∴EC=EB,∴ED=EB,∵EH⊥AB,∴DH=BH=3,∵GE∥AB,∴∠G=180°﹣∠A=120°,在△CEG和△DCO中,,∴△CEG≌△DCO,∴CG=OD,设CG=a,则AG=5a,OD=a,∴AC=OC=4a,∵OC=OB,∴4a=a+3+3,解得,a=2,即CG=2.24.解:(1)将点A(0,1)和点B(3,﹣2)代入抛物物线y=﹣x2+bx+c中得,解得∴y=﹣x2+2x+1(2)如图1所示:过点D作DM∥y轴交AB于点M,设D(a,﹣a2+2a+1),则M(a,﹣a+1).∴DM=﹣a2+2a+1﹣(﹣a+1)=﹣a2+3a∴∵有最大值,当时,此时图1(3)∵OA=OC,如图2,CF∥y轴,∴∠ACE=∠ACO=45°,∴△BCD中必有一个内角为45°,由题意可知,∠BCD不可能为45°,①若∠CBD=45°,则BD∥x轴,∴点D与点B于抛物线的対称轴直线x=1対称,设BD与直线=1交于点H,则H(1,﹣2)B(3,﹣2),D(﹣1,﹣2)此时△BCD是等腰直角三角形,因此△ACE也是等腰直角三角形,(i)当∠AEC=90°时,得到AE=CE=1,∴E (1.1),得到t =1(ii )当∠CAE =90时,得到:AC =AE =,∴CE =2,∴E (1.2),得到t =2图2②若∠CDB =45°,如图3,①中的情况是其中一种,答案同上 以点H 为圆心,HB 为半径作圆,则点B 、C 、D 都在圆H 上, 设圆H 与对称左侧的物线交于另一点D 1,则∠CD 1B =∠CDB =45°(同弧所对的圆周角相等),即D 1也符合题意 设由HD 1=DH =2解得n 1=﹣1(含去),n 2=3(舍去),(舍去), ∴, 则,(i )若△ACE ∽△CD 1B ,则, 即, 解得(舍去) (ii )△ACE ∽△BD 1C 则,即,解得(舍去)综上所述:所有满足条件的t的值为t=1或t=2或或图3。

2020年湖北省武汉市中考数学模拟试卷(三)解析版

2020年湖北省武汉市中考数学模拟试卷(三)解析版

2020年湖北省武汉市中考数学模拟试卷(三)一、选择题(共10小题,每小题3分,共30分)1.(3分)方程x2﹣3x=4化为一般式后,若二次项系数为1,则它的一次项系数和常数项分别为()A.﹣3、4B.3、﹣4C.﹣3、﹣4D.3、42.(3分)关于二次函数y=﹣2(x+1)2+5,下列说法正确的是()A.最小值为5B.最大值为1C.最大值为﹣1D.最大值为5 3.(3分)下列图案中,是中心对称图形的是()A.B.C.D.4.(3分)袋中装有6个黑球和2个红球,这些球的形状、大小、质地都完全相同,童童在看不到球的条件下,随机从装中摸出的三个小球,下列事件是必然事件的是()A.摸出的三个球中至少有一个红球B.摸出的三个球中至少有一个黑球C.摸出的三个球中至少有两个红球D.摸出的三个球中至少有两个黑球5.(3分)下列说法正确的是()A.“明天下雨的概率是85%”表示明天有85%的时间都在下雨B.“彩票中奖概率为1%”表示100张彩票必定会中奖C.连续将一枚质地均匀的硬币抛掷10次不可能都正面朝上D.连续将一枚质地均匀的硬币抛掷10次可能有5次正面朝上6.(3分)一元二次方程x2﹣2x+t=0有实数根,则()A.t<1B.t≤1C.t>1D.t≥17.(3分)在Rt△ABC中,∠C=90°,AC=5,BC=12.若以C为圆心,r为半径的圆与斜边AB只有一个公共点,则半径r的值或取值范围是()A.B.5≤r≤12或r=C.5<r≤12D.5<r≤12或r=8.(3分)如图,AB为半圆的直径,AB=4,C、D为上两点,且=,若∠CED=∠COD,则的长为()A.B.C.D.9.(3分)如图,⊙O中,弦AB⊥CD,垂足为E,F为的中点,连接AF、BF、AC,AF交CD于M,过F作FH⊥AC,垂足为G,以下结论:①=;②HC=BF:③MF =FC:④+=+,其中成立的个数是()A.1个B.2个C.3个D.4个10.(3分)y=x2﹣2x﹣3在﹣2≤x≤5之间的图象与y=﹣x2+2x+6+m的图象只有一个交点,则m的取值范围是()A.7<m≤21或m=﹣11B.5<m≤23或m=2C.4<m<25或m=﹣8D.6≤m<24或m=8二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)x2﹣2x﹣a=0的一个根为4,则a的值是.12.(3分)把抛物线y=x2﹣4x+5向上平移2个单位,再向左平移1个单位得到的抛物线解析式为.13.(3分)一个不透明的袋中装有3个红色小球,2个白色小球,除颜色外其他均无差别,现随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出颜色相同的小球的概率是.14.(3分)某同学患流感,经过两轮传染后,共有144名同学患流感,平均每人每轮传染名同学.15.(3分)如图,正五边形ABCDE和正△AFG都是⊙O的内接多边形,则∠FOC=.16.(3分)矩形ABCD的边AB=4,边AD上有一点M,连接BM,将MB绕M点逆时针旋转90°得MN,N恰好落在CD上,过M、D、N作⊙O,⊙O与BC相切,Q为⊙O 上的动点,连BQ,P为BQ中点,连AP,则AP的最小值为.三、解答题(共8题,共72分)17.(8分)解方程:x2﹣2x=4.18.(8分)已知,AB为⊙O的直径,弦CD⊥AB,垂足为E,点H为上一点,连接CH 交AB于F,过A作AG⊥CH于G.(1)如图1,连AH、BC,求证:∠HAG=∠BCE;(2)如图2,若H为AD的中点,连接HD,求证:HD=HF.19.(8分)一个不透明的袋中装有4个标号为1,2,3,4的小球,它们除标号外均无差别.(1)随机摸出一个小球,放回并摇匀,再随机摸出一个,用列表法或画树状图的方法求出“两次取出的球的标号之和为偶数”的概率;(2)随机摸出两个小球,直接写出两个小球标号积为奇数的概率.20.(8分)如图,在平面直角坐标系中,A (0,2),B (2,0).(1)在图中画出点P ,使△PAB 为等边三角形,保留作图痕迹;(2)求出满足条件的P 点坐标.21.(8分)如图,△ABC 内接于⊙O ,OE ⊥BC 于E ,延长EO 交AB 于F ,交⊙O 于D ,A 为的中点,连接BD .(1)求证:∠ACB =3∠ABC ;(2)若OF =5,EO =7,求△BDF 的面积.22.(10分)某文具生产厂家生产一种新型玩具,每件生产成本为20元,试销过程中发现每月销量y (万件)与销售单价x (元)之间可以近似看作一次函数y =﹣2x +160. (1)写出每月利润与销售单价之间的函数关系 ;(2)在扩大销量的前提下,当销售单价为多少元时,厂家每月能获得1000万利润?当每月获得最大利润时,售价为多少?最大利润为多少?(3)根据物价部门规定,这种玩具售价不得高于60元.如果厂家要获得每月不低于1000万的利润,则每月最低生产成本需要多少万元?23.(10分)在等边△ABC .(1)过B 作BG ⊥AC ,E 为BG 延长线上一点,过E 作ED ∥BC 交AB 于D ,交AC 于F .①如图1,若EF =2AF ,求FG :BC ;②在①的条件下,如图2,绕B 顺时针旋转△BDE ,连接AE ,取AE 的中点M ,连接DM 、CM ,试确定DM 与CM 的关系;(2)D 为△ABC 内一点,∠BDC =120°,延长CD 交AB 于N ,BD =3,S △BCM =3S △BCN ,请直接写出BC的长.24.(12分)如图1,直线y=﹣x+2与x轴交于A,与y轴交于B,点C(1,m)是直线AB上一点,抛物线y=ax2+bx+c过O、A、C三点,P为直线AB上一动点.(1)求抛物线解析式;(2)如图1,当P点在线段AB上时,如果在x轴上方的抛物线上总存在两个点D,使△OPD的面积与△OPA的面积相等,求点P横坐标的取值范围;(3)如图2,Q为对称轴右侧第一象限内抛物线上一点,连接QB交抛物线于D,连接AD交y轴于E,连AQ交y轴于F,求OE•OF的值.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)方程x2﹣3x=4化为一般式后,若二次项系数为1,则它的一次项系数和常数项分别为()A.﹣3、4B.3、﹣4C.﹣3、﹣4D.3、4【分析】方程整理为一般形式,找出一次项系数与常数项即可.【解答】解:方程整理得:x2﹣3x﹣4=0,则它的一次项系数和常数项分别为﹣3、﹣4,故选:C.【点评】此题考查了一元二次方程的一般形式,其一般形式为ax2+bx+c=0(a≠0).2.(3分)关于二次函数y=﹣2(x+1)2+5,下列说法正确的是()A.最小值为5B.最大值为1C.最大值为﹣1D.最大值为5【分析】由已知可知抛物线开口向下,则该函数有最大值,再由函数解析式求出当x=﹣1时,有最大值5即可.【解答】解:∵二次函数y=﹣2(x+1)2+5,可得函数开口向下,∴函数有最大值,∴当x=﹣1时,函数有最大值5,故选:D.【点评】本题考查二次函数的性质;能够通过函数的解析式求二次函数的最值是解题的关键.3.(3分)下列图案中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念进行判断即可.【解答】解:A、不是中心对称图形;B、不是中心对称图形;C、是中心对称图形;D、不是中心对称图形.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)袋中装有6个黑球和2个红球,这些球的形状、大小、质地都完全相同,童童在看不到球的条件下,随机从装中摸出的三个小球,下列事件是必然事件的是()A.摸出的三个球中至少有一个红球B.摸出的三个球中至少有一个黑球C.摸出的三个球中至少有两个红球D.摸出的三个球中至少有两个黑球【分析】必然事件就是一定发生的事件,依据定义即可作出判断.【解答】解:A、摸出的三个球中至少有一个红球是随机事件,不合题意;B、摸出的三个球中至少有一个黑球是必然事件,符合题意;C、摸出的三个球中至少有两个红球是随机事件,不合题意;D、摸出的三个球中至少有两个黑球是随机事件,不合题意.故选:B.【点评】本题主要考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(3分)下列说法正确的是()A.“明天下雨的概率是85%”表示明天有85%的时间都在下雨B.“彩票中奖概率为1%”表示100张彩票必定会中奖C.连续将一枚质地均匀的硬币抛掷10次不可能都正面朝上D.连续将一枚质地均匀的硬币抛掷10次可能有5次正面朝上【分析】利用概率的意义分别分析各选项即可得出结论.【解答】解:A.“明天下雨的概率是85%”表示明天有85%的可能性在下雨,故本选项错误;B.“彩票中奖概率为1%”表示100张彩票不一定会中奖,故本选项错误;C.连续将一枚质地均匀的硬币抛掷10次可能都正面朝上,故本选项错误;D.连续将一枚质地均匀的硬币抛掷10次可能有5次正面朝上,故本选项正确;【点评】此题主要考查了概率的意义,正确理解概率的意义是解题关键.概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.6.(3分)一元二次方程x2﹣2x+t=0有实数根,则()A.t<1B.t≤1C.t>1D.t≥1【分析】根据根的判别式即可求出答案.【解答】解:由题意可知:△=4﹣4t≥0,∴t≤1,故选:B.【点评】本题考查一元二次方程,解题的关键是熟练运用根的判别式,本题属于基础题型.7.(3分)在Rt△ABC中,∠C=90°,AC=5,BC=12.若以C为圆心,r为半径的圆与斜边AB只有一个公共点,则半径r的值或取值范围是()A.B.5≤r≤12或r=C.5<r≤12D.5<r≤12或r=【分析】此题注意两种情况:(1)圆与AB相切时;(2)点A在圆内部,点B在圆上或圆外时.根据勾股定理以及直角三角形的面积计算出其斜边上的高,再根据位置关系与数量之间的联系进行求解.【解答】解:∵BC>AC,∴以C为圆心,r为半径所作的圆与斜边AB只有一个公共点.根据勾股定理求得AB=13.分两种情况:(1)圆与AB相切时,即r=CD=5×12÷13=;(2)点A在圆内部,点B在圆上或圆外时,此时AC<r≤BC,即5<r≤12.故选:D.【点评】本题考查了直线与圆的位置关系和三角形的面积等知识点,解此题的关键是画出符合条件的所有情况.8.(3分)如图,AB为半圆的直径,AB=4,C、D为上两点,且=,若∠CED=∠COD,则的长为()A.B.C.D.【分析】设的度数为x°,则∠AOC=x,∠BOD=5x,∠COD=180°﹣6x,构建方程求出x,再利用弧长公式计算即可.【解答】解:设的度数为x°,则∠AOC=x,∠BOD=5x,∠COD=180°﹣6x,∵∠CED=∠COD,∴∠CED=(180°﹣6x),∵∠CED+∠COD=180°,∴(180°﹣6x)+90°﹣3x=180°,解得x=20,∴∠DOB=100°,∴的长==π,故选:D.【点评】本题考查圆周角定理,弧长公式等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.(3分)如图,⊙O中,弦AB⊥CD,垂足为E,F为的中点,连接AF、BF、AC,AF交CD于M,过F作FH⊥AC,垂足为G,以下结论:①=;②HC=BF:③MF =FC:④+=+,其中成立的个数是()A.1个B.2个C.3个D.4个【分析】根据弧,弦,圆心角之间的关系,圆周角定理以及三角形内角和定理一一判断即可.【解答】解:∵F为的中点,∴=,故①正确,∴∠FCM=∠FAC,∵∠FCG=∠ACM+∠GCM,∠AME=∠FMC=∠ACM+∠FAC,∴∠AME=∠FMC=∠FCG>∠FCM,∴FC>FM,故③错误,∵AB⊥CD,FH⊥AC,∴∠AEM=∠CGF=90°,∴∠CFH+∠FCG=90°,∠BAF+∠AME=90°,∴∠CFH=∠BAF,∴=,∴HC=BF,故②正确,∵∠AGF=90°,∴∠CAF+∠AFH=90°,∴的度数+的度数=180°,∴的度数+的度数=180°,∴+=+=+=+,故④正确,故选:C.【点评】本题考查圆心角,弧,弦之间的关系,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考选择题中的压轴题.10.(3分)y=x2﹣2x﹣3在﹣2≤x≤5之间的图象与y=﹣x2+2x+6+m的图象只有一个交点,则m的取值范围是()A.7<m≤21或m=﹣11B.5<m≤23或m=2C.4<m<25或m=﹣8D.6≤m<24或m=8【分析】求出y=x2﹣2x﹣3在﹣2≤x≤5之间,顶点为(1,﹣4),当x=﹣2时,y=5;当x=5时,y=12;再求y=﹣x2+2x+6+m的顶点为(1,7+m),分两种情况:当7+m >﹣4时,m>﹣11,①当x=﹣2时,y>5,当x=5时y≤12,此时7<m≤21;②当x =﹣2时y≤5,当x=5时,y>12,此时m无解;当7+m=﹣4时,m=﹣11,有一个交点.【解答】解:y=x2﹣2x﹣3在﹣2≤x≤5之间,顶点为(1,﹣4),∴当x=﹣2时,y=5;当x=5时,y=12;∵y=﹣x2+2x+6+m的对称轴x=1,∴顶点为(1,7+m),当7+m>﹣4时,m>﹣11,①当x=﹣2时,﹣x2+2x+6+m=﹣4﹣4+6+m>5,∴m>7,当x=5时,﹣25+10+6+m≤12,∴m≤21,∴7<m≤21;②当x=﹣2时,﹣x2+2x+6+m=﹣4﹣4+6+m≤5,∴m≤7,当x=5时,﹣25+10+6+m>12,∴m>21,∴m无解;当7+m=﹣4时,m=﹣11,有一个交点;综上所述:7<m≤21或m=﹣11,故选:A.【点评】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,数形结合解题是关键.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)x2﹣2x﹣a=0的一个根为4,则a的值是8.【分析】把x=4代入x2﹣2x﹣a=0得16﹣8﹣a=0,然后解关于a的方程.【解答】解:把x=4代入x2﹣2x﹣a=0得16﹣8﹣a=0,解得a=8.故答案为8.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.(3分)把抛物线y=x2﹣4x+5向上平移2个单位,再向左平移1个单位得到的抛物线解析式为y=(x﹣1)2+3.【分析】根据平移规律得到平移后抛物线的顶点坐标,根据该顶点坐标写出新抛物线解析式即可.【解答】解:抛物线y=x2﹣4x+5=(x﹣2)2+1,它的顶点坐标是(2,1).将其向上平移2个单位,再向左平移1个单位后,得到新抛物线的顶点坐标是(1,3),所以新抛物线的解析式是:y=(x﹣1)2+3.故答案是:y=(x﹣1)2+3.【点评】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.13.(3分)一个不透明的袋中装有3个红色小球,2个白色小球,除颜色外其他均无差别,现随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出颜色相同的小球的概率是.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.【解答】解:如图所示:,一共有20种可能,两次摸出颜色相同的小球一共有8种可能,故两次摸出颜色相同的小球的概率是:=.故答案为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.14.(3分)某同学患流感,经过两轮传染后,共有144名同学患流感,平均每人每轮传染11名同学.【分析】根据题意,设平均每人每轮传染x名同学,然后即可列出相应的方程,从而可以求得平均每人每轮传染多少名同学.【解答】解:设平均每人每轮传染x名同学,1+x+(1+x)x=144,解得,x1=11,x2=﹣13(舍去),即平均每人每轮传染11名同学,故答案为:11.【点评】本题考查一元二次方程的应用,解答本题的关键是明确题意,列出相应的方程,这是一道典型的增长率问题.15.(3分)如图,正五边形ABCDE和正△AFG都是⊙O的内接多边形,则∠FOC=24°.【分析】连接OA,分别求出正五边形ABCDE和正三角形AMN的中心角,结合图形计算即可.【解答】解:连接OA,OB,∵五边形ABCDE是正五边形,∴∠AOB=∠BOC==72°,∵△AFG是正三角形,∴∠AOF==120°,∴∠BOF=∠AOF﹣∠AOB=48°,∴∠FOC=∠BOC﹣∠BOF=72°﹣48°=24°,故答案为:24°.【点评】本题考查的是正多边形与圆的有关计算,掌握正多边形的中心角的计算公式是解题的关键.16.(3分)矩形ABCD的边AB=4,边AD上有一点M,连接BM,将MB绕M点逆时针旋转90°得MN,N恰好落在CD上,过M、D、N作⊙O,⊙O与BC相切,Q为⊙O 上的动点,连BQ,P为BQ中点,连AP,则AP的最小值为.【分析】设⊙O与BC的交点为F,连接OB、OF,如图1所示.根据切线的性质得到MN⊥BM,推出△BMN为等腰直角三角形,由全等三角形的性质得到DM=AB=4,DN =AM,设DN=2a,则AM=2a,OF=4﹣a,根据勾股定理得到BM==2,得到⊙O半径为,如图2,延长BA,使AH=AB=4,连接HQ,OH,过O 作OG⊥AB于G,根据三角形中位线的定理得到AP=HQ,HQ∥AP,当HQ取最小值时,AP有最小值,当点Q在HO时,HQ的值最小,根据勾股定理得到OH===,于是得到结论.【解答】解:设⊙O与BC的交点为F,连接OB、OF,如图1所示.∵△MDN为直角三角形,∴MN为⊙O的直径,∵BM与⊙O相切,∴MN⊥BM,∵将MB绕M点逆时针旋转90°得MN,∴MB=MN,∴△BMN为等腰直角三角形,∵∠AMB+∠NMD=180°﹣∠AMN=90°,∠MBA+∠AMB=90°,∴∠NMD=∠MBA,且BM=NP,∠A=∠NMD=90°,∴△ABM≌△DMN(AAS),∴DM=AB=4,DN=AM,设DN=2a,则AM=2a,OF=4﹣a,BM==2,∵BM=MP=2OF,∴2=2×(4﹣a),解得:a=,∴DN=2a=3,OF=4﹣=,∴⊙O半径为,如图2,延长BA,使AH=AB=4,连接HQ,OH,过O作OG⊥AB于G,∵AB=AH,BP=PQ,∴AP=HQ,HQ∥AP,∴当HQ取最小值时,AP有最小值,∴当点Q在HO时,HQ的值最小,∵HG=4+4﹣=,GO=3+4﹣2=5,∴OH===,∴HQ的最小值=﹣=,∴AP的最小值为,故答案为:.【点评】本题考查了圆的有关知识,矩形的性质,切线的性质,全等三角形的判定与性质以及勾股定理,解题的关键是证明△ABM≌△DMN.三、解答题(共8题,共72分)17.(8分)解方程:x2﹣2x=4.【分析】利用配方法得到(x﹣1)2=5,然后利用直接开平方法解方程.【解答】解:x2﹣2x+1=5,(x﹣1)2=5,x﹣1=±,所以x1=1+,x2=1﹣.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.18.(8分)已知,AB为⊙O的直径,弦CD⊥AB,垂足为E,点H为上一点,连接CH 交AB于F,过A作AG⊥CH于G.(1)如图1,连AH、BC,求证:∠HAG=∠BCE;(2)如图2,若H为AD的中点,连接HD,求证:HD=HF.【分析】(1)如图1中,连接AH.想办法证明∠FAH=∠FCB,∠FAH=∠FCE即可解决问题.(2)想办法证明∠HFD=∠HDF即可.【解答】证明:(1)如图1中,连接AH.∵CD⊥AB,AG⊥CH,∴∠CEF=∠AGF=90°,∵∠AFE=∠AFG,∴∠ECF=∠FAG,∵∠BAH=∠HCB,∴∠HAG=∠BCE.(2)连接AC,AD,DF.∵AB⊥CD,∴CE=DE,∴AC=AD,FC=FD,∴∠ACD=∠ADC,∠FCD=∠FDC,∴∠ACF=∠ADF,∵=,∴∠ACF=∠ADH=∠HCD,∵∠HFD=∠FCD+∠FDC,∠HDF=∠ADH+∠ADF,∴∠HFD=∠HDF,∴HF=HD.【点评】本题考查圆周角定理,等腰三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.19.(8分)一个不透明的袋中装有4个标号为1,2,3,4的小球,它们除标号外均无差别.(1)随机摸出一个小球,放回并摇匀,再随机摸出一个,用列表法或画树状图的方法求出“两次取出的球的标号之和为偶数”的概率;(2)随机摸出两个小球,直接写出两个小球标号积为奇数的概率.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次取出的球的标号之和为偶数的情况,再利用概率公式即可求得答案;(2)根据题意画出树状图得出所有等可能的结果数和“两次取出的球标号和为奇数”的情况数,然后根据概率公式即可得出答案.【解答】解:(1)根据题意画图如下:共有16种等情况数,其中两次取出的球的标号之和为偶数有8种,则两次取出的球的标号之和为偶数的概率是:;(2)画树状图如下:共有12种等可能的结果数,其中两次取出的球标号和为奇数的结果数为8,所以“两次取出的球标号和为奇数”的概率==.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.20.(8分)如图,在平面直角坐标系中,A(0,2),B(2,0).(1)在图中画出点P,使△PAB为等边三角形,保留作图痕迹;(2)求出满足条件的P点坐标.【分析】(1)在图中画线段AB的垂直平分线,再找出点P,使△PAB为等边三角形即可;(2)根据等边三角形的性质即可求出满足条件的P点坐标.【解答】解:(1)如图所示:点P即为所求作的点.(2)∵A(0,2),B(2,0).∴AB=2.根据作图可设P点坐标为(x,x),根据勾股定理,得x2+(x﹣2)2=8解得x=1.所以P点坐标为:(1+,1+)或(1﹣,1﹣).【点评】本题考查了作图﹣复杂作图,解决本题的关键是利用等边三角形的判定和性质在坐标系内画图.21.(8分)如图,△ABC内接于⊙O,OE⊥BC于E,延长EO交AB于F,交⊙O于D,A为的中点,连接BD.(1)求证:∠ACB=3∠ABC;(2)若OF=5,EO=7,求△BDF的面积.【分析】(1)根据垂径定理得到==,推出==,于是得到结论;(2)连接OB,设OB=OD=r,求得DF=r﹣5,BE=,过F作FH⊥BD于H,根据相似三角形的性质得到=,求得r=25,根据勾股定理得到BD===40,根据三角形的面积公式即可得到结论.【解答】(1)证明:∵OE⊥BC,∴==,∵A为的中点,∴==,∴=,∴=,∴∠ACB=3∠ABC;(2)连接OB,设OB=OD=r,∵OE⊥BC,OF=5,EO=7,∴DF=r﹣5,BE=,过F作FH⊥BD于H,∴FH=FE=12,∠DHF=∠DEB=90°,DH==,∵∠FDH=∠BDE,∴△DHF∽△DEB,∴=,∴=,∴r=25,∴DE=32,BE=24,∴BD===40,∴△BDF的面积==240.【点评】本题考查了三角形的外接圆与外心,垂径定理,圆周角定理,勾股定理,相似三角形的判定和性质,正确的作出辅助线是解题的关键.22.(10分)某文具生产厂家生产一种新型玩具,每件生产成本为20元,试销过程中发现每月销量y(万件)与销售单价x(元)之间可以近似看作一次函数y=﹣2x+160.(1)写出每月利润与销售单价之间的函数关系w=2x2+200x﹣3200;(2)在扩大销量的前提下,当销售单价为多少元时,厂家每月能获得1000万利润?当每月获得最大利润时,售价为多少?最大利润为多少?(3)根据物价部门规定,这种玩具售价不得高于60元.如果厂家要获得每月不低于1000万的利润,则每月最低生产成本需要多少万元?【分析】(1)根据销售利润=单件利润×销售量即可写出每月利润与销售单价之间的函数关系;(2)根据(1)所得关系式,先代入1000万的利润,再根据二次函数的顶点坐标求当每月获得最大利润时,售价为多少,最大利润为多少即可;(3)根据售价不得高于60元.如果厂家要获得每月不低于1000万的利润即可求解.【解答】解:(1)设每月利润为w万元,根据题意,得w=(x﹣20)(﹣2x+160)=﹣2x2+200x﹣3200故答案为:w=﹣2x2+200x﹣3200;(2)当w=1000时,﹣2x2+200x﹣3200=1000,解得x1=30,x2=70,扩大销量的前提下,x=30,答:在扩大销量的前提下,当销售单价为30元时,厂家每月能获得1000万利润;w=﹣2x2+200x﹣3200=﹣2(x﹣50)2+1800当x=50时,w有最大值,最大值为1800,答:当每月获得最大利润时,售价为50元,最大利润为1800万元.(3)根据题意,得﹣2x 2+200x ﹣3200≥1000,解得30≤x ≤70,又因为x ≤60,所以30≤x ≤60,每月生产成本为:z =20y=20(﹣2x +160)=﹣40x +3200﹣400<0,所以生产成本z 随销售单价x 的增大而减小,故当x =60时,每月生产成本最低,最低为﹣40×60+3200=800(万元).答:每月最低生产成本需要800万元.【点评】本题考查了二次函数的应用、一元二次方程的应用,解决本题的关键是掌握销售问题的数量关系.23.(10分)在等边△ABC .(1)过B 作BG ⊥AC ,E 为BG 延长线上一点,过E 作ED ∥BC 交AB 于D ,交AC 于F .①如图1,若EF =2AF ,求FG :BC ;②在①的条件下,如图2,绕B 顺时针旋转△BDE ,连接AE ,取AE 的中点M ,连接DM 、CM ,试确定DM 与CM 的关系;(2)D 为△ABC 内一点,∠BDC =120°,延长CD 交AB 于N ,BD =3,S △BCM =3S △BCN ,请直接写出BC 的长.【分析】(1)①由等边三角形的性质可得AG =GC =AC =BC ,∠ABG =∠CBG =30°,由平行线的性质和直角三角形的性质可得EF =2FG ,且EF =2AF ,可得AF =FG =AG ,即可求解;②过点A 作AH ∥DE ,交DM 的延长线与点H ,由“ASA ”可证△AMH ≌△EMD ,可得AH =DE ,DM =MH ,通过证明△BDC ≌△AHC ,可得CD =CH ,由等腰三角形的性质可得DM ⊥CM ;(2)由“ASA ”可证△ABM ≌△BCN ,可得S △ABM =S △BCN ,AM =BN ,可求CM =3AM ,设AM =a =BN ,CM =3a ,则AB =AC =BC =4a ,通过证明△ABM ∽△DBN ,可求a 的值,即可求BC 的值.【解答】解:(1)①∵△ABC 是等边三角形,BG ⊥AC∴AG =GC =AC =BC ,∠ABG =∠CBG =30°,∵ED ∥BC∴∠E =∠EBC =30°,且∠AGE =90°∴EF =2FG ,且EF =2AF∴AF =FG =AG∴FG =AG =BC∴FG :BC =1:4②DM ⊥CM理由如下:如图,过点A 作AH ∥DE ,交DM 的延长线与点H ,连接CD ,CH ,设AC 与DE 交点为O ,∵点M 是AE 中点∴AM =ME∵AH ∥DE∴∠CAH =∠AOD ,∠HAM =∠MED ,且AM =ME ,∠AMH =∠DME∴△AMH≌△EMD(ASA)∴AH=DE,DM=MH∵∠DBE=∠DEB=30°∴BD=DE,∠BDE=120°∴AH=BD∵∠BDE=120°,∠ACB=60°,且∠BDE+∠DBC+∠BCA+∠DOC=360°∴∠DBC+∠DOC=180°,且∠AOD+∠DOC=180°∴∠DBC=∠AOD,且∠AOD=∠CAH,∴∠CAH=∠DBC,且BD=AH,BC=AC∴△BDC≌△AHC(SAS)∴CD=CH,且DM=HM∴DM⊥CM(2)如图3,过点M作ME⊥BC于点E,∵∠BDC=120°∴∠MBC+∠BCN=60°,且∠ABM+∠MBC=60°∴∠ABM=∠BCN,且AB=BC,∠A=∠ABC=60°∴△ABM≌△BCN(ASA)∴S△ABM =S△BCN,AM=BN,∵S△BCM =3S△BCN,∴S△BCM =3S△ABM,且△ABM与△BMC是等高的两个三角形,∴CM=3AM,设AM=a=BN,CM=3a,则AB=AC=BC=4a,∵ME⊥BC,∠ACB=60°∴CE=a,ME=a,∴BE=a,∴BM==a,∵∠BDC=120°∴∠BDN=60°=∠A,且∠ABM=∠DBN∴△ABM∽△DBN∴∴∴a=∴BC=3【点评】本题是几何变换综合题,考查了等边三角形的性质,全等三角形的性质和判定,勾股定理,相似三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键.24.(12分)如图1,直线y=﹣x+2与x轴交于A,与y轴交于B,点C(1,m)是直线AB上一点,抛物线y=ax2+bx+c过O、A、C三点,P为直线AB上一动点.(1)求抛物线解析式;(2)如图1,当P点在线段AB上时,如果在x轴上方的抛物线上总存在两个点D,使△OPD的面积与△OPA的面积相等,求点P横坐标的取值范围;(3)如图2,Q为对称轴右侧第一象限内抛物线上一点,连接QB交抛物线于D,连接AD交y轴于E,连AQ交y轴于F,求OE•OF的值.【分析】(1)直线y=﹣x+2与x轴交于A,与y轴交于B,则点A、B的坐标分别为:(4,0)、(0,2),点C(1,),即可求解;(2)在x轴上方的抛物线上总存在一个点D时,在OP上下方等距离作直线AN、DH,直线AN的表达式为:y=(x﹣4),则ON==OH,故点H(0,),则直线DH的表达式为:y=x+,联立①②并整理得:﹣x2+2x+x+=0,则△=(2+)2﹣4××()=0,即可求解;(3)设点Q(m,﹣m2+2m),而点A(4,0),设直线QB的表达式为:y=kx+2,联立①③并整理得:x2+(k﹣2)x+2=0,则m•x D=4,解得:x D=,故点D(,);直线AD的表达式为:y=﹣(x﹣4),故OE=;直线AQ的表达式为:y =﹣m(x﹣4),故FO=2m,即可求解.【解答】解:(1)直线y=﹣x+2与x轴交于A,与y轴交于B,则点A、B的坐标分别为:(4,0)、(0,2),点C(1,);则抛物线的表达式为:y=ax(x﹣4),将点C的坐标代入上式并解得:a=﹣,故抛物线的表达式为:y=﹣x2+2x…①;(2)设点P(m,﹣m+2),直线OP表达式中的k为:,在x轴上方的抛物线上总存在一个点D时,在OP上下方等距离作直线AN、DH,直线AN的表达式为:y=(x﹣4),则ON==OH,故点H(0,),则直线DH的表达式为:y=x+…②,联立①②并整理得:﹣x2+2x+x+=0,则△=(2+)2﹣4××()=0,解得:m=(正值舍去),而0<m<3,故P横坐标的取值范围为:<m<3;(3)设点Q(m,﹣m2+2m),而点A(4,0),设直线QB的表达式为:y=kx+2…③,联立①③并整理得:x2+(k﹣2)x+2=0,则m•x D=4,解得:x D=,故点D(,);将点A、D坐标代入一次函数表达式并解得:直线AD的表达式为:y=﹣(x﹣4),故OE=;同理可得:直线AQ的表达式为:y=﹣m(x﹣4),故FO=2m,OE•OF=×2m=16.【点评】本题考查的是二次函数综合运用,涉及到一次函数的性质、韦达定理的运用、面积的计算等,其中(3),用韦达定理求解点D的坐标,是本题的亮点.。

武汉市2020版九年级上学期阶段三质量评估数学试题(II)卷

武汉市2020版九年级上学期阶段三质量评估数学试题(II)卷

武汉市 2020 版九年级上学期阶段三质量评估数学试题(II)卷姓名:________班级:________成绩:________一、单选题1 . 二次函数 … …图象上部分点的坐标对应值列表如下:……则该函数图象的对称轴是( )A.直线B.直线C.直线2 . 如图是一个以 为对称中心的中心对称图形,若,D.直线,,则 的长为( )A.4B.C.D.3 . 关于 的一元二次方程有一个根是﹣1,若二次函数一象限,设,则 的取值范围是( )的图象的顶点在第A.B.C.4 . 已知方程,用换元法解此方程时,可设A.B.C.第1页共6页D. ,则原方程化为( ) D.5 . 若二次函数 小关系正确的是的图象经过,,三点 则关于 , , 大A.B.C.D.6 . 如图,是岑溪市几个地方的大致位置的示意图,如果用 置,那么体育场的位置可表示为( )表示孔庙的位置,用 表示东山公园的位A.B.C.D.7 . 北中环桥是省城太原的一座跨汾河大桥(如图 1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊 桥,拉锁与主梁相连,最高的钢拱如图 2 所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与 拱脚所在的水平面相交于 A,B 两点,拱高为 78 米(即最高点 O 到 AB 的距离为 78 米),跨径为 90 米(即 AB=90 米), 以最高点 O 为坐标原点,以平行于 AB 的直线为 轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为( )A.B.C.D.8 . 抛物线 y=﹣2x2 经过平移得到 y=﹣2(x+1)2﹣3,平移方法是( )第2页共6页A.向左平移 1 个单位,再向下平移 3 个单位 C.向右平移 1 个单位,再向下平移 3 个单位B.向左平移 1 个单位,再向上平移 3 个单位 D.向右平移 1 个单位,再向上平移 3 个单位9 . 某班女生与男生的人数比为 3:2,从该班学生中随机选取一名学生是女生的概率为( )A.B.C.D.10 . 如图,坐标平面上二次函数 y=x2+1 的图象经过 A、B 两点,且坐标分别为 A(a,10)、B(b、10),则 AB 的长度为( )A.3B.5C.6D.7二、填空题11 . 已知二次函数 y=ax2+bx+c 中,函数 y 与自变量 x 的部分对应值如表:则此二次函数图象的对称轴为直线__;当 y>0 时,x 的取值范围是__.12 . 已知抛物线过点和,则 ________, ________.13 . 某景区有一圆形人工湖,为测量该湖的半径,小明和小丽沿湖边选取 , , 三棵小树(如图所示), 使得 , 之间的距离与 , 之间的距离相等,并测得 长为 米, 到 的距离为 米,则人工湖的半径为________米. 14 . 在 Rt△ABC 中,∠C=90°.第3页共6页(1)若 sinA= ,则∠A=______,tanA=______;(2)若 tanA= ,则∠A=_______,cosA=_________. 15 . 在一个不透明的盒子里装有 3 个分别标有数字 1,2,3 的小球,它们除数字外其他均相同,充分摇匀后, 先摸出 1 个球不放回,再摸出 1 个球,那么这两个球上的数字之和为奇数的概率为_____.三、解答题16 . 如图①是一副创意卡通圆规,图②是其平面示意图,OA 是支撑臂,OB 是旋转臂.使用时,以点 A 为支撑 点,铅笔芯端点 B 可绕点 A 旋转作出圆.已知 OA=OB=10cm.(1)当∠AOB=18°时,求所作圆的半径(结果精确到 0.01cm); (2)保持∠AOB=18°不变,在旋转臂 OB 末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相 等,求铅笔芯折断部分的长度(结果精确到 0.01cm,参考数据:sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科学计算器).17 . 计算:18 . 已知:在中,,在和.中,,连接 ,取 的中点 ,连接(1)若点 在边 上,点 在边 上且与点 不重合,如图 1,探索的关系并给予证明;(2)如果将图 1 中的绕点 逆时针旋转小于 的角,如图 2,那么(1)中的结论是否仍成立?如果第4页共6页不成立,请举出反例;如果成立,请给予证明. 19 . 某大型超市将进价为 40 元的某种服装按 50 元售出时,每天可以售出 300 套,据市场调查发现,这种服装每提高 1 元,销售量就减少 5 套,如果超市将售价定为 x 元,请你求出每天销售利润 y 元与售价 x 元的函 数表达式.20 . 安徽郎溪农民张大伯为了致富奔小康,大力发展家庭养殖业.他准备用 长的木栏围一个矩形的羊圈, 为了节约材料同时要使矩形的面积最大,他利用了自家房屋一面长 的墙,设计了如图所示的一个矩形羊圈.(1)请你求出张大伯的矩形羊圈的面积; (2)请你判断他的设计方案是否合理?如果合理,直接答合理;如果不合理又该如何设计?并说明理由. 21 . 如图 1,在平面直角坐标系中,直线 y=﹣5x+5 与 x 轴,y 轴分别交于 A,C 两点,抛物线 y=x2+bx+c 经 过 A,C 两点,与 x 轴的另一交点为 A.第5页共6页(1)求抛物线解析式及 B 点坐标; (2)若点 M 为 x 轴下方抛物线上一动点,连接 MA、MB、BC,当点 M 运动到某一位置时,四边形 AMBC 面积最大,求 此时点 M 的坐标及四边形 AMBC 的面积; (3)如图 2,若 P 点是半径为 2 的⊙B 上一动点,连接 PC、PA,当点 P 运动到某一位置时,PC+ PA 的值最小,请 求出这个最小值,并说明理由.22 . 如图,在 ΔABC 中,∠B=90°,点 P 从点 A 开始沿 AB 边向点 B 以 lcm/s 的速度移动,Q 从点 B 开始沿 BC 边向 C 点以 2cm/s 的速度移动,且 P、Q 分别从 A、B 同时出发,当点 Q 运动到点 C 为止.问:经过几秒钟,PQ 的长度等于 cm? 23 . 已知,抛物线 y=ax2+3ax+c(a>0)与 y 轴交于点 C,与 x 轴交于 A,B 两点,点 A 在点 B 左侧.点 B 的坐标为(1,0),OC=3O A. (1)直接写出 C 点的坐标; (2)求抛物线的解析式; (3)若点 D 是线段 AC 下方抛物线上的动点,求四边形 ABCD 面积的最大值.第6页共6页。

湖北省武汉市2019-2020学年中考三诊数学试题含解析

湖北省武汉市2019-2020学年中考三诊数学试题含解析

湖北省武汉市2019-2020学年中考三诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知一个正n边形的每个内角为120°,则这个多边形的对角线有()A.5条B.6条C.8条D.9条2.将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是()A.B.C.D.3.如图,⊙O内切于正方形ABCD,边BC、DC上两点M、N,且MN是⊙O的切线,当△AMN的面积为4时,则⊙O的半径r是()A.2B.22C.2 D.434.小桐把一副直角三角尺按如图所示的方式摆放在一起,其中90A∠=o,∠=,45∠=o,90C oE∠+∠等于()∠=o,则1230DA.150o B.180o C.210o D.270o5.下面计算中,正确的是()A.(a+b)2=a2+b2B.3a+4a=7a2C.(ab)3=ab3D.a2•a5=a76.如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO 为α,则树OA的高度为( )A.30tan米B.30sinα米C.30tanα米D.30cosα米7.如果(x-2)(x+3)=x2+px+q,那么p、q的值是()A.p=5,q=6 B.p=1,q=-6 C.p=1,q=6 D.p=5,q=-68.世界因爱而美好,在今年我校的“献爱心”捐款活动中,九年级三班50名学生积极加献爱心捐款活动,班长将捐款情况进行了统计,并绘制成了统计图,根据图中提供的信息,捐款金额的众数和中位数分别是()A.20、20 B.30、20 C.30、30 D.20、309.如图,已知二次函数y=ax2+bx的图象与正比例函数y=kx的图象相交于点A(1,2),有下面四个结论:①ab>0;②a﹣b>﹣23;③sinα=213;④不等式kx≤ax2+bx的解集是0≤x≤1.其中正确的是()A.①②B.②③C.①④D.③④10.如图图形中,是中心对称图形的是()A.B.C.D.11.已知一个多边形的内角和是外角和的3倍,则这个多边形是()A.五边形B.六边形C.七边形D.八边形12.共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x,则所列方程正确的A .1000(1+x )2=1000+440B .1000(1+x )2=440C .440(1+x )2=1000D .1000(1+2x )=1000+440二、填空题:(本大题共6个小题,每小题4分,共24分.)13.从正n 边形 一个顶点引出的对角线将它分成了8个三角形,则它的每个内角的度数是______ . 14.我们定义:关于x 的函数y=ax 2+bx 与y=bx 2+ax (其中a≠b )叫做互为交换函数.如y=3x 2+4x 与y=4x 2+3x 是互为交换函数.如果函数y=2x 2+bx 与它的交换函数图象顶点关于x 轴对称,那么b=_____. 15.如图,点A 在反比例函数y=3x(x >0)上,以OA 为边作正方形OABC ,边AB 交y 轴于点P ,若PA :PB=1:2,则正方形OABC 的面积=_____.16.如图,在正方形ABCD 中,AD=5,点E ,F 是正方形ABCD 内的两点,且AE=FC=3,BE=DF=4,则EF 的长为__________.17.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.18.已知抛物线23y x mx =--与直线25y x m =-在22x -<…之间有且只有一个公共点,则m 的取值范围是__.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答此次共调查了名学生;将条形统计图1补充完整;图2中“小说类”所在扇形的圆心角为度;若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.20.(6分)在△ABC中,已知AB=AC,∠BAC=90°,E为边AC上一点,连接BE.如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;如图2,D为AB上一点,且满足AE=AD,过点A作AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M,求证:BG=AF+FG.21.(6分)某工厂计划生产A,B两种产品共10件,其生产成本和利润如下表.A种产品B种产品成本(万元/件) 2 5利润(万元/件) 1 3(1)若工厂计划获利14万元,问A,B两种产品应分别生产多少件?(2)若工厂计划投入资金不多于44万元,且获利多于22万元,问工厂有哪几种生产方案?22.(8分)如图1,已知抛物线y=﹣3x2+23x+与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点D是点C关于抛物线对称轴的对称点,连接CD,过点D作DH⊥x轴于点H,过点A作AE⊥AC交DH的延长线于点E.(1)求线段DE的长度;(2)如图2,试在线段AE上找一点F,在线段DE上找一点P,且点M为直线PF上方抛物线上的一点,求当△CPF的周长最小时,△MPF面积的最大值是多少;(3)在(2)问的条件下,将得到的△CFP沿直线AE平移得到△C′F′P′,将△C′F′P′沿C′P′翻折得到角形?若存在求出OK的值;若不存在,说明理由.23.(8分)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:请补全条形统计图和扇形统计图;在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?24.(10分)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B 点的切线交OP于点C.求证:∠CBP=∠ADB.若OA=2,AB=1,求线段BP的长.强从布袋中随机取出一个小球,记下数字为x ,王芳在剩下的3个小球中随机取出一个小球,记下数字为y ,这样确定了点M 的坐标()x,y()1画树状图列表,写出点M 所有可能的坐标;()2求点()M x,y 在函数y x 1=+的图象上的概率.26.(12分)如图,抛物线y=﹣(x ﹣1)2+c 与x 轴交于A ,B (A ,B 分别在y 轴的左右两侧)两点,与y 轴的正半轴交于点C ,顶点为D ,已知A (﹣1,0).(1)求点B ,C 的坐标;(2)判断△CDB 的形状并说明理由;(3)将△COB 沿x 轴向右平移t 个单位长度(0<t <3)得到△QPE .△QPE 与△CDB 重叠部分(如图中阴影部分)面积为S ,求S 与t 的函数关系式,并写出自变量t 的取值范围.27.(12分)如图,一位测量人员,要测量池塘的宽度 AB 的长,他过 A B 、 两点画两条相交于点 O 的射线,在射线上取两点 D E 、 ,使 13OD OE OB OA == ,若测得 37.2DE = 米,他能求出 A B 、 之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【分析】多边形的每一个内角都等于120°,则每个外角是60°,而任何多边形的外角是360°,则求得多边形的边数;再根据多边形一个顶点出发的对角线=n ﹣3,即可求得对角线的条数.【详解】解:∵多边形的每一个内角都等于120°,∴每个外角是60度,则多边形的边数为360°÷60°=6,则该多边形有6个顶点,则此多边形从一个顶点出发的对角线共有6﹣3=3条. ∴这个多边形的对角线有12(6×3)=9条, 故选:D .【点睛】本题主要考查多边形内角和与外角和及多边形对角线,掌握求多边形边数的方法是解本题的关键. 2.A【解析】分析:面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转. 详解:A 、上面小下面大,侧面是曲面,故本选项正确;B 、上面大下面小,侧面是曲面,故本选项错误;C 、是一个圆台,故本选项错误;D 、下面小上面大侧面是曲面,故本选项错误;故选A .点睛:本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转.3.C【解析】【分析】连接AC ,交O e 于点,F 设,FN a =则,NC =(2,DC a =+()4,AC a =根据△AMN 的面积为4,列出方程求出a 的值,再计算半径即可.【详解】连接AC ,交O e 于点,FO e 内切于正方形,ABCD MN 为O e 的切线,AC 经过点,,O F FNC V 为等腰直角三角形, 2,NC FN = ,CD MN 为O e 的切线,,EN NF =设,FN a =则2,NC a =()222,DC a =+()224,AC a =+()223,AF AC CF a ∴=-=+ △AMN 的面积为4, 则14,2MN AF ⋅⋅= 即()122234,2a a ⋅⋅+=解得222,a =- ()()()2121222 2.r EC a ==+=+-= 故选:C.【点睛】考查圆的切线的性质,等腰直角三角形的性质,三角形的面积公式,综合性比较强.4.C【解析】【分析】根据三角形的内角和定理和三角形外角性质进行解答即可.【详解】如图:1D DOA ∠∠∠=+Q ,2E EPB ∠∠∠=+,DOA COP ∠∠=Q ,EPB CPO ∠∠=,∴12D E COP CPO ∠∠∠∠∠∠+=+++=D E 180C ∠∠∠++-o=309018090210++-=o o o o o ,故选C .【点睛】本题考查了三角形内角和定理、三角形外角的性质、熟练掌握相关定理及性质以及一副三角板中各个角的度数是解题的关键.5.D【解析】【分析】直接利用完全平方公式以及合并同类项法则、积的乘方运算法则分别化简得出答案.【详解】A. (a+b)2=a 2+b 2+2ab ,故此选项错误;B. 3a+4a=7a ,故此选项错误;C. (ab)3=a 3b 3,故此选项错误;D. a 2⋅a 5=a 7,正确。

2020武汉中考数学综合模拟测验卷3(含答案及解析)

2020武汉中考数学综合模拟测验卷3(含答案及解析)

2020武汉市初中毕业生学业模拟考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共30分)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的.1.在实数-2、0、2、3中,最小的实数是( )A.-2B.0C.2D.32.若代数式-在实数范围内有意义,则x的取值范围是( )A.x≥-3B.x>3C.x≥3D.x≤33.光速约为300000千米/秒,将数字300000用科学记数法表示为( )A.3×104B.3×105C.3×106D.30×1044.那么这些运动员跳高成绩的众数是( )A.4B.1.75C.1.70D.1.655.下列代数运算正确的是( )A.(x3)2=x5B.(2x)2=2x2C.x3·x2=x5D.(x+1)2=x2+16.如图,线段AB两个端点的坐标分别为A(6,6)、B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为( )A.(3,3)B.(4,3)C.(3,1)D.(4,1)7.下图是由4个大小相同的正方体组合而成的几何体.其俯视图是( )8.为了解某一路口某一时段的汽车流量,小明同学10天中在同一时段统计通过该路口的汽车数量(单位:辆),将统计结果绘制成如下折线统计图:由此估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为( )A.9B.10C.12D.159.观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…….按此规律第5个图中共有点的个数是( )A.31B.46C.51D.6610.如图,PA、PB切☉O于A、B两点,CD切☉O于点E,交PA、PB于C、D,若☉O的半径为r,△PCD 的周长等于3r,则tan∠APB的值是( )A. B. C. D.第Ⅱ卷(非选择题,共90分)二、填空题(共6小题,每小题3分,共18分)11.计算:-2+(-3)= .12.分解因式:a3-a= .13.如图,一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),则指针指向红色的概率为.14.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数关系如图所示,则这次越野跑的全程为米.15.如图,若双曲线y=与边长为5的等边△AOB的边OA、AB分别相交于C、D两点,且OC=3BD,则实数k的值为.16.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为.三、解答题(共9小题,共72分)下列各题解答应写出文字说明、证明过程或演算步骤.17.(本小题满分6分)=.解方程:-18.(本小题满分6分)已知直线y=2x-b经过点(1,-1),求关于x的不等式2x-b≥0的解集.19.(本小题满分6分)如图,AC和BD相交于点O,OA=OC,OB=OD,求证:AB∥CD.20.(本小题满分7分)如图,在直角坐标系中,A(0,4),C(3,0).(1)①画出线段AC关于y轴对称的线段AB;②将线段CA绕点C顺时针旋转一个角,得到对应线段CD,使得AD∥x轴,请画出线段CD;(2)若直线y=kx平分(1)中四边形ABCD的面积,请直接写出实数k的值.21.(本小题满分7分)袋中装有大小相同的2个红球和2个绿球.(1)先从袋中摸出1个球后放回..,混合均匀后再摸出1个球.①求第一次摸到绿球,第二次摸到红球的概率;②求两次摸到的球中有1个绿球和1个红球的概率;(2)先从袋中摸出1个球后不放回...,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.22.(本小题满分8分)如图,AB是☉O的直径,C,P是上两点,AB=13,AC=5.(1)如图①,若点P是的中点,求PA的长;(2)如图②,若点P是的中点,求PA的长.图①图②23.(本小题满分10分)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大?最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.24.(本小题满分10分)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm 的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连结PQ.(1)若△BPQ与△ABC相似,求t的值;(2)连结AQ、CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.25.(本小题满分12分)如图,已知直线AB:y=kx+2k+4与抛物线y=x2交于A、B两点.(1)直线AB总经过一个定点C,请直接写出点C的坐标;(2)当k=-时,在直线AB下方的抛物线上求点P,使△ABP的面积等于5;(3)若在抛物线上存在定点D使∠ADB=90°,求点D到直线AB的最大距离.备用图答案全解全析:一、选择题1.A∵-2<0<2<3,∴最小的实数是-2,故选A.评析本题考查了实数的大小比较,属容易题.2.C要使-在实数范围内有意义,则需x-3≥0,解得x≥3.故选C.评析本题考查二次根式有意义的条件,即被开方数大于等于零,属容易题.3.B300000用科学记数法可表示为3×105.故选B.评析本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n,其中1≤|a|<10,n 为整数,属容易题.4.D∵1.65出现了4次,出现的次数最多,∴这些运动员跳高成绩的众数是1.65,故选D.评析本题考查了众数的定义,众数是一组数据中出现次数最多的数,属容易题.5.C(x3)2=x6,故A选项错误;(2x)2=4x2,故B选项错误;x3·x2=x5,故C选项正确;(x+1)2=x2+2x+1,故D选项错误.故选C.6.A∵线段AB两个端点的坐标分别为A(6,6)、B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的坐标为(3,3).故选A.评析本题主要考查位似图形的性质,属容易题.7.C从上面看可得到一行正方形,其个数为3,故选C.评析本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,属容易题.8.C由题图可知,10天中在同一时段通过该路口的汽车数量超过200辆的有4天,频率为=0.4,所以估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为30×0.4=12,故选C.评析本题考查了折线统计图及用样本估计总体的思想,属容易题.9.B第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…,第n个图中有1+1×3+2×3+3×3+…+3n个点.所以第5个图中共有点的个数是1+1×3+2×3+3×3+4×3+5×3=46.故选B.评析本题是规律探索题,属容易题.10.B连结OA、OB、OP,延长BO交PA的延长线于点F.∵PA、PB切☉O于A、B两点,CD切☉O于点E,∴∠OAP=∠OBP=90°,CA=CE,DB=DE,PA=PB.∵△PCD的周长=PC+CE+DE+PD=PC+AC+PD+DB=PA+PB=3r,∴PA=PB=r.在Rt△OAF和Rt△BFP中,∴Rt△AFO∽Rt△BFP.∴===,∴AF=FB.在Rt△FBP中,PF2-PB2=FB2,∴(PA+AF)2-PB2=FB2,∴-=BF2,解得BF=r,∴tan∠APB===,故选B.评析本题主要考查切线的性质,相似三角形的判定及三角函数的定义,属难题.二、填空题11.答案-5解析-2+(-3)=-(2+3)=-5.评析本题考查有理数加法的运算,属容易题.12.答案a(a+1)(a-1)解析a3-a=a(a2-1)=a(a+1)(a-1).评析本题考查利用提公因式法和公式法分解因式,属容易题.13.答案解析∵一个转盘被分成7个相同的扇形,红色的有3个,∴指针指向红色的概率为. 14.答案2200解析设小明的速度为a米/秒,小刚的速度为b米/秒,由题意,得解得∴这次越野跑的全程为1600+300×2=2200(米).评析本题考查了行程问题的数量关系及二元一次方程组的解法,属容易题.15.答案解析过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,设BF=x,则DF=x,BD=2x.因为OC=3BD,所以OE=3x,CE=3x,所以C(3x,3x),D(5-x,x).因为点C、D都在双曲线上,所以3x·3x=x·(5-x),解得x1=,x2=0(舍去),所以C,故k=×=.评析本题考查了反比例函数图象上点的坐标特征,解答本题的关键是利用k的值相同建立方程,属中等偏难题.16.答案解析作AD'⊥AD,且使AD'=AD,连结CD',DD',如图.由已知条件可得∠BAC+∠CAD=∠DAD'+∠CAD,即∠BAD=∠CAD'.在△BAD与△CAD'中,∴△BAD≌△CAD'(SAS),∴BD=CD'.又∠DAD'=90°,由勾股定理得DD'===4,易知∠D'DA+∠ADC=90°,由勾股定理得CD'===,∴BD=CD'=.评析本题考查了等腰直角三角形的性质、勾股定理、全等三角形的判定与性质,属难题.三、解答题17.解析方程两边同乘以x(x-2),得2x=3(x-2).解得x=6.检验:当x=6时,x(x-2)≠0.∴x=6是原分式方程的解.评析本题考查了解分式方程,解分式方程一定要注意验根,属容易题.18.解析∵直线y=2x-b经过点(1,-1),∴-1=2×1-b.∴b=3.∴不等式2x-b≥0即为2x-3≥0,解得x≥.19.证明在△AOB和△COD中,∴△AOB≌△COD.∴∠A=∠C,∴AB∥CD.20.解析(1)如图所示:(2).评析本题考查利用旋转、轴对称变换作图,属容易题.21.解析(1)分别用R1,R2表示2个红球,G1,G2表示2个绿球,列表如下:由上表可知,有放回地摸2个球共有16个等可能结果.①其中第一次摸到绿球,第二次摸到红球的结果有4个.∴第一次摸到绿球,第二次摸到红球的概率P==;②其中两次摸到的球中有1个绿球和1个红球的结果有8个.∴两次摸到的球中有1个绿球和1个红球的概率P==.画树形图法按步骤给分(略).(2).22.解析(1)如图,连结PB,BC.∵AB是☉O的直径,P是的中点,∴PA=PB,∠APB=90°.∵AB=13,∴PA=AB=.(2)如图,连结PB,BC.连结OP交BC于D点.∵P是的中点,∴OP⊥BC于D,BD=CD.∵OA=OB,∴OD=AC=.∵OP=AB=,∴PD=OP-OD=-=4.∵AB是☉O的直径,∴∠ACB=90°.∵AB=13,AC=5,∴BC=12,∴BD=BC=6.∴PB==2.∵AB是☉O的直径,∴∠APB=90°,∴PA=-=3.23.解析(1)y=--(2)当1≤x<50时,y=-2x2+180x+2000=-2(x-45)2+6050.∵-2<0,∴当x=45时,y有最大值,最大值为6050元.当50≤x≤90时,y=-120x+12000,∵-120<0,∴y随x的增大而减小.当x=50时,y有最大值,最大值为6000元.∴当x=45时,当天的销售利润最大,最大利润为6050元.(3)41天.评析本题考查利用函数的性质解决实际问题,属中等难度题.24.解析(1)由题意知,BP=5t cm,CQ=4t cm,∴BQ=(8-4t)cm.当△PBQ∽△ABC时,有=.即=-,解得t=1.当△QBP∽△ABC时,有=.即-=,解得t=.∴△PBQ与△ABC相似时,t=1或.(2)如图,过点P作PD⊥BC于D.依题意,得BP=5t cm,CQ=4t cm.则PD=PB·sin B=3t cm,∴BD=4t cm,CD=(8-4t)cm.∵AQ⊥CP,∠ACB=90°,∴tan∠CAQ=tan∠DCP.∴=.∴=-,∴t=.(3)证明:如图,过点P作PD⊥AC于D,连结DQ、BD,BD交PQ于M,则PD=AP·cos∠APD=AP·cos∠ABC=(10-5t)×=(8-4t)cm.而BQ=(8-4t)cm,∴PD=BQ,又PD∥BQ,∴四边形PDQB是平行四边形.∴点M是PQ和BD的中点.过点M作EF∥AC交BC,BA于E,F两点.则==1,即E为BC的中点.同理,F为BA的中点.∴PQ的中点M在△ABC的中位线EF上.25.解析(1)(-2,4).(2)如图,直线y=-x+3与y轴交于点N(0,3).在y轴上取点Q(0,1),易得S△ABQ=5.过点Q作PQ∥AB交抛物线于点P.则PQ的解析式为y=-x+1,由-解得-或∴P点坐标为(-2,2)或.(3)如图,设A,B,D.联立消去y得x2-2kx-4k-8=0.∴x1+x2=2k,x1·x2=-4k-8.过点D作EF∥x轴,过点A作y轴的平行线交EF于点E,过点B作y轴的平行线交EF于点F.由△ADE∽△DBF,得=.∴--=--,整理,得x1x2+m(x1+x2)+m2=-4.∴2k(m-2)+m2-4=0.当m-2=0,即m=2时,点D的坐标与k无关,∴点D的坐标为(2,2).又∵C(-2,4),所以CD=2,过点D作DM⊥AB,垂足为M.则DM≤CD.当CD⊥AB时,点D到直线AB的距离最大,最大距离为2.评析本题考查解方程组、一元二次方程、一元二次方程根与系数的关系、勾股定理、相似三角形的判定与性质等知识,考查了通过解方程组求两函数图象交点坐标等,综合性比较强,属难题.。

2020年湖北省武汉市中考数学模拟考试试卷及答案解析

2020年湖北省武汉市中考数学模拟考试试卷及答案解析

2020年湖北省武汉市中考数学模拟考试试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)一元二次方程2x2+5x=6的二次项系数、一次项系数、常数项分别是()A.2,5,6B.5,2,6C.2,5,﹣6D.5,2,﹣6 2.(3分)下列图形中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个3.(3分)下列事件中,不可能事件是()A.水在100℃沸腾B.射击一次,命中靶心C.三角形的内角和等于360°D.经过路口,遇上红灯4.(3分)将抛物线y=﹣2(x+3)2+2以原点为中心旋转180°得到的抛物线解析式为()A.y=﹣2(x﹣3)2+2B.y=﹣2(x+3)2﹣2C.y=2(x﹣3)2﹣2D.y=2(x﹣3)2+25.(3分)下列说法错误的是()A.必然事件发生的概率是1B.通过大量重复试验,可以用频率估计概率C.概率很小的事件不可能发生D.投一枚图钉,“钉尖朝上”的概率不能用列举法求得6.(3分)如图,AB是⊙O的直径,点C,D在⊙O上,若∠DCB=110°,则∠AED的度数为()A.15°B.20°C.25°D.30°7.(3分)⊙O的半径r=10cm,圆心到直线l的距离OM=6cm,在直线l上有一点P,且PM=3cm,则点P()A.在⊙O内B.在⊙O上C.在⊙O外D.可能在⊙O上或在⊙O内8.(3分)如图,将Rt△ABC绕直角顶点A,沿顺时针方向旋转后得到Rt△AB1C1,当点B1恰好落在斜边BC的中点时,则∠B1AC=()A.25°B.30°C.40°D.60°9.(3分)已知△ABC中,AB=AC,以AB为直径的⊙O1分别交AC、BC于两D、E点,过B点的切线交OE的延长线于点F,连FD、BD、OD,下列结论:①四边形ODCE是平行四边形;②E是△BFD的内心;③E是△FDO的外心;④∠C=∠BFD;其中正确的有()个.A.1B.2C.3D.410.(3分)二次函数y=x2+bx的对称轴为直线x=1,若关于x的方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有实数解,则t的取值范围是()A.t≥﹣1B.﹣1≤t<3C.﹣1≤t<8D.t<3二.填空题(共6小题,满分18分,每小题3分)11.(3分)关于x的一元二次方程x2﹣2x﹣m=0有两个不相等的实数根,则m的最小整数值是.12.(3分)若点A(m,7)与点B(﹣4,n)关于原点成中心对称,则m+n=.13.(3分)今年我国生猪价格不断飙升,某超市的排骨价格由第一季度的每公斤40元上涨到第三季度的每公斤元90,则该超市的排骨价格平均每个季度的增长率为.14.(3分)用如图所示的两个转盘(分别进行四等分和三等分),设计一个“配紫色”的游戏(红色与蓝色可配成紫色),则能配成紫色的概率为.15.(3分)如图,正六边形ABCDEF纸片中,AB=6,分别以B、E为圆心,以6为半径画、.小欣把扇形BAC与扇形EDF剪下,并把它们粘贴为一个大扇形(B与E重合,F与A重合),她接着用这个大扇形作一个圆锥的侧面,则这个圆锥的高为.16.(3分)如图,P是等腰Rt△ABC内的一点,∠ACB=90°,P A=,PB=2,PC=1,∠APC的度数是.三.解答题(共8小题,满分72分)17.(8分)解方程:x2﹣x﹣3=0.18.(6分)在Rt△ABC中,∠ACB=90°,以点A为圆心,AC为半径,作⊙A交AB于点D,交CA的延长线于点E,过点E作AB的平行线EF交⊙A于点F,连接AF、BF,DF.(1)求证:BF⊥AF;(2)当∠CAB等于多少度时,四边形ADFE为菱形?请给予证明.19.(8分)如图,两转盘分别标有数字,转盘一被三等分,转盘二被分成六份,其中标有数字“8”的扇形的圆心角为90°,标有数字“5”的扇形圆心角是标有数字“2”的扇形圆心角的2倍,转动转盘,等旋转停止时,每个转盘上的前头各指向一个数字(若箭头指向两个扇形的交线,则重新转动转盘,直到指向数字为止).(1)转动转盘一次,求出指向数字“3”的概率,(2)同时转动两个转盘,通过画树状图法或列表法求这两个转盘转出的数字之和为偶数的概率.20.(8分)如图,已知点A(﹣2,﹣1)、B(﹣5,﹣5)、C(﹣2,﹣3),点P(﹣6,0).(1)将△ABC绕点P逆时针旋转90°得△A1B1C1,画出△A1B1C1,并写出点C的对应点C1的坐标为;(2)画出△ABC关于原点成中心对称的图形△A2B2C2,并写出点A的对应点A2的坐标为;(3)把△A2B2C2向下平移6个单位长度得△A3B3C3,画出△A3B3C3,由图可知△A3B3C3可由△A1B1C1绕点Q逆时针旋转90°而得到,则点Q的坐标为;21.(8分)如图,四边形ABCD内接于⊙O,AB是直径,C为的中点,延长AD,BC交于点P,连结AC(1)求证:AB=AP;(2)若AB=10,DP=2,①求线段CP的长;②过点D作DE⊥AB于点E,交AC于点F,求△ADF的面积.22.(10分)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20米,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)若a=70米,求矩形菜园ABCD面积的最大值.23.(12分)在△ABC中,∠ACB=45°,BC=5,AC=2,D是BC边上的动点,连接AD,将线段AD绕点A逆时针旋转90°得到线段AE,连接EC.(1)如图a,求证:CE⊥BC;(2)连接ED,M为AC的中点,N为ED的中点,连接MN,如图b.①写出DE、AC,MN三条线段的数量关系,并说明理由;②在点D运动的过程中,当BD的长为何值时,M,E两点之间的距离最小?最小值是,请直接写出结果.24.(12分)如图,抛物线y=a(x2﹣2mx﹣3m2)(其中a,m为正的常数)与x轴交于点A,B,与y轴交于点C(0,﹣3),顶点为F,CD∥AB交抛物线于点D.(1)当a=1时,求点D的坐标;(2)若点E是第一象限抛物线上的点,满足∠EAB=∠ADC.①求点E的纵坐标;②试探究:在x轴上是否存在点P,使以PF、AD、AE为边长构成的三角形是以AE为斜边的直角三角形?如果存在,请用含m的代数式表示点P的横坐标;如果不存在,请说明理由.2020年湖北省武汉市中考数学模拟考试试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)一元二次方程2x2+5x=6的二次项系数、一次项系数、常数项分别是()A.2,5,6B.5,2,6C.2,5,﹣6D.5,2,﹣6【分析】方程整理为一般形式,找出所求即可.【解答】解:方程整理得:2x2+5x﹣6=0,则方程的二次项系数、一次项系数、常数项分别是2,5,﹣6,故选:C.2.(3分)下列图形中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个图是轴对称图形,是中心对称图形;第二个图是轴对称图形,不是中心对称图形;第三个图是轴对称图形,又是中心对称图形;第四个图是轴对称图形,不是中心对称图形;既是轴对称图形,又是中心对称图形的有2个,故选:B.3.(3分)下列事件中,不可能事件是()A.水在100℃沸腾B.射击一次,命中靶心C.三角形的内角和等于360°D.经过路口,遇上红灯【分析】根据事件发生的可能性大小判断.【解答】解:A、水在100℃沸腾是必然事件;B、射击一次,命中靶心是随机事件;C、三角形的内角和等于360°是不可能事件;D、经过路口,遇上红灯是随机事件;故选:C.4.(3分)将抛物线y=﹣2(x+3)2+2以原点为中心旋转180°得到的抛物线解析式为()A.y=﹣2(x﹣3)2+2B.y=﹣2(x+3)2﹣2C.y=2(x﹣3)2﹣2D.y=2(x﹣3)2+2【分析】求出绕原点旋转180°的抛物线顶点坐标,然后根据顶点式写出即可.【解答】解:∵抛物线y=﹣2(x+3)2+2的顶点为(﹣3,2),绕原点旋转180°后,变为(3,﹣2)且开口相反,故得到的抛物线解析式为y=2(x﹣3)2﹣2,故选:C.5.(3分)下列说法错误的是()A.必然事件发生的概率是1B.通过大量重复试验,可以用频率估计概率C.概率很小的事件不可能发生D.投一枚图钉,“钉尖朝上”的概率不能用列举法求得【分析】不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率大于0并且小于1.【解答】解:A、必然事件发生的概率是1,正确;B、通过大量重复试验,可以用频率估计概率,正确;C、概率很小的事件也有可能发生,故错误;D、投一枚图钉,“钉尖朝上”的概率不能用列举法求得,正确,故选:C.6.(3分)如图,AB是⊙O的直径,点C,D在⊙O上,若∠DCB=110°,则∠AED的度数为()A.15°B.20°C.25°D.30°【分析】连接AC,如图,利用圆周角定理的推论得到∠ACB=90°,则∠ACD=∠DCB ﹣∠ACB=20°,然后再利用圆周角定理可得到∠AED的度数.【解答】解:连接AC,如图,∵AB为直径,∴∠ACB=90°,∴∠ACD=∠DCB﹣∠ACB=110°﹣90°=20°,∴∠AED=∠ACD=20°.故选:B.7.(3分)⊙O的半径r=10cm,圆心到直线l的距离OM=6cm,在直线l上有一点P,且PM=3cm,则点P()A.在⊙O内B.在⊙O上C.在⊙O外D.可能在⊙O上或在⊙O内【分析】连接CP,根据圆心到直线l的距离CM=6cm,在直线l上有一点P且PM=3cm 得出CP的长度,即可得出P与圆的位置关系.【解答】解:∵过点O作OM⊥l,连接OP,∴MP=3cm,OM=6cm,∴CO===3,∵⊙C的半径r=10cm,∴d=3<10,∴点P在圆内,.故选:A.8.(3分)如图,将Rt△ABC绕直角顶点A,沿顺时针方向旋转后得到Rt△AB1C1,当点B1恰好落在斜边BC的中点时,则∠B1AC=()A.25°B.30°C.40°D.60°【分析】先根据直角三角形斜边上的中线性质得AB1=BB1,再根据旋转的性质得AB1=AB,旋转角等于∠BAB1,则可判断△ABB1为等边三角形,所以∠BAB1=60°,从而得出结论.【解答】解:∵点B1为斜边BC的中点,∴AB1=BB1,∵△ABC绕直角顶点A顺时针旋转到△AB1C1的位置,∴AB1=AB,旋转角等于∠BAB1,∴AB1=BB1=AB,∴△ABB1为等边三角形,∴∠BAB1=60°.∴∠B1AC=90°﹣30°=60°.故选:B.9.(3分)已知△ABC中,AB=AC,以AB为直径的⊙O1分别交AC、BC于两D、E点,过B点的切线交OE的延长线于点F,连FD、BD、OD,下列结论:①四边形ODCE是平行四边形;②E是△BFD的内心;③E是△FDO的外心;④∠C=∠BFD;其中正确的有()个.A.1B.2C.3D.4【分析】首先利用三角形的中位线定理证明OE∥AC,然后证得△FDO≌△FBO,可以得到DF是圆的切线,然后利用内心以及外心的定义和的等腰三角形的性质:等边对等角即可作出判断.【解答】解:连接AE,∵AB是直径,∴AE⊥BC,又∵AB=AC,∴BE=CE,又∵OA=OB,∴OE∥AC,∴∠BOE=∠BAC,∠EOD=∠ADO,∵∠BAC=∠ADO,∴∠BOE=∠EOD,在△FDO和△FBO中∵,∴△FDO≌△FBO∴∠ODF=∠OBF=90°,即△FDO是直角三角形,DF是圆的切线.如果四边形ODCE是平行四边形,则OD∥BC,则∠BEO=∠EOB=∠DOE则△OBE是等边三角形,从而得到△ABC是等边三角形,与已知不符,故①是错误的;∵FD、FB是圆的切线,∴FD=FB,又∵OB=OD∴OF是BD的中垂线,∴=,E在∠DFB的平分线上,∴E在∠FBD的平分线上,则E是△BFD的内心,故②正确;Rt△DOF中,若E是△FDO的外心,则E是OF的中点,可以得到△ODE是等边三角形,则△ABC是等边三角形,与已知不符,故③是错误的;设∠C=x°,则∠A=180﹣2x°,则在直角△ABD中,∠ABD=90°﹣(180﹣2x)=2x﹣90°,∵BF是切线,则∠ABF=90°,∴∠DBF=90°﹣∠ABD=90°﹣(2x﹣90)°=180﹣2x°,在等腰△BDF中,∠F=180°﹣2∠DBF=180°﹣2(180﹣2x)°=4x﹣180°,而4x﹣180与x不一定相等,故④不正确.故正确的只有②.故选:A.10.(3分)二次函数y=x2+bx的对称轴为直线x=1,若关于x的方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有实数解,则t的取值范围是()A.t≥﹣1B.﹣1≤t<3C.﹣1≤t<8D.t<3【分析】二次函数的表达式为y=x2﹣2x,顶点为:(1,﹣1),x=﹣1时,y=4,x=4时,y=8,即可求解.【解答】解:二次函数y=x2+bx的对称轴为直线x=1,则x=﹣=﹣=1,解得:b=﹣2,二次函数的表达式为y=x2﹣2x,顶点为:(1,﹣1),x=﹣1时,y=4,x=4时,y=8,t的取值范围为顶点至y=8之间的区域,即﹣1≤t<8;故选:C.二.填空题(共6小题,满分18分,每小题3分)11.(3分)关于x的一元二次方程x2﹣2x﹣m=0有两个不相等的实数根,则m的最小整数值是0.【分析】根据一元二次方程根的存在性,利用判别式△>0求解即可;【解答】解:一元二次方程x2﹣2x﹣m=0有两个不相等的实数根,∴△=4+4m>0,∴m>﹣1;故答案为0;12.(3分)若点A(m,7)与点B(﹣4,n)关于原点成中心对称,则m+n=﹣3.【分析】两个点关于原点对称时,它们的横坐标互为相反数,纵坐标也互为相反数,直接利用关于原点对称点的性质得出m,n的值,进而得出答案.【解答】解:∵点A(m,7)与点B(﹣4,n)关于原点成中心对称,∴m=4,n=﹣7,∴m+n=﹣3.故答案为:﹣3.13.(3分)今年我国生猪价格不断飙升,某超市的排骨价格由第一季度的每公斤40元上涨到第三季度的每公斤元90,则该超市的排骨价格平均每个季度的增长率为50%.【分析】设平均每个季度的增长率为x,根据该超市第一季度及第三季度排骨的单价,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设平均每个季度的增长率为x,依题意,得:40(1+x)2=90,解得:x1=0.5=50%,x2=﹣2.5(不合题意,舍去).故答案为:50%.14.(3分)用如图所示的两个转盘(分别进行四等分和三等分),设计一个“配紫色”的游戏(红色与蓝色可配成紫色),则能配成紫色的概率为.【分析】画树状图列出所有等可能结果和能配成紫色的结果,再根据概率公式计算可得.【解答】解:画树状图如下:由树状图知,共有12种等可能结果,其中能配成紫色的有3种结果,所以能配成紫色的概率为=,故答案为:.15.(3分)如图,正六边形ABCDEF纸片中,AB=6,分别以B、E为圆心,以6为半径画、.小欣把扇形BAC与扇形EDF剪下,并把它们粘贴为一个大扇形(B与E重合,F与A重合),她接着用这个大扇形作一个圆锥的侧面,则这个圆锥的高为2.【分析】根据正六边形的性质和弧长的公式即可得到结论.【解答】解:正六边形ABCDEF纸片中,∵∠B=∠E=120°,∵AB=6,∴+的长=×2=8π,∴圆锥的底面半径==4,∴圆锥的高==2,故答案为:2.16.(3分)如图,P是等腰Rt△ABC内的一点,∠ACB=90°,P A=,PB=2,PC=1,∠APC的度数是135°.【分析】如图,将△P AC绕C点顺时针旋转90°,与△P′CB重合,连结PP′.可求PP′=,∠CP′P=45°,由勾股定理的逆定理可求∠BP′P=90°,即可求解.【解答】解:如图,将△P AC绕C点顺时针旋转90°,与△P′CB重合,连结PP′.∴△P AC≌△P′BC,∠PCP′=90°,∴CP=CP′=1,∠APC=∠CP′B,AP=BP′=,∴△PCP′是等腰直角三角形,且PC=1,∴PP′=,∠CP′P=45°,在△BPP′中,∵PP′=,BP′=,PB=2,∴PP′2+BP′2=PB2,∴△CP′P是直角三角形,∠BP′P=90°,∴∠CP′B=∠BP′P+∠CP′P=45°+90°=135°,∴∠APC=135°,故答案为135°.三.解答题(共8小题,满分72分)17.(8分)解方程:x2﹣x﹣3=0.【分析】根据方程的特点可直接利用求根公式法比较简便.【解答】解:a=1,b=﹣1,c=﹣3∴x==∴,.18.(6分)在Rt△ABC中,∠ACB=90°,以点A为圆心,AC为半径,作⊙A交AB于点D,交CA的延长线于点E,过点E作AB的平行线EF交⊙A于点F,连接AF、BF,DF.(1)求证:BF⊥AF;(2)当∠CAB等于多少度时,四边形ADFE为菱形?请给予证明.【分析】(1)首先利用平行线的性质得到∠F AB=∠CAB,然后利用SAS证得两三角形全等,得出对应角相等即可;(2)当∠CAB=60°时,四边形ADFE为菱形,根据∠CAB=60°,得到∠F AB=∠CAB =∠CAB=60°,从而得到EF=AD=AE,利用邻边相等的平行四边形是菱形进行判断四边形ADFE是菱形.【解答】(1)证明:∵EF∥AB,∴∠E=∠CAB,∠EF A=∠F AB,∵∠E=∠EF A,∴∠F AB=∠CAB,在△ABC和△ABF中,,∴△ABC≌△ABF(SAS),∴∠AFB=∠ACB=90°,∴BF⊥AF;(2)解:当∠CAB=60°时,四边形ADFE为菱形.理由如下:∵∠CAB=60°,∴∠F AB=∠CAB=60°,∴∠EAF=60°,∵AE=AF=AD,∴△AEF,△ADF都是等边三角形,∴EF=AE=AD=AE,∴四边形ADFE是菱形.19.(8分)如图,两转盘分别标有数字,转盘一被三等分,转盘二被分成六份,其中标有数字“8”的扇形的圆心角为90°,标有数字“5”的扇形圆心角是标有数字“2”的扇形圆心角的2倍,转动转盘,等旋转停止时,每个转盘上的前头各指向一个数字(若箭头指向两个扇形的交线,则重新转动转盘,直到指向数字为止).(1)转动转盘一次,求出指向数字“3”的概率,(2)同时转动两个转盘,通过画树状图法或列表法求这两个转盘转出的数字之和为偶数的概率.【分析】(1)由概率公式即可得出答案(2)画出树状图,由概率公式即可得出答案.【解答】解:(1)转动转盘一一次,指向数字“3”的概率为;(2)∵标有数字“8”的扇形的圆心角为90°,∴标有数字“4”的扇形的圆心角为90°,∵标有数字“5”的扇形圆心角是标有数字“2”的扇形圆心角的2倍,∴标有数字“2”和“5”的扇形的圆心角的分别为60°、120°,画树状图如图:共有36个等可能的结果,两个转盘转出的数字之和为偶数的结果有16个,∴两个转盘转出的数字之和为偶数的概率为=.20.(8分)如图,已知点A(﹣2,﹣1)、B(﹣5,﹣5)、C(﹣2,﹣3),点P(﹣6,0).(1)将△ABC绕点P逆时针旋转90°得△A1B1C1,画出△A1B1C1,并写出点C的对应点C1的坐标为(﹣3,5);(2)画出△ABC关于原点成中心对称的图形△A2B2C2,并写出点A的对应点A2的坐标为(1,1);(3)把△A2B2C2向下平移6个单位长度得△A3B3C3,画出△A3B3C3,由图可知△A3B3C3可由△A1B1C1绕点Q逆时针旋转90°而得到,则点Q的坐标为(3,3);【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)分别作出A,B,C的对应点A2,B2,C2即可.(3)分别作出A1,B1,C1的对应点A3,B3,C3即可.对应点连线段的垂直平分线的交点即为所求的点Q.【解答】解:(1)如图△A1B1C1即为所求.点C的对应点C1的坐标为(﹣3,5);故答案为(﹣3,5).(2)如图△A2B2C2即为所求.点A的对应点A2的坐标为(1,1);故答案为(1,1).(3)如图△A3B3C3即为所求.由图可知△A3B3C3可由△A1B1C1绕点Q逆时针旋转90°而得到,则点Q的坐标为(3,3),故答案为(3,3).21.(8分)如图,四边形ABCD内接于⊙O,AB是直径,C为的中点,延长AD,BC交于点P,连结AC(1)求证:AB=AP;(2)若AB=10,DP=2,①求线段CP的长;②过点D作DE⊥AB于点E,交AC于点F,求△ADF的面积.【分析】(1)利用等角对等边证明即可.(2)①利用勾股定理分别求出BD,PB,再利用等腰三角形的性质即可解决问题.③作FH⊥AD于H.首先利用相似三角形的性质求出AE.DE,再证明AE=AH,设FH=EF=x,利用勾股定理构建方程解决问题即可.【解答】(1)证明:∵=,∴∠BAC=∠CAP,∵AB是直径,∴∠ACB=∠ACP=90°,∵∠ABC+∠BAC=90°,∠P+∠CAP=90°,∴∠ABC=∠P,∴AB=AP.(2)①解:连接BD.∵AB是直径,∴∠ADB=∠BDP=90°,∵AB=AP=10,DP=2,∴AD=10﹣2=8,∴BD===6,∴PB===2,∵AB=AP,AC⊥BP,∴BC=PC=PB=,∴PC=.②解:作FH⊥AD于H.∵DE⊥AB,∴∠AED=∠ADB=90°,∵∠DAE=∠BAD,∴△ADE∽△ABD,∴==,∴==,∴AE=,DE=,∵∠FEA=∠FEH,FE⊥AE,FH⊥AH,∴FH=FE,∠AEF=∠AHF=90°,∵AF=AF,∴Rt△AFE≌Rt△AFH(HL),∴AH=AE=,DH=AD﹣AH=,设FH=EF=x,在Rt△FHD中,则有(﹣x)2=x2+()2,解得x=,∴S△ADF=•AD•FH=×8×=.22.(10分)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20米,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)若a=70米,求矩形菜园ABCD面积的最大值.【分析】(1)设AB=xm,则BC=(100﹣2x)m,列方程求解即可;(2)设AB=xm,由题意得关于x的二次函数,利用二次函数的性质即可解决问题.【解答】解:(1)设AB=xm,则BC=(100﹣2x)m,由题意得:x(100﹣2x)=450解得:x1=5,x2=45当x=5时,100﹣2x=90>20,不合题意舍去;当x=45时,100﹣2x=10<20答:AD的长为10m;(2)设AB=xm,则S=x(100﹣x)=﹣(x﹣50)2+1250,(0<x≤70)∴x=50时,S的最大值是1250.答:当x=50时,矩形菜园ABCD面积的最大值为1250.23.(12分)在△ABC中,∠ACB=45°,BC=5,AC=2,D是BC边上的动点,连接AD,将线段AD绕点A逆时针旋转90°得到线段AE,连接EC.(1)如图a,求证:CE⊥BC;(2)连接ED,M为AC的中点,N为ED的中点,连接MN,如图b.①写出DE、AC,MN三条线段的数量关系,并说明理由;②在点D运动的过程中,当BD的长为何值时,M,E两点之间的距离最小?最小值是1,请直接写出结果.【分析】(1)如图a,过点A作AH⊥AC交BC于H,由“SAS”可证△HAD≌△CAE,可得∠ACE=∠AHD=45°,可得结论;(2)①如图b,连接AN,CN,由直角三角形的性质和等腰三角形的性质可得AN=CN =DN=EN=DE,MN⊥AC,AM=CM=AC,由勾股定理可得结论.②根据垂线段最短即可解决问题.【解答】证明:(1)如图a,过点A作AH⊥AC交BC于H,∵∵∠ACB=45°,AH⊥AC,∴∠AHC=∠ACB=45°,∴AH=AC,∵将线段AD绕点A逆时针旋转90°得到线段AE,∴AD=AE,∠HAC=∠DAE=90°,∴∠HAD=∠CAE,且AD=AE,AH=AC,∴△HAD≌△CAE(SAS)∴∠ACE=∠AHD=45°,∴∠HCE=90°,∴CE⊥BC;(2)MN2+AC2=DE2,理由如下:如图b,连接AN,CN,∵∠EAD=∠ECD=90°,点N是DE中点,∴AN=CN=DN=EN=DE,∵M为AC的中点,∴MN⊥AC,AM=CM=AC,∵MN2+CM2=CN2,∴MN2+AC2=DE2.(3)如图c中,由(1)可知∠ECB=90°,∴CE⊥BC,∴当ME⊥EC时,ME的值最小,在Rt△ACH中,∵AH=AC=2,∴HC=4,∵AM=MC=,在Rt△CME中,∵∠ECM=∠CME=45°,∴EC=EM=1,由(1)可知:△HAD≌△CAE,∴HD=EC=1,∴CD=4﹣1=3,∴BD=5﹣3=2,∴当BD=2时,EM的值最小,最小值为1,故答案为:124.(12分)如图,抛物线y=a(x2﹣2mx﹣3m2)(其中a,m为正的常数)与x轴交于点A,B,与y轴交于点C(0,﹣3),顶点为F,CD∥AB交抛物线于点D.(1)当a=1时,求点D的坐标;(2)若点E是第一象限抛物线上的点,满足∠EAB=∠ADC.①求点E的纵坐标;②试探究:在x轴上是否存在点P,使以PF、AD、AE为边长构成的三角形是以AE为斜边的直角三角形?如果存在,请用含m的代数式表示点P的横坐标;如果不存在,请说明理由.【分析】(1)根据题意将a=1,C(0,﹣3)代入y=a(x2﹣2mx﹣3m2),进而求出m 的值,即可得出答案;(2)①表示D点坐标,得出∠EAB=∠BAD,则x轴平分∠BAD,可得出点D关于x 轴的对称点一定在直线AE上,求出直线AE的解析式,联立直线AE和抛物线解析式可得出点E的坐标.②由①知E点的坐标,得出F(m,﹣4)、A(﹣m,0)、D(2m,﹣3),再利用PF,AD,AE的关系得出答案.【解答】解:(1)当a=1时,y=a(x2﹣2mx﹣3m2)=x2﹣2mx﹣3m2,∵与y轴交于点C(0,﹣3),∴﹣3m2=﹣3,解得:m=±1,∵m>0,∴m=1,∴抛物线解析式为:y=x2﹣2x﹣3=(x﹣1)2﹣4,∵CD∥AB,∴C,D关于直线x=1对称,∴D点坐标为:(2,﹣3);(2)①对于y=a(x2﹣2mx﹣3m2),当y=0,则0=a(x2﹣2mx﹣3m2),解得:x1=﹣m,x2=3m,当x=0,y=﹣3am2,可得:A(﹣m,0)、B(3m,0),C(0,﹣3am2),∵抛物线过点C,∴﹣3am2=﹣3,则am2=1,∵CD∥AB交抛物线于点D,∴∠ADC=∠BAD,∴点D与点C关于抛物线的对称轴x=m对称,∴D(2m,﹣3),∵∠EAB=∠ADC,∴∠EAB=∠BAD,∴x轴平分∠BAD,∴点D关于x轴的对称点D'(2m,3)一定在直线AE上,∴直线AD′的解析式为:y=x+1,联立,整理得x2﹣3mx﹣4m2=0,解得x1=4m,x2=﹣m(舍去),∴E点的横坐标为4m,∴y=.∴点E的纵坐标为5.②存在,理由:当x=m时,y=a(m2﹣2m2﹣3m2)=﹣4am2=﹣4,∴F(m,﹣4),∵E(4m,5)、A(﹣m,0)、D(2m,﹣3),设P(b,0),∴PF2=(m﹣b)2+16,AD2=9m2+9,AE2=25m2+25,∴(m﹣b)2+16+9m2+9=25m2+25,解得:b1=﹣3m,b2=5m∴P(﹣3m,0)或(5m,0).。

2020年武汉市中考数学模拟试题与答案

2020年武汉市中考数学模拟试题与答案

2020年武汉市中考数学模拟试题与答案(试卷满分120分,考试时间120分钟)一、选择题(本题共12小题。

每小题3分,共36分。

在每小题给出的四个选项中,只有一项是正确的。

) 1.-61的倒数是( ) A .6B .61 C .-61 D .﹣62.计算(﹣x 2)3的结果是( )A A .﹣x 6B .x 6C .﹣x 5D .﹣x 83. 一件衣服的进价为a,在进价的基础上增加20%标价,则标价可表示为( ) A.(1﹣20%)a B.20%a C.(1+20%)a D.a+20%4.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为( ) A .2.1×109B .0.21×109C .2.1×108D .21×1075. 如图,直线a ∥b ,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为( ) A.20° B.40° C.30° D. 25°6. 已知坐标平面内点M(a ,b)在第三象限,那么点N(b,-a)在( )A.第一象限B.第二象限C.第三象限D.第四象限7. 如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .12cm 2B .(12+π)cm 2C .6πcm 2D .8πcm 28.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是( ) A .18分,17分B .20分,17分C .20分,19分D .20分,20分9.点M (1,2)关于y 轴对称点的坐标为( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(2,﹣1)10.如图,已知直线y1=k1x+m和直线y2=k2x+n交于点P(﹣1,2),则关于x的不等式(k1﹣k2)x>﹣m+n的解是()A.x>2 B.x>﹣1 C.﹣1<x<2 D.x<﹣111.小带和小路两个人开车从A城出发匀速行驶至B城.在整个行驶过程中,小带和小路两人的车离开A城的距离y(千米)与行驶的时间t(小时)之间的函数关系如图所示.有下列结论;①A.B两城相距300千米;②小路的车比小带的车晚出发1小时,却早到1小时;③小路的车出发后2.5小时追上小带的车;④当小带和小路的车相距50千米时,t=或t=.其中正确的结论有()A.①②③④ B.①②④ C.①② D.②③④12.二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c =0(a≠0)的两根之和()A.小于0 B.等于0 C.大于0 D.不能确定二、填空题(本题共6小题,满分18分。

湖北省武汉市2019-2020学年中考第三次模拟数学试题含解析

湖北省武汉市2019-2020学年中考第三次模拟数学试题含解析

湖北省武汉市2019-2020学年中考第三次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 的值是( )A .1B .-1C .1或-1D .12 2.计算(﹣12)﹣1的结果是( ) A .﹣12 B .12 C .2 D .﹣23.-2的绝对值是()A .2B .-2C .±2D .124.如图,在正三角形ABC 中,D,E,F 分别是BC,AC,AB 上的点,DE ⊥AC,EF ⊥AB,FD ⊥BC ,则△DEF 的面积与△ABC 的面积之比等于( )A .1∶3B .2∶3C 3 2D 3∶35.下列函数中,当x >0时,y 值随x 值增大而减小的是( )A .y =x 2B .y =x ﹣1C .34y x =D .1y x = 6.已知关于x 的一元二次方程()2220x x m +--=有实数根,则m 的取值范围是( )A .1m >B .1m <C .m 1≥D .1m £7.已知a,b 为两个连续的整数,且11则a+b 的值为( )A .7B .8C .9D .108.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球、3个白球.从布袋中一次性摸出两个球,则摸出的两个球中至少有一个红球的概率是( )A .12B .23C .25D .7109.如图,将矩形 ABCD 绕点 A 顺时针旋转到矩形 AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( )A .68°B .20°C .28°D .22°10.计算tan30°的值等于( )A .B .C .D .11.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y (米)与甲出发的时间t (分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米其中正确的结论有( )A .1个B .2个C .3个D .4个12.如图,点A 为∠α边上任意一点,作AC ⊥BC 于点C ,CD ⊥AB 于点D ,下列用线段比表示cosα的值,错误的是( )A .CD ACB .BC AB C .BD BC D .AD AC二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知实数x ,y 满足2(x 5)y 70--=,则以x ,y 的值为两边长的等腰三角形的周长是______. 14.已知点()13,y -、()215,y -都在反比例函数()k y k 0x =≠的图象上,若12y y >,则k 的值可以取______(写出一个符合条件的k 值即可).15.函数121y x x =--中自变量的取值范围是______________ 16.数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等”这一推论,如图所示,若S EBMF =1,则S FGDN =_____.17.若点(),2P m -与点()3,Q n 关于原点对称,则2018()m n +=______.18.如图,在△ABC 中,AB =3+3,∠B =45°,∠C =105°,点D 、E 、F 分别在AC 、BC 、AB 上,且四边形ADEF 为菱形,若点P 是AE 上一个动点,则PF+PB 的最小值为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某单位为了扩大经营,分四次向社会进行招工测试,测试后对成绩合格人数与不合格人数进行统计,并绘制成如图所示的不完整的统计图.(1)测试不合格人数的中位数是 .(2)第二次测试合格人数为50人,到第四次测试合格人数为每次测试不合格人数平均数的2倍少18人,若这两次测试的平均增长率相同,求平均增长率;(3)在(2)的条件下补全条形统计图和扇形统计图.20.(6分)如图 1,在平面直角坐标系中,O 是坐标原点,长方形 OACB 的顶点 A 、B 分别在 x 轴与 y 轴上,已知 OA=6,OB=1.点 D 为 y 轴上一点,其坐标为(0,2), 点 P 从点 A 出发以每秒 2 个单位的速度沿线段 AC ﹣CB 的方向运动,当点 P 与点 B 重合 时停止运动,运动时间为 t 秒. (1)当点 P 经过点 C 时,求直线 DP 的函数解析式;(2)如图②,把长方形沿着 OP 折叠,点 B 的对应点 B′恰好落在 AC 边上,求点 P 的坐标.(3)点 P 在运动过程中是否存在使△BDP 为等腰三角形?若存在,请求出点 P 的坐标;若 不存在,请说明理由.21.(6分)如图,在四边形ABCD中,∠ABC=90°,∠CAB=30°,DE⊥AC于E,且AE=CE,若DE=5,EB=12,求四边形ABCD的周长.22.(8分)如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合).DE∥AB交AC于点F,CE∥AM,连结AE.(1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;(2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由.(3)如图3,延长BD交AC于点H,若BH⊥AC,且BH=AM.①求∠CAM的度数;②当FH=3,DM=4时,求DH的长.23.(8分)向阳中学校园内有一条林萌道叫“勤学路”,道路两边有如图所示的路灯(在铅垂面内的示意图),灯柱BC的高为10米,灯柱BC与灯杆AB的夹角为120°.路灯采用锥形灯罩,在地面上的照射区域DE的长为13.3米,从D、E两处测得路灯A的仰角分别为α和45°,且tanα=1.求灯杆AB的长度.24.(10分)如图,AB 是半径为2的⊙O 的直径,直线l 与AB 所在直线垂直,垂足为C ,OC =3,P 是圆上异于A 、B 的动点,直线AP 、BP 分别交l 于M 、N 两点.(1)当∠A =30°时,MN 的长是 ;(2)求证:MC•CN 是定值;(3)MN 是否存在最大或最小值,若存在,请写出相应的最值,若不存在,请说明理由;(4)以MN 为直径的一系列圆是否经过一个定点,若是,请确定该定点的位置,若不是,请说明理由.25.(10分)如图,将矩形OABC 放在平面直角坐标系中,O 为原点,点A 在x 轴的正半轴上,B (8,6),点D 是射线AO 上的一点,把△BAD 沿直线BD 折叠,点A 的对应点为A′.(1)若点A′落在矩形的对角线OB 上时,OA′的长= ;(2)若点A′落在边AB 的垂直平分线上时,求点D 的坐标;(3)若点A′落在边AO 的垂直平分线上时,求点D 的坐标(直接写出结果即可).26.(12分)在平面直角坐标系xOy 中,函数ky x =(0x >)的图象G 经过点A (4,1),直线14l y x b =+∶与图象G 交于点B ,与y 轴交于点C .求k 的值;横、纵坐标都是整数的点叫做整点.记图象G 在点A ,B 之间的部分与线段OA ,OC ,BC 围成的区域(不含边界)为W .①当1b =-时,直接写出区域W 内的整点个数;②若区域W 内恰有4个整点,结合函数图象,求b 的取值范围.27.(12分)先化简,再求值:2311221x x x x x x -⎛⎫-÷- ⎪+++⎝⎭,其中x 满足210x x --=.。

湖北省武汉市2019-2020学年中考数学三模考试卷含解析

湖北省武汉市2019-2020学年中考数学三模考试卷含解析

湖北省武汉市2019-2020学年中考数学三模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.在以下三个图形中,根据尺规作图的痕迹,能判断射线AD 平分∠BAC 的是( )A .图2B .图1与图2C .图1与图3D .图2与图32.若m ,n 是一元二次方程x 2﹣2x ﹣1=0的两个不同实数根,则代数式m 2﹣m+n 的值是( ) A .﹣1B .3C .﹣3D .13.下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为( )A .B .C .D .4.在Rt △ABC 中,∠C=90°,如果AC=2,cosA=23,那么AB 的长是( ) A .3B .43C .5D .135.若30m n +-=,则222426m mn n ++-的值为( ) A .12B .2C .3D .06.如图,小刚从山脚A 出发,沿坡角为α的山坡向上走了300米到达B 点,则小刚上升了( )A .300sin α米B .300cos α米C .300tan α米D .300tan α米7.若点(x 1,y 1),(x 2,y 2),(x 3,y 3)都是反比例函数y =﹣1x图象上的点,并且y 1<0<y 2<y 3,则下列各式中正确的是( ) A .x 1<x 2<x 3B .x 1<x 3<x 2C .x 2<x 1<x 3D .x 2<x 3<x 18.如图,在Rt △ABC 中,∠ACB=90°,AC=23,以点C 为圆心,CB 的长为半径画弧,与AB 边交于点D ,将»BD 绕点D 旋转180°后点B 与点A 恰好重合,则图中阴影部分的面积为( )A .2233π- B .2233π-C .233π- D .233π-9.如图,在△ABC 中,点D 是AB 边上的一点,若∠ACD=∠B,AD=1,AC=2,△ADC 的面积为1,则△BCD 的面积为( )A .1B .2C .3D .410.下列各数中是有理数的是( ) A .πB .0C .2D .3511.实数a 在数轴上的位置如图所示,则22(4)(11)a a ---化简后为( )A .7B .﹣7C .2a ﹣15D .无法确定12.如图,在△ABC 中,∠ACB=90°,∠A=30°,BC=4,以点C 为圆心,CB 长为半径作弧,交AB 于点D ;再分别以点B 和点D 为圆心,大于12BD 的长为半径作弧,两弧相交于点E ,作射线CE 交AB 于点F ,则AF 的长为( )A .5B .6C .7D .8二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.函数y=36x x +- 中,自变量x 的取值范围为_____. 14.方程32x -=的解是__________.15.关于x 的一元二次方程(k-1)x 2+6x+k 2-k=0的一个根是0,则k 的值是______. 16.计算2x 3·x 2的结果是_______.17.分解因式:229ax ay -= ____________.18.已知x a y b =⎧⎨=⎩是方程组2325x y x y -=⎧⎨+=⎩的解,则3a ﹣b 的算术平方根是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某汽车制造公司计划生产A 、B 两种新型汽车共40辆投放到市场销售.已知A 型汽车每辆成本34万元,售价39万元;B 型汽车每辆成本42万元,售价50万元.若该公司对此项计划的投资不低于1536万元,不高于1552万元.请解答下列问题: (1)该公司有哪几种生产方案?(2)该公司按照哪种方案生产汽车,才能在这批汽车全部售出后,所获利润最大,最大利润是多少? (3)在(2)的情况下,公司决定拿出利润的2.5%全部用于生产甲乙两种钢板(两种都生产),甲钢板每吨5000元,乙钢板每吨6000元,共有多少种生产方案?(直接写出答案) 20.(6分)计算:﹣22﹣12+|1﹣4sin60°| 21.(6分)有A ,B 两个黑布袋,A 布袋中有两个完全相同的小球,分别标有数字1和1.B 布袋中有三个完全相同的小球,分别标有数字﹣1,﹣1和﹣2.小明从A 布袋中随机取出一个小球,记录其标有的数字为x ,再从B 布袋中随机取出一个小球,记录其标有的数字为y ,这样就确定点Q 的一个坐标为(x ,y ).(1)用列表或画树状图的方法写出点Q 的所有可能坐标; (1)求点Q 落在直线y=﹣x ﹣1上的概率.22.(8分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m 的住房墙,另外三边用25m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m 宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m 2?23.(8分)“不出城郭而获山水之怡,身居闹市而有林泉之致”,合肥市某区不断推进“园林城市”建设,今春种植了四类花苗,园林部门从种植的这批花苗中随机抽取了2000株,将四类花苗的种植株数绘制成扇形统计图,将四类花苗的成活株数绘制成条形统图.经统计这批2000株的花苗总成活率为90%,其中玉兰和月季的成活率较高,根据图表中的信息解答下列问题:扇形统计图中玉兰所对的圆心角为,并补全条形统计图;该区今年共种植月季8000株,成活了约株;园林部门决定明年从这四类花苗中选两类种植,请用列表法或画树状图求恰好选到成活率较高的两类花苗的概率.24.(10分)观察下列各个等式的规律:第一个等式:222112--=1,第二个等式:223212--=2,第三个等式:224312--=3…请用上述等式反映出的规律解决下列问题:直接写出第四个等式;猜想第n个等式(用n的代数式表示),并证明你猜想的等式是正确的.25.(10分)2018年湖南省进入高中学习的学生三年后将面对新高考,高考方案与高校招生政策都将有重大变化.某部门为了了解政策的宣传情况,对某初级中学学生进行了随机抽样调查,根据学生对政策的了解程度由高到低分为A,B,C,D四个等级,并对调查结果分析后绘制了如下两幅图不完整的统计图.请你根据图中提供的信息完成下列问题:(1)求被调查学生的人数,并将条形统计图补充完整;(2)求扇形统计图中的A等对应的扇形圆心角的度数;(3)已知该校有1500名学生,估计该校学生对政策内容了解程度达到A等的学生有多少人?26.(12分)如图,一次函数的图象与反比例函数的图象交于C,D两点,与x,y轴交于B,A两点,且,,,作轴于E点.求一次函数的解析式和反比例函数的解析式;求的面积;根据图象直接写出一次函数的值大于反比例函数的值时,自变量x的取值范围.27.(12分)某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:20 21 19 16 27 18 31 29 21 2225 20 19 22 35 33 19 17 18 2918 35 22 15 18 18 31 31 19 22整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如下表所示:统计量平均数众数中位数数值23 m 21根据以上信息,解答下列问题:上表中众数m的值为;为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】【分析】根据角平分线的作图方法可判断图1,根据图2的作图痕迹可知D 为BC 中点,不是角平分线,图3中根据作图痕迹可通过判断三角形全等推导得出AD 是角平分线. 【详解】图1中,根据作图痕迹可知AD 是角平分线;图2中,根据作图痕迹可知作的是BC 的垂直平分线,则D 为BC 边的中点,因此AD 不是角平分线;图3:由作图方法可知AM=AE ,AN=AF ,∠BAC 为公共角,∴△AMN ≌△AEF , ∴∠3=∠4,∵AM=AE ,AN=AF ,∴MF=EN ,又∵∠MDF=∠EDN ,∴△FDM ≌△NDE , ∴DM=DE ,又∵AD 是公共边,∴△ADM ≌△ADE , ∴∠1=∠2,即AD 平分∠BAC , 故选C.【点睛】本题考查了尺规作图,三角形全等的判定与性质等,熟知角平分的尺规作图方法、全等三角形的判定与性质是解题的关键. 2.B 【解析】 【分析】把m 代入一元二次方程2210x x --=,可得2210m m --=,再利用两根之和2m n +=,将式子变形后,整理代入,即可求值. 【详解】解:∵若m ,n 是一元二次方程2210x x --=的两个不同实数根,∴22102m m m n ,--=+=, ∴21m m m -=+∴213m m n m n -+=++= 故选B . 【点睛】本题考查了一元二次方程根与系数的关系,及一元二次方程的解,熟记根与系数关系的公式. 3.B 【解析】 【分析】由俯视图所标该位置上小立方块的个数可知,左侧一列有2层,右侧一列有1层. 【详解】根据俯视图中的每个数字是该位置小立方块的个数,得出主视图有2列,从左到右的列数分别是2,1. 故选B . 【点睛】此题考查了三视图判断几何体,用到的知识点是俯视图、主视图,关键是根据三种视图之间的关系以及视图和实物之间的关系. 4.A 【解析】根据锐角三角函数的性质,可知cosA=AC AB =23,然后根据AC=2,解方程可求得AB=3. 故选A.点睛:此题主要考查了解直角三角形,解题关键是明确直角三角形中,余弦值cosA=A ∠的邻边斜边,然后带入数值即可求解. 5.A 【解析】 【分析】先根据30m n +-=得出3m n +=,然后利用提公因式法和完全平方公式2222()a ab b a b ++=+对222426m mn n ++-进行变形,然后整体代入即可求值.【详解】 ∵30m n +-=, ∴3m n +=,∴222224262()623612m mn n m n ++-=+-=⨯-=. 故选:A . 【点睛】本题主要考查整体代入法求代数式的值,掌握完全平方公式和整体代入法是解题的关键. 6.A 【解析】 【分析】利用锐角三角函数关系即可求出小刚上升了的高度. 【详解】在Rt △AOB 中,∠AOB=90°,AB=300米, BO=AB•sinα=300sinα米. 故选A . 【点睛】此题主要考查了解直角三角形的应用,根据题意构造直角三角形,正确选择锐角三角函数得出AB ,BO 的关系是解题关键. 7.D 【解析】 【分析】先根据反比例函数的解析式判断出函数图象所在的象限及在每一象限内函数的增减性,再根据y 1<0<y 2<y 3判断出三点所在的象限,故可得出结论. 【详解】解:∵反比例函数y =﹣1x中k =﹣1<0, ∴此函数的图象在二、四象限,且在每一象限内y 随x 的增大而增大, ∵y 1<0<y 2<y 3,∴点(x 1,y 1)在第四象限,(x 2,y 2)、(x 3,y 3)两点均在第二象限, ∴x 2<x 3<x 1. 故选:D . 【点睛】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限是解答此题的关键. 8.B 【解析】 【分析】阴影部分的面积=三角形的面积-扇形的面积,根据面积公式计算即可.【详解】解:由旋转可知AD=BD,∵∠ACB=90°∴CD=BD,∵CB=CD,∴△BCD是等边三角形,∴∠BCD=∠CBD=60°,∴,∴阴影部分的面积×2÷2−2602360π⨯23π.故选:B.【点睛】本题考查了旋转的性质与扇形面积的计算,解题的关键是熟练的掌握旋转的性质与扇形面积的计算. 9.C【解析】【详解】∵∠ACD=∠B,∠A=∠A,∴△ACD∽△ABC,∴12 AC ADAB AC==,∴2ACDABCS ADS ACVV⎛⎫= ⎪⎝⎭,∴2 112ABCSV⎛⎫= ⎪⎝⎭,∴S△ABC=4,∴S△BCD= S△ABC- S△ACD=4-1=1.故选C考点:相似三角形的判定与性质.10.B【解析】【分析】根据有理数是有限小数或无限循环小数,结合无理数的定义进行判断即可得答案.【详解】A、π是无限不循环小数,属于无理数,故本选项错误;B、0是有理数,故本选项正确;C、2是无理数,故本选项错误;D、35是无理数,故本选项错误,故选B.【点睛】本题考查了实数的分类,熟知有理数是有限小数或无限循环小数是解题的关键.11.C【解析】【分析】根据数轴上点的位置判断出a﹣4与a﹣11的正负,原式利用二次根式性质及绝对值的代数意义化简,去括号合并即可得到结果.【详解】解:根据数轴上点的位置得:5<a<10,∴a﹣4>0,a﹣11<0,则原式=|a﹣4|﹣|a﹣11|=a﹣4+a﹣11=2a﹣15,故选:C.【点睛】此题考查了二次根式的性质与化简,以及实数与数轴,熟练掌握运算法则是解本题的关键.12.B【解析】试题分析:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=1.∵作法可知BC=CD=4,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=2.故选B.考点:作图—基本作图;含30度角的直角三角形.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x≠1.【解析】【分析】该函数是分式,分式有意义的条件是分母不等于0,故分母x-1≠0,解得x的范围.【详解】根据题意得:x−1≠0, 解得:x≠1. 故答案为x≠1. 【点睛】本题考查了函数自变量的取值范围,解题的关键是熟练的掌握分式的意义. 14.x=1 【解析】 【分析】将方程两边平方后求解,注意检验. 【详解】将方程两边平方得x-3=4, 移项得:x=1,代入原方程得73-=2,原方程成立, 故方程3x -=2的解是x=1. 故本题答案为:x=1. 【点睛】在解无理方程是最常用的方法是两边平方法及换元法,解得答案时一定要注意代入原方程检验. 15.2. 【解析】试题解析:由于关于x 的一元二次方程()22160k x x k k -++-=的一个根是2,把x=2代入方程,得20k k -= ,解得,k 2=2,k 2=2当k=2时,由于二次项系数k ﹣2=2,方程()22160k x x k k -++-=不是关于x 的二次方程,故k≠2.所以k 的值是2.故答案为2. 16.52x【解析】试题分析:根据单项式乘以单项式,结合同底数幂相乘,底数不变,指数相加,可知2x 3·x 2=2x 3+2=2x 5. 故答案为:2x 5 17.【解析】试题分析:根据因式分解的方法,先提公因式,再根据平方差公式分解:.考点:因式分解18.【解析】 【分析】灵活运用方程的性质求解即可。

2020年武汉市中考数学模拟试卷及答案解析

2020年武汉市中考数学模拟试卷及答案解析

2020年武汉市中考数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.我市有一天的最高气温为5℃,最低气温为﹣4℃,则这天的最高气温比最低气温高()A.9℃B.4℃C.﹣4℃D.﹣9℃2.无论x取什么数,总有意义的分式是()A.B.C.D.3.下列添括号正确的是()A.7x3﹣2x2﹣8x+6=7x3﹣(2x2﹣8x+6)B.a﹣b+c﹣d=(a﹣d)﹣(b+c)C.a﹣2b+7c=a﹣(2b﹣7c)D.5a2﹣6ab﹣2a﹣3b=﹣(5a2+6ab﹣2a)﹣3b4.在不透明袋子里装有颜色不同的16个球,每次从袋子里摸出1个球记录下颜色后再放回,经过多次重复试验,发现摸到白球的颎率稳定在0.5,估计袋中白球有()A.16个B.12个C.8个D.5个5.若(2x﹣a)(x+5)的积中不含x的一次项,则a的值为()A.﹣5B.0C.5D.106.点(﹣4,﹣2)关于y轴对称的点的坐标是()A.(4,2)B.(﹣4,2)C.(﹣4,﹣2)D.(4,﹣2)7.如图是某几何体的三视图,则该几何体的全面积等于()A.112B.136C.124D.848.八年级(2)班学生积极参加献爱心活动,该班50名学生的捐款情况统计如表,则该班学生捐款金额的平均数和中位数分别是()金额/元5102050100人数4161596A.20.6元和10元B.20.6元和20元C.30.6元和10元D.30.6元和20元9.如图所示,第1个图案是由黑白两种颜色的六边形地面砖组成的,第2个,第3个图案可以看成是由第1个图案经过平移而得,那么第n个图案中有白色六边形地面砖()块.A.6+4(n+1)B.6+4n C.4n﹣2D.4n+210.如图,已知AB是⊙O的直径,CD是弦,且CD⊥AB,BC=3,AC=4,则sin∠ABD 的值是()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)11.计算:2﹣=.12.计算:=.13.一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数大于4的概率是.14.如图,在△ABC中,AC=BC,点D在BC边上,∠BAD+∠C=90°,点E在AC边上,∠AED=2∠BAD,若BD=16,CE=7,则DE的长为.。

2020-2021学年湖北省武汉市中考数学模拟试卷(3)及答案解析

2020-2021学年湖北省武汉市中考数学模拟试卷(3)及答案解析

湖北省武汉市中考数学模拟试卷(3)一、选择题(共10小题,每小题3分,共30分)1.在实数﹣5,0,4,﹣1中,最小的实数是()A.﹣5 B.0 C.﹣1 D.42.函数y=在实数范围内有意义,则x的取值范围是()A.x>4 B.x≥4 C.x<4 D.x≤43.把x2y﹣2y2x+y3分解因式正确的是()A.y(x+y)(x﹣y)B.y(x﹣y)2C.y(x2﹣2xy+y2)D.(x﹣2y)24.在一次中学生田径运动会上,参加跳高的15名运动员的成绩如表:成绩(m) 1.50 1.60 1.65 1.70 1.75 1.80人数 1 2 4 3 3 2那么这些运动员跳高成绩的众数是()A.4 B.1.75 C.1.70 D.1.655.下列计算正确的是()A.x4•x4=x16B.(a3)2•a4=a9C.(ab2)3÷(﹣ab)2=﹣ab4D.(a6)2÷(a4)3=16.如图,把△COD扩大后得到△AOB,若点C,D,B的坐标分别为C(1,2),D(2,0),B (5,0).则点A的坐标为()A.(2,5)B.(2.5,5)C.(2,5)D.(3,6)7.4个大小相同的正方体积木摆放成如图所示的几何体,其主视图是()A.B.C.D.8.今年的“六•一”儿童节是个星期五,某校学生会在初一年级进行了学生对学校作息安排的三种期望(全天休息、半天休息、全天上课)的抽样调查,并把调查结果绘成了如图1、2的统计图,已知此次被调查的男、女学生人数相同.根据图中信息,下列判断:①在被调查的学生中,期望全天休息的人数占53%;②本次调查了200名学生;③在被调查的学生中,有30%的女生期望休息半天;④若该校现有初一学生900人,根据调查结果估计期望至少休息半天的学生超过了720人.其中正确的判断有()A.4个B.3个C.2个D.1个9.如图(1),已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1边长按原法延长一倍得到正方形A2B2C2D2(如图(2));以此下去…,则正方形A4B4C4D4的边长为()A.4 B.5 C.16 D.2510.如图,AB是半圆O的直径,射线AM、BN为半圆的切线.在AM上取一点C,连接BC交半圆于点D,连接AD.过O点作BC的垂线ON,与BN相交于点N.过C点作半圆的切线CE,切点为E,与BN相交于点F.当C在AM上移动时(A点除外),设,则n的值为()A.n=B.0<n≤C.≤n<1 D.无法确定二、填空题(共6小题,每小题3分,共18分)11.计算﹣4﹣(﹣6)的结果为.12.据报载,2014年我国发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为.13.掷一个骰子,观察向上的一面的点数,则点数不小于4的概率为.14.某天,为按计划准点到达指定海域,某巡逻艇凌晨1:00出发,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该艇加快速度仍匀速前进,结果恰好准点到达.如图是该艇行驶的路程y(海里)与所用时间t(小时)的函数图象,则该巡逻艇原计划准点到达的时刻是.15.如图,反比例函数y=(x<0)的图象经过点A(﹣1,1),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B′在此反比例函数的图象上,则t的值是.16.如图,Rt△ABC中,AC=2,∠CAB=30°,点D和点B分别在线段AC的异侧,且∠ADC=30°,连BD,则BD的最大值为.三、解答题(共8小题,满分72分)17.已知一次函数y=kx+b的图象经过点(3,4)与(﹣3,﹣8).(1)求这个一次函数的解析式;(2)求关于x的不等式kx+b≤6的解集.18.已知:如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,(1)若∠BDO=∠CEO,求证:BE=CD.(2)若点E为AC中点,问点D满足什么条件时候,=.19.“端午”节前,第一次爸爸去超市购买了大小、质量都相同的火腿粽子和豆沙粽子若干,放入不透明的盒中,此时随机取出火腿粽子的概率为;妈妈发现小亮喜欢吃的火腿粽子偏少,第二次妈妈又去买了同样的5只火腿粽子和1只豆沙粽子放入同一盒中,这时随机取出火腿粽子的概率为.(1)请计算出第一次爸爸买的火腿粽子和豆沙粽子各有多少只?(2)若妈妈从盒中取出火腿粽子4只、豆沙粽子6只送爷爷和奶奶后,再让小亮从盒中不放回地任取2只,问恰有火腿粽子、豆沙粽子各1只的概率是多少?(用字母和数字表示豆沙粽子和火腿粽子,用列清法计算)20.已知:△ABC在直角坐标系中,A(﹣4,4),B(﹣4,0),C(﹣2,0)(1)将△ABC沿直线x=﹣1翻折得到△DEF,画出△DEF,并写出点D的坐标.(2)将△ABC绕原点O顺时针旋转90°得到△PMN,画出△PMN,并写出点P的坐标.(3)请直接写出DP的长度.21.如图,以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点D恰好为BC的中点,过点D 作⊙O的切线交AC边于点E.(1)求证:DE⊥AC;(2)连结OC交DE于点F,若sin∠ABC=,求的值.22.某企业为了增收节支,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:销售单价x(元∕件)…30 40 50 60 …每天销售量y(件)…500 400 300 200 …(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,根据所描出的点猜想y是x的什么函数,并求出函数关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价﹣成本总价)(3)为了支持希望工程,在实际的销售过程中该公司决定每销售一件工艺品就捐a(a<4)元给希望工程,公司通过销售记录发现,当销售单元价不超过51/件时,每天扣除捐赠后的日销售利润随销售单价x的增大而增大,求a的取值范围.23.已知△ABC中,∠ABC=90°,点M为BC上一点,点E、N在AC上,且EB=EM,NM=NC,(1)求证:∠EMN=∠BEC;(2)探究:AE、EN、CN之间的数量关系,并给出证明;(3)如图2,过点B作BH∥EM交NM的延长线于H,当=n时,求的值.24.将抛物线C1:y=x2平移后的抛物线C2与x轴交于A,B两点(点A在点B的左边)与y轴负半轴交于C点,已知A(﹣1,0),tan∠CAB=3.(1)求抛物线C2的解析式;(2)若抛物线C2上有且只有三个点到直线BC的距离为n,求出n的值;(3)D为抛物线C2的顶点,Q是线段BD上一动点,连CQ,点B,D到直线CQ的距离记为d1,d2,试求d1+d2的最大值,并求出此时Q点坐标.湖北省武汉市中考数学模拟试卷(3)参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.在实数﹣5,0,4,﹣1中,最小的实数是()A.﹣5 B.0 C.﹣1 D.4【考点】实数大小比较.【分析】根据有理数大小比较的法则比较即可.【解答】解:∵在﹣5,0,4,﹣1中,﹣5、﹣1是负数,4是正数,且|﹣5|>|﹣1|,∴﹣5<﹣1<0<4,∴在实数﹣5,0,4,﹣1中,最小的实数是﹣5.故选:A.【点评】本题考查了有理数的大小比较法则的应用,注意:正数都大于0,负数都小于0,正数都大于一切负数,两个负数比较大小,其绝对值大的反而小.2.函数y=在实数范围内有意义,则x的取值范围是()A.x>4 B.x≥4 C.x<4 D.x≤4【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x﹣4≥0,解得x≥4.故选B.【点评】本题考查的知识点为:二次根式的被开方数是非负数.3.把x2y﹣2y2x+y3分解因式正确的是()A.y(x+y)(x﹣y)B.y(x﹣y)2C.y(x2﹣2xy+y2)D.(x﹣2y)2【考点】提公因式法与公式法的综合运用.【专题】计算题.【分析】原式提取y,再利用完全平方公式分解即可.【解答】解:x2y﹣2y2x+y3=y(x2﹣2xy+y2)=y(x﹣y)2.故选B.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.4.在一次中学生田径运动会上,参加跳高的15名运动员的成绩如表:成绩(m) 1.50 1.60 1.65 1.70 1.75 1.80人数 1 2 4 3 3 2那么这些运动员跳高成绩的众数是()A.4 B.1.75 C.1.70 D.1.65【考点】众数.【专题】常规题型.【分析】根据众数的定义找出出现次数最多的数即可.【解答】解:∵1.65出现了4次,出现的次数最多,∴这些运动员跳高成绩的众数是1.65;故选:D.【点评】此题考查了众数,用到的知识点是众数的定义,众数是一组数据中出现次数最多的数.5.下列计算正确的是()A.x4•x4=x16B.(a3)2•a4=a9C.(ab2)3÷(﹣ab)2=﹣ab4D.(a6)2÷(a4)3=1【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘除法则及幂的乘方法则,结合各选项进行判断即可.【解答】解:A、x4×x4=x8,原式计算错误,故本选项错误;B、(a3)2•a4=a10,原式计算错误,故本选项错误;C、(ab2)3÷(﹣ab)2=ab4,原式计算错误,故本选项错误;D、(a6)2÷(a4)3=1,计算正确,故本选项正确;故选D.【点评】本题考查了同底数幂的乘除、幂的乘方与积的乘方的知识,解答本题的关键是掌握各部分的运算法则.6.如图,把△COD扩大后得到△AOB,若点C,D,B的坐标分别为C(1,2),D(2,0),B (5,0).则点A的坐标为()A.(2,5)B.(2.5,5)C.(2,5)D.(3,6)【考点】位似变换;坐标与图形性质.【分析】利用已知图形结合B,D点坐标得出两三角形的位似比,进而得出A点坐标.【解答】解:∵把△COD扩大后得到△AOB,点C,D,B的坐标分别为C(1,2),D(2,0),B(5,0),∴△COD与△AOB的位似比为:2:5,则点A的坐标为:(2.5,5).故选:B.【点评】此题主要考查了位似变换以及坐标与图形的性质,得出两图形的位似比是解题关键.7.4个大小相同的正方体积木摆放成如图所示的几何体,其主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从前面看得到的图象是主视图,可得答案.【解答】解:从前面看第一层有3个小正方形,第二层中间1个小正方形.故选:D.【点评】本题考查了简单组合体的三视图,从前面看得到的视图是主视图.8.今年的“六•一”儿童节是个星期五,某校学生会在初一年级进行了学生对学校作息安排的三种期望(全天休息、半天休息、全天上课)的抽样调查,并把调查结果绘成了如图1、2的统计图,已知此次被调查的男、女学生人数相同.根据图中信息,下列判断:①在被调查的学生中,期望全天休息的人数占53%;②本次调查了200名学生;③在被调查的学生中,有30%的女生期望休息半天;④若该校现有初一学生900人,根据调查结果估计期望至少休息半天的学生超过了720人.其中正确的判断有()A.4个B.3个C.2个D.1个【考点】条形统计图;用样本估计总体;扇形统计图.【专题】压轴题.【分析】解决本题需要从统计图获取信息,由此关键是明确图表中数据的来源及所表示的意义,依据所示的实际意义获取正确的信息.【解答】解:①期望全天休息的人数占的百分比为(1﹣19%﹣28%)=53%,本选项正确;②本次调查学生数为(12+26)÷19%=200人,本选项正确;③在被调查的学生中,男生与女生的人数相等,且共调查200人,故女生共有100人,则女生期望休息半天的百分比为(100﹣44﹣26)÷100=30%,本选项正确;④初一学生900人中,估计期望至少休息半天的学生数为900×(28%+53%)=729>720人,本选项正确;故选A.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.9.如图(1),已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1边长按原法延长一倍得到正方形A2B2C2D2(如图(2));以此下去…,则正方形A4B4C4D4的边长为()A.4 B.5 C.16 D.25【考点】正方形的性质.【专题】规律型.【分析】设正方形的边长为a n,并求出通项公式,从而求出多边形的边长.【解答】解:设正方形的边长为a n,a1=1,a2=a1,a3=a2,…由此得出边长a的通项公式a n=a1•()n﹣1(n是自然数),a1=1,a2=a1,a3=a2,…a n=a1•()n﹣1(n是自然数),=a1•()n﹣1(n是自然数),∴边长a的通项公式an=a n2=a12×[()5﹣1]2,∴S□A4B4C4D4=1,∵a1∴所求边长为25.故答案为:25.【点评】本题考查了正方形的性质,先设其边长,并求出其通项公式,从而解得.10.如图,AB是半圆O的直径,射线AM、BN为半圆的切线.在AM上取一点C,连接BC交半圆于点D,连接AD.过O点作BC的垂线ON,与BN相交于点N.过C点作半圆的切线CE,切点为E,与BN相交于点F.当C在AM上移动时(A点除外),设,则n的值为()A.n=B.0<n≤C.≤n<1 D.无法确定【考点】圆的综合题.【专题】综合题.【分析】作FH⊥AC于H,如图,设BN=1,则BF=n,半圆的半径为r,根据切线的性质得∠MAB=∠NBA=90°,易得四边形ABFH为矩形,所以HF=2r,AH=BF=n,再根据切线长定理得到CE=CA,FE=FB=n,设CA=t,则CE=t,CH=t﹣AH=t﹣n,在Rt△CHF中利用勾股定理得(t﹣n)2+(2r)2=(t+n)2,解得t=,接着证明Rt△BON∽Rt△ACB,然后利用相似比得可计算出n=.【解答】解:作FH⊥AC于H,如图,设BN=1,则BF=n,半圆的半径为r,∵AM、BN为半圆的切线,∴∠MAB=∠NBA=90°,∴四边形ABFH为矩形,∴HF=2r,AH=BF=n,∵CF切半圆于E点,∴CE=CA,FE=FB=n,设CA=t,则CE=t,CH=t﹣AH=t﹣n,在Rt△CHF中,∵CH2+FH2=CF2,∴(t﹣n)2+(2r)2=(t+n)2,解得t=,∵AB是半圆O的直径,∴∠ADB=90°,∵ON⊥BD,∴AD∥ON,∴∠BON=∠BAD,∵∠BAD+∠CAD=90°,∠CAD+∠ACD=90°,∴∠BAD=∠ACD,∴∠BON=∠ACB,∴Rt△BON∽Rt△ACB,∴=,即=,∴n=.故选A.【点评】本题考查了圆的综合题:熟练掌握圆周角定理、切线的性质和切线长定理;会运用相似比和勾股定理计算线段的长.二、填空题(共6小题,每小题3分,共18分)11.计算﹣4﹣(﹣6)的结果为 2 .【考点】有理数的减法.【分析】根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:﹣4﹣(﹣6)=﹣4+6=2.故答案为:2.【点评】本题考查了有理数的减法,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键.12.据报载,2014年我国发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为 2.5×107.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将25000000用科学记数法表示为2.5×107.故答案为:2.5×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.掷一个骰子,观察向上的一面的点数,则点数不小于4的概率为.【考点】概率公式.【分析】让骰子中不小于4的数个数除以数的总个数即为所求的概率.【解答】解:∵共6种情况,点数不小于4的有4,5,6三种情况,∴根据等可能条件下的概率的公式可得:掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则向上的一面的点数不小于4的概率为=.故答案为:.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.某天,为按计划准点到达指定海域,某巡逻艇凌晨1:00出发,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该艇加快速度仍匀速前进,结果恰好准点到达.如图是该艇行驶的路程y(海里)与所用时间t(小时)的函数图象,则该巡逻艇原计划准点到达的时刻是凌晨7:00 .【考点】一次函数的应用.【分析】根据函数图象和题意可以求出开始的速度为80海里/时,故障排除后的速度是100海里/时,设计划行驶的路程是a海里,就可以由时间之间的关系建立方程求出路程,再由路程除以速度就可以求出计划到达时间.【解答】解:由图象及题意,得故障前的速度为:80÷1=80海里/时,故障后的速度为:(180﹣80)÷1=100海里/时.设航行完全程有a海里,由题意得,﹣2=,解得:a=480,则原计划行驶的时间为:480÷80=6小时,1+6=7,故计划准点到达的时刻为:凌晨7:00.故答案为:凌晨7:00.【点评】本题考查了运用函数图象的意义解答行程问题的运用,行程问题的数量关系路程=速度×时间的运用,解答时先根据图象求出速度是关键,再建立方程求出距离是难点.15.如图,反比例函数y=(x<0)的图象经过点A(﹣1,1),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B′在此反比例函数的图象上,则t的值是.【考点】反比例函数综合题.【分析】根据反比例函数图象上点的坐标特征由A点坐标为(﹣1,1)得到k=﹣1,即反比例函数解析式为y=﹣,且OB=AB=1,则可判断△OAB为等腰直角三角形,知∠AOB=45°,再利用PQ⊥OA可得到∠OPQ=45°,然后轴对称的性质得PB=PB′,BB′⊥PQ,所以∠BPQ=∠B′PQ=45°,于是得到B′P⊥y轴,则点B′的坐标可表示为(﹣,t),于是利用PB=PB′得t﹣1=|﹣|=,然后解方程可得到满足条件的t的值.【解答】解:如图,∵点A坐标为(﹣1,1),∴k=﹣1×1=﹣1,∴反比例函数解析式为y=﹣,∵OB=AB=1,∴△OAB为等腰直角三角形,∴∠AOB=45°,∵PQ⊥OA,∴∠OPQ=45°,∵点B和点B′关于直线l对称,∴PB=PB′,BB′⊥PQ,∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,∴B′P⊥y轴,∴点B′的坐标为(﹣,t),∵PB=PB′,∴t﹣1=|﹣|=,整理得t2﹣t﹣1=0,解得t1=,t2=(不符合题意,舍去),∴t的值为.故答案为:.【点评】本题考查了反比例函数的综合题,涉及知识点有反比例函数图象上点的坐标特征、等腰直角三角形的性质和轴对称的性质和用求根公式法解一元二次方程等.利用对称的性质得到关于t的方程是解题的关键.16.如图,Rt△ABC中,AC=2,∠CAB=30°,点D和点B分别在线段AC的异侧,且∠ADC=30°,连BD,则BD的最大值为2+2.【考点】点与圆的位置关系;等边三角形的性质;圆周角定理.【专题】计算题.【分析】Rt△ABC中,利用含30度的直角三角形三边的关系计算出AB=4,由于∠ADC=30°,根据点与圆的位置关系的判定方法可得到点D在⊙O的弦AC所对的优弧上,如图,连结OA、OC,则当BD经过点O时,BD的值最大,再证明△OAC为等边三角形得到OA=AC=2,∠OAC=60°,则∠OAB=90°,于是根据勾股定理可计算出OB=2,所以BD的最大值为2+2.【解答】解:Rt△ABC中,AC=2,∠CAB=30°,则BC=AC=2,AB=2BC=4,∵∠ADC=30°,∴点D在⊙O的弦AC所对的优弧上,如图,连结OA、OC,当BD经过点O时,BD的值最大,∵∠AOC=2∠ADC=60°,∴△OAC为等边三角形,∴OA=AC=2,∠OAC=60°,∴∠OAB=60°+30°=90°,在Rt△OAB中,OB===2,∴BD=OB+OD=2+2,即BD的最大值为2+2.故答案为2+2.【点评】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.也考查了等边三角形的性质和圆周角定理.三、解答题(共8小题,满分72分)17.已知一次函数y=kx+b的图象经过点(3,4)与(﹣3,﹣8).(1)求这个一次函数的解析式;(2)求关于x的不等式kx+b≤6的解集.【考点】待定系数法求一次函数解析式;一次函数与一元一次不等式.【分析】(1)将两点代入,运用待定系数法求解;(2)把y=5代入y=2x﹣1解得,x=3,然后根据一次函数是增函数,进而得到关于x的不等式kx+b≤5的解集是x≤3.【解答】解:(1)∵一次函数y=kx+b的图象经过点点(3,4)与(﹣3,﹣8),∴,解得∴函数解析式为:y=2x﹣2;(2)∵k=2>0,∴y随x的增大而增大,把y=6代入y=2x﹣2解得,x=4,∴当x≤4时,函数y≤6,故不等式kx+b≤5的解集为x≤4.【点评】本题考查了待定系数法求函数解析式,一次函数与一元一次不等式,关键是掌握数形结合思想.认真体会一次函数与一元一次不等式之间的内在联系.18.已知:如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,(1)若∠BDO=∠CEO,求证:BE=CD.(2)若点E为AC中点,问点D满足什么条件时候,=.【考点】全等三角形的判定与性质;三角形的重心;等腰三角形的性质.【分析】(1)根据等腰三角形的性质得到∠ABC=∠ACB,然后证得△DBC≌△ECB,结论即可得到;(2)根据三角形的中位线定理和相似三角形的判定和性质即可得到结论.【解答】证明:(1)∵AB=AC,∴∠ABC=∠ACB,在△DBC与△ECB中,,∴△DBC≌△ECB,∴BE=CD;(2)当点D为AB的中点时,=;理由:∵点E为AC中点,点D为AB的中点,∴DE=BC,DE∥BC,∴△DEO∽△BCO,∴.【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质,三角形的中位线定理,相似三角形的判定和性质,熟练掌握三角形的中位线定理是解题的关键.19.“端午”节前,第一次爸爸去超市购买了大小、质量都相同的火腿粽子和豆沙粽子若干,放入不透明的盒中,此时随机取出火腿粽子的概率为;妈妈发现小亮喜欢吃的火腿粽子偏少,第二次妈妈又去买了同样的5只火腿粽子和1只豆沙粽子放入同一盒中,这时随机取出火腿粽子的概率为.(1)请计算出第一次爸爸买的火腿粽子和豆沙粽子各有多少只?(2)若妈妈从盒中取出火腿粽子4只、豆沙粽子6只送爷爷和奶奶后,再让小亮从盒中不放回地任取2只,问恰有火腿粽子、豆沙粽子各1只的概率是多少?(用字母和数字表示豆沙粽子和火腿粽子,用列清法计算)【考点】分式方程的应用;概率公式;列表法与树状图法.【专题】压轴题.【分析】(1)等量关系为:原来的火腿粽子数÷原来的总粽子数=;后来的火腿粽子数÷后来的总粽子数=;(2)列举出所有情况,看所求的情况占所有情况的概率如何.【解答】解:(1)设第一次爸爸买了x只火腿粽子,y只豆沙粽子.则:,解得:.经检验得出:x+y≠0,x+y+6≠0,∴x=4,y=8是原方程的根,答:第一次爸爸买了4只火腿粽子,8只豆沙粽子.(2)现在有火腿粽子9只,豆沙粽子9只,送给爷爷,奶奶后,还有火腿粽子5只,豆沙粽子3只.记豆沙粽子a,b,c;火腿粽子1,2,3,4,5.恰好火腿粽子、豆沙粽子各1只的概率为=.a b c 1 2 3 4 5第一次第二次a (a,b)(a,c)(a,1)(a,2)(a,3)(a,4)(a,5)b (b,a)(b,c)(b,1)(b,2)(b,3)(b,4)(b,5)c (c,a)(c,b)(c,1)(c,2)(c,3)(c,4)(c,5)1 (1,a)(1,b)(1,c)(1,2)(1,3)(1,4)(1,5)2 (2,a)(2,b)(2,c)(2,1)(2,3)(2,4)(2,5)3 (3,a)(3,b)(3,c)(3,1)(3,2)(3,4)(3,5)4 (4,a)(4,b)(4,c)(4,1)(4,2)(4,3)(4,5)5 (5,a)(5,b)(5,c)(5,1)(5,2)(5,3)(5,4)【点评】解分式方程的关键是找到合适的等量关系;求概率的关键是列举出所有可能的情况.20.已知:△ABC在直角坐标系中,A(﹣4,4),B(﹣4,0),C(﹣2,0)(1)将△ABC沿直线x=﹣1翻折得到△DEF,画出△DEF,并写出点D的坐标(2,4).(2)将△ABC绕原点O顺时针旋转90°得到△PMN,画出△PMN,并写出点P的坐标(4,4).(3)请直接写出DP的长度 2 .【考点】作图-旋转变换;作图-轴对称变换.【分析】(1)将△ABC沿直线x=﹣1翻折得到△DEF,即是求轴对称图形,根据轴对称图形画出△DEF;(2)根据旋转对称的性质将△ABC的三个顶点绕原点O顺时针旋转90°得到三点的对应点,顺次连接画出△PMN;(3)直接写出PD的长即可.【解答】解:(1)如图所示,△DEF即为所作,点D坐标为(2,4);(2)如图所示,△PMN即为所作,点P坐标为(4,4);(3)由图可知,PD=2.【点评】本题考查了利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.21.如图,以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点D恰好为BC的中点,过点D 作⊙O的切线交AC边于点E.(1)求证:DE⊥AC;(2)连结OC交DE于点F,若sin∠ABC=,求的值.【考点】切线的性质;相似三角形的判定与性质.【分析】(1)连接OD.根据三角形中位线定理判定OD是△ABC的中位线,则OD∥AC,所以∠DEC=∠ODE=90°,即DE⊥AC;(2)连接AD.通过解直角三角形得到sin∠ABC==,故设AD=3x,则AB=AC=4x,OD=2x;由相似三角形△ADC∽△AED的对应边成比例得到AD2=AE•AC.则,,所以.【解答】(1)证明:连接OD.∵DE是⊙O的切线,∴DE⊥OD,即∠ODE=90°.∵AB是⊙O的直径,∴O是AB的中点.又∵D是BC的中点,.∴OD∥AC.∴∠DEC=∠ODE=90°.∴DE⊥AC;(2)解:连接AD.∵OD∥AC,∴.∵AB为⊙O的直径,∴∠ADB=∠ADC=90°.又∵D为BC的中点,∴AB=AC.∵sin∠ABC==,故设AD=3x,则AB=AC=4x,OD=2x.∵DE⊥AC,∴∠ADC=∠AED=90°.∵∠DAC=∠EAD,∴△ADC∽△AED.∴.∴AD2=AE•AC.∴.∴.∴.【点评】本题考查了切线的性质、相似三角形的判定与性质.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.22.某企业为了增收节支,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:销售单价x(元∕件)…30 40 50 60 …每天销售量y(件)…500 400 300 200 …(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,根据所描出的点猜想y是x的什么函数,并求出函数关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价﹣成本总价)(3)为了支持希望工程,在实际的销售过程中该公司决定每销售一件工艺品就捐a(a<4)元给希望工程,公司通过销售记录发现,当销售单元价不超过51/件时,每天扣除捐赠后的日销售利润随销售单价x的增大而增大,求a的取值范围.【考点】二次函数的应用.【分析】(1)描点,由图可猜想y与x是一次函数关系,任选两点求表达式,再验证猜想的正确性;(2)利润=销售总价﹣成本总价=单件利润×销售量.据此得表达式,运用性质求最值;(3)设总利润为m元,根据条件可以得出每件工艺用品的利润为(x﹣20﹣a)元,再根据总利润=销售总价﹣成本总价建立函数关系式即可【解答】解:(1)画图如图;由图可猜想y与x是一次函数设这个一次函数为y=kx+b(k≠0)∵这个一次函数的图象经过(30,500)(40,400)这两点,∴解得∴函数关系式是:y=﹣10x+800(0≤x≤80)(2)设工艺厂试销该工艺品每天获得的利润是W元,依题意得W=(x﹣20)(﹣10x+800)=﹣10x2+1000x﹣16000=﹣10(x﹣50)2+9000∴当x=50时,W有最大值9000.所以,当销售单价定为50元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润是9000元.(3)设总利润为M元,则每件工艺用品的利润为(x﹣20﹣a)元,由题意,得M=(﹣10x+800)(x﹣20﹣a),=﹣10x2+10(100﹣a)x﹣16000﹣800a,=﹣10(x﹣50﹣a)2+(100+a)2﹣16000﹣800a,∵a=﹣10<0,∴抛物线的开口向下,在对称轴的左侧M随x的增大而增大.∴x=50+a时,M有最大值.∵日销售利润M随销售单价x的增大而增大,且x≤51,∴50+a≥51,∴a≥2.∵a<4,∴2≤a<4.【点评】本题考查了运用待定系数法求一次函数的解析式的运用,二次函数的顶点式的运用,不等式的解法和运用,解答时建立二次函数的解析式,根据二次函数的解析式求解是关键.23.已知△ABC中,∠ABC=90°,点M为BC上一点,点E、N在AC上,且EB=EM,NM=NC,(1)求证:∠EMN=∠BEC;(2)探究:AE、EN、CN之间的数量关系,并给出证明;(3)如图2,过点B作BH∥EM交NM的延长线于H,当=n时,求的值.【考点】相似形综合题.【分析】(1))由EB=EM,NM=NC,可得∠EBM=∠EMB,∠NMC=∠NCM,由∠EMB+∠NCM+∠EMN=180°,∠EBM+∠NCM+∠BEC=180°,即可得出∠EMN=∠BEC;(2)作DE⊥BC,NF⊥BC分别交BC于D,F,作GM⊥BC,交AC于点G,由等腰三角形的性质可得BD=MD,由DE为梯形ABMG的中位线,可得AE=EG,同理可得CN=NG,即可得出EN=AE+CN;(3)作GM⊥BC,交AC于点G,作NF∥EM,由GM∥AB,可得==n,由AE=EG,CN=NG,可得=n,即NG=CN=nEG,由NF∥EM,可得=,即=,由CF=MC,可得MF=MC,再由=,=n,即可得出的值.【解答】解:(1)∵EB=EM,NM=NC,∴∠EBM=∠EMB,∠NMC=∠NCM,∴∠EMB+∠NCM+∠EMN=180°,∵∠EBM+∠NCM+∠BEC=180°,。

2020年中考数学三模试卷(含答案)

2020年中考数学三模试卷(含答案)

2020年中考数学三模试卷一、选择题:本大题有10个小题,每小题3分,共30分。

1.-23等于( )A. -6B. 6C. -8D. 82.在平面直角坐标系中,点关于原点对称的点的坐标是A. B. C. D.3.如图,已知以直角梯形ABCD的腰CD为直径的半圆O与梯形的上底AD、下底BC以及腰AB均相切,切点分别是D、C、E.若半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是().A. 9B. 10C. 12D. 144.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B 种饮料单价为x元/瓶,那么下面所列方程正确的是( )A. 2(x-1)+3x=13B. 2(x+1)+3x=13C. 2x+3(x+1)=13D. 2x+3(x-1)=135.如图,这是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,根据统计图提供的信息,可得到该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A. 8,9B. 8,8.5C. 16,8.5D. 16,10.56.如图,AB和CD表示两根直立于地面的柱子,AC和BD表示起固定作用的两根钢筋,AC与BD相交于点M,已知AB=8m,CD=12m,则点M离地面的高度MH为( )A. 4 mB. mC. 5mD. m7.若等腰三角形中有一个角等于110°,则其它两个角的度数为().A. 70°B. 110°和70°C. 35°和35°D. 30°和70°8.已知点A,点B在一次函数y=kx+b(k,b为常数,且k≠0)的图象上,点A在第三象限,点B在第四象限,则下列判断一定正确的是()A. b<0B. b>0C. k<0D. k>09.身高相等的四名同学甲、乙、丙、丁参加风筝比赛,四人放出风筝的线长、线与地面的夹角如下表(假设风筝线是拉直的),则四名同学所放的风筝中最高的是()同学甲乙丙丁放出风筝线长140m 100m 95m 90m线与地面夹角30°45°45°60°A. 甲B. 乙C. 丙D. 丁10.已知抛物线与轴交于点A、B,与轴交于点C,则能使△ABC为等腰三角形抛物线的条数是()A. 5B. 4C. 3D. 2二、填空题:本大题有6个小题,每小题4分,共24分11.把多项式2x2y﹣4xy2+2y3分解因式的结果是________12.一组数据7,x,8,y,10,z,6的平均数为4,则x,y,z的平均数是________.13.若圆锥的地面半径为,侧面积为,则圆锥的母线是________ .14.如图,和分别是的直径和弦,且,,交于点,若,则的长是________.15.一次函数y = kx + b ,当- 3 £x £ 1时,对应的y 值为1 £y £ 9 ,则k + b =________;16.已知等腰中,,,,在线段上,是线段上的动点,的最小值是________.三、解答题:本大题有7个小题,共66分17.化简:18.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如表:(1)把表中所空各项数据填写完整;选手选拔成绩/环中位数平均数甲 10 9 8 8 10 9 ________ ________乙 10 10 8 10 7 ________ ________ 9(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.19.如图,已知:,,,点,分别在,上,连接,且,是上一点,的延长线交的延长线于点.(1)求证:;(2)求证:.20.大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商品,此类新型商品在第x天的销售量p件与销售的天数x的关系如下表:x(天) 1 2 3 (50)p(件)118 116 114 (20)销售单价q(元/件)与x满足:当1≤x<25时q=x+60;当25≤x≤50时q=40+ .(1)请分析表格中销售量p与x的关系,求出销售量p与x的函数关系.(2)求该超市销售该新商品第x天获得的利润y元关于x的函数关系式.(3)这50天中,该超市第几天获得利润最大?最大利润为多少?21.某校数学兴趣小组开展了一次课外活动,过程如下:如图①,正方形ABCD中,AB=4,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合.三角板的一边交AB于点P,另一边交BC的延长线于点Q.(1)求证:AP=CQ;(2)如图②,小明在图1的基础上作∠PDQ的平分线DE交BC于点E,连接PE,他发现PE和QE存在一定的数量关系,请猜测他的结论并予以证明;(3)在(2)的条件下,若AP=1,求PE的长.22.已知直角梯形纸片OABC在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A (10,0),B(8,2 ),C(0,2 ),点T在线段OA上(不与线段端点重合),将纸片折叠,使点A落在射线AB上(记为点A′),折痕经过点T,折痕TP与射线AB交于点P,设点T的横坐标为t,折叠后纸片重叠部分(图中的阴影部分)的面积为S.(1)求∠OAB的度数,并求当点A′在线段AB上时,S关于t的函数关系式;(2)当纸片重叠部分的图形是四边形时,求t的取值范围;(3)S存在最大值吗?若存在,求出这个最大值,并求此时t的值;若不存在,请说明理由.23.如图,在⊙中,弦,相交于点,且.(1)求证:;(2)若,,当时,求:①图中阴影部分面积.②弧的长.答案解析部分一、选择题1.C2.C3.D4.A5.A6.B7.C8.A9.D10.B二、填空题11.2y(x﹣y)2【解答】解:原式=2y(x2﹣2xy+y2)=2y(x﹣y)2.故答案为:2y(x﹣y)2.12.-1【解答】解:∵一组数据7,x,8,y,10,z,6的平均数为4,∴=4,解得,x+y+z=﹣3,∴=﹣1,故答案为:﹣1.13.13【解答】设母线长为R,则:解得:故答案为13.14.5【解答】连接CD;Rt△AOB中,∠A=30°,OB=5,则AB=10,OA=5 ;在Rt△ACD中,∠A=30°,AD=2OA=10 ,∴AC=cos30°×10 =15,∴BC=AC-AB=15-10=5.故答案为515.9或1【解答】解:①当x=-3时,y=1;当x=1时,y=9,则解得:所以k + b =2+7=9;②当x=-3时,y=9;当x=1时,y=1,则解得:,所以k + b=-2+3=1.故答案为9或1.16.【解答】解:∵AC=BC,OC⊥AB,∴AB=2OB=6,∵OC=4,∴BC=5,∴A,B关于y轴对称,过A作AM⊥BC于M,交y轴于P,则此时,PM+PB的值最小且PM+PB的最小值=AM,∵∠AMB=∠COB=90°,∠ABM=∠CBO,∴△ABM∽△CBO,∴,即,∴AM=,∴PM+PB的最小值是,故答案为:.三、解答题:本大题有7个小题,共66分.17. 解:===1【分析】根据同分母分式的减法法则计算,再根据完全平方公式展开,合并同类项后约分计算即可求解.18. (1)9,9,9,9.5(2)解:s2甲= [2×(8﹣9)2+2×(9﹣9)2+2×(10﹣9)2]=;s2乙= [(7﹣9)2+(8﹣9)2+(9﹣9)2+3×(10﹣9)2]=(3)解:我认为推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适【解答】解:(1)甲:将六次测试成绩按从小到大的顺序排列为:8,8,9,9,10,10,中位数为(9+9)÷2=9,平均数为(10+9+8+8+10+9)÷6=9;乙:第6次成绩为9×6﹣(10+10+8+10+7)=9,将六次测试成绩按从小到大的顺序排列为:7,8,9,10,10,10,中位数为(9+10)÷2=9.5;填表如下:选手选拔成绩/环中位数平均数甲10 9 8 8 10 9 9 9乙10 10 8 10 7 9 9.5 919. (1)证明:∵,,∴,,又∵,∴(2)证明:∵在△BGF中,∴∠HGF>∠GBF,∵,∴∠ADE=∠GBF,∴20. (1)解:设销售量p件与销售的天数x的函数解析式为p=kx+b,代入(1,118),(2,116)得解得因此销售量p件与销售的天数x的函数解析式为p=﹣2x+120(2)解:当1≤x<25时,y=(60+x﹣40)(﹣2x+120)=﹣2x2+80x+2400,当25≤x≤50时,y=(40+ ﹣40)(﹣2x+120)= ﹣2250(3)解:当1≤x<25时,y=﹣2x2+80x+2400,=﹣2(x﹣20)2+3200,∵﹣2<0,∴当x=20时,y有最大值y1,且y1=3200;当25≤x≤50时,y= ﹣2250;∵135000>0,∴随x的增大而减小,当x=25时,最大,于是,x=25时,y= ﹣2250有最大值y2,且y2=5400﹣2250=3150.∵y1>y2∴这50天中第20天时该超市获得利润最大,最大利润为3200元21. (1)证明:∵四边形ABCD是正方形,∴∠ADC=∠A=∠B=∠BCD=∠DCQ=90°,AD=BC=CD=AB=4,∵∠PDQ=90°,∴∠ADP=∠CDQ,在△APD和△CQD中,,∴△APD≌△CQD(ASA),∴AP=CQ(2)解;PE=QE,理由如下:由(1)得:△APD≌△CQD,∴PD=QD,∵DE平分∠PDQ,∴∠PDE=∠QDE,在△PDE和△QDE中,,∴△PDE≌△QDE(SAS),∴PE=QE(3)解:由(2)得:PE=QE,由(1)得:CQ=AP=1,∴BQ=BC+CQ=5,BP=AB﹣AP=3,设PE=QE=x,则BE=5﹣x,在Rt△BPE中,由勾股定理得:32+(5﹣x)2=x2,解得:x=3.4,即PE的长为3.422. (1)解:∵A,B两点的坐标分别是A(10,0)和B(8,2 ),∴tan∠OAB= = ,∴∠OAB=60°,当点A′在线段AB上时,∵∠OAB=60°,TA=TA′,∴△A′TA是等边三角形,且TP⊥AA′,∴TP=(10﹣t)sin60°= (10﹣t),A′P=AP= AT= (10﹣t),∴S=S△ATP= A′P•TP= (10﹣t)2,当A´与B重合时,AT=AB==4,所以此时6≤t<10(2)解:当点A′在线段AB的延长线上,且点P在线段AB(不与B重合)上时,纸片重叠部分的图形是四边形(如图①,其中E是TA′与CB的交点),假设点P与B重合时,AT=2AB=8,点T的坐标是(2,0),由(1)中求得当A´与B重合时,T的坐标是(6,0),则当纸片重叠部分的图形是四边形时,2<t<6(3)解:S存在最大值.①当6≤t<10时,S= (10﹣t)2,在对称轴t=10的左边,S的值随着t的增大而减小,∴当t=6时,S的值最大是2 ;②当2≤t<6时,由图①,重叠部分的面积S=S△A′TP﹣S△A′EB,∵△A′EB的高是A′B•sin60°,∴S= (10﹣t)2﹣(10﹣t﹣4)2×+ (﹣4)2×= (﹣t2+2t+30)=﹣(t﹣2)2+4 ,当t=2时,S的值最大是4 ;③当0<t≤2,即当点A′和点P都在线段AB的延长线上是(如图②,其中E是TA´与CB的交点,F是TP 与CB的交点),∵∠EFT=∠ETF,四边形ETAB是等腰梯形,∴EF=ET=AB=4,∴S= EF•OC= ×4×2 =4 .综上所述,S的最大值是4 ,此时t的值是t=2.23. (1)证明:连接,,∵,∴,∵,∴,∵,∴,∵,∴≌,∴.(2)解:作于,于,由()可知,∴,∵,,,,∴四边形是正方形,∴,∵,∴≌,∴,∵,,∴,,,∵,∴.①.②,∴,∴.。

【2020年】湖北省中考数学模拟试卷(解析版)(3)

【2020年】湖北省中考数学模拟试卷(解析版)(3)

在 Rt△OBD中, OD=
=1,
∵将弧 沿 BC折叠后刚好经过 AB 的中点 D.
∴弧 AC和弧 CD所在的圆为等圆,
∴ =,
∴ AC=DC, ∴ AE=DE=,1 易得四边形 ODEF为正方形, ∴ OF=EF=,1 在 Rt△OCF中, CF=
=2,
∴ CE=C+FEF=2+1=3, 而 BE=BD+DE=2+1=3, ∴ BC=3 . 故选: B.
∵ 673=84×8+1,
∴ 2019 不合题意,舍去; ∵ 672=84×8, ∴ 2016 不合题意,舍去; ∵ 671=83×7+7, ∴三个数之和为 2013. 故选: D.
10. 【解答】 解:连接 OD、AC、DC、OB、OC,作 CE⊥AB 于 E,OF⊥CE于 F,如图, ∵ D 为 AB 的中点, ∴ OD⊥ AB, ∴ AD=BD= AB=2,
二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分) 11. 【解答】 解:原式 = + ﹣ = 故答案为:
12. 【解答】 解:概率是大量重复实验的情况下, 频率的稳定值可以作为概率的估计 值,即次数越多的频率越接近于概率 ∴这种幼树移植成活率的概率约为 0.9. 故答案为: 0.9.
( 3)如图 3,D 是边 CA延长线上一点, AE=AB,∠DEB=9°0,sin∠ BAC= ,

直接写出 tan∠CEB的值.
24.( 12 分)抛物线 L:y=﹣x2+bx+c 经过点 A(0,1),与它的对称轴直线 x=1 交于点 B. ( 1)直接写出抛物线 L 的解析式; ( 2)如图 1,过定点的直线 y=kx﹣k+4( k< 0)与抛物线 L 交于点 M 、N.若△ BMN 的面积等于 1,求 k 的值; ( 3)如图 2,将抛物线 L 向上平移 m(m>0)个单位长度得到抛物线 L1,抛物 线 L1 与 y 轴交于点 C,过点 C 作 y 轴的垂线交抛物线 L1 于另一点 D.F 为抛物线 L1 的对称轴与 x 轴的交点, P 为线段 OC上一点. 若△ PCD与△ POF相似,并且符 合条件的点 P 恰有 2 个,求 m 的值及相应点 P 的坐标.

2020年湖北省中考数学模拟试卷三含解析

2020年湖北省中考数学模拟试卷三含解析

2020年湖北省中考数学模拟试卷三一、选择题(共10小题,每小题3分,满分30分)1.(3分)|﹣|的倒数是()A.B.3C.﹣D.﹣32.(3分)下列计算正确的是()A.a2+a2=a4B.a8÷a2=a4C.(﹣a)2﹣a2=0D.a2•a3=a63.(3分)下列图形中,既是轴对称又是中心对称的图形是()A.直角三角形B.正五边形C.正六边形D.等腰梯形4.(3分)如图,AB∥CD,直线EF交AB于点E,交CD于点F,EG平分∠BEF,交CD 于点G,∠1=50°,则∠2等于()A.50°B.60°C.65°D.90°5.(3分)式子有意义的条件是()A.a≥﹣2且a≠﹣3B.a≥﹣2C.a≤﹣2且a≠﹣3D.a>﹣26.(3分)如图是由3个完全相同的小正方体组成的立体图形,它的左视图是()A.B.C.D.7.(3分)若关于x的一元二次方程x2﹣2x+m=0没有实数根,则实数m的取值是()A.m<1B.m>﹣1C.m>1D.m<﹣18.(3分)如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为()A.100°B.110°C.115°D.120°9.(3分)如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②;步骤3:连接AD,交BC延长线于点H;下列叙述错误的是()A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC•AH D.AH=DH10.(3分)如图,函数y=ax2﹣2x+1和y=ax﹣a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)计算:=.12.(3分)某省2019年全年生产总值达到约19367亿元,19367亿用科学记数法表示为.13.(3分)一套书共有上、中、下三册,将它们任意摆放到书架的同一层上,这三册书从左向右恰好成上、中、下的概率是.14.(3分)解古算题:今有甲、乙二人持钱不知其数.甲得乙半而钱四十八,乙得甲太半而亦钱四十八.甲、乙持钱各几何?题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48,如果乙得到甲所有钱的,那么乙也共有钱48.则甲带了钱.15.(3分)方程﹣1=的解是.16.(3分)如图,△CAB与△CDE均是等腰直角三角形,并且∠ACB=∠DCE=90°.连接BE,AD的延长线与BC、BE的交点分别是点G与点F,且AF⊥BE,将△CDE绕点C旋转直至CD∥BE时,若DA=4.5,DG=2,则BF的值是.三、解答题(本大题共9个小题,共72分)17.(6分)化简求值:÷(1﹣),其中x=﹣1.18.(6分)为了深入贯彻党的十八大精神,我省某中学为了深入学习社会主义核心价值观,特对本校部分学生(随机抽样)进行了一次相关知识的测试(成绩分为A,B,C,D,E 五个组,x表示测试成绩),通过对测试成绩的分析,得到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题.A组:90≤x≤100B组:80≤x<90C组:70≤x<80D组:60≤x<70E组:x<60(1)参加调查测试的学生共有人;请将两幅统计图补充完整.(2)本次调查测试成绩的中位数落在组内.(3)本次调查测试成绩在80分以上(含80分)为优秀,该中学共有3000人,请估计全校测试成绩为优秀的学生有多少人?19.(6分)如图,反比例函数y=的图象与一次函数y=kx+b的图象交于点A(m,2),点B(﹣2,n),一次函数图象与y轴的交点为C.(1)求一次函数解析式和△AOB的面积.(2)根据图象写出一次函数的值大于反比例函数的值时,x的取值范围.20.(7分)某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?21.(7分)如图,热气球的探测器显示,从热气球A处看一栋高楼顶部B的仰角为30°,看这栋高楼底部C的俯角为65°,热气球与高楼的水平距离AD为120m.求这栋高楼的高度.(tan65°=2.145,sin65°=0.906,cos65°=0.423)22.(7分)如图,已知AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点D,过点B作BE垂直于PD,交PD的延长线于点C,连接AD并延长,交BE于点E.(1)求证:AB=BE;(2)若P A=2,cos B=,求⊙O半径的长.23.(10分)某公司招聘外卖送餐员,送餐员的月工资由底薪1000元加上外卖送单补贴(送一次外卖称为一单)构成,外卖送单补贴的具体方案如下:外卖送单数量补贴(元/单)每月不超过500单6超过500单但不超过m单的部分(700≤m≤900)8超过m单的部分10(1)若某“外卖小哥”4月份送餐400单,则他这个月的工资总额为多少元?(2)设5月份某“外卖小哥”送餐x单(x>500),所得工资为y元,求y与x的函数关系式.(3)若某“外卖小哥”5月份送餐800单,所得工资为6500元,求m的值.24.(11分)如图所示,(1)正方形ABCD及等腰Rt△AEF有公共顶点A,∠EAF=90°,连接BE、DF.将Rt△AEF绕点A旋转,在旋转过程中,BE、DF具有怎样的数量关系和位置关系?结合图(1)给予证明;(2)将(1)中的正方形ABCD变为矩形ABCD,等腰Rt△AEF变为Rt△AEF,且AD =kAB,AF=kAE,其他条件不变.(1)中的结论是否发生变化?结合图(2)说明理由;(3)将(2)中的矩形ABCD变为平行四边形ABCD,将Rt△AEF变为△AEF,且∠BAD =∠EAF=a,其他条件不变.(2)中的结论是否发生变化?结合图(3),如果不变,直接写出结论;如果变化,直接用k表示出线段BE、DF的数量关系,用a表示出直线BE、DF形成的锐角β.25.(12分)如图,抛物线y=x2﹣4x与x轴交于O,A两点,P为抛物线上一点,过点P 的直线y=x+m与对称轴交于点Q.(1)这条抛物线的对称轴是,直线PQ与x轴所夹锐角的度数是;(2)若两个三角形面积满足S△POQ=S△P AQ,求m的值;(3)当点P在x轴下方的抛物线上时,过点C(2,2)的直线AC与直线PQ交于点D,求:①PD+DQ的最大值;②PD•DQ的最大值.考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)|﹣|的倒数是()A.B.3C.﹣D.﹣3【分析】根据绝对值,倒数的概念求解.【解答】解:∵|﹣|=,的倒数是3,∴|﹣|的倒数是3.故选:B.2.(3分)下列计算正确的是()A.a2+a2=a4B.a8÷a2=a4C.(﹣a)2﹣a2=0D.a2•a3=a6【分析】分别利用合并同类项法则以及结合同底数幂的乘除法运算法则分别化简求出答案.【解答】解:A、a2+a2=2a2,故此选项错误;B、a8÷a2=a6,故此选项错误;C、(﹣a)2﹣a2=0,正确;D、a2•a3=a5,故此选项错误;故选:C.3.(3分)下列图形中,既是轴对称又是中心对称的图形是()A.直角三角形B.正五边形C.正六边形D.等腰梯形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,也不是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、是轴对称图形,不是中心对称图形.故错误.故选:C.4.(3分)如图,AB∥CD,直线EF交AB于点E,交CD于点F,EG平分∠BEF,交CD 于点G,∠1=50°,则∠2等于()A.50°B.60°C.65°D.90°【分析】由AB∥CD,∠1=50°,根据两直线平行,同旁内角互补,即可求得∠BEF的度数,又由EG平分∠BEF,求得∠BEG的度数,然后根据两直线平行,内错角相等,即可求得∠2的度数.【解答】解:∵AB∥CD,∴∠BEF+∠1=180°,∵∠1=50°,∴∠BEF=130°,∵EG平分∠BEF,∴∠BEG=∠BEF=65°,∴∠2=∠BEG=65°.故选:C.5.(3分)式子有意义的条件是()A.a≥﹣2且a≠﹣3B.a≥﹣2C.a≤﹣2且a≠﹣3D.a>﹣2【分析】根据分子的被开方数不能为负数,分母不能为零,可得答案.【解答】解:由题意,得a+2≥0,a+3≠0,解得a≥﹣2,故选:B.6.(3分)如图是由3个完全相同的小正方体组成的立体图形,它的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层一个小正方形,第二层一个小正方形,故选:A.7.(3分)若关于x的一元二次方程x2﹣2x+m=0没有实数根,则实数m的取值是()A.m<1B.m>﹣1C.m>1D.m<﹣1【分析】方程没有实数根,则△<0,建立关于m的不等式,求出m的取值范围.【解答】解:由题意知,△=4﹣4m<0,∴m>1故选:C.8.(3分)如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为()A.100°B.110°C.115°D.120°【分析】连接AC,根据圆周角定理,可分别求出∠ACB=90°,∠ACD=20°,即可求∠BCD的度数.【解答】解:连接AC,∵AB为⊙O的直径,∴∠ACB=90°,∵∠AED=20°,∴∠ACD=20°,∴∠BCD=∠ACB+∠ACD=110°,故选:B.9.(3分)如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②;步骤3:连接AD,交BC延长线于点H;下列叙述错误的是()A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC•AH D.AH=DH【分析】根据线段的垂直平分线的判定即可解决问题.【解答】解:连接CD,BD.由作图可知:CA=CD,BA=BD,∴直线BC垂直平分线段AD,∴AH=DH,∴S△ABC=•BC•AH,故A,C,D正确,故选:B.10.(3分)如图,函数y=ax2﹣2x+1和y=ax﹣a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是()A.B.C.D.【分析】可先根据一次函数的图象判断a的符号,再判断二次函数图象与实际是否相符,判断正误即可.【解答】解:A、由一次函数y=ax﹣a的图象可得:a<0,此时二次函数y=ax2﹣2x+1的图象应该开口向下,故选项错误;B、由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣>0,故选项正确;C、由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣>0,和x轴的正半轴相交,故选项错误;D、由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,故选项错误.故选:B.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)计算:=3﹣.【分析】原式利用零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值.【解答】解:原式=4+1﹣3×﹣2=4+1﹣﹣2=3﹣,故答案为:3﹣.12.(3分)某省2019年全年生产总值达到约19367亿元,19367亿用科学记数法表示为1.9367×1012.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:19367亿=1936700000000=1.9367×1012.故答案为:1.9367×1012.13.(3分)一套书共有上、中、下三册,将它们任意摆放到书架的同一层上,这三册书从左向右恰好成上、中、下的概率是.【分析】列举出所有情况,让从左向右恰好成上、中、下的情况数除以总情况数即为所求的概率.【解答】解:一套书共有上、中、下三册,将它们任意摆放到书架的同一层上,共6种排放方法:上、中、下;上、下、中;中、上、下;中、下、上;下、中、上;下、上、中.则这三册书从左向右恰好成上、中、下的概率是.14.(3分)解古算题:今有甲、乙二人持钱不知其数.甲得乙半而钱四十八,乙得甲太半而亦钱四十八.甲、乙持钱各几何?题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48,如果乙得到甲所有钱的,那么乙也共有钱48.则甲带了36钱.【分析】设甲原有的钱数为x,乙原有的钱数为y,根据题意可得,甲的钱+乙的钱的一半=48,乙的钱+甲所有钱的=48,据此列方程组,求解即可.【解答】解:设甲原有的钱数为x,乙原有的钱数为y,根据题意,得,解得:故答案为:36.15.(3分)方程﹣1=的解是x=.【分析】去分母,化分式方程为一元一次方程,求解方程并验根即可【解答】解:x(x+2)﹣(x﹣1)(x+2)=3(x﹣1)整理,得2x=5所以x=.当x=时,(x﹣1)(x+2)≠0,所以x=是原方程的解.故答案为:x=.16.(3分)如图,△CAB与△CDE均是等腰直角三角形,并且∠ACB=∠DCE=90°.连接BE,AD的延长线与BC、BE的交点分别是点G与点F,且AF⊥BE,将△CDE绕点C旋转直至CD∥BE时,若DA=4.5,DG=2,则BF的值是.【分析】证明△ADC∽△CDG,得出CD2=DA•DG,先求出CD,再判断出四边形DCEF 是正方形求出DF=CD=3,GF=DF﹣DG=3﹣2=1,再判断出△BFG∽△CDG即可得出结论.【解答】解:如图,∵CD∥BE,∴∠CDG=∠AFB=90°,∴∠AGC+∠DCG=90°,∠ADC=90°,∴∠ACD=∠AGC,∠ADC=∠CDG=90°,∴△ADC∽△CDG,∴∴CD2=DA•DG,∵DA=4.5,DG=2,∴DC=3.∵CD∥BE,∠DFE=90°∴∠FDC=90°∴∠CDF=∠DCE=∠AFE=90°,∴四边形DCEF是矩形,又∵CD=CE,∴四边形DCEF是正方形,∴DF=CD=3,∴GF=DF﹣DG=3﹣2=1,∵CD∥BE,∴△BFG∽△CDG,∴,∴,∴.故答案为:.三、解答题(本大题共9个小题,共72分)17.(6分)化简求值:÷(1﹣),其中x=﹣1.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知代入计算即可求出值.【解答】解:÷(1﹣)=•=,∵x=﹣1,∴原式==.18.(6分)为了深入贯彻党的十八大精神,我省某中学为了深入学习社会主义核心价值观,特对本校部分学生(随机抽样)进行了一次相关知识的测试(成绩分为A,B,C,D,E 五个组,x表示测试成绩),通过对测试成绩的分析,得到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题.A组:90≤x≤100B组:80≤x<90C组:70≤x<80D组:60≤x<70E组:x<60(1)参加调查测试的学生共有400人;请将两幅统计图补充完整.(2)本次调查测试成绩的中位数落在B组内.(3)本次调查测试成绩在80分以上(含80分)为优秀,该中学共有3000人,请估计全校测试成绩为优秀的学生有多少人?【分析】(1)根据D组人数是60,所占的百分比是15%,据此即可求得总人数,用总人数乘以B组所占百分比,求出B组人数完成条形图.根据频率=频数÷数据总数求出A、C两组所占百分比,完成扇形图;(2)利用中位数的定义,就是大小处于中间位置的数即可作判断.(3)利用总人数乘以对应的百分比即可求解.【解答】解:(1)设参加调查测试的学生共有x人.由题意=15%,解得x=400,故答案为400.B组人数为:400×30%=120.A组所占百分比为:×100%=25%,C组所占百分比为:×100%=20%.统计图补充如下,(2)∵一共有400人,其中A组有100人,B组有120人,C组有80人,D组有60人,E组有40人,∴最中间的两个数在落在B组,∴中位数在B组.故答案为B.(3)3000×(25%+30%)=1650人.答:估计全校测试成绩为优秀的学生有1650人.19.(6分)如图,反比例函数y=的图象与一次函数y=kx+b的图象交于点A(m,2),点B(﹣2,n),一次函数图象与y轴的交点为C.(1)求一次函数解析式和△AOB的面积.(2)根据图象写出一次函数的值大于反比例函数的值时,x的取值范围.【分析】(1)首先由反比例函数的解析式分别求得m、n的值,再进一步根据点A、B的坐标求得一次函数的解析式;令x=0,即可求得点C的坐标;根据点A、C的坐标即可求得OC=1,OC边上的高是点A的横坐标,进一步求得三角形的面积;(2)观察图象得到当x>1或0<x<﹣2时,一次函数的图象都在反比例函数的图象的上方.【解答】解:(1)由题意,把A(m,2),B(﹣2,n)代入y=中,得,∴A(1,2),B(﹣2,﹣1)将A、B代入y=kx+b中得:,∴,∴一次函数解析式为:y=x+1;当x=0时,y=1,∴C(0,1);作AD⊥y轴于D,作BE⊥y轴于E.对于一次函数y=x+1,当x=0时,y=1,∴C(0,1),∵S△AOB=S△A0C+S△BOC,∴S△AOB=OC×AD+OC×BE,=×1×(1+2),=1.5;(2)由图象知当一次函数的值大于反比例函数的值时,x的取值范围为x>1或0<x<﹣2.20.(7分)某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?【分析】关系式为:每件服装的盈利×(原来的销售量+增加的销售量)=1600,为了减少库存,计算得到降价多的数量即可.【解答】解:设每件服装应降价x元,根据题意,得:(44﹣x)(20+5x)=1600解方程得x=4或x=36,∵在降价幅度不超过10元的情况下,∴x=36不合题意舍去,答:每件服装应降价4元.21.(7分)如图,热气球的探测器显示,从热气球A处看一栋高楼顶部B的仰角为30°,看这栋高楼底部C的俯角为65°,热气球与高楼的水平距离AD为120m.求这栋高楼的高度.(tan65°=2.145,sin65°=0.906,cos65°=0.423)【分析】要求楼高BC,即求出BD、CD的长度,分别在Rt△ABD和Rt△ADC中求出BD和CD的长度,继而可求解.【解答】解:在Rt△ABD中,∵tan∠BAD=,∴BD=AD tan30°=120×=40(米),在Rt△ADC中,∵tan∠CAD=,∴CD=AD tan65°=120tan65°≈120×2.145=257.4(米),∴BC=BD+CD=40+257.4.答:这栋高楼的高度为(40+257.4)米.22.(7分)如图,已知AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点D,过点B作BE垂直于PD,交PD的延长线于点C,连接AD并延长,交BE于点E.(1)求证:AB=BE;(2)若P A=2,cos B=,求⊙O半径的长.【分析】(1)本题可连接OD,由PD切⊙O于点D,得到OD⊥PD,由于BE⊥PC,得到OD∥BE,得出∠ADO=∠E,根据等腰三角形的性质和等量代换可得结果;(2)由(1)知,OD∥BE,得到∠POD=∠B,根据三角函数的定义即可得到结果.【解答】(1)证明:连接OD,∵PD切⊙O于点D,∴OD⊥PD,∵BE⊥PC,∴OD∥BE,∴∠ADO=∠E,∵OA=OD,∴∠OAD=∠ADO,∴∠OAD=∠E,∴AB=BE;(2)解:由(1)知,OD∥BE,∴∠POD=∠B,∴cos∠POD=cos B=,在Rt△POD中,cos∠POD==,∵OD=OA,PO=P A+OA=2+OA,∴,∴OA=3,∴⊙O半径=3.23.(10分)某公司招聘外卖送餐员,送餐员的月工资由底薪1000元加上外卖送单补贴(送一次外卖称为一单)构成,外卖送单补贴的具体方案如下:外卖送单数量补贴(元/单)每月不超过500单6超过500单但不超过m单的部分(700≤m≤900)8超过m单的部分10(1)若某“外卖小哥”4月份送餐400单,则他这个月的工资总额为多少元?(2)设5月份某“外卖小哥”送餐x单(x>500),所得工资为y元,求y与x的函数关系式.(3)若某“外卖小哥”5月份送餐800单,所得工资为6500元,求m的值.【分析】(1)根据题意和表格中的数据可以求得若某“外卖小哥”4月份送餐400单,他这个月的工资总额;(2)根据题意和表格中的数据可以写出各段y与x的函数解析式;(3)将x=800,y=6500代入两个解析式就可解得m的值.【解答】解:(1)工资总额=1000+400×6=3400元(2)当500<x≤m,y=1000+500×6+8(x﹣500)=8x当x>m,y=1000+500×6+8(m﹣500)+10(x﹣m)=10x﹣2m(3)当500<x≤m时,则x=800,y最多=6400元,不合题意舍去当x>m时,6500=10×800﹣2m解得:m=750答:m的值为75024.(11分)如图所示,(1)正方形ABCD及等腰Rt△AEF有公共顶点A,∠EAF=90°,连接BE、DF.将Rt△AEF绕点A旋转,在旋转过程中,BE、DF具有怎样的数量关系和位置关系?结合图(1)给予证明;(2)将(1)中的正方形ABCD变为矩形ABCD,等腰Rt△AEF变为Rt△AEF,且AD =kAB,AF=kAE,其他条件不变.(1)中的结论是否发生变化?结合图(2)说明理由;(3)将(2)中的矩形ABCD变为平行四边形ABCD,将Rt△AEF变为△AEF,且∠BAD =∠EAF=a,其他条件不变.(2)中的结论是否发生变化?结合图(3),如果不变,直接写出结论;如果变化,直接用k表示出线段BE、DF的数量关系,用a表示出直线BE、DF形成的锐角β.【分析】(1)根据旋转的过程中线段的长度不变,得到AF=AE,又∠BAE与∠DAF都与∠BAF互余,所以∠BAE=∠DAF,所以△F AD≌△EAB,因此BE与DF相等,延长DF交BE于G,根据全等三角形的对应角相等和四边形的内角和等于360°求出∠EGF =90°,所以DF⊥BE;(2)等同(1)的方法,因为矩形的邻边不相等,但根据题意,可以得到对应边成比例,所以△F AD∽△EAB,所以DF=kBE,同理,根据相似三角形的对应角相等和四边形的内角和等于360°求出∠EHF=90°,所以DF⊥BE;(3)与(2)的证明方法相同,但根据相似三角形的对应角相等和四边形的内角和等于360°求出∠EAF+∠EHF=180°,所以DF与BE的夹角β=180°﹣α.【解答】解:(1)DF与BE互相垂直且相等.证明:延长DF分别交AB、BE于点P、G(1分)在正方形ABCD和等腰直角△AEF中AD=AB,AF=AE,∠BAD=∠EAF=90°∴∠F AD=∠EAB∴△F AD≌△EAB(2分)∴∠AFD=∠AEB,DF=BE(3分)∵∠AFD+∠AFG=180°,∴∠AEG+∠AFG=180°,∵∠EAF=90°,∴∠EGF=180°﹣90°=90°,∴DF⊥BE(5分)(2)数量关系改变,位置关系不变.DF=kBE,DF⊥BE.(7分)延长DF交EB于点H,∵AD=kAB,AF=kAE∴=k,=k∴=∵∠BAD=∠EAF=a∴∠F AD=∠EAB∴△F AD∽△EAB(9分)∴=k∴DF=kBE(10分)∵△F AD∽△EAB,∴∠AFD=∠AEB,∵∠AFD+∠AFH=180°,∴∠AEH+∠AFH=180°,∵∠EAF=90°,∴∠EHF=180°﹣90°=90°,∴DF⊥BE(5分)(3)不改变.DF=kBE,β=180°﹣a.(7分)证法(一):延长DF交EB的延长线于点H,∵AD=kAB,AF=kAE∴=k,=k∴=∵∠BAD=∠EAF=a∴∠F AD=∠EAB∴△F AD∽△EAB(9分)∴=k∴DF=kBE(10分)由△F AD∽△EAB得∠AFD=∠AEB∵∠AFD+∠AFH=180°∴∠AEB+∠AFH=180°∵四边形AEHF的内角和为360°,∴∠EAF+∠EHF=180°∵∠EAF=α,∠EHF=β∴a+β=180°∴β=180°﹣a(12分)证法(二):DF=kBE的证法与证法(一)相同延长DF分别交EB、AB的延长线于点H、G.由△F AD∽△EAB得∠ADF=∠ABE ∵∠ABE=∠GBH,∴∠ADF=∠GBH,∵β=∠BHF=∠GBH+∠G∴β=∠ADF+∠G.在△ADG中,∠BAD+∠ADF+∠G=180°,∠BAD=a∴a+β=180°∴β=180°﹣a(12分)证法(三):在平行四边形ABCD中AB∥CD可得到∠ABC+∠C=180°∵∠EBA+∠ABC+∠CBH=180°∴∠C=∠EBA+∠CBH在△BHP、△CDP中,由三角形内角和等于180°可得∠C+∠CDP=∠CBH+∠BHP ∴∠EBA+∠CBH+∠CDP=∠CBH+∠BHP∴∠EBA+∠CDP=∠BHP由△F AD∽△EAB得∠ADP=∠EBA∴∠ADP+∠CDP=∠BHP即∠ADC=∠BHP∵∠BAD+∠ADC=180°,∠BAD=a,∠BHP=β∴a+β=180°∴β=180°﹣a(12分)(有不同解法,参照以上给分点,只要正确均得分.)25.(12分)如图,抛物线y=x2﹣4x与x轴交于O,A两点,P为抛物线上一点,过点P的直线y=x+m与对称轴交于点Q.(1)这条抛物线的对称轴是2,直线PQ与x轴所夹锐角的度数是45°;(2)若两个三角形面积满足S△POQ=S△P AQ,求m的值;(3)当点P在x轴下方的抛物线上时,过点C(2,2)的直线AC与直线PQ交于点D,求:①PD+DQ的最大值;②PD•DQ的最大值.【分析】(1)把抛物线的解析式化成顶点式即可求得对称轴;求得直线与坐标轴的交点坐标,即可证得直线和坐标轴围成的图形是等腰直角三角形,从而求得直线PQ与x轴所夹锐角的度数;(2)分三种情况分别讨论根据已知条件,通过△OBE∽△ABF对应边成比例即可求得;(3)①过点C作CH∥x轴交直线PQ于点H,可得△CHQ是等腰三角形,进而得出AD ⊥PH,得出DQ=DH,从而得出PD+DQ=PH,过P点作PM⊥CH于点M,则△PMH 是等腰直角三角形,得出PH=PM,因为当PM最大时,PH最大,通过求得PM的最大值,从而求得PH的最大值;由①可知:PD+PH≤6,设PD=a,则DQ﹣a,得出PD•DQ≤a(6﹣a)=﹣a2+6a=﹣(a﹣3)2+18,当点P在抛物线的顶点时,a=3,得出PD•DQ≤18.【解答】方法一:解:(1)∵y=x2﹣4x=(x﹣2)2﹣4,∴抛物线的对称轴是x=2,∵直线y=x+m,∴直线与坐标轴的交点坐标为(﹣m,0),(0,m),∴交点到原点的距离相等,∴直线与坐标轴围成的三角形是等腰直角三角形,∴直线PQ与x轴所夹锐角的度数是45°,故答案为x=2、45°.(2)如图设直线PQ交x轴于点B,分别过O点,A点作PQ的垂线,垂足分别是E、F,显然当点B在OA的延长线时,S△POQ=S△P AQ不成立;①当点B落在线段OA上时,如图①,==,由△OBE∽△ABF得,==,∴AB=3OB,∴OB=OA,由y=x2﹣4x得点A(4,0),∴OB=1,∴B(1,0),∴1+m=0,∴m=﹣1;②当点B落在线段AO的延长线上时,如图②,同理可得OB=OA=2,∴B(﹣2,0),∴﹣2+m=0,∴m=2,综上,当m=﹣1或2时,S△POQ=S△P AQ;(3)①过点C作CH∥x轴交直线PQ于点H,如图③,可得△CHQ是等腰三角形,∵∠CDQ=45°+45°=90°,∴AD⊥PH,∴DQ=DH,∴PD+DQ=PH,过P点作PM⊥CH于点M,则△PMH是等腰直角三角形,∴PH=PM,∴当PM最大时,PH最大,∴当点P在抛物线顶点处时,PM最大,此时PM=6,∴PH的最大值为6,即PD+DQ的最大值为6.②由①可知:PD+DQ≤6,设PD=a,则DQ﹣a,∴PD•DQ≤a(6﹣a)=﹣a2+6a=﹣(a﹣3)2+18,∵当点P在抛物线的顶点时,a=3,∴PD•DQ≤18.∴PD•DQ的最大值为18.方法二:(1)略.(2)过点A作x轴垂线,与直线PQ交于点D,设直线PQ与y轴交于点C,∴C(0,m),D(4,4+m),∵S△POQ=(Q x﹣P x)(Q Y﹣∁Y),S△P AQ=(Q x﹣P x)(D Y﹣A Y),∵,∴,∴m1=2,m2=﹣1.(3)①设P(t,t2﹣4t)(0<t<4),∵K PQ=1,∴l PQ:y=x+t2﹣5t,∵C(2,2),A(4,0),∴l AC:y=﹣x+4,∴D X=,DY=,∴Q(2,t2﹣5t+2),∵PQ⊥AC,垂足为点D,∴点Q关于直线AC的对称点Q′(﹣t2+5t+2,2),欲使PD+DQ取得最大值,只需PQ′有最大值,PQ′==,显然当t=2时,PQ′的最大值为6,即PD+DQ的最大值为6,②∴(PD﹣DQ)2≥0,∴(PD+DQ)2≥4•PD•DQ,∴PD•DQ≤==18,∴PD•DQ的最大值为18.。

2020年湖北省武汉市蔡甸区中考数学模拟试卷及答案解析

2020年湖北省武汉市蔡甸区中考数学模拟试卷及答案解析

2020年湖北省武汉市蔡甸区中考数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.在算式⊗+(﹣12)=﹣5中,⊗处应该是()A.17B.﹣7C.﹣17D.72.要使分式的值存在,则x的取值应满足()A.x≠0B.x≠1C.x≠﹣1D.x>03.某射击运动员在同一条件下的射击成绩记录如表:射击次数100200400100078158321801“射中9环以上”的次数0.780.790.80250.801“射中9环以上”的频率根据表中数据,估计这位射击运动员射击一次时“射中9环以上”的概率为()A.0.78B.0.79C.0.85D.0.804.已知M=4x3+3x2﹣5x+8a+1,N=2x2+ax﹣6,若多项式M+N不含一次项,则多项式M+N 的常数项是()A.35B.40C.45D.505.设(2a+3b)2=(2a﹣3b)2+A,则A=()A.6ab B.12ab C.0D.24ab6.若点(3,a﹣2)与点(b+2,﹣1)关于原点对称,则点(b,a)位于()A.第一象限B.第二象限C.第三象限D.第四象限7.如图所示几何体的左视图正确的是()A .B .C .D .8.在学校的体育训练中,小杰投实心球的7次成绩就如统计图所示,则这7次成绩的中位数和众数分别是()A.9.7m,9.8m B.9.7m,9.7m C.9.8m,9.9m D.9.8m,9.8m 9.程序框图的算法思路源于我国古代数学名著《九章算术》,如图所示的程序框图,当输入x的值是17时,根据程序,第一次计算输出的结果是10,第二次计算输出的结果是5……这样下去第2019次计算输出的结果是()A.﹣2B.﹣1C.﹣8D.﹣410.如图,在▱ABCD中,点E在CD边上,AD=DE=EC,BD交AE于点F,点O在线段AB上,以OA为半径的⊙O与BD恰好相切于点F,并交AB于点G,交AD于点H,则的值为()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)11.化简=;=;=.12.计算:=.13.如图1,射线OC在∠AOB的内部,图中共有3个角:∠AOB,∠AOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB的“巧分线”,如图2,若∠MPN=α,且射线PQ是∠MPN的“巧分线”,则∠MPQ=(用含α的式子表示).14.不透明袋子中装有7个球,其中有3个红球,4个黄球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是.15.如图,矩形ABCD的长为6,宽为4,以D为圆心,DC为半径的圆弧与以BC为直径的半圆O相交于点F,连接CF并延长交BA的延长线于点H,FH•FC=.16.已知四个点的坐标分别为A(﹣4,2),B(﹣3,1),C(﹣1,1),D(﹣2,2),若抛物y=ax2与四边形ABCD的边没有交点,则a的取值范围为.三.解答题(共8小题,满分72分)17.(8分)解方程组:.18.(8分)如图,四边形ABCD中,AD∥BC,DE=EC,连结AE并延长交BC的延长线于F,连结BE.(1)求证:AD=CF;(2)若AB=BC+AD,求证:BE⊥AF.19.(8分)为了解某中学去年中招体育考试中女生“一分钟跳绳”项目的成绩情况,从中抽取部分女生的成绩,绘制出如图所示的频数分布直方图(从左到右依次为第一到第六小组,每小组含最小值,不含最大值)和扇形统计图,请根据下列统计图中提供的信息解决下列问题:(1)本次抽取的女生总人数为,第六小组人数占总人数的百分比为,请补全频数分布直方图;(2)题中样本数据的中位数落在第组内;(3)若“一分钟跳绳”不低于130次的成绩为优秀,这个学校九年级共有女生560人,请估计该校九年级女生“一分钟跳绳”成绩的优秀人数.20.(8分)某商场经销甲、乙两种商品,每件进价分别为15元、35元,售价分别为20元、45元.(1)若该商场同时购进甲、乙两种商品共100件恰好用去2700元,求能购进这两种商品各多少件?(2)该商场为使甲、乙两种商品共100件的总利润不少于750元,且不超过760元,请你帮该商场设计相应的进货方案.(3)在节日期间,该商场对这两种商品进行如下优惠促销活动:打折前一次性购物总金额优惠措施不超过300元不优惠超过300元但不超过400元售价打九折超过400元售价打八折按上述优惠条件,若小王第一天只购买甲商品一次性付款200元,第二天只购买乙商品一次性付款324元,那么他在该商场购买甲、乙两种商品一共多少件?21.(8分)如图,在Rt△ABC中,∠ACB=90°,以BC为直径的半圆O交AB于点D,E 是的中点,连接CE交AB于点F.(1)求证:AC=AF;(2)若tan∠DCE=,AD=5,求AC的长.22.(10分)已知一次函数y=kx﹣(2k+1)的图象与x轴和y轴分别交于A、B两点,与反比例函数y=﹣的图象分别交于C、D两点.(1)如图1,当k=1,点P在线段AB上(不与点A、B重合)时,过点P作x轴和y 轴的垂线,垂足为M、N.当矩形OMPN的面积为2时,求出点P的位置;(2)如图2,当k=1时,在x轴上是否存在点E,使得以A、B、E为顶点的三角形与△BOC相似?若存在,求出点E的坐标;若不存在,说明理由;(3)若某个等腰三角形的一条边长为5,另两条边长恰好是两个函数图象的交点横坐标,求k的值.23.(10分)AD是△ABC的中线,G是AD上任意一点时(点G不与A重合),过点G的直线交边AB于E,交射线AC于点F,设AE=xAB,AF=yAC(x、y≠0).(1)如图1,若点G与D重合,△ABC为等边三角形,且∠BDE=30°,证明:△AEF ∽△DEA;(2)如图2,若点G与D重合,证明:+=2;(3)如图3,若AG=nAD,x=,y=,直接写出n的值.24.(12分)定义:无论函数解析式中自变量的字母系数取何值,函数的图象都会过某一个点,这个点称为定点.例如,在函数y=kx中,当x=0时,无论k取何值,函数值y=0,所以这个函数的图象过定点(0,0).求解体验(1)①关于x的一次函数y=kx+3k(k≠0)的图象过定点.②关于x的二次函数y=kx2﹣kx+2020(k≠0)的图象过定点和.知识应用(2)若过原点的两条直线OA、OB分别与二次函数y=x2交于点A(m,m2)和点B (n,n2)(mn<0)且OA⊥OB,试求直线AB所过的定点.拓展应用(3)若直线CD:y=kx+2k+5与拋物线y=x2交于C(c,c2)、D(d,d2)(cd<0)两点,试在拋物线y=x2上找一定点E,使∠CED=90°,求点E的坐标.2020年湖北省武汉市蔡甸区中考数学模拟试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.在算式⊗+(﹣12)=﹣5中,⊗处应该是()A.17B.﹣7C.﹣17D.7【分析】用﹣5减去﹣12,求出⊗处应该是多少即可.【解答】解:∵⊗+(﹣12)=﹣5,∴⊗=﹣5﹣(﹣12)=7.故选:D.2.要使分式的值存在,则x的取值应满足()A.x≠0B.x≠1C.x≠﹣1D.x>0【分析】根据分式有意义的条件可得x+1≠0,再解即可.【解答】解:由题意得:x+1≠0,解得:x≠﹣1,故选:C.3.某射击运动员在同一条件下的射击成绩记录如表:射击次数100200400100078158321801“射中9环以上”的次数0.780.790.80250.801“射中9环以上”的频率根据表中数据,估计这位射击运动员射击一次时“射中9环以上”的概率为()A.0.78B.0.79C.0.85D.0.80【分析】根据大量的实验结果稳定在0.8左右即可得出结论.【解答】解:∵从频率的波动情况可以发现频率稳定在0.80附近,∴这名运动员射击一次时“射中9环以上”的概率是0.80.故选:D.4.已知M=4x3+3x2﹣5x+8a+1,N=2x2+ax﹣6,若多项式M+N不含一次项,则多项式M+N的常数项是()A.35B.40C.45D.50【分析】直接利用整式的加减运算法则合并同类项进而得出a的值,即可得出答案.【解答】解:∵M=4x3+3x2﹣5x+8a+1,N=2x2+ax﹣6,多项式M+N不含一次项,∴4x3+3x2﹣5x+8a+1+2x2+ax﹣6=4x3+5x2﹣(5﹣a)x+8a﹣5,∴5﹣a=0,解得:a=5,故8a﹣5=35.故选:A.5.设(2a+3b)2=(2a﹣3b)2+A,则A=()A.6ab B.12ab C.0D.24ab【分析】由完全平方公式(a±b)2=a2±2ab+b2,得到(a+b)2=(a﹣b)2+4ab,据此可以作出判断.【解答】解:∵(2a+3b)2=(2a﹣3b)2+4×2a×3b=(2a﹣3b)2+24ab,(2a+3b)2=(2a﹣3b)2+A,∴A=24ab.故选:D.6.若点(3,a﹣2)与点(b+2,﹣1)关于原点对称,则点(b,a)位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】直接利用关于原点对称点的性质得出a,b的值进而得出答案.【解答】解:∵点(3,a﹣2)与点(b+2,﹣1)关于原点对称,∴b+2=﹣3,a﹣2=1,解得:b=﹣5,a=3,故点(b,a)坐标为:(﹣5,3),则点(b,a)位于第二象限.故选:B.7.如图所示几何体的左视图正确的是()A.B.C.D.【分析】找到从几何体的左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从几何体的左面看所得到的图形是:故选:A.8.在学校的体育训练中,小杰投实心球的7次成绩就如统计图所示,则这7次成绩的中位数和众数分别是()A.9.7m,9.8m B.9.7m,9.7m C.9.8m,9.9m D.9.8m,9.8m 【分析】将这7个数据从小到大排序后处在第4位的数是中位数,利用出现次数最多的数是众数找到众数即可.【解答】解:把这7个数据从小到大排列处于第4位的数是9.7m,因此中位数是9.7m,9.7m出现了2次,最多,所以众数为9.7m,故选:B.9.程序框图的算法思路源于我国古代数学名著《九章算术》,如图所示的程序框图,当输入x的值是17时,根据程序,第一次计算输出的结果是10,第二次计算输出的结果是5……这样下去第2019次计算输出的结果是()A.﹣2B.﹣1C.﹣8D.﹣4【分析】先根据程序框图计算出前9个数,从而得出这列数除前2个数外,每4个数为一个周期,据此求解可得.【解答】解:由题意知,第1次输出的结果为10,第2次输出的结果为5,第3次输出的结果为﹣2,第4次输出的结果为﹣1,第5次输出的结果为﹣8,第6次输出的结果为﹣4,第7次输出的结果为﹣2,第8次输出的结果为﹣1,第9次输出的结果为﹣8,……这列数除前2个数外,每4个数为一个周期,∵(2019﹣2)÷4=504……1,∴第2019次计算输出的结果是﹣2,故选:A.10.如图,在▱ABCD中,点E在CD边上,AD=DE=EC,BD交AE于点F,点O在线段AB上,以OA为半径的⊙O与BD恰好相切于点F,并交AB于点G,交AD于点H,则的值为()A.B.C.D.【分析】如图:连接OF,FG,HF,由AD=DE=EC,可得CD=AB=2AD,∠DAE=∠DEA,由BD是切线可证AD⊥BD,由sin∠DBA===可得∠ABD=30°,可证△FGB≌△AHF,可得GB=HF,根据三角函数可求的值【解答】解:如图:连接OF,FG,HF∵AD=DE=EC∴AB=2AD,∠DAE=∠DEA∵四边形ABCD是平行四边形∴DC∥AB,DC=AB∴∠DEA=∠F AO=∠DAE,∵BD是切线∴OF⊥BD即∠OFB=90°∵OA=OF∴∠OAF=∠OF A∴∠OF A=∠DAE∴DA∥OF∴∠ADB=∠OFB=90°∵sin∠DBA===∴∠ABD=30°∴∠DAB=60°且∠DAE=∠F AO∴∠DAE=∠F AO=30°∴∠F AO=∠DBA=30°∴AF=BF∵AB是直径∴∠AFG=90°∴∠AGF=60°∴∠GFB=∠GBF=30°∴BG=FG∵AGFH是圆内接四边形∴∠DHF=∠AGF=60°∴∠AHF=∠FGB且∠DAE=∠FGB,AF=BF∴△AHF≌△BFG∴BG=HF∵cos∠DHF==∴=故选:B.二.填空题(共6小题,满分18分,每小题3分)11.化简=2;=2;=.【分析】根据算术平方根的含义和求法得出结果.【解答】解:=2;=2;=.故答案为:2;2;.12.计算:=2.【分析】根据分式加减法则即可求出答案.【解答】解:原式==2故答案为:213.如图1,射线OC在∠AOB的内部,图中共有3个角:∠AOB,∠AOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB的“巧分线”,如图2,若∠MPN=α,且射线PQ是∠MPN的“巧分线”,则∠MPQ=α或α或α(用含α的式子表示).【分析】分3种情况,根据巧分线定义即可求解.【解答】解:如图2,PQ平分∠MPN,即∠MPN=2∠MPQ=2∠NPQ,∵∠MPN=α,∴∠MPQ=α;如图3,PQ是∠MPN的3等分线,即∠NPQ=2∠MPQ,∴∠MPQ=α;如图4,PQ是∠MPN的3等分线,即∠MPQ=2∠NPQ,∴∠MPQ=α;故答案为:α或α或α.14.不透明袋子中装有7个球,其中有3个红球,4个黄球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵袋子中共有7个球,其中红球有3个,∴从袋子中随机取出1个球,它是红球的概率是,15.如图,矩形ABCD的长为6,宽为4,以D为圆心,DC为半径的圆弧与以BC为直径的半圆O相交于点F,连接CF并延长交BA的延长线于点H,FH•FC=.【分析】连接BF、OF、OD,OD交CH于K.首先证明OD垂直平分线段CF,利用面积法求出CK、FK,利用勾股定理求出OK,利用三角形的中位线定理求出BF,再利用相似三角形的性质即可解决问题;【解答】解:连接BF、OF、OD,OD交CH于K.∵DF=DC,OF=OC,∴OD垂直平分线段CF,∴CK=KF==,OK==,∵OB=OC,CK=KF,∴BF=2OK=,∵BC是直径,∴∠BFC=90°,∵∠CBH=90°,∴∠CBF+∠FCB=90°,∠HBF+∠FBC=90°,∴∠HBF=∠FCB,∵∠BFH=∠BFC=90°,∴△BFH∽△CFB,∴BF2=CF•FH=.16.已知四个点的坐标分别为A(﹣4,2),B(﹣3,1),C(﹣1,1),D(﹣2,2),若抛物y=ax2与四边形ABCD的边没有交点,则a的取值范围为a>1或0<a<或a<0.【分析】把C(﹣1,1)代入y=ax2求得a=1,然后根据图象即可求得.【解答】解:把C(﹣1,1)代入y=ax2得a=1,把B(﹣3,1)代入y=ax2得a=,把A(﹣4,2)代入y=ax2得a=,如图,若抛物y=ax2与四边形ABCD的边没有交点,则a的取值范围为a>1或0<a<或a<0,故答案为a>1或0<a<或a<0.三.解答题(共8小题,满分72分)17.(8分)解方程组:.【分析】利用加减消元法求出解即可.【解答】解:②×4﹣①,得:5y=﹣15,解得y=﹣3,将y=﹣3代入②,得:x+6=4,解得:x=﹣2,则方程组的解为.18.(8分)如图,四边形ABCD中,AD∥BC,DE=EC,连结AE并延长交BC的延长线于F,连结BE.(1)求证:AD=CF;(2)若AB=BC+AD,求证:BE⊥AF.【分析】(1)可通过说明△ADE≌△FCE,证明CF=AD;(2)证明AB=BF,AE=EF,由等腰三角形的“三线合一”的性质可得出结论.【解答】解:(1)证明:∵AD∥BC,∴∠DAE=∠F,∠ADE=∠FCE.∵点E是DC的中点,∴DE=CE.在△ADE和△FCE中,∴△ADE≌△FCE(AAS),∴CF=AD.(2)∵CF=AD,AB=BC+AD,∴AB=BF,∵△ADE≌△FCE,∴AE=EF,∴BE⊥AF.19.(8分)为了解某中学去年中招体育考试中女生“一分钟跳绳”项目的成绩情况,从中抽取部分女生的成绩,绘制出如图所示的频数分布直方图(从左到右依次为第一到第六小组,每小组含最小值,不含最大值)和扇形统计图,请根据下列统计图中提供的信息解决下列问题:(1)本次抽取的女生总人数为50,第六小组人数占总人数的百分比为8%,请补全频数分布直方图;(2)题中样本数据的中位数落在第三组内;(3)若“一分钟跳绳”不低于130次的成绩为优秀,这个学校九年级共有女生560人,请估计该校九年级女生“一分钟跳绳”成绩的优秀人数.【分析】(1)根据第二小组的人数以及百分比求出总体个数,再求出第四小组人数即可解决问题.(2)根据中位数的定义即可解决问题.(3)用样本估计总体的思想即可解决问题.【解答】解:(1)本次抽取的女生总人数是:10÷20%=50(人),第四小组的人数为:50﹣4﹣10﹣16﹣6﹣4=10(人),第六小组人数占总人数的百分比是:×100%=8%.补全图形如下:故答案是:50人、8%;(2)因为总人数为50,所以中位数是第25、26个数据的平均数,而第25、26个数据都落在第三组,所以中位数落在第三组,故答案为:三;(3)随机抽取的样本中,不低于130次的有20人,则总体560人中优秀的有560×=224(人),答:估计该校九年级女生“一分钟跳绳”成绩的优秀人数为224人.20.(8分)某商场经销甲、乙两种商品,每件进价分别为15元、35元,售价分别为20元、45元.(1)若该商场同时购进甲、乙两种商品共100件恰好用去2700元,求能购进这两种商品各多少件?(2)该商场为使甲、乙两种商品共100件的总利润不少于750元,且不超过760元,请你帮该商场设计相应的进货方案.(3)在节日期间,该商场对这两种商品进行如下优惠促销活动:打折前一次性购物总金额优惠措施不超过300元不优惠超过300元但不超过400元售价打九折超过400元售价打八折按上述优惠条件,若小王第一天只购买甲商品一次性付款200元,第二天只购买乙商品一次性付款324元,那么他在该商场购买甲、乙两种商品一共多少件?【分析】(1)如果设购进甲种商品x件,那么由该商场同时购进甲、乙两种商品共100件,可知购进乙种商品(100﹣x)件,根据等量关系:甲商品总进价+乙商品总进价=2700,列出方程求解即可;(2)关系式为:甲商品件数×(20﹣15)+乙商品件数×(45﹣35)≥750,甲商品件数×(20﹣15)+乙商品件数×(45﹣35)≤760,据此列出一元一次不等式组,解不等式组即可;(3)第一天的总价为200元,打折最低应该出270元,所以没有享受打折,第二天的也可能享受了9折,也可能享受了8折.应先算出原价,然后除以单价,得出数量.【解答】解:(1)设购进甲、乙两种商品分别为x件,(100﹣x)件.根据题意,得15x+35(100﹣x)=2700,解得x=40,则100﹣40=60.所以能购进甲种商品40件,乙种商品60件;(2)设该商场进甲种商品a件,则购进乙种商品(100﹣a)件.根据题意,得,解得48≤a≤50.根据题意a应是整数,所以a=48或a=49或a=50.该商场共有三种进货方案:方案一:购进甲种商品48件,乙种商品52件;方案二:购进甲种商品49件,乙种商品51件;方案三:购进甲种商品50件,乙种商品50件.(3)根据题意,得第一天只购买甲种商品不享受优惠条件,∴200÷20=10件;第二天只购买乙种商品有以下两种情况:情况一:购买乙种商品打九折,324÷90%÷45=8件;情况二:购买乙种商品打八折,324÷80%÷45=9件.一共可购买甲、乙两种商品10+8=18件或10+9=19件.21.(8分)如图,在Rt△ABC中,∠ACB=90°,以BC为直径的半圆O交AB于点D,E 是的中点,连接CE交AB于点F.(1)求证:AC=AF;(2)若tan∠DCE=,AD=5,求AC的长.【分析】(1)根据圆周角定理得到∠CDB=90°,根据余角的性质得到∠ACD=∠ABC,根据等腰三角形的判定定理即可得到结论;(2)设DF=2x,CD=3x,得到AF=AC=5+2x,根据勾股定理列方程即可得到结论.【解答】(1)证明:∵BC是半圆O的直径,∴∠CDB=90°,∵∠ACB=90°,∴∠ACD+∠BCD=∠BCD+∠ABC=90°,∴∠ACD=∠ABC,∵E是的中点,∴∠DCE=∠BCE,∵∠ACF=∠ACD+∠DCE,∠AFC=∠BCE+∠DCE,∴∠ACF=∠AFC,∴AC=AF;(2)解:∵tan∠DCE==,∴设DF=2x,CD=3x,∵AD=5,∴AF=AC=5+2x,在Rt△ACD中,∵AC2=AD2+CD2,∴(5+2x)2=52+(3x)2,解得:x=4,x=0(舍去),∴AC=5+2x=13.22.(10分)已知一次函数y=kx﹣(2k+1)的图象与x轴和y轴分别交于A、B两点,与反比例函数y=﹣的图象分别交于C、D两点.(1)如图1,当k=1,点P在线段AB上(不与点A、B重合)时,过点P作x轴和y 轴的垂线,垂足为M、N.当矩形OMPN的面积为2时,求出点P的位置;(2)如图2,当k=1时,在x轴上是否存在点E,使得以A、B、E为顶点的三角形与△BOC相似?若存在,求出点E的坐标;若不存在,说明理由;(3)若某个等腰三角形的一条边长为5,另两条边长恰好是两个函数图象的交点横坐标,求k的值.【分析】(1)设点P(a,a﹣3),a>0,a﹣3<0,由矩形的面积公式可求解;(2)先求出点A,点B,点C,点D坐标,由相似三角形的性质可求解;(3)先求出两个函数图象的交点横坐标,由等腰三角形的性质可求解;【解答】解:(1)当k=1,则一次函数解析式为:y=x﹣3,反比例函数解析式为:y=﹣,∵点P在线段AB上∴设点P(a,a﹣3),a>0,a﹣3<0,∴PN=a,PM=3﹣a,∵矩形OMPN的面积为2,∴a×(3﹣a)=2,∴a=1或2,∴点P(1,﹣2)或(2,﹣1)(2)∵一次函数y=x﹣3与x轴和y轴分别交于A、B两点,∴点A(3,0),点B(0,﹣3)∴OA=3=OB,∴∠OAB=∠OBA=45°,AB=3,∵x﹣3=﹣∴x=1或2,∴点C(1,﹣2),点D(2,﹣1)∴BC==,设点E(x,0),∵以A、B、E为顶点的三角形与△BOC相似,且∠CBO=∠BAE=45°,∴,或,∴,或=,∴x=1,或x=﹣6,∴点E(1,0)或(﹣6,0)(3)∵﹣=kx﹣(2k+1),∴x=1,x=,∴两个函数图象的交点横坐标分别为1,,∵某个等腰三角形的一条边长为5,另两条边长恰好是两个函数图象的交点横坐标,∴1=,或5=∴k=23.(10分)AD是△ABC的中线,G是AD上任意一点时(点G不与A重合),过点G的直线交边AB于E,交射线AC于点F,设AE=xAB,AF=yAC(x、y≠0).(1)如图1,若点G与D重合,△ABC为等边三角形,且∠BDE=30°,证明:△AEF ∽△DEA;(2)如图2,若点G与D重合,证明:+=2;(3)如图3,若AG=nAD,x=,y=,直接写出n的值.【分析】(1)先判断出∠BAD=30°,再判断出∠F=30°=∠BAD,即可得出结论;(2)先判断出△DEB≌△DHC,得出CH=BE,再判断出△FCH∽△F AE,即可得出结论;(3)先判断出点E是AB的中点,进而得出DE是△ABC的中位线,得出DE=AC,DE∥AC,进而得出△DGE∽△AGF,即可得出结论.【解答】解:(1)∵△ABC为等边三角形,∴∠BAC=∠B=60°,AB=AC,∵AD是△ABC的中线,∴∠BAD=∠BAC=30°,∵∠BDE=30°,∴∠EF⊥AB,∴∠F=30°=∠BAD,∵∠AED=∠FEA=90°,∴△AEF∽△DEA;(2)如图2,过C作CH∥AB交EF于H,∴∠B=∠DCH,∠BED=∠CHD,∵AD是△ABC的中线,∴BD=CD,∴△DEB≌△DHC(AAS),∴CH=BE,∵CH∥AB,∴△FCH∽△F AE,∴=,∴=,∵=,=,∴=1﹣=1﹣,=﹣1=﹣1∴1﹣=﹣1,∴+=2;(3)如图3,∵y=,∴AF=AC,∴AC=AF,∵x=,∴AE=AB,∴点E是AB的中点,∵AD是△ABC的中线,∴点D是BC的中点,∴DE=AC=•AF=AF,DE∥AC,∴△DGE∽△AGF,∴=,∴DG=AG,∴AD=AG+DG=AG+AG=AG,∴AG=AD=nAD,∴n=.24.(12分)定义:无论函数解析式中自变量的字母系数取何值,函数的图象都会过某一个点,这个点称为定点.例如,在函数y=kx中,当x=0时,无论k取何值,函数值y=0,所以这个函数的图象过定点(0,0).求解体验(1)①关于x的一次函数y=kx+3k(k≠0)的图象过定点(﹣3,0).②关于x的二次函数y=kx2﹣kx+2020(k≠0)的图象过定点(1,2020)和(0,2020).知识应用(2)若过原点的两条直线OA、OB分别与二次函数y=x2交于点A(m,m2)和点B (n,n2)(mn<0)且OA⊥OB,试求直线AB所过的定点.拓展应用(3)若直线CD:y=kx+2k+5与拋物线y=x2交于C(c,c2)、D(d,d2)(cd<0)两点,试在拋物线y=x2上找一定点E,使∠CED=90°,求点E的坐标.【分析】求解体验(1)①y=kx+3k=k(x+3),当x=﹣3时,y=0,故过定点(﹣3,0),即可求解;②由y=kx2﹣kx+2020=k(x2﹣x)+2020,当x=0或1时,y=2020,即可得出答案;知识应用(2)证明△AMO∽△ONB,可得,求出直线AB的解析式,可得出答案;(3)可得直线CD的解析式为y=(c+d)x﹣cd,则可得出c+d和cd的值,证明△CGE ∽△EHD,可得出t的方程,解方程即可求出答案.【解答】求解体验解:(1)①∵y=kx+3k=k(x+3),又k≠0,∴当x=﹣3时,y=0,故过定点(﹣3,0),故答案为:(﹣3,0).②y=kx2﹣kx+2020=k(x2﹣x)+2020,当x=0或1时,y=2020,∴二次函数y=kx2﹣kx+2020(k≠0)的图象过定点(1,2020),(0,2020).故答案为:(1,2020),(0,2020).知识应用(2)设直线AB的解析式为y=kx+b,将点A,B的坐标代入并解得直线AB的解析式为.如图1,分别过点A,B作x轴的垂线于点M,N,∴∠AMO=∠ONB=90°,∠AOM+∠MAO=90°.∵OA⊥OB,∴∠AOM+∠BON=90°,∴∠MAO=∠BON,∴△AMO∽△ONB,∴,即,解得,故直线AB的解析式为.当x=0时,y=2,故直线AB上的定点为(0,2).(3)∵点C,D的坐标分别为(c,c2),(d,d2),同(2)可得直线CD的解析式为y=(c+d)x﹣cd,∵y=kx+2k+5,∴c+d=k,cd=﹣2k﹣5.设点E(t,t2),如图2,过点E作直线l∥x轴,过点C,D作直线l的垂线与直线l分别交于点G,H.同(2)可得,△CGE∽△EHD,∴,即,化简得t2+(c+d)t+cd=﹣1,即t2﹣4+(t﹣2)k=0,当t=2时,上式恒成立,故定点E为(2,4).。

2020年湖北省九年级数学中考模拟试卷(含答案)

2020年湖北省九年级数学中考模拟试卷(含答案)

2020湖北省九年级数学中考模拟试题含答案一、选择题(每题3分,共30分)1、在实数-2,0,-1.5,1中,最小的数是()A.-2B.0 C.-1.5 D.12、下列图案中,既是轴对称图形又是中心对称图形的是()A. B.C. D.3、今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流纪录,这也是今年以来第四次客流纪录的刷新,用科学记数法表示181万为()A.18.1×105 B.1.81×106 C.1.81×107 D.181×1044、下列运算正确的是()A.a2+a2=a4 B.(﹣b2)3=﹣b6 C.2x•2x2=2x3 D.(m﹣n)2=m2﹣n25、下列几何体的三视图相同的是()A.圆柱 B.球 C.圆锥 D.长方体6、下列命题是真命题的是()A.必然事件发生的概率等于0.5B.5名同学的数学成绩是92,95,95,98,110,则他们的平均分是98,众数是95C.射击运动员甲、乙分别射击10次且击中环数的方差分别是5和18,则乙较甲稳定D.要了解金牌获得者的兴奋剂使用情况,可采用抽样调查的方法7、如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD8、如图,从一张腰长为60 cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大扇形OCD,用剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A.10 cm B.15 cm C.10 3 cm D.20 2 cm第7题图 第8题图 第9题图 9、已知二次函数的图象如图,则下列结论中正确的有( ) ①a +b +c >0;②a-b +c <0;③b>0;④b=2a ;⑤abc<0. A .5个 B .4个 C .3个 D .2个10、如图所示,P 是菱形ABCD 的对角线AC 上一动点,过P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点,设AC =2,BD =1,AP =x ,△AMN 的面积为y ,则y 关于x 的函数图象的大致形状是( )A .B .C .D .二、填空题(每题3分,共18分)11、分解因式:2a 2+4a +2= 。

2024年湖北省武汉市蔡甸区等3地中考三模数学试卷

2024年湖北省武汉市蔡甸区等3地中考三模数学试卷

2024年湖北省武汉市蔡甸区等3地中考三模数学试卷一、单选题(★) 1. 5的相反数是()A.B.5C.D.(★★) 2. 当前随着新一轮科技革命和产业变革孕育兴起,新能源汽车产业正进入加速发展的新阶段.如图图案是我国的一些国产新能源车企的车标,图案既是轴对称图形,又是中心对称图形的是()A.B.C.D.(★★) 3. 投掷一枚普通的正方体骰子,下列事件中,确定事件是()A.掷得的点数是2B.掷得的点数是奇数C.掷得的点数小于7D.掷得的点数是大于3(★) 4. 《清朝野史大观·清代述异》称:“中国讲求烹茶,以闽之汀、漳、泉三府,粵之潮州府功夫茶为最.”如图是喝功夫茶的一个茶杯,关于该茶杯的三视图,下列说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.三视图都相同(★★) 5. 下列运算正确的是()A.B.C.D.(★★) 6. 如图是某款婴儿手推车的平面示意图,若,,,则的度数为()A.B.C.D.(★★) 7. 《周髀算经》《九章算术》《海岛算经》《孙子算经》都是中国古代数学著作,是中国古代数学文化的瑰宝.小华要从这四部著作中随机抽取两木学习,则抽取的两本恰好是《周髀算经》和《九章算术》的概率是()A.B.C.D.(★★★) 8. 圆圆想把一些相同规格的塑料杯,尽可能多地放入高的柜子里(如图1).她把杯子按如图这样整齐地叠放成一摞(如图2),但她不知道一摞最多能叠几个可以一次性放进柜子里.圆圆测量后发现,按这样叠放,这摞杯子的总高度随着杯子数量的变化而变化,记录的数据如下表所示:杯子的数量(只)1总高度10请帮圆圆算一算,一次性放进高的柜子里,一摞最多能叠的杯子个数是()A.21B.22C.23D.24(★★★★) 9. 蚊香具有悠久的历史,我国蚊香的发明与古人端午节的习俗有关.如图为某校数学社团用数学软件制作的“蚊香”.画法如下:在水平直线上取长度为1的线段,作一个等边三角形,然后以点为圆心,为半径逆时针画圆弧交线段的延长线于点(第一段圆弧),再以点为圆心,为半径逆时针画圆弧交线段的延长线于点,再以点为圆心,为半径逆时针画圆弧…以此类推,当得到的“蚊香”恰好有12段圆弧时,“蚊香”的长度为()A.B.C.D.(★★★★★) 10. 已知抛物线的图像与轴有两个不同的交点,,且,则的值为()A.B.C.D.或二、填空题(★) 11. 2024年“五一”假期首日,游客出游热情高涨,景区景点人气旺盛.据湖北省文旅厅数据显示,湖北省A级旅游景区共接待游客249.8万人次.将数据249.8万用科学记数法表示为 ________ .(★) 12. 写出一个图象位于第二、第四象限的反比例函数的解析式 ________ .(★★) 13. 计算的结果是 ________ .(★★) 14. 如图,在远离铁塔的处,用测角仪测得塔顶的仰角为,已知测角仪高,那么塔高 ________ m(结果保留根号);(★★★) 15. 如图,在平面直角坐标系中,点、在第一象限内且点,点点,,点到射线的最小值是 ________ .(★★★) 16. 抛物线(、、是常数)的顶点在第一象限.......,且.下列四个结论:①;②;③若,则当时,随的增大而减小;④若抛物线的顶点为,则方程无实数根.其中正确的结论是 ________ .(填写序号).三、解答题(★★) 17. 解不等式组:并写出它的所有整数解.(★★★) 18. 如图,、是平行四边形的对角线上两点,.(1)求证:;(2)连接,和,请添加一个条件:使得四边形为矩形.(★★) 19. 某学校七年级体育测试已经结束,现从七年级随机抽取部分学生的体育测试成绩进行统计分析(成绩得分用表示,共分成4个等级,A:为优秀,B:为良好,C:为合格,D:为不合格),绘制了如下所示的统计图,请根据统计图信息解答下列问题:(1)请补全..条形统计图;本次共调查了名学生;(2)在扇形统计图中,,本次调查的学生体育成绩中位数位于等级;(3)若该校共有900名七年级学生,请估计本次体育成绩为合格及以上的学生人数.(★★★) 20. 如图,为的直径,与相交于点,过点的切线,垂足为点.(1)求证:;(2)若,,求的长.(★★★) 21. 如图,在由小正方形组成的的网格中,每个小正方形的顶点叫做格点,图中、、为格点,仅用无刻度直尺按要求作图:(1)在图1中,将线段绕某一点旋转得到线段(其中点.....和点对应..),画出线段;延长交于点,在上找点,使得的值最小;(2)在图2中,找点,使得;找一格点使得(找出一个即可......).(★★★) 22. 一块土地上有一个蔬菜大棚(如图1),其横截面顶部为抛物线型,大棚的一端固定在墙体上,另一端固定在墙体上(墙体足够高),其横截面有2根支架,,相关数据如图2所示,其中,.(1)在图2中以点为原点,所在直线为轴建立平面直角坐标系,则点坐标为,点坐标为,抛物线的函数表达式为;(2)已知大棚有300根长为的支架和300根长为的支架,为增加棚内空间,拟将图2中棚顶向上调整,支架总数不变,对应支架的长度变化如图3所示,调整后与上升相同的高度,增加的支架单价为20元/米(接口忽略不计),现有改造经费30000元.①当米,只考虑经费情况下,请通过计算说明能否完成改造;②只考虑经费情况下,直接写出的最大值.(★★★) 23. 如图1,在菱形中,,,点为边上的动点.(1) 为边上一点,连接,将沿进行翻折,点恰好落在边的中点处,①求的长;②.(2)如图2,延长到,使,连接与,与交于点,连接,设,,求关于的函数表达式.(★★★) 24. 已知抛物线与轴交于点、(在的左侧),与轴交于点.(1)若,,.①直接写出抛物线解析式:;②若点与点关于轴对称,在直线上是否存在点使与相似,若存在,求出点的坐标;(2)如图2,点和点在抛物线上,其中在点左侧抛物线上,点在轴右侧抛物线上,直线交轴于点,直线交轴于点,设直线解析式为,当,试证明为一个定值,并求出定值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年湖北省武汉市蔡甸区初三数学三模试卷一.选择题(共10小题,满分30分,每小题3分)1.1.咸宁冬季里某一天的气温为﹣3℃~2℃,则这一天的温差是()a)A.1℃B.﹣1℃C.5℃D.﹣5℃2.2.若分式有意义,则x的取值范围是()A.x≠1B.x≠2C.x=1D.x=23.下列计算正确的是()A.5a2b﹣3ab2=2ab B.2a2﹣a2=aC.4x2﹣2x2=2D.﹣(﹣2x)﹣5x=﹣3x4.一粒木质中国象棋子“兵”,它的正面雕刻一个“兵”字,它的反面是平的.将它从一定高度下掷,落地反弹后可能是“兵”字面朝上,也可能是“兵”字面朝下.由于棋子的两面不均匀,为了估计“兵”字面朝上的概率,某实验小组做了棋子下掷实验,实验数据如下表:实验次数n2060100120140160500100020005000“兵”字面朝上次数m143852667888280550110027500.70.630.520.550.560.550.560.550.550.55“兵”字面朝上频率下面有三个推断:①投掷1000次时,“兵”字面朝上的次数是550,所以“兵”字面朝上的概率是0.55②随着实验次数的增加,“兵”字面朝上的频率总在0.55附近,显示出一定的稳定性,可以估计“兵”字面朝上的概率是0.55③当实验次数为200次时,“兵”字面朝上的频率一定是0.55其中合理的是()A.①B.②C.①②D.①③5.若x+m与2﹣x的乘积中不含x的一次项,则实数m的值为()A.﹣2B.2C.0D.16.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)7.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.8.学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分)60708090100人数(人)7121083则得分的众数和中位数分别为()A.70 分,70 分B.80 分,80 分C.70 分,80 分D.80 分,70 分9.如果a+b+c=0,且|c|>|b|>|a|,则下列说法中可能成立的是()A.a、b为正数,c为负数B.a、c为正数,b为负数C.b、c为正数,a为负数D.a、b、c均为负数10.如图,在半径为6的⊙O中,点A是劣弧BC的中点,点D是优弧BC上一点,且∠D =30°,下列四个结论:①OA⊥BC;②BC=6;③=;④四边形ABOC是菱形,其中正确结论的序号是()A.①③B.①②③④C.②③④D.①③④二.填空题(共6小题,满分18分,每小题3分)11.已知:(x+2)x+5=1,则x=.12.如果=+对于自然数a≠成立,则m=,n=.13.从甲、乙、丙、丁4名学生中随机抽取2名学生担任数学小组长,则抽取到甲和乙概率为.14.如图,在▱ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,若△ABE的面积为8cm2,则EF+CF的长为cm.15.如图,在菱形ABCD中,∠BAD=120°,将菱形沿EF折叠,点B正好落在AD边的点G处,且EG⊥AC,若CD=8,则FG的长为16.已知抛物线y=﹣x2+mx+2﹣m,在自变量x的值满足﹣1≤x≤2的情况下,若对应的函数值y的最大值为6,则m的值为.三.解答题(共8小题,满分72分)17.(8分)解方程组(1)(2).18.(8分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作AF∥BC交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.19.(8分)央视“经典咏流传”开播以来受到社会广泛关注我市某校就“中华文化我传承﹣﹣地方戏曲进校园”的喜爱情况进行了随机调查.对收集的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图所提供的信息解答下列问题:图中A表示“很喜欢”,B表示“喜欢”、C表示“一般”,D表示“不喜欢”.(1)被调查的总人数是人,扇形统计图中C部分所对应的扇形圆心角的度数为;(2)补全条形统计图;(3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中A类有人;(4)在抽取的A类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽到的两个学生性别相同的概率.20.(8分)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.(1)求甲、乙两种型号设备的价格;(2)该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.21.(8分)如图,AB为⊙O的直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC,连接CD,过点C作CE⊥DB,垂足为E,直径AB与CE的延长线相交于F点.(1)求证:CF是⊙O的切线;(2)当BD=,sin F=时,求OF的长.22.(10分)如图,已知直线y=x与双曲线y=交于A、B两点,且点A的横坐标为.(1)求k的值;(2)若双曲线y=上点C的纵坐标为3,求△AOC的面积;(3)在坐标轴上有一点M,在直线AB上有一点P,在双曲线y=上有一点N,若以O、M、P、N为顶点的四边形是有一组对角为60°的菱形,请写出所有满足条件的点P的坐标.23.(10分)有两张完全重合的矩形纸片,将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD,MF,若BD=16cm,∠ADB=30°.(1)试探究线段BD与线段MF的数量关系和位置关系,并说明理由;(2)把△BCD与△MEF剪去,将△ABD绕点A顺时针旋转得△AB1D1,边AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求β的度数;(3)若将△AFM沿AB方向平移得到△A2F2M2(如图3),F2M2与AD交于点P,A2M2与BD交于点N,当NP∥AB时,求平移的距离.24.(12分)如图所示,已知抛物线y=ax2(a≠0)与一次函数y=kx+b的图象相交于A (﹣1,﹣1),B(2,﹣4)两点,点P是抛物线上不与A,B重合的一个动点,点Q是y轴上的一个动点.(1)请直接写出a,k,b的值及关于x的不等式ax2<kx﹣2的解集;(2)当点P在直线AB上方时,请求出△PAB面积的最大值并求出此时点P的坐标;(3)是否存在以P,Q,A,B为顶点的四边形是平行四边形?若存在,请直接写出P,Q的坐标;若不存在,请说明理由.2020年湖北省武汉市蔡甸区中考数学模拟试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据题意列出算式,再利用减法法则计算可得.【解答】解:这一天的温差是2﹣(﹣3)=2+3=5(℃),故选:C.【点评】本题主要考查有理数的减法,解题的关键是掌握有理数的减法法则.2.【分析】分式有意义:分母不为零.【解答】解:当分母x﹣1≠0,即x≠1时,分式有意义.故选:A.【点评】本题考查了分式有意义的条件.从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.3.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=5a2b﹣3ab2,故A错误;(B)原式=a2,故B错误;(C)原式=2x2,故C错误;故选:D.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.4.【分析】根据题意和概率的定义可以判断各个小题的说法是否正合理,从而可以解答本题.【解答】解:由题意可得,投掷1000次时,“兵”字面朝上的次数是550,所以“兵”字面朝上的频率是0.55,但概率不应是0.55,一次不具有代表性,故①错误,随着实验次数的增加,“兵”字面朝上的频率总在0.55附近,显示出一定的稳定性,可以估计“兵”字面朝上的概率是0.55,故②正确,当实验次数为200次时,“兵”字面朝上的频率可能是0.55,但不一定是0.55,故③错误,故选:B.【点评】本题考查利用频率估计概率,解答本题的关键是概率和频率的定义,可以判断题目中各个小题中的说法是否正确,利用概率的知识解答.5.【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可.【解答】解:根据题意得:(x+m)(2﹣x)=2x﹣x2+2m﹣mx,∵x+m与2﹣x的乘积中不含x的一次项,∴m=2;故选:B.【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.6.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数解答.【解答】解:点M(1,2)关于y轴对称点的坐标为(﹣1,2).故选:A.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.7.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层在中间位置一个小正方形,故D 符合题意,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.8.【分析】根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.【解答】解:70分的有12人,人数最多,故众数为70分;处于中间位置的数为第20、21两个数,都为80分,中位数为80分.故选:C.【点评】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.9.【分析】根据有理数的加法,一对相反数的和为0,可得a、b、c中至少有一个为正数,至少有一个为负数,又|c|>|b|>|a|,那么|c|=|b|+|a|,进而得出可能存在的情况.【解答】解:∵a+b+c=0,∴a、b、c中至少有一个为正数,至少有一个为负数,∵|c|>|b|>|a|,∴|c|=|b|+|a|,∴可能a、b为正数,c为负数;也可能a、b为负数,c为正数.故选:A.【点评】本题主要考查的是有理数的加法,绝对值的意义,掌握有理数的加法法则是解题的关键.10.【分析】利用垂径定理可对①进行判断;根据圆周角定理得到∠AOC=2∠D=60°,则△OAC为等边三角形,根据等边三角形的性质和垂径定理可计算出BC=6,则可对②进行判断;通过判断△AOB为等边三角形可对③进行判断;利用AB=AC=OA=OC=OB可对④进行判断.【解答】解:∵点A是劣弧的中点,∴OA⊥BC,所以①正确;∵∠AOC=2∠D=60°,而OA=OC,∴△OAC为等边三角形,∴BC=2×6×=6,所以②正确;同理可得△AOB为等边三角形,∴∠AOB=60°,∴tan60°==,所以③正确;∵AB=AC=OA=OC=OB,∴四边形ABOC是菱形,所以④正确.故选:B.【点评】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.同一条弦对应两条弧,其中一条是优弧,一条是劣弧,而在本定理和推论中的“弧”是指同为优弧或劣弧.二.填空题(共6小题,满分18分,每小题3分)11.【分析】根据:a0=1(a≠0),1的任何次方为1,﹣1的偶次方为1,解答本题.【解答】解:根据0指数的意义,得当x+2≠0时,x+5=0,解得x=﹣5.当x+2=1时,x=﹣1,当x+2=﹣1时,x=﹣3,x+5=2,指数为偶数,符合题意.故填:﹣5或﹣1或﹣3.【点评】本题的难点在于将幂为1的情况都考虑到.12.【分析】根据分式的运算法则即可求出答案.【解答】解:==×﹣×,由题意可知:+=×﹣×∴m=,n=,故答案为:,.【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.13.【分析】根据题意画出树状图,然后求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:画树形图得:∵一共有12种情况,抽取到甲和乙的有2种,∴P(抽到甲和乙)==.故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.14.【分析】作FH⊥BC于H.首先求出CE=CF=3,再利用相似三角形的性质推出△CEF 的面积为2,求出FH即可解决问题;【解答】解:作FH⊥BC于H.∵四边形ABCD是平行四边形,∴AB=CD=6,AD=BC=9,AB∥DF,∴△ABE∽△CFE,∠BAF=∠CFE,∵∠BAF=∠DAF,∴∠DAF=∠DFA,∴DA=DF=9,同法可证AB=BE=6,∴CF=CE=3∴=()2=,∵△ABE的面积为8cm2,∴△CEF的面积为2,∴×3×FH=2,∴FH=,在Rt△CFH中,CH==,∴EH=,在Rt△EFH中,EF==2,∴EF+CF=2+3=5,故答案为5.【点评】本题考查平行四边形的性质、角平分线的定义、等腰三角形的判定和性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.15.【分析】如图,设AC与EG交于点O,FG交AC于H.只要证明FG⊥AD,即可FG 是菱形的高,求出FG即可解决问题.【解答】解:如图,设AC与EG交于点O,FG交AC于H.∵四边形ABCD是菱形,∠BAD=120°,易证△ABC、△ACD是等边三角形,∴∠CAD=∠B=60°,∵EG⊥AC,∴∠GOH=90°,∵∠EGF=∠B=60°,∴∠OHG=30°,∴∠AGH=90°,∴FG⊥AD,∴FG是菱形的高,即等边三角形△ABC的高=×8=4.故答案为:4.【点评】本题考查翻折变换、等边三角形的判定和性质,菱形的性质等知识,解题的关键是证明线段FG是菱形的高,记住等边三角形的高=a(a是等边三角形的边长),属于中考常考题型.16.【分析】先求出抛物线的对称轴方程为x=,讨论:若<﹣1,利用二次函数的性质,当﹣1≤x≤2时,y随x的增大而减小,即x=﹣1时,y=6,所以﹣(﹣1)2﹣m+2﹣m =6;若﹣1≤≤2,根据二次函数的性质,当﹣1≤x≤2,所以x=时,y=6,所以﹣()2﹣+2﹣m=6;当>2,根据二次函数的性质,﹣1≤x≤2,y随x的增大而增大,即x=2时,y=6,所以﹣22+2m+2﹣m=6,然后分别解关于m的方程确定满足条件的m的值.【解答】解:抛物线的对称轴为直线x=﹣=,当<﹣1,即m<﹣2时,则﹣1≤x≤2,y随x的增大而减小,即x=﹣1时,y=6,所以﹣(﹣1)2﹣m+2﹣m=6,解得m=﹣;当﹣1≤≤2,即﹣2≤m≤4时,则﹣1≤x≤2,所以x=时,y=6,所以﹣()2+ +2﹣m=6,解得m1=2+2(舍去),m2=2﹣2(舍去);当>2,即m>4时,则﹣1≤x≤2,y随x的增大而增大,即x=2时,y=6,所以﹣22+2m+2﹣m=6,解得m=8,综上所述,m的值为﹣或8.故答案为﹣或8.【点评】本题考查了二次函数的最值:确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标;当自变量取某个范围时,要分别求出顶点和函数端点处的函数值,比较这些函数值,从而获得最值.三.解答题(共8小题,满分72分)17.【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1),②﹣①得:8y=﹣8,解得:y=﹣1,把y=﹣1代入①得:x=1,则方程组的解为;(2)方程组整理得:,①﹣②得:4y=26,解得:y=,把y=代入①得:x=,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.【分析】(1)证△AEF≌△DEB得AF=DB,再证出DB=DC即可.(2)四边形ADCF是菱形,先证明四边形ADCF是平行四边形,再证出AF=AD即可.【解答】(1)证明:∵AF∥CD,E是AD的中点∴∠AFE=∠DBE,EF=EB又∠AEF=∠DEB∴△AEF≌△DEB(ASA)∴AF=DB∵AD是BC边上的中线∴DB=DC∴AF=DC,(2)四边形ADCF是菱形.证明:∵由(1)知AF=CD,又AF∥CD∴四边形ADCF是平行四边形,∵AB⊥AC∴△ABC是直角三角形∵AD是BC边上的中线∴AD=DC=DB∵AF=CD,∴AF=AD∴四边形ADCF是菱形.【点评】本题利用了全等三角形的判定和性质、平行四边形的判定和性质、菱形的判定和性质等.19.【分析】(1)由A类别人数及其所占百分比可得总人数,用360°乘以C部分人数所占比例可得;(2)总人数减去其他类别人数求得B的人数,据此即可补全条形图;(3)用总人数乘以样本中A类别人数所占百分比可得;(4)用树状图或列表法即可求出抽到性别相同的两个学生的概率.【解答】解:(1)被调查的总人数为5÷10%=50人,扇形统计图中C部分所对应的扇形圆心角的度数为360°×=216°,故答案为:50、216°;(2)B类别人数为50﹣(5+30+5)=10人,补全图形如下:(3)估计该校学生中A类有1800×10%=180人,故答案为:180;(4)列表如下:女1女2女3男1男2女1﹣﹣﹣女2女1女3女1男1女1男2女1女2女1女2﹣﹣﹣女3女2男1女2男2女2女3女1女3女2女3﹣﹣﹣男1女3男2女3男1女1男1女2男1女3男1﹣﹣﹣男2男1男2女1男2女2男2女3男2男1男2﹣﹣﹣所有等可能的结果为20种,其中被抽到的两个学生性别相同的结果数为8,∴被抽到的两个学生性别相同的概率为=.【点评】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图的应用.解题时注意:概率=所求情况数与总情况数之比.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.20.【分析】(1)设甲,乙两种型号设备每台的价格分别为x万元和y万元,根据购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元,列出方程组,然后求解即可;(2)设购买甲型设备m台,乙型设备(10﹣m)台,根据公司经预算决定购买节省能源的新设备的资金不超过110万元,列出不等式,然后求解即可得出购买方案;(3)根据甲型设备的产量为240吨/月,乙型设备的产量为180吨/月和总产量不低于2040吨,列出不等式,求出m的取值范围,再根据每台的钱数,即可得出最省钱的购买方案.【解答】解:(1)设甲,乙两种型号设备每台的价格分别为x万元和y万元,由题意得:,解得:,则甲,乙两种型号设备每台的价格分别为12万元和10万元.(2)设购买甲型设备m台,乙型设备(10﹣m)台,则:12m+10(10﹣m)≤110,∴m≤5,∵m取非负整数∴m=0,1,2,3,4,5,∴有6种购买方案.(3)由题意:240m+180(10﹣m)≥2040,∴m≥4∴m为4或5.当m=4时,购买资金为:12×4+10×6=108(万元),当m=5时,购买资金为:12×5+10×5=110(万元),则最省钱的购买方案为,选购甲型设备4台,乙型设备6台.【点评】此题考查了二元一次方程组和一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系,列出方程组和不等式.21.【分析】(1)连接OC.先根据等边对等角及三角形外角的性质得出∠3=2∠1,由已知∠4=2∠1,得到∠4=∠3,则OC∥DB,再由CE⊥DB,得到OC⊥CF,根据切线的判定即可证明CF为⊙O的切线;(2)连接AD.由圆周角定理得出∠D=90°,证出∠BAD=∠F,得出sin∠BAD=sin ∠F==,求出AB=BD=6,得出OB=OC=3,再由sin F==即可求出OF.【解答】解:(1)连接OC.如图1所示:∵OA=OC,∴∠1=∠2.又∵∠3=∠1+∠2,∴∠3=2∠1.又∵∠4=2∠1,∴∠4=∠3,∴OC∥DB.∵CE⊥DB,∴OC⊥CF.又∵OC为⊙O的半径,∴CF为⊙O的切线;(2)连接AD.如图2所示:∵AB是直径,∴∠D=90°,∴CF∥AD,∴∠BAD=∠F,∴sin∠BAD=sin F==,∴AB=BD=6,∴OB=OC=3,∵OC⊥CF,∴∠OCF=90°,∴sin F==,解得:OF=5.【点评】本题考查了切线的判定、解直角三角形、圆周角定理等知识;本题综合性强,有一定难度,特别是(2)中,需要运用三角函数、勾股定理和由平行线得出比例式才能得出结果.22.【分析】(1)把点A的横坐标为代入y=x求出其纵坐标,然后把A点的坐标代入y=求出k即可.(2)根据纵坐标为3,求出横坐标,再求出过A,C两点的直线方程,然后根据△AOC 的面积=S△COD﹣S△AOD求解即可.(3)设P点坐标(a,a),根据题意,分两种情形①点M只能在横坐标轴上,②M在y轴上时,分别即可求解.【解答】解:(1)把点A的横坐标为代入y=x,∴其纵坐标为1,把点(,1)代入y=,解得:k=.(2)∵双曲线y=上点C的纵坐标为3,∴横坐标为,∴过A,C两点的直线方程为:y=kx+b,把点(,1),(,3),代入得:,解得:,∴y=﹣x+4,设y=﹣x+4与x轴交点为D,则D点坐标为(,0),∴△AOC的面积=S△COD﹣S△AOD=××3﹣××1=.(3)设P点坐标(a,a),由直线AB解析式可知,直线AB与y轴正半轴夹角为60°,∵以O、M、P、N为顶点的四边形是有一组对角为60°的菱形,P在直线y=x上,当点M只能在x轴上时,∴N点的横坐标为a,代入y=,解得纵坐标为:,根据OP=NP,即得:||=|﹣|,解得:a=±1.故P点坐标为:(1,)或(﹣1,﹣).当点M在y轴上时,同法可得p(3,)或(﹣3,﹣).【点评】本题考查了反比例函数与一次函数的交点及反比例函数图象上坐标的特征,难度较大,关键掌握用待定系数法解函数的解析式.23.【分析】(1)有两张完全重合的矩形纸片,将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),得BD=MF,△BAD≌△MAF,推出BD=MF,∠ADB=∠AFM =30°,进而可得∠DNM的大小.(2)分两种情形讨论①当AK=FK时,②当AF=FK时,根据旋转的性质得出结论.(3)求平移的距离是A2A的长度.在矩形PNA2A中,A2A=PN,只要求出PN的长度就行.用△DPN∽△DAB得出对应线段成比例,即可得到A2A的大小.【解答】解:(1)结论:BD=MF,BD⊥MF.理由:如图1,延长FM交BD于点N,由题意得:△BAD≌△MAF.∴BD=MF,∠ADB=∠AFM.又∵∠DMN=∠AMF,∴∠ADB+∠DMN=∠AFM+∠AMF=90°,∴∠DNM=90°,∴BD⊥MF.(2)如图2,①当AK=FK时,∠KAF=∠F=30°,则∠BAB1=180°﹣∠B1AD1﹣∠KAF=180°﹣90°﹣30°=60°,即β=60°;②当AF=FK时,∠FAK=(180°﹣∠F)=75°,∴∠BAB1=90°﹣∠FAK=15°,即β=15°;综上所述,β的度数为60°或15°;(3)如图3,由题意得矩形PNA2A.设A2A=x,则PN=x,在Rt△A2M2F2中,∵F2M2=FM=16,∠F=∠ADB=30°,∴A2M2=8,A2F2=8,∴AF2=8﹣x.∵∠PAF2=90°,∠PF2A=30°,∴AP=AF2•tan30°=8﹣x,∴PD=AD﹣AP=8﹣8+x.∵NP∥AB,∴∠DNP=∠B.∵∠D=∠D,∴△DPN∽△DAB,∴=,∴=,解得x=12﹣4,即A2A=12﹣4,∴平移的距离是(12﹣4)cm.【点评】本题属于四边形综合题,主要考查了旋转的性质,相似三角形的判定与性质,勾股定理的运用,等腰三角形的性质的运用运用.在利用相似三角形的性质时注意使用相等线段的代换以及注意分类思想的运用.24.【分析】(1)根据待定系数法得出a,k,b的值,进而得出不等式的解集即可;(2)过点A作y轴的平行线,过点B作x轴的平行线,两者交于点C,连接PC.根据三角形的面积公式解答即可;(3)根据平行四边形的性质和坐标特点解答即可.【解答】解:(1)把A(﹣1,﹣1),代入y=ax2中,可得:a=﹣1,把A(﹣1,﹣1),B(2,﹣4)代入y=kx+b中,可得:,解得:,所以a=﹣1,k=﹣1,b=﹣2,关于x的不等式ax2<kx﹣2的解集是x<﹣1或x>2,(2)过点A作y轴的平行线,过点B作x轴的平行线,两者交于点C.∵A(﹣1,﹣1),B(2,﹣4),∴C(﹣1,﹣4),AC=BC=3,设点P的横坐标为m,则点P的纵坐标为﹣m2.过点P作PD⊥AC于D,作PE⊥BC于E.则D(﹣1,﹣m2),E(m,﹣4),∴PD=m+1,PE=﹣m2+4.∴S△APB=S△APC+S△BPC﹣S△ABC===.∵<0,,﹣1<m<2,∴当时,S△APB的值最大.∴当时,,S△APB=,即△PAB面积的最大值为,此时点P的坐标为(,)(3)存在三组符合条件的点,当以P,Q,A,B为顶点的四边形是平行四边形时,∵AP=BQ,AQ=BP,A(﹣1,﹣1),B(2,﹣4),可得坐标如下:①P′的横坐标为﹣3,代入二次函数表达式,解得:P'(﹣3,﹣9),Q'(0,﹣12);②P″的横坐标为3,代入二次函数表达式,解得:P″(3,﹣9),Q″(0,﹣6);③P的横坐标为1,代入二次函数表达式,解得:P(1,﹣1),Q(0,﹣4).故:P的坐标为(﹣3,﹣9)或(3,﹣9)或(1,﹣1),Q的坐标为:Q(0,﹣12)或(0,﹣6)或(0,﹣4).【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。

相关文档
最新文档