湖北省襄阳市八年级上册数学第二次学情检测试卷
八年级上册襄阳数学全册全套试卷(培优篇)(Word版 含解析)
八年级上册襄阳数学全册全套试卷(培优篇)(Word 版 含解析)一、八年级数学三角形填空题(难)1.如图,ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D ,点,E F 分别在线段BD 、CD 上,点G 在EF 的延长线上,EFD ∆与EFH ∆关于直线EF 对称,若60,84,A BEH HFG n ︒︒︒∠=∠=∠=,则n =__________.【答案】78.【解析】【分析】利用ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D 得到∠DBC=12∠ABC ,∠ACD=12(∠A+∠ABC),根据三角形的内角和得到∠D=12∠A=30︒,利用外角定理得到∠DEH=96︒,由EFD ∆与EFH ∆关于直线EF 对称得到∠DEG=∠HEG=48︒,根据外角定理即可得到∠DFG=∠D+∠DEG=78︒.【详解】∵ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D∴∠DBC=12∠ABC ,∠ACD=12(∠A+∠ABC), ∵∠DBC+∠BCD+∠D=180︒,∠A+∠ABC+∠ACB=180︒, ∴∠D=12∠A=30︒, ∵84BEH ︒∠=,∴∠DEH=96︒,∵EFD ∆与EFH ∆关于直线EF 对称,∴∠DEG=∠HEG=48︒,∠DFG=∠HFG n ︒=,∵∠DFG=∠D+∠DEG=78︒,∴n=78.故答案为:78.【点睛】此题考查三角形的内角和定理、外角定理,角平分线性质,轴对称图形的性质,此题中求出∠D=12∠A=30︒是解题的关键.2.如图1,△ABC 中,沿∠BAC 的平分线AB 1折叠,剪掉重叠部分;将余下部分沿∠B 1A 1C 的平分线A 1B 2折叠,剪掉重叠部分;…;将余下部分沿∠B n A n C 的平分线A n B n+1折叠,点B n 与点C 重合,无论折叠多少次,只要最后一次恰好重合,我们就称∠BAC 是△ABC 的好角.(1)如图2,在△ABC 中,∠B>∠C ,若经过两次折叠,∠BAC 是△ABC 的好角,则∠B 与∠C 的等量关系是_______;(2)如果一个三角形的最小角是20°,则此三角形的最大角为______时,该三角形的三个角均是此三角形的好角。
襄州区八年级上册数学试卷
一、选择题(每题4分,共20分)1. 下列各数中,有理数是()A. √2B. √3C. √4D. √52. 若a=2,b=-3,则a² + b²的值为()A. 1B. 4C. 9D. 133. 下列各式中,正确的是()A. 3a + 2b = 5a + 3bB. 2(a + b) = 2a + 2bC. a² - b² = (a + b)(a - b)D. (a + b)² = a² + 2ab + b²4. 已知一元二次方程ax² + bx + c = 0(a≠0)的判别式Δ=9,则方程有两个()A. 两个实数根B. 两个虚数根C. 一个实数根和一个虚数根D. 无解5. 在直角坐标系中,点P的坐标为(2,-3),点P关于x轴的对称点Q的坐标是()A.(2,3)B.(-2,3)C.(2,-3)D.(-2,-3)二、填空题(每题4分,共16分)6. 已知x² - 5x + 6 = 0,则x的值为______。
7. 在直角三角形ABC中,∠C=90°,AB=5,AC=3,则BC的长度为______。
8. 若a、b、c为等差数列,且a+b+c=12,则b的值为______。
9. 若函数y=kx+b(k≠0)的图象经过点(2,-1),则k+b的值为______。
10. 在等腰三角形ABC中,AB=AC,若∠B=40°,则∠A的度数为______。
三、解答题(每题12分,共36分)11. 解下列方程组:\[\begin{cases}2x + 3y = 8 \\x - y = 2\end{cases}\]12. 已知一元二次方程x² - 4x + 3 = 0,求该方程的两个实数根。
13. 在△ABC中,∠A=30°,∠B=45°,求∠C的度数。
四、应用题(每题12分,共24分)14. 某工厂生产一批产品,如果每天生产50个,则10天可以完成;如果每天生产60个,则8天可以完成。
湖北省襄阳市襄州区2021-2022学年八年级上学期期末数学试题
形,C 种纸片是长为 b,宽为 a 的长方形,并用 A 种纸片一张,B 种纸片一张,C 种纸片两 张拼成如图②的大正方形.
解决问题:
(1)观察图②,写出代数式 a b2 , a2 b2 , ab 之间的等量关系是_______;
(2)根器(1)中的等量关系,解决下面问题:已知 a b 4 , a2 b2 10 ,求 ab 的值; (3)若有 3 张边长为 a 的正方形纸片,4 张边长分别为 a,b( a b )的长方形纸片,5 张边 长为 b 的正方形纸片,现从其中取出若干张纸片(每种纸片至少取一张),拼成一个正方形
C.BE=DF
D.AD∥BC
8.下列分式是最简分式的是(
)
A.
m 1 1 m
xy y B. 3xy
x y C. x2 y2
D. 61m 32m
9.如图,在正方形网格中有 M,N 两点,在直线 l 上求一点 P 使 PM+PN 最短,则点 P 应
选在(
)
A.A 点
B.B 点
C.C 点
D.D 点
10.如图,若 ABC 是等边三角形,AB 6,BD 是 AC 边上的高,延长 BC 到 E,使 CE CD ,
襄州区 2021-2022 学年度上学期期末学业水平能力监测八年级
数学试题
一、选择题:本大题共 10 小题,每小题 3 分,共 30 分,在每小题所给出的四 个选项中,只有一个是正确的,请把正确的选项填入题后的括号内
1.下列疫情防控宣传图片中,是轴对称图形的是( )
A.
B.
C.
D.
2.下列运算不正确的是(
16.如图,在 ABC 中,AB AC ,B C 45 ,D、E 是斜边 BC 上两点,且 DAE 45 , 过点 A 作 AF AD ,垂足是 A,过点 C 作 CF BC ,垂足是 C,交 AF 于点 F,连接 EF , 下列结论:① ABD≌ACF :② DE EF ;③若 S△ADE 10 , S△CEF 4 ,则 SABC 24 ; ④ BD CE DE .其中正确的是_______.
湖北省襄阳市第四中学2024-2025学年八年级上9月月考数学试题(含答案)
2024-2025学年上学期9月阶段性训练八年级数学试卷考试时间:120分钟总分120一、选择题:(每小题3分,共36分).在每小题给出的选项中,只有一项是符合题目要求的.1. 如图所示,为估计池塘岸边A 、B 的距离,小方在池塘的一侧选取一点O ,测得米,米,A 、B 间的距离不可能是( )A. 5米 B. 15米 C. 10米 D. 20米2. 不是利用三角形稳定性是( )A. 自行车的三角形车架B. 三角形房架C. 照相机的三脚架D. 学校的栅栏门3. 如图,在中,边上的高为( )A. B. C. D.4. 在下列条件中:①,②,③,④,⑤中,能确定是直角三角形的条件有( )A. 2个 B. 3个 C. 4个 D. 5个5. 如图,在△ABC 中,∠A=60度,点D ,E 分别在AB ,AC 上,则∠1+∠2的大小为( )度.A. 140B. 190C. 320D. 240的15OA =10OB =ABC V BC BD CF AE BFA B C ∠+∠=∠::1:2:3A B C ∠∠∠=90A B ∠=︒-∠12A B C ∠=∠=∠23A B C ∠=∠=∠ABC V6. 如图,将一张三角形纸片的一角折叠,使点落在处的处,折痕为.如果,,,那么下列式子中正确的是( )A. B. C. D. 7. 如图,分别是的角平分线,,那么的度数为( )A. B. C. D. 8. 正多边形的一个外角不可能是( )A. B. C. D. 9. 如果一个多边形的每个内角都是,则它的边数为( )A. 8B. 9C. 10D. 1110. 如图,在中,点E 是的中点,,,的周长是25,则的周长是( )A 18 B. 22 C. 28D. 32ABC A ABC ∆A 'DE A α∠=CEA β∠'=BDA γ∠'=2γαβ=+2γαβ=+γαβ=+180γαβ=-- BE CF 、ABC ACB ∠∠、50A ∠=︒BDF ∠80︒65︒100︒115︒50︒40︒30︒20︒144︒ABC V BC 7AB =10AC =ACE △ABE V11. 如图,△ACE ≌△DBF ,AD =8,BC =2,则 AC =( )A. 2B. 8C. 5D. 312. 如图,已知,再添加一个条件,仍不能判定的是( )A B. C. D. 二、填空题:本题共6小题,每小题3分,共18分.13. 如图,已知AB ∥CF ,E 为AC 的中点,若FC =6cm ,DB =3cm ,则AB =________.14. 如图,小明从A 点出发,前进6m 到点B 处后向右转,再前进6m 到点C 处后又向右转,…,这样一直走下去,他第一次回到出发点A 时,一共走了 _____m .15. 已知一个边形内角和等于1980°,则__________.16. 如图,△ABC 的面积为18,BD=2DC ,AE=EC ,那么阴影部分的面积是_______.17. 如图,是的外角,平分平分,且交于点D .若,则的度数为___________.的ABC BAD ∠=∠ABC BAD ≌△△AC BD =C D ∠=∠AD BC =ABD BAC∠=∠20︒20︒n n =ACE ∠ABC V BD ,ABC CD ∠ACE ∠BD CD 、70A ∠=︒D ∠18. △ABC 中,AD 是BC 边上的高,∠BAD=50°,∠CAD=20°,则∠BAC=___________.三、解答题:本题共7小题,共66分.解答应写出文字说明,证明过程或演算步骤.19. 如图,在中,,是边上的高.求的度数.20. 如图,点上,点在上,,,求证:.21. 如图,,,,,求的度数与的长.22. 如图,,,点B 在上,点D 在上.求证:在ABC V 2C ABC A ∠=∠=∠BD AC DBC ∠D AB E AC AB AC =BD CE =B C ∠=∠ABC DEF ≌△△30B ∠=︒50A ∠=︒2BF =DFE ∠EC AB AD =BC CD =AE AF(1)(2).23. (1)阅读理解:课外兴趣小组活动时,老师提出了如下问题:在中,,,求边上的中线的的取值范围.小明在组内经过合作交流,得到了如下的解决方法(如图1):①延长到Q ,使得;②再连接,把集中在中;根据小明的方法,请直接写出图1中的取值范围是 .(2)写出图1中与的位置关系并证明.(3)如图2,在中,为中线,E 为上一点,、交于点F ,且.求证:.24. 如图(1),,,,垂足分别为A 、B ,点P 在线段上以的速度由点A 向点B 运动,同时点Q 在射线BD 上运动.它们运动的时间为(当点P 运动结束时,点Q 运动随之结束).(1)若点Q 的运动速度与点P 的运动速度相等,当时,与是否全等,并判断此时线段和线段的位置关系,请分别说明理由;(2)如图(2),若“,”改为“”,点Q 的运动速度为,其它ABC ADC△≌△12∠=∠ABC V 9AB =5AC =BC AD AD DQ AD =BQ 2AB AC AD 、、ABQ V AD AC BQ ABC V AD AB AD CE AE EF =AB CF =14cm AB =10cm AC =AC AB ⊥BD AB ⊥AB 2cm /s ()s t 2t =ACP △BPQ V PC PQ AC AB ⊥BD AB ⊥CAB DBA ∠=∠cm /s x条件不变,当点P 、Q 运动到何处时有与全等,求出相应的x 和t 的值.25. 如图,在四边形ABCD 中,AD =AB ,DC =BC ,∠DAB =60°,∠DCB =120°,E 是AD 上一点,F 是AB 延长线上一点,且DE =BF .(1)求证:CE =CF ;(2)若G 在AB 上且∠ECG =60°,试猜想DE ,EG ,BG 之间的数量关系,并证明.答案1.A2. D3.C4. C 【解析】解:①∵,则,,∴是直角三角形;②∵,设,则,,,∴是直角三角形;ACP △BPQ V A B C ∠+∠=∠2180C ∠=︒90C ∠=︒ABC V ::1:2:3A B C ∠∠∠=A x ∠=23180x x x ++=30x =︒30390C ∠=︒⨯=︒ABC V③∵,∴,则,∴是直角三角形;④∵,∴,则,∴是直角三角形;⑤∵,,,∴为钝角三角形.∴能确定是直角三角形的有①②③④共4个,故选C .5. D 【解析】分析:根据三角形外角性质可得∠1=∠A +∠ADE ,∠2=∠A +∠AED ,再根据已知和三角形内角和等于180°即可求解.详解:∵∠1=∠A +∠ADE ,∠2=∠A +∠AED∴∠1+∠2=∠A +∠ADE +∠A +∠AED=∠A +(∠ADE +∠A +∠AED )=60°+180°=240°故选D.6. A【解析】的90A B ∠=︒-∠90A B ∠+∠=︒1809090C ∠=︒-︒=︒ABC V 12A B C ∠=∠=∠1118022A B C C C C ∠+∠+∠=∠+∠+∠=︒90C ∠=︒ABC V 32C B A ∠=∠=∠1118032A B C A A A ∠+∠+∠=∠+∠+∠=︒108011A ︒∠=ABC V ABC V由折叠得:∠A =∠A ',∵∠BDA '=∠A +∠AFD ,∠AFD =∠A '+∠CEA ',∵∠A =α,∠CEA ′=β,∠BDA '=γ,∴∠BDA '=γ=α+α+β=2α+β,故选A.7. B【解析】解:∵,∴,∵分别是的角平分线,∴,∴,∴.故选:B8. A【解析】解:A 、不是整数,正多边形的一个外角不能是,符合题意;B 、,正十边形的一个外角可能是,不符合题意;C 、,正八边形的一个外角可能是,不符合题意;D 、,正十八边形的一个外角可能是,不符合题意.故选:A .9. C【解析】解:∵一个多边形的每个内角都是,∴这个多边形的每个外角都为,50A ∠=︒180130ABC ACB A ∠+∠=︒-∠=︒BE CF 、ABC ACB ∠∠、11,22CBE ABC BCF ACB ∠=∠∠=∠()11165222CBE BCF ABC ACB ABC ACB ∠+∠=∠+∠=∠+∠=︒65CBE B BDF CF ∠+∠=︒∠=360507.2︒÷︒=50︒360409︒÷︒=40︒3603012︒÷︒=30︒3602018︒÷︒=20︒144︒18014436︒-︒=︒∴它的边数为,故选:C .10. B 【解析】∵点E 是的中点,∴,∵,,∴的周长,∴,∴的周长,故选:B .11. 如图,△ACE ≌△DBF ,AD =8,BC =2,则 AC =( )A. 2B. 8C. 5D. 3【答案】C【解析】解:∵△ACE ≌△DBF ,∴AC =DB ,∴AB +BC =DC +BC ,即AB =DC ,∵AD =8,BC =2,∴AB +BC +DC =8,∴2AB +2=8,∴AB =3,∴AC =AB +BC =5,故选C .3601036︒=︒BC BE CE =7AB =10AC =ACE △2510AC CE AE CE AE =++==++15CE AE +=ABE V 771522AB BE AE CE AE =++=++=+=12. A【解析】解:A. 当添加时,且,,由“”不能证得,故选项符合题意;B. 当添加时,且,,由“”能证得,故选项不符合题意;C 当添加时,且,,由“”能证得,故选项不符合题意;D. 当添加时,且,,由“”能证得,故选项不符合题意;故选:.二、填空题:本题共6小题,每小题3分,共18分.13. 9cm【解析】AB ∥CF ,E 为AC 的中点,△ADE ≌△CFE,故答案为14. 【解析】解:由题意可知,当她第一次回到出发点A 时,所走过的图形是一个正多边形,由于正多边形的外角和是,且每一个外角为,,AC BD =ABC BAD ∠=∠AB BA =SSA ABC BAD ≌△△A C D ∠=∠ABC BAD ∠=∠AB BA =AAS ABC BAD ≌△△B AD BC =ABC BAD ∠=∠AB BA =SAS ABC BAD ≌△△C ABD BAC ∠=∠ABC BAD ∠=∠AB BA =ASA ABC BAD ≌△△D A ..A FCE ADE CFE ∴∠=∠∠=∠.AE CE ∴= 6.DA FC ∴==639.AB AD DB cm ∴=+=+=9.cm 108360︒20︒3602018︒÷︒=所以它是一个正十八边形,因此所走的路程为(m ),故答案为:.15. 13【解析】解:依题意有:(n-2)•180°=1980°,解得n=13.故答案为:13.16. 【解析】如图:作DG∥AC,交BE 于点G ,设阴影部分的面积a ,∵DG∥AC,BD=2DC ,∴GD=EC,BD=BC ,∴△BGD 的面积=△BCE 的面积,∵△ABC 的面积为18,AE=EC ,∴△BCE 的面积=△ABC 的面积=9,∴△BGD 的面积=△BCE 的面积=4,又∵△GDF∽△EAF,且=,∴△GDF 的面积=△EAF 的面积,∵BD=2DC,∴△ADC 的面积=18×=6,∴△EAF 的面积=6−a ,186108 =1082152323491249GD AE 234913∴△GDF 的面积=△EAF 的面积=(6−a),∴△BGD 的面积+△GDF 的面积+阴影部分的面积a=9,∴4+(6−a)+a=9,解得a=.故答案为.17. 【解析】解:∵平分平分,∴.∴.∵,∴.故答案为:.18. 70°或30°①如图,当AD 在△ABC 的内部时,∠BAC=∠BAD+∠CAD=50°+20°=70°.②如图,当AD 在△ABC 的外部时,∠BAC=∠BAD -∠CAD=50°-20°=30°.故答案为:70°或30°.三、解答题:本题共7小题,共66分.解答应写出文字说明,证明过程或演算步骤.19. 解:∵,∴,∴.则.又是边上的高,49494921521535︒BD ,ABC CD ∠ACE ∠2,2ABC DBC ACE DCE ∠=∠∠=∠222A ACE ABC DCE DBC ∠=∠-∠=∠-∠=()2DCE DBC D ∠-∠=∠70A ∠=︒1352D A ∠=∠=︒35︒2C ABC A ∠=∠=∠5180C A B C A A ∠+∠+∠=∠=︒36A ∠=︒272C A B C A ∠=∠=∠=︒BD AC.20. ∵,,∴,即,在和中,∵∴(SAS ),∴.21. 解:∵,∴,.∴∵,∴,∴.∴.22.(1)证明:在和中,∴(2)∵,∴.∵,,∴.23. 解:(1)延长到Q ,使得,再连接,∴9018DBC C ∠=︒-∠=︒AB AC =BD CE =AB BD AC CE -=-AD AE =ACD V ABE V AD AE A AAC AB =⎧⎪∠=∠⎨⎪=⎩ACD ABE △△≌B C ∠=∠ABC DEF ≌△△50D A ∠=∠=︒30E B ∠=∠=︒1801803050100DFE E D ∠=︒-∠-∠=︒-︒-︒=︒ABC DEF ≌△△EF BC =EF FC BC FC -=-2EC BF ==ABC V ADC △AB AD BC CDAC AC =⎧⎪=⎨⎪=⎩()SSS ABC ADC ≌△△ABC ADC △≌△ABC ADC ∠=∠1180ABC ∠+∠=︒2180ADC ∠+∠=︒12∠=∠AD DQ AD =BQ∵是的中线,∴,又∵,,∴,∴,在中,,∴,即,∴,故答案为:;(2),证明如下:由(1)知,∴,∴;(3)延长至点G ,使,连接,AD ABC V BD CD =DQ AD =BDQ CDA ∠=∠()SAS BDQ CDA ≌V V 5BQ CA ==ABQ V AB BQ AQ AB BQ -<<+9595AQ -<<+414AQ <<27AD <<27AD <<AC BQ ∥BDQ CDA V V ≌BQD CAD ∠=∠AC BQ ∥AD GD AD =CG∵为边上的中线,∴,在和中,,∴,∴,∵,∴,∴,∴,∴,∴.24. (1)解:,.理由:∵,,∴,∵,∴,∴,AD BC BD CD =ADB V GDC V BD CD ADB GDC AD GD =⎧⎪∠=∠⎨⎪=⎩()SAS V V ≌ADB GDC AB GC G BAD =∠=∠,AE EF =AFE FAE ∠=∠DAB AFE CFG ∠=∠=∠∠=∠G CFG CG CF =AB CF =ACP BPQ △≌△PC PQ ⊥AC AB ⊥BD AB ⊥90A B ∠=∠=︒224AP BQ ==⨯=14410BP AB AP =-=-=BP AC =∴,∴,∵,∴,∴,∴;(2)解:①若,则,,由可得:,∴,由可得:,∴;②若,则,,由可得:,∴,由可得:,∴,综上所述,当与全等时,x 和t 的值分别为:,或,.25.(1)证明:∵∠D +∠DAB +∠ABC +∠DCB =360°,∠DAB =60°,∠DCB =120°,∴∠D +∠ABC =360°﹣60°﹣120°=180°.又∵∠CBF +∠ABC =180°,∴∠D =∠CBF .AC BP =⎩()SAS ACP BPQ ≌△△C BPQ ∠=∠90C APC ∠+∠=︒90APC BPQ ∠+∠=︒90CPQ ∠=︒PC PQ ⊥ACP BPQ △≌△AC BP =AP BQ =AC BP =10142t =-2t =AP BQ =222x ⨯=2x =ACP BQP △≌△AC BQ =AP BP =AP BP =2142t t =-72t =AC BQ =7102x =207x =ACP △BPQ V 2x =2t =207x =72t =∴△CDE ≌△CBF (SAS ).∴CE =CF .(2)解:猜想DE 、EG 、BG 之间的数量关系为:DE +BG =EG .理由如下:连接AC ,如图所示.在△ABC 和△ADC 中, ,∴△ABC ≌△ADC (SSS ),∴∠BCA =∠DCA=∠DCB =×120°=60°.又∵∠ECG =60°,∴∠DCE =∠ACG ,∠ACE =∠BCG .由(1)可得:△CDE ≌△BDF ,∴∠DCE =∠BCF .∴∠BCG +∠BCF =60°,即∠FCG =60°.∴∠ECG =∠FCG .在△CEG 和△CFG 中, ,∴△CEG ≌△CFG (SAS ),∴EG =FG .又∵DE =BF ,FG =BF +BG ,∴DE +BG =EG .DE BF =⎩AB AD BC DC AC AC =⎧⎪=⎨⎪=⎩1212CE CF ECG FCG CG CG =⎧⎪∠=∠⎨⎪=⎩。
湖北省襄阳市襄州区八年级数学上学期期末调研考试试题
湖北省襄阳市襄州区2013-2014学年八年级上学期期末调研考试数学试题(扫描版)新人教版襄州区2013—2014学年度上学期期末学业质量调研测试八年级数学试题参考答案(满分100分)一、选择题(每小题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案 CDDBCACABC二、填空题(每小题3分,共30分)11. 8 ; 12. x ≠0且x ≠3; 13. 3 ; 14. 232yz x - ; 15. 5;16. m <6且m ≠3; 17. 30°; 18. 40; 19. 5; 20.20120100+=x x ; 三、解答题(共40分)[解答题中,部分题目解法(或证法)较多,学生若有其它解法与证法,只要正确,均参照给分。
] 21.(每小题3分,共9分)(1)解:原式=1)2(2-a ………………1分 =)12(12(-+a a ………………3分 (2)解:原式=)96(222y xy x x +- ………………1分 =2)3(2y x x - ………………3分 (3)解:原式=223)(--y x ………………2分 =)3)(3(--+-y x y x ………………3分 22.(本题共8分,每小题4分)(1)解: 去分母,两边都乘以)1(+x x 得,)1(23+=x x ………………1分去括号,得223+=x x移项,合并同类项,得 2=x ………………2分 经检验,2=x 是原方程的解,………………3分 所以,原方程的解是2=x ………………4分 (2)解: 去分母,两边都乘以)4(-x 得,x x --=)4(31 ………………1分 去括号,得x x --=1231移项,合并同类项,得 132=x ………………2分 系数化为1,得 213=x ………………3分 经检验,213=x 是原方程的解, 所以,原方程的解是213=x ………………4分23.(本题4分)解:原式=22a 3)2(a ·)3()2)(2(2++++-+-a a a ………………1分 =3)3(23)2(2++++--a a a a =36242++++-a a a ………………2分 =310+a ………………3分 当2=a (只要23--≠和a 即可)时,原式=3210+=2 ………………4分 24.(本题5分)解:设甲车单独运完这堆垃圾需运x 趟,则乙车单独运完这堆垃圾需运x 2 趟,由题意得,101211=+x x ………………2分 解这个方程得,15=x ………………3分经检验,15=x 是所列方程的解,且符合题意,………………4分 ∴15=x ,302=x答:甲车单独运完这堆垃圾需运15趟,乙车单独运完这堆垃圾需运30趟 . ………………5分25.(本题6分)证明:∵AB=AC,AE=AF, ∠BAF=∠CAE,∴ΔABF ≌ΔAEC, ………………1分∴∠ABF =∠ACE; ………………2分又∵AB =AC, ∴∠ABC =∠ACB,∴∠OB C =∠OCB, ………………3分∴OB =OC,∴ΔABO ≌ΔACO, ………………4分∴∠BAO =∠CAO, ………………5分而AB =AC, ∴BD =DC . ………………6分26.(本题8分)(1)证明:∵∠BAC =90°,∴∠BAD +∠CAE =90°又∵BD ⊥AD, ∴∠BDA =90°,∠BAD +∠ABD =90°,∴∠DBA =∠CAE; ………………1分又∵AB =AC,CE ⊥DE, ∴∠CEA =90°,∴ΔBAD ≌ΔACE, ………………2分∴AD =CE,BD =AE∴DE =AD +AE =BD +CE .………………3分(2)此时,(1)中的结论DE =BD +CE 仍然成立. ………………4分(3) 判定ΔDFE 是等边三角形. ………………5分由(1)和(2)易知∠BAD =∠ACE,AD =CE, …………6分∵ΔAFB 和ΔAFC 都是等边三角形,∴AF =FC, ∠FAB =∠F CA =60°,∴∠FAB+∠BAD=∠FCA+∠ACE,∴∠FAD=∠FCE,∴ΔFAD≌ΔFCE,∴FD=FE, ∠CFE=∠AFD, ………………7分而∠CFE+∠E FA=60°∴∠DFA+∠EFA=∠DFE=60°∴ΔDFE是等边三角形.………………8分。
湖北省襄阳市2021年八年级上学期期末数学试卷(II)卷
湖北省襄阳市2021年八年级上学期期末数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题: (共6题;共12分)1. (2分)当分式有意义时,字母x应满足()A . x≠-1B . x=0C . x≠1D . x≠02. (2分)(2017·德阳模拟) 下列图形中,既是中心对称图形,又是轴对称图形的是()A . 矩形B . 三角形C . 平行四边形D . 等腰梯形3. (2分) (2017八上·宝坻月考) 下列运算正确的是()A . 5m+2m=7m2B . -2m2∙m3=2m5C . (-a2b)3=-a6b3D . (b+2a)(2a-b)=b2-4a24. (2分)若一粒米的质量约是0.000021kg,将数据0.000021用科学记数法表示为()A . 21×10﹣4B . 2.1×10﹣6C . 2.1×10﹣5D . 2.1×10﹣45. (2分)如图,等腰梯形ABCD中,AD∥BC,BD平分∠ABC,∠DBC=30°,AD=5,则BC=A . 5B . 7.5C .D . 106. (2分)(2019·黄石) 如图,矩形中,与相交于点,,将沿折叠,点的对应点为,连接交于点,且,在边上有一点,使得的值最小,此时()A .B .C .D .二、填空题: (共6题;共6分)7. (1分)3x2y•(﹣2x3y2)=________.8. (1分)若x﹣y=2,则代数式x2﹣y2﹣4y的值为________9. (1分) (2019八上·孝南月考) 如图,在Rt△ABC中,∠C=90°,AC=10,BC=5,PQ=AB,点P和点Q分别在AC和AC的垂线AD上移动,则当AP=________时,才能使△ABC和△APQ全等.10. (1分)点P(3,2)关于x轴的对称点P′的坐标是________11. (1分)(2014·河池) 如图,小明从A地沿北偏东60°方向走2千米到B地,再从B地正南方向走3千米到C地,此时小明距离A地________千米(结果可保留根号).12. (1分)(2016·广元) 已知:一等腰三角形的两边长x、y满足方程组,则此等腰三角形的周长为________三、解答题: (共11题;共111分)13. (12分)如图1,已知线段AB、CD相交于点O,连接AC、BD,我们把形如图1的图形称之为“8字形”.如图2,∠CAB和∠BDC的平分线AP和DP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)仔细观察,在图2中有________ 个以线段AC为边的“8字形”(2)在图2中,若∠B=96°,∠C=100°,求∠P的度数.(3)在图2中,若设∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠D、∠B之间存在着怎样的数量关系(用α、β表示∠P),并说明理由;(4)如图3,则∠A+∠B+∠C+∠D+∠E+∠F的度数为________14. (15分)计算:(1)(2)(3).15. (5分)如图,△ABC中,AD⊥BC于D,若BD=AD,FD=CD.求证:BE⊥AC.16. (10分)综合题。
襄阳市襄州区2020-2021学年度上学期期末学业质量调研测试八年级数学试题(扫描版附答案)
襄州区2020—2021学年度上学期期末学业质量调研测试八年级数 学 参 考 答 案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共18分) 11.3.01x10-6; 12.270°; 13.yx y x x ++-)2(2; 14.32 ; 15 . 96°; 16.①②③④三、解答题(共72分)17.(第1小题2分,第2小题4分,第3、4小题各3分,共12分)因式分解解:(1)原式=2(p+q )(3p-2q)…………2分(2)原式=(m 2+4+4m )(m 2+4-4m )…………2分 =(m +2)2(m -2)2;…………4分计算(3)解:原式=4x 6y 2·(-2xy )-8x 9y 3÷2x 2…………1分=-8x 7y 3-4x 7y 3…………2分=-12x 7y 3;…………3分(4)原式=(a 2-4ab+4b 2+a 2-4b 2-4 a 2+2ab )÷2a …………1分=(-2a 2-2ab )÷2a …………2分=-a -b …………3分18. 解方程(本题4分)解:方程两边同乘以(x+1)(x-1),得 x 2+x +1=x 2-1.......………………………2分 移项、合并同类项,得 x=-2.......………………………3分检验:当x=-2时,(x+1)(x-1)≠0∴原分式方程的解是x=-2.......………………………4分19.(本题6分)先化简,再求值 解:原式=aa a a a a a 11)1()2()2)(2(2⋅--+--+=122+-+a a ..............……………2分 =222--++a a a ..............……………3分=22-a a …...............................................................4分 ∵ a=(1-π)0+1-2=1+21=23.............................……………5分∴当23=a 时,原式=6223232-=-⨯..............................………………6分 20.(本题6分)[解答]解:(1)如图所示:△A 1B 1C 1,即为所求;………………………………………1分(2)如图所示:P 点即为所求,P(0,1).………………………………………6分21. (本题7分)解:(1)①②;①③………………………………………………………2分 (2)选①②证明如下:在BOE ∆和COD ∆中,∵EBO ∠=DCO ∠,EOB ∠=DOC ∠,BE =CD∴BOE ∆≌COD ∆…………………………………………………………4分 ∴BO =CO∴OBC ∠=OCB ∠………………………………………………………5分∴EBO ∠+OBC ∠=DCO ∠+OCB ∠ 即:ABC ∠=ACB ∠………………………6分 ∴AB =AC 即:ABC △是等腰三角形.…………………………………………7分 (若选①③证明,仿照上面步骤酌情给分.) 22.(本题8分) (1)A ……………3分(2)解:①…………………5分②∵,a b (a >b )满足2253a b +=,14ab =.……………8分23.(本题8分)答:每只A型额温枪的价格是200元,每只B 型额温枪的价格是180元…………5分(2)设购进A型额温枪m只,则购进B型额温枪(30-m)只.依题意,得200m+180(30-m)≤5800.…………………………………6分解得m≤20.…………………………………………………7分答:最多可购进A型额温枪20只.…………………………8分24.(本题10分)(1)BD=DE……………………………………1分(2)答:BD=DE……………………………………2分证明:过D作DF∥BC交AB于F.……………………3分∴∠AFD=∠ABC ∠ADF=∠ACB∵△ABC是等边三角形∴∠ABC=∠ACB=∠A=60°,AB=AC∴∠AFD=∠ADF=∠A=60°∴△AFD是等边三角形……………………………5分∴FD=AD=AF(等边三角形各边都相等)∵AB=AC∴BF=CD…………………………………………6分又∵∠AFD=∠ACB=60°且∠AFD+∠BFD=∠ACB+∠DCE=180°∴∠BFD=∠DCE…………………………………7分∵ AD=CE,FD=AD∴FD=CE…………………………………………8分在△BFD和△DCE中BF=CD∠BFD=∠DCEFD=CE∴△BFD≌△DCE(SAS)……………………9分∴BD=DE(全等三角形的对应边相等) ………10分(其他方法也行,仿照上面步骤酌情给分)25. (本题11分)a-=0解(1)∵a2-12a+36+ba-=0 则a-6=0且a-b=0∴(a-6)2+b∴a=b=6∴A(0,6) B(6,0)……………………………3分(2)过点O作OM⊥BD于M,ON⊥AC于N,∵x轴⊥y轴∴∠AOC=∠BOE=90°∴∠AOC+∠CAO=90°∵BD⊥AC∴∠BCD+∠CBE=90°∴∠CAO=∠CBE…………………5分∵A(0,6) B(6,0)∴OA=OB=6在△AOC 和△BOE 中 ∠CAO=∠CBEOA=OB∠AOC=∠BOE∴△AOC ≌△BOE (ASA )…………………6分∴OE=OCS △AOC =S △BOE , AC=BE∴21AC •ON =21BC •OM ∴OM=ON 且OM ⊥BD ,ON ⊥AC∴点O 一定在∠CDB 的角平分线上。
八年级上册襄阳数学全册全套试卷(培优篇)(Word版 含解析)
八年级上册襄阳数学全册全套试卷(培优篇)(Word 版 含解析)一、八年级数学三角形填空题(难)1.如图1,△ABC 中,沿∠BAC 的平分线AB 1折叠,剪掉重叠部分;将余下部分沿∠B 1A 1C 的平分线A 1B 2折叠,剪掉重叠部分;…;将余下部分沿∠B n A n C 的平分线A n B n+1折叠,点B n 与点C 重合,无论折叠多少次,只要最后一次恰好重合,我们就称∠BAC 是△ABC 的好角.(1)如图2,在△ABC 中,∠B>∠C ,若经过两次折叠,∠BAC 是△ABC 的好角,则∠B 与∠C 的等量关系是_______;(2)如果一个三角形的最小角是20°,则此三角形的最大角为______时,该三角形的三个角均是此三角形的好角。
【答案】B 2C ∠∠= 140°、120°或80°【解析】【分析】(1)根据折叠性质可得∠A 1B 1B 2=∠C ,∠AA 1B 1=∠B ,由三角形外角性质可得∠AA 1B 1=2∠C ,根据等量代换可得∠B=2∠C ;(2)先求出经过三次折叠,∠BAC 是△ABC 的好角时,∠B 与∠C 的等量关系为∠B=3∠C ,进而可得经过n 次折叠,∠BAC 是△ABC 的好角时∠B 与∠C 的等量关系为∠B=n ∠C ,因为最小角是20º,是△ABC 的好角,根据好角定义,设另两角分别为20mº,4mn°,由题意得20m+20mn+20=180°,所以m(n+1)=8,再根据m 、n 都是正整数可得m 与n+1是8的整数因子,从而可以求得结果.【详解】(1)根据折叠性质得∠B=∠AA 1B 1,∠A 1B 1B 2=∠C ,∵∠AA 1B 1=∠A 1B 1B 2+∠C ,∴∠B=2∠C故答案为:∠B=2∠C(2)如图:∵根据折叠的性质知,∠B=∠AA 1B 1,∠C=∠A 2B 2C ,∠A 1B 1C=∠A 1A 2B 2, ∴根据三角形的外角定理知,∠A 1A 2B 2=∠C+∠A 2B 2C=2∠C ;∵根据四边形的外角定理知,∠BAC+∠B+∠AA 1B 1-∠A 1B 1C=∠BAC+2∠B-2∠C=180°, 根据三角形ABC 的内角和定理知,∠BAC+∠B+∠C=180°,∴∠B=3∠C ;∴当∠B=2∠C 时,∠BAC 是△ABC 的好角;当∠B=3∠C 时,∠BAC 是△ABC 的好角; 故若经过n 次折叠∠BAC 是△ABC 的好角,则∠B 与∠C (不妨设∠B >∠C )之间的等量关系为∠B=n ∠C ;∵最小角为20°, ∴设另两个角为20m°和20mn°,∴20°+20m°+20mn°=180°,即m(1+n)=8,∵m 、n 为整数,∴m=1,1+n=8;或m=2,1+n=4;或m=4,1+n=2.解得:m=1,n=7;m=2,n=3,m=4,n=1,∴另两个角为20°、140°或40°、120°或80°、80°,∴此三角形最大角为140°、120°或80°时,三个角均是此三角形的好角.故答案为:140°、120°或80°【点睛】本题考查了翻折变换(折叠问题).充分利用三角形内角和定理、三角形外角定理以及折叠的性质是解题关键.2.如图,已知AB ∥DE ,∠ABC=80°,∠CDE=140°,则∠BCD=_____.【答案】40°【解析】试题分析:延长DE 交BC 于F 点,根据两直线平行,内错角相等,可知∠ABC=BFD ∠=80°,由此可得100DFC ∠=︒,然后根据三角形的外角的性质,可得BCD ∠=EDC ∠-FD C ∠=40°.故答案为:40°.3.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 度.【答案】360°.【解析】【分析】根据多边形的外角和等于360°解答即可.【详解】由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案为360°.【点睛】本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.4.如图所示,将△ABC沿着DE翻折,若∠1+∠2=80°,则∠B=_____度.【答案】40.【解析】【分析】利用三角形的内角和和四边形的内角和即可求得.【详解】∵△ABC沿着DE翻折,∴∠1+2∠BED=180°,∠2+2∠BDE=180°,∴∠1+∠2+2(∠BED+∠BDE)=360°,而∠1+∠2=80°,∠B+∠BED+∠BDE=180°,∴80°+2(180°﹣∠B)=360°,∴∠B=40°.故答案为:40°.【点睛】本题考查图形的折叠变化及三角形的内角和定理.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.5.如图,AB∥CD,∠ABE=66°,∠D=54°,则∠E=____度.【答案】12【解析】【分析】利用三角形的外角与内角的关系及平行线的性质可直接解答.【详解】∵AB∥CD,∴∠BFC=∠ABE=66°.在△EFD中,利用三角形的外角等于与它不相邻的两个内角的和,得到∠BFC=∠E+∠D,∴∠E=∠BFC-∠D=12°.故答案是:12.【点睛】本题考查了三角形外角与内角的关系及平行线的性质,比较简单.6.如图,已知长方形纸片的一条边经过直角三角形纸片的直角顶点,若长方形纸片的一组对边与直角三角形的两条直角边相交成∠1,∠2,则∠2-∠1=____.【答案】90°【解析】【分析】【详解】如图:∵∠2+∠3=180°,∴∠3=180°﹣∠2.∵直尺的两边互相平行,∴∠4=∠3,∴∠4=180°﹣∠2.∵∠4+∠1=90°,∴180°﹣∠2+∠1=90°,即∠2﹣∠1=90°.故答案为90°.二、八年级数学三角形选择题(难)7.如图,∠ABC =∠ACB ,BD 、CD 分别平分△ABC 的内角∠ABC 、外角∠ACP ,BE平分外角∠MBC 交 DC 的延长线于点 E ,以下结论:①∠BDE =12∠BAC ;② DB⊥BE ;③∠BDC +∠ACB= 90︒;④∠BAC + 2∠BEC = 180︒ .其中正确的结论有()A.1 个B.2 个C.3 个D.4 个【答案】D【解析】【分析】根据角平分线的定义、三角形的内角和定理、三角形的外角的性质、判断即可.【详解】① ∵BD、CD分别平分△ABC的内角∠ABC、外角∠ACP,∴∠ACP=2∠DCP,∠ABC=2∠DBC,又∵∠ACP=∠BAC+∠ABC,∠DCP=∠DBC+∠BDC,∴∠BAC=2∠BDE,∴∠BDE =12∠BAC∴①正确;②∵BD、BE分别平分△ABC的内角∠ABC、外角∠MBC,∴∠DBE=∠DBC+∠EBC=12∠ABC+12∠MBC=12×180°=90°,∴EB⊥DB,故②正确,③∵∠DCP=∠BDC+∠CBD,2∠DCP=∠BAC+2∠DBC,∴2(∠BDC+∠CBD)=∠BAC+2∠DBC,∴∠BDC=12∠BAC,∵∠BAC+2∠ACB=180°,∴12∠BAC+∠ACB=90°,∴∠BDC+∠ACB=90°,故③正确,④∵∠BEC=180°−12(∠MBC+∠NCB)=180°−12(∠BAC+∠ACB+∠BAC+∠ABC)=180°−12(180°+∠BAC)∴∠BEC=90°−12∠BAC,∴∠BAC+2∠BEC=180°,故④正确,即正确的有4个,故选D【点睛】此题考查三角形的外角性质,平行线的判定与性质,三角形内角和定理,解题关键在于掌握各性质定理8.马小虎在计算一个多边形的内角和时,由于粗心少算了2个内角,其和等于830,则该多边形的边数是( )A.7B.8C.7或8D.无法确定【答案】C【解析】【分析】n边形的内角和是(n-2)•180°,即为180°的(n-2)倍,多边形的内角一定大于0度,小于180度,因而多边形中,除去2个内角外,其余内角和与180度的商加上2,以后所得的数值,比这个数值大1或2的整数就是多边形的边数.【详解】设少加的2个内角和为x度,边数为n.则(n-2)×180=830+x,即(n-2)×180=4×180+110+x,因此x=70,n=7或x=250,n=8.故该多边形的边数是7或8.故选C.【点睛】本题考查了多边形的内角和定理,正确理解多边形内角的大小的特点,以及多边形的内角和定理是解决本题的关键.9.如图,七边形ABCDEFG中,AB,ED的延长线交于点O,若∠1,∠2,∠3,∠4的外角和等于215°,则∠BOD的度数为()A.20°B.35°C.40°D.45°【答案】B【解析】【分析】由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE的内角和,则可求得∠BOD.【详解】解:∵∠1、∠2、∠3、∠4的外角的角度和为215°,∴∠1+∠2+∠3+∠4+215°=4×180°,∴∠1+∠2+∠3+∠4=505°,∵五边形OAGFE内角和=(5-2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°-505°=35°,故选:B.【点睛】本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.10.一个多边形的内角和是1260°,这个多边形的边数是()A.6 B.7 C.8 D.9【答案】D【解析】试题解析:设这个多边形的边数为n,由题意可得:(n-2)×180°=1260°,解得n=9,∴这个多边形的边数为9,故选D.11.如图,把△ABC沿EF对折,叠合后的图形如图所示.若∠A=60°,∠1=85°,则∠2的度数()A.24°B.25°C.30°D.35°【答案】D【解析】【分析】首先根据三角形内角和定理可得∠AEF+∠AFE=120°,再根据邻补角的性质可得∠FEB+∠EFC=360°-120°=240°,再根据由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=240°,然后计算出∠1+∠2的度数,进而得到答案.【详解】解:∵∠A=60°,∴∠AEF+∠AFE=180°-60°=120°,∴∠FEB+∠EFC=360°-120°=240°,∵由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=240°,∴∠1+∠2=240°-120°=120°,∵∠1=85°,∴∠2=120°-85°=35°.故选:D.【点睛】此题主要考查了翻折变换,关键是根据题意得到翻折以后,哪些角是对应相等的.12.若(a﹣3)2+|b﹣6|=0,则以a、b为边长的等腰三角形的周长为()A.12 B.15 C.12或15 D.18【答案】B【解析】【分析】根据非负数的和为零,可得每个非负数同时为零,可得a、b的值,根据等腰三角形的判定,可得三角形的腰,根据三角形的周长公式,可得答案.【详解】由(a﹣3)2+|b﹣6|=0,得a﹣3=0,b﹣6=0.则以a、b为边长的等腰三角形的腰长为6,底边长为3,周长为6+6+3=15,故选B.【点睛】本题考查了非负数的性质,利用非负数的和为零得出每个非负数同时为零是解题关键.三、八年级数学全等三角形填空题(难)13.如图,ABE△,BCD均为等边三角形,点A,B,C在同一条直线上,连接AD,EC,AD与EB相交于点M,BD与EC相交于点N,连接OB,下列结论正确的有_________.①AD EC=;②BM BN=;③MN AC;④EM MB=;⑤OB平分AOC∠【答案】①②③⑤.【解析】【分析】由题意根据全等三角形的判定和性质以及等边三角形的性质和角平分线的性质,对题干结论依次进行分析即可.【详解】解:∵△ABE,△BCD均为等边三角形,∴AB=BE,BC=BD,∠ABE=∠CBD=60°,∴∠ABD=∠EBC,在△ABD和△EBC中,AB BEABD EBCBD BC⎧⎪∠∠⎨⎪⎩===∴△ABD≌△EBC(SAS),∴AD=EC,故①正确;∴∠DAB=∠BEC,又由上可知∠ABE=∠CBD=60°,∴∠EBD=60°,在△ABM 和△EBN 中,MAB NEB AB BEABE EBN ∠∠⎧⎪⎨⎪∠∠⎩=== ∴△ABM ≌△EBN (ASA ),∴BM=BN ,故②正确;∴△BMN 为等边三角形,∴∠NMB=∠ABM=60°,∴MN ∥AC ,故③正确;若EM=MB ,则AM 平分∠EAB ,则∠DAB=30°,而由条件无法得出这一条件,故④不正确;如图作,,BG AD BH EC ⊥⊥∵由上可知△ABD ≌△EBC ,∴两个三角形对应边的高相等即BG BH =,∴OB 是AOC ∠的角平分线,即有OB 平分AOC ∠,故⑤正确.综上可知:①②③⑤正确.故答案为:①②③⑤.【点睛】本题考查全等三角形的判定和性质,熟练掌握全等三角形的判定和性质以及等边三角形的性质和角平分线的性质与平行线的判定是解题的关键.14.如图,在△ABC 中,AB =8,AC =5,AD 是∠BAC 的角平分线,点D 在△ABC 内部,连接AD 、BD 、CD ,∠ADB =150°,∠DBC =30°,∠ABC +∠ADC =180°,则线段CD 的长度为________.【答案】3【解析】【分析】在AB上截取AE=AC,证明△ADE和△ADC全等,再证BDE是等腰三角形即可得出答案.【详解】在AB上截取AE=AC∵AD是∠BAC的角平分线∴∠EAD=∠CAD又AD=AD∴△ADE≌△ADC(SAS)∴ED=DC,∠ADE=∠ADC∵∠ADB=150°∴∠EDB+∠ADE=150°又∵∠DBC=30°,∠ABC+∠ADC=180°∴∠ABD+∠DBC+∠ADC=180°即∠ABD +∠ADC=150°∴∠ABD=∠EDB∴BE=ED即BE=CD又AB=8,AC=5CD=BE=AB-AE=AB-AC=3故答案为3【点睛】本题考查的是全等三角形的综合,解题关键是利用截长补短法作出两个全等的三角形.15.在△ABC 和△DEF 中,AC=DF ,BC=EF ,∠B=∠E ,且∠B 、∠E 都是锐角,∠C <90°,若∠B 满足条件:______________,则△ABC ≌△DEF .【答案】∠B≥∠A .【解析】【分析】虽然题目中∠B 为锐角,但是需要对∠B 进行分类探究会理解更深入:可按“∠B 是直角、钝角、锐角”三种情况进行,最后得出∠B 、∠E 都是锐角时两三角形全等的条件.【详解】解:需分三种情况讨论:第一种情况:当∠B 是直角时:如图①,在△ABC 和△DEF ,AC=DF ,BC=EF ,∠B=∠E=90°,可知:△ABC 与△DEF 一定全等,依据的判定方法是HL ;第二种情况:当∠B 是钝角时:如图②,过点C 作CG ⊥AB 交AB 的延长线于G ,过点F 作DH ⊥DE 交DE 的延长线于H .∵∠B=∠E ,且∠B 、∠E 都是钝角.∴180°-∠B=180°-∠E ,即∠CBG=∠FEH .在△CBG 和△FEH 中,CBG FEH G HBC EF ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△CBG ≌△FEH (AAS ),∴CG=FH ,在Rt △ACG 和Rt △DFH 中,AC DF CG FH⎧⎨⎩=,= ∴Rt △ACG ≌Rt △DFH (HL ),∴∠A=∠D , 在△ABC 和△DEF 中,A DB EAC DF ∠∠⎧⎪∠∠⎨⎪⎩==,=∴△ABC ≌△DEF (AAS );第三种情况:当∠B 是锐角时:在△ABC 和△DEF 中,AC=DF ,BC=EF ,∠B=∠E ,且∠B 、∠E 都是锐角,小明在△ABC 中(如图③)以点C 为圆心,以AC 长为半径画弧交AB 于点D ,假设E 与B 重合,F 与C 重合,得到△DEF 与△ABC 符号已知条件,但是△AEF 与△ABC 一定不全等,所以有两边和其中一边的对角对应相等的两个三角形不一定全等;由图③可知,∠A=∠CDA=∠B+∠BCD ,∴∠A >∠B ,∴当∠B≥∠A 时,△ABC 就唯一确定了,则△ABC ≌△DEF .故答案为:∠B≥∠A .【点睛】本题是三角形综合题,考查全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键.16.如图,已知ABC △是等边三角形,点D 在边BC 上,以AD 为边向左作等边ADE ,连结BE ,作BF AE ∥交AC 于点F ,若2AF =,4CF =,则AE =________.【答案】27【解析】【分析】证明△BAE ≌△CAD 得到ABE BAC ∠=∠,从而证得BEAF ,再得到AEBF 是平行四边形,可得AE=BF ,在三角形BCF 中求出BF 即可.【详解】作FH BC ⊥于H ,∵ABC 是等边三角形,2AF =,4CF =∴BC=AC=6在HCF 中, CF=4, 060BCF ∠=030,2CFD CH ∴∠==2224212FH ∴=-=22241227BF BH FH ∴=+=+=∵ABC 是等边三角形,ADE 是等边三角形∴AC=AB ,AD=AE ,060CAB DAE ∠=∠=CAD BAE ∴∠=∠CAD BAE ∴∆≅∆060ABE ACD ∴∠=∠=ABE BAC ∴∠=∠BE AF ∴∵BF AE∴AEBF 是平行四边形∴AE=BF= 27【点睛】本题考查全等三角形的判定和性质、平行四边形的判定和性质、等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.17.如图,AB =BC 且AB ⊥BC ,点P 为线段BC 上一点,PA ⊥PD 且PA =PD ,若∠A =22°,则∠D 的度数为_________.【答案】23°【解析】解:过D 作DE ⊥PC 于E .∵PA ⊥PD ,∴∠APB +∠DPE =90°.∵AB ⊥BC ,∴∠A +∠APB =90°,∴∠A =∠DPE =22°.在△ABP 和△PED 中,∵∠A =∠DPE ,∠B =∠E =90°,PA =PD ,∴△ABP ≌△PED ,∴AB =PE ,BP =DE .∵AB =BC ,∴BC =PE ,∴BP =CE .∵BP =DE ,∴CE =DE ,∴∠DCE =45°,∴∠PDC =∠DCE -∠DPC =45°-22°=23°.故答案为:23°.18.如图,已知AB∥CD,O为∠CAB、∠ACD的角平分线的交点,OE⊥AC于E,且OE=2,CO=3,则两平行线间AB、CD的距离等于________.【答案】4【解析】试题解析:如图,过点O作MN,MN⊥AB于M,交CD于N,∵AB∥CD,∴MN⊥CD,∵AO是∠BAC的平分线,OM⊥AB,OE⊥AC,OE=2,∴OM=OE=2,∵CO是∠ACD的平分线,OE⊥AC,ON⊥CD,∴ON=OE=2,∴MN=OM+ON=4,即AB与CD之间的距离是4.点睛:要明确:①角的平分线上的点到角的两边的距离相等,②从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,③平行线间的距离处处相等.四、八年级数学全等三角形选择题(难)19.如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,DH⊥BC于H,交BE于G.下列结论:①BD=CD;②AD+CF=BD;③CE=12BF;④AE=BG.其中正确的是A.①②B.①③C.①②③D.①②③④【答案】C【解析】【分析】根据∠ABC=45°,CD⊥AB可得出BD=CD,利用AAS判定Rt△DFB≌Rt△DAC,从而得出DF=AD,BF=AC.则CD=CF+AD,即AD+CF=BD;再利用AAS判定Rt△BEA≌Rt△BEC,得出CE=AE=12AC,又因为BF=AC所以CE=12AC=12BF,连接CG.因为△BCD是等腰直角三角形,即BD=CD.又因为DH⊥BC,那么DH垂直平分BC.即BG=CG.在Rt△CEG中,CG是斜边,CE是直角边,所以CE<CG.即AE<BG.【详解】解:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.故①正确;在Rt△DFB和Rt△DAC中,∵∠DBF=90°−∠BFD,∠DCA=90°−∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC.∴BF=AC;DF=AD.∵CD=CF+DF,∴AD+CF=BD;故②正确;在Rt△BEA和Rt△BEC中.∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=AE=12 AC.又由(1),知BF=AC,∴CE=12AC=12BF;故③正确;连接CG.∵△BCD是等腰直角三角形,∴BD=CD.又DH⊥BC,∴DH垂直平分BC.∴BG=CG.在Rt △CEG 中,∵CG 是斜边,CE 是直角边,∴CE<CG.∵CE=AE ,∴AE<BG.故④错误.故选C.【点睛】本题考查了等腰直角三角形、等腰三角形的判定与性质、全等三角形的判定与性质.此类问题涉及知识点较多,需要对相关知识点有很高的熟悉度.20.程老师制作了如图1所示的学具,用来探究“边边角条件是否可确定三角形的形状”问题,操作学具时,点Q 在轨道槽AM 上运动,点P 既能在以A 为圆心、以8为半径的半圆轨道槽上运动,也能在轨道槽QN 上运动,图2是操作学具时,所对应某个位置的图形的示意图.有以下结论:①当∠PAQ=30°,PQ=6时,可得到形状唯一确定的△PAQ②当∠PAQ=30°,PQ=9时,可得到形状唯一确定的△PAQ③当∠PAQ=90°,PQ=10时,可得到形状唯一确定的△PAQ④当∠PAQ=150°,PQ=12时,可得到形状唯一确定的△PAQ其中所有正确结论的序号是( )A .②③B .③④C .②③④D .①②③④【答案】C【解析】【分析】分别在以上四种情况下以P 为圆心,PQ 的长度为半径画弧,观察弧与直线AM 的交点即为Q 点,作出PAQ ∆后可得答案.【详解】如下图,当∠PAQ=30°,PQ=6时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现两个位置的Q 都符合题意,所以PAQ ∆不唯一,所以①错误.如下图,当∠PAQ=30°,PQ=9时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现左边位置的Q 不符合题意,所以PAQ ∆唯一,所以②正确.如下图,当∠PAQ=90°,PQ=10时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现两个位置的Q 都符合题意,但是此时两个三角形全等,所以形状相同,所以PAQ ∆唯一,所以③正确.如下图,当∠PAQ=150°,PQ=12时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现左边位置的Q 不符合题意,所以PAQ ∆唯一,所以④正确.综上:②③④正确.故选C .【点睛】本题考查的是三角形形状问题,为三角形全等来探索判定方法,也考查三角形的作图,利用对称关系作出另一个Q 是关键.21.如图,在△ABC 中,AB=AC ,∠BAC=90°,直角∠EPF 的顶点P 是BC 中点,PE ,PF 分别交AB ,AC 于点E ,F ,给出下列四个结论:①△APE ≌△CPF ;②AE=CF ;③△EAF 是等腰直角三角形;④S △ABC =2S 四边形AEPF ,上述结论正确的有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 利用“角边角”证明△APE 和△CPF 全等,根据全等三角形的可得AE=CF ,再根据等腰直角三角形的定义得到△EFP 是等腰直角三角形,根据全等三角形的面积相等可得△APE 的面积等于△CPF 的面积相等,然后求出四边形AEPF 的面积等于△ABC 的面积的一半.【详解】∵AB=AC ,∠BAC=90°,点P 是BC 的中点,∴AP ⊥BC ,AP=PC ,∠EAP=∠C=45°,∴∠APF+∠CPF=90°,∵∠EPF 是直角,∴∠APF+∠APE=90°,∴∠APE=∠CPF ,在△APE 和△CPF 中,45APE CPF AP PCEAP C ∠∠⎧⎪⎨⎪∠∠︒⎩====, ∴△APE ≌△CPF (ASA ),∴AE=CF ,故①②正确;∵△AEP ≌△CFP ,同理可证△APF ≌△BPE ,∴△EFP 是等腰直角三角形,故③错误;∵△APE ≌△CPF ,∴S △APE =S △CPF ,∴四边形AEPF =S △AEP +S △APF =S △CPF +S △BPE =12S △ABC .故④正确, 故选C .【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,根据同角的余角相等求出∠APE=∠CPF ,从而得到△APE 和△CPF 全等是解题的关键,也是本题的突破点.22.如图,AC ⊥BE 于点C ,DF ⊥BE 于点F ,且BC =EF ,如果添上一个条件后,可以直接利用“HL ”来证明△ABC ≌△DEF ,则这个条件应该是( )A.AC=DE B.AB=DE C.∠B=∠E D.∠D=∠A【答案】B【解析】在Rt△ABC与Rt△DEF中,直角边BC=EF,要利用“HL”判定全等,只需添加条件斜边AB=DE.故选:B.23.如图,∠C=∠D=90°,若添加一个条件,可使用“HL”判定Rt△ABC与Rt△ABD全等,则以下给出的条件适合的是( )A.AC=AD B.AB=AB C.∠ABC=∠ABD D.∠BAC=∠BAD 【答案】A【解析】根据题意可知∠C=∠D=90°,AB=AB,然后由AC=AD,可根据HL判定两直角三角形全等,故符合条件;而B答案只知道一边一角,不能够判定两三角形全等,故不正确;C答案符合AAS,证明两三角形全等,故不正确;D答案是符合AAS,能证明两三角形全等,故不正确.故选A.24.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是( )①AD平分∠BAC;②作图依据是S.A.S;③∠ADC=60°;④点D在AB的垂直平分线上A.1个B.2个C.3个D.4个【答案】C【解析】①根据作图的过程可以判定AD是∠BAC的∠平分线;②根据作图的过程可以判定出AD的依据;③利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质求∠ADC的度数;④利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三合一”的性质可以证明点在AB的中垂线上.解:如图所示,①根据作图的过程可知,AD是∠BAC的∠平分线;故①正确;②根据作图的过程可知,作出AD的依据是SSS;故②错误;③∵在△ABC中,∠C=90°,∠B=30°,∴∠CBA=60°.又∵AD是∠BAC的平分线,∴∠1=∠2=12∠CAB=30°,∴∠3=90°-∠2=60°,即∠ADC=60°.故③正确;④∵∠1=∠B=30°,∴AD=BD,∴点D在AB的中垂线上.故④正确;故选C.“点睛”此题主要考查的是作图-基本作图,涉及到角平分线的作法以及垂直平分线的性质,熟练根据角平分线的性质得出∠ADC的度数是解题的关键.五、八年级数学轴对称三角形填空题(难)25.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.以OC为一边作等边三角形OCD,连接AC、AD,当△AOD是等腰三角形时,求α的角度为______【答案】110°、125°、140°【解析】【分析】先求出∠DAO=50°,分三种情况讨论:①AO=AD,则∠AOD=∠ADO,②OA=OD,则∠OAD=∠ADO,③OD=AD,则∠OAD=∠AOD,分别求出α的角度即可.【详解】解:∵设∠CBO=∠CAD=a,∠ABO=b,∠BAO=c,∠CAO=d,则a+b=60°,b+c=180°﹣110°=70°,c+d=60°,∴b﹣d=10°,∴(60°﹣a)﹣d=10°,∴a+d=50°,即∠DAO=50°,分三种情况讨论:①AO=AD,则∠AOD=∠ADO,∴190°﹣α=α﹣60°,∴α=125°;②OA=OD,则∠OAD=∠ADO,∴α﹣60°=50°,∴α=110°;③OD=AD,则∠OAD=∠AOD,∴190°﹣α=50°,∴α=140°;所以当α为110°、125°、140°时,三角形AOD是等腰三角形,故答案为:110°、125°、140°.【点睛】本题是对等边三角形的考查,熟练掌握等边三角形的性质定理及分类讨论是解决本题的关键.26.在平面直角坐标系xOy中,已知点A(2,3),在x轴上找一点P,使得△AOP是等腰三角形,则这样的点P共有_____个.【答案】4【解析】【分析】以O为圆心,OA为半径画弧交x轴于点P1、P3,以A为圆心,AO为半径画弧交x轴于点P4,作OA的垂直平分线交x轴于P2.【详解】解:如图,使△AOP是等腰三角形的点P有4个.故答案为4.【点睛】本题考查了在平面直角坐标系中寻找等腰三角形,掌握两圆一线找等腰三角形是解题的关键.27.如图,已知△ABC和△ADE都是正三角形,连接CE、BD、AF,BF=4,CF=7,求AF的长_________ .【答案】3【解析】【分析】过点A作AF⊥CE交于I,AG⊥BD交于J,证明CAE≅BAD,再证明CAI≅BAJ,求出°7830∠=∠=,然后求出12IF FJ AF==,,通过设FJ x=求出x,即可求出AF的长.【详解】解:过点A作AF⊥CE交于I,AG⊥BD交于J在CAE和BAD中AC ABCAE BADAE AD=⎧⎪∠=∠⎨⎪=⎩∴CAE≅BAD∴ICA ABJ∠=∠∴BFE CAB∠=∠(8字形)∴°120CFD∠=在CAI和BAJ中°90ICA ABJCAI BJACA BA∠=∠⎧⎪∠=∠=⎨⎪=⎩∴CAI≅BAJ,AI AJ CI BJ==∴°60CFA AFJ∠=∠=∴°30FAI FAE∠=∠=在RtAIF和RtAJF中°30FAI FAE∠=∠=∴12IF FJ AF==设FJ x=7,4CF BF==则47x x +=-32x ∴=2AF FJ =AF ∴=3【点睛】此题主要考查了通过做辅助线证明三角形全等,得出相关的边相等,学会合理添加辅助线求解是解决本题的重点.28.如图,己知30MON ∠=︒,点1A ,2A ,3A ,…在射线ON 上,点1B ,2B ,3B ,…在射线OM 上,112A B A ∆,223A B A ∆,334A B A ∆,…均为等边三角形,若12OA =,则556A B A ∆的边长为________.【答案】32【解析】【分析】根据底边三角形的性质求出130∠=︒以及平行线的性质得出112233////A B A B A B ,以及22122A B B A =,得出332212244A B A B B A ===,441288A B B A ==,551216A B B A =⋯进而得出答案.【详解】解:△112A B A 是等边三角形,1121A B A B ∴=,341260∠=∠=∠=︒,2120∴∠=︒,30MON ∠=︒,11801203030∴∠=︒-︒-︒=︒,又360∠=︒,5180603090∴∠=︒-︒-︒=︒,130MON ∠=∠=︒,1112OA A B ∴==,212A B ∴=,△223A B A 、△334A B A 是等边三角形,111060∴∠=∠=︒,1360∠=︒,41260∠=∠=︒,112233////A B A B A B ∴,1223//B A B A ,16730∴∠=∠=∠=︒,5890∠=∠=︒,22122242A B B A =∴==,33232B A B A =,33312428A B B A ∴===,同理可得:444128216A B B A ===,⋯∴△1n n n A B A +的边长为2n ,∴△556A B A 的边长为5232=.故答案为:32.【点睛】本题考查了等边三角形的性质以及30°直角三角形的性质,根据已知得出33124A B B A =,44128A B B A =,551216A B B A =进而发现规律是解题关键.29.在下列结论中:①有三个角是60︒的三角形是等边三角形;②有一个外角是120︒的等腰三角形是等边三角形;③有一个角是60︒,且是轴对称的三角形是等边三角形;④有一腰上的高也是这腰上的中线的等腰三角形是等边三角形.其中正确的是__________.【答案】①②③④【解析】【分析】依据等边三角形的定义,含有一个600角的等腰三角形是等边三角形判断即可.【详解】有三个角是600的三角形是等边三角形,故①正确;外角是1200时,邻补角为600,即有一个内角是600的等腰三角形是等边三角形,故②正确;轴对称的三角形是等腰三角形,且含有一个600角,因此是等边三角形,故③正确;一腰上的高也是中线,故底边等于腰长,所以此三角形是等边三角形,故④正确.故此题正确的是①②③④.【点睛】此题考查等边三角形的判定方法,熟记方法才能熟练运用.30.如图,在边长为6的菱形ABCD 中,∠DAB=60°,E 是AB 的中点,F 是AC 上一个动点,则EF+BF 的最小值是________ .【答案】33【解析】试题解析:∵在菱形ABCD 中,AC 与BD 互相垂直平分,∴点B 、D 关于AC 对称,连接ED ,则ED 就是所求的EF+BF 的最小值的线段,∵E 为AB 的中点,∠DAB=60°,∴DE ⊥AB ,∴ED=22AD AE -=2263-=33,∴EF+BF 的最小值为33.六、八年级数学轴对称三角形选择题(难)31.如图所示,把多块大小不同的30角三角板,摆放在平面直角坐标系中,第一块三角板AOB 的一条直角边与x 轴重合且点A 的坐标为()2,0,30ABO ∠=︒,第二块三角板的斜边1BB 与第一块三角板的斜边AB 垂直且交x 轴于点1B ,第三块三角板的斜边12B B 与第二块三角板的斜边1BB 垂直且交y 轴于点2B ,第四块三角板斜边23B B 与第三块三角板的斜边12B B 垂直且交x 轴于点3B ,按此规律继续下去,则点2018B 的坐标为( )A .()20182(3),0-⨯ B .()20180,2(3)-⨯ C .()20192(3),0⨯ D .()20190,2(3)-⨯ 【答案】D【解析】【分析】 计算出OB 、OB 1、 OB 2的长度,根据题意和图象可以发现题目中的变化规律,从而可以求得点B 2018的坐标.【详解】解:由题意可得,2242-3OB 1323322(3)⨯,OB 231= 323)⨯,…∵2018÷4=504…2,∴点B 2018在y 轴的负半轴上,∴点B 2018的坐标为()20190,2(3)-⨯.故答案为:D .【点睛】 本题考查规律型:点的坐标规律及含30度角的直角三角形的性质,解答本题的关键是明确题意,找出题目中坐标的变化规律,求出相应的点的坐标.32.如图,在平面直角坐标系中,A (a ,0),B (0,a ),等腰直角三角形ODC 的斜边经过点B ,OE ⊥AC ,交AC 于E ,若OE =2,则△BOD 与△AOE 的面积之差为( )A .2B .3C .4D .5【答案】A【解析】【分析】 首先证明△DOB ≌△COA (SAS ),推出S △DOB ﹣S △AOE =S △EOC ,再证明△OEC 是等腰直角三角形即可解决问题.【详解】∵A (a ,0),B (0,a ),∴OA =OB .∵△ODC 是等腰直角三角形,∴OD =OC ,∠D =∠DCO =45°.∵∠DOC =∠BOA =90°,∴∠DOB =∠COA .在△DOB 和△COA 中,∵OD =OC ,∠DOB =∠COA ,OB =OA ,∴△DOB ≌△COA (SAS ),∴∠D =∠OCA =45°,S △DOB ﹣S △AOE =S △EOC .∵OE ⊥AC ,∴∠OEC =90°,∴△CEO 是等腰直角三角形,∴OE =EC =2,∴S △DOB ﹣S △AOE =S △EOC 12=⨯2×2=2. 故选A .【点睛】本题考查了等腰直角三角形的性质和判定,全等三角形的判定和性质等知识,解题的关键是证明△OEC 是等腰直角三角形.33.如图,在锐角△ABC 中,AC =10,S △ABC =25,∠BAC 的平分线交 BC 于点 D ,点 M ,N 分别是 AD 和 AB 上的动点,则 BM +MN 的最小值是( )A.4 B.245C.5 D.6【答案】C【解析】试题解析:如图,∵AD是∠BAC的平分线,∴点B关于AD的对称点B′在AC上,过点B′作B′N⊥AB于N交AD于M,由轴对称确定最短路线问题,点M即为使BM+MN最小的点,B′N=BM+MN,过点B作BE⊥AC于E,∵AC=10,S△ABC=25,∴12×10•BE=25,解得BE=5,∵AD是∠BAC的平分线,B′与B关于AD对称,∴AB=AB′,∴△ABB′是等腰三角形,∴B′N=BE=5,即BM+MN的最小值是5.故选C.34.如图钢架中,∠A=a,焊上等长的钢条P1P2, P2P3, P3P4, P4P5……来加固钢架.著P1A= P1P2,且恰好用了4根钢条,则α的取值范圈是( )A.15°≤ a <18°B.15°< a ≤18°C .18°≤ a <22.5°D .18° < a ≤ 22.5°【答案】C【解析】【分析】由每根钢管长度相等,可知图中都是等腰三角形,利用等腰三角形底角一定是锐角,可推出取值范围.【详解】∵AB=BC=CD=DE=EF∴∠P 1P 2A=∠A=a由三角形外角性质,可得∠P 2P 1P 3=2∠A=2a同理可得,∠P 1P 3P 2=∠P 2P 1P 3=2a ,∠P 3P 2P 4=∠P 3P 4P 2=∠A+∠P 1P 3P 2=3a ,∠P 4P 3P 5=∠P 4P 5P 3=∠A+∠P 3P 4P 2=4a ,在△P 4P 3P 5中,∠P 3P 4P 5=180°-2∠P 4P 3P 5=180°-8a当∠P 5P 4B ≥90°即∠P 5P 4A ≤90°时,不能再放钢管,∴3180890+-≤a a ,解得a ≥18°又∵等腰三角形底角只能是锐角,∴4a <90°,解得a <22.5∴1822.5οο≤<a故选C.【点睛】本题考查等腰三角形的性质,掌握等腰三角形的底角只能是锐角是关键.35.如图所示,在等边△ABC 中,E 是AC 边的中点,AD 是BC 边上的中线,P 是AD 上的动点,若AD =3,则EP +CP 的最小值为( )A .2B .3C .4D .5【答案】B【解析】 由等边三角形的性质得,点B ,C 关于AD 对称,连接BE 交AD 于点P ,则EP+CP=BE 最小,又BE=AD ,所以EP+CP 的最小值是3.故选B.点睛:本题主要考查了等边三角形的性质和轴对称的性质,求一条定直线上的一个动点到定直线的同旁的两个定点的距离的最小值,常用的方法是,①确定两个定点中的一个关于定直线的对称点;②连接另一个定点与对称点,与定直线的交点就是两线段和的值最小时,动点的位置.36.如图,ABC △中,60BAC ∠=︒,ABC ∠、ACB ∠的平分线交于E ,D 是AE 延长线上一点,且120BDC ∠=︒.下列结论:①120BEC ∠=︒;②DB DE =;③2BDE BCE ∠=∠.其中所有正确结论的序号有( ).A .①②B .①③C .②③D .①②③【答案】D【解析】 分析:根据三角形内角和等于180°求出∠ABC+∠ACB ,再根据角平分线的定义求出∠EBC+∠ECB ,然后求出∠BEC=120°,判断①正确;过点D 作DF ⊥AB 于F ,DG ⊥AC 的延长线于G ,根据角平分线上的点到角的两边的距离相等可得DF=DG ,再求出∠BDF=∠CDG ,然后利用“角边角”证明△BDF 和△CDG 全等,根据全等三角形对应边相等可得BD=CD ,再根据等边对等角求出∠DBC=30°,然后根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义求出∠DBE=∠DEB ,根据等角对等边可得BD=DE ,判断②正确,再求出B ,C ,E 三点在以D 为圆心,以BD 为半径的圆上,根据同弧所对的圆周角等于圆心角的一半可得∠BDE=2∠BCE ,判断③正确.详解:∵60BAC ∠=︒,∴18060120ABC ACB ∠+∠=︒-︒=︒,∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,∴12EBC ABC ∠=∠,12ECB ACB ∠=∠, ∴11()1206022EBC ECB ABC ACB ∠+∠=∠+∠=⨯︒=︒, ∴180()18060120BEC EBC ECB ∠=︒-∠+∠=︒-︒=︒, 故①正确.如图,过点D 作DF AB ⊥于F ,DG AC ⊥的延长线于G ,。
人教版八年级上学期第二次质量检测数学试卷含答案
一、选择题1.如图,在正方形ABCD 中,CE =MN ,∠MCE =35°,那么∠ANM 等于( )A .45°B .50°C .55°D .60°2.如图,锐角△ABC 中,AD 是高,E,F 分别是AB,AC 中点,EF 交AD 于G,已知GF=1,AC= 6,△DEG 的周长为10,则△ABC 的周长为( )A .27-32B .28-32C .28-42D .29-523.如图,在正方形ABCD 中,E ,F 分别为BC ,DC 的中点,P 为对角线AC 上的一个动点,则下列线段的长等于BP EP +最小值的是( )A .AB B .CEC .ACD .AF4.如图,在平行四边形ABCD 中,272BC AB B CE AB =∠=︒⊥,,于E F ,为AD 的中点,则AEF ∠的大小是( )A .54︒B .60︒C .66︒D .72︒5.如图所示,在Rt ABC ∆中,90ABC ︒∠=,30BAC ︒∠=,分别以直角边AB 、斜边AC 为边,向外作等边ABD ∆和等边ACE ∆,F 为AC 的中点,DE 与AC 交于点O ,DF 与AB 交于点G .给出如下结论:①四边形ADFE 为菱形;②DF AB ⊥;③14AO AE =;④4CE FG =;其中正确的是( )A .①②③B .①②④C .①③④D .②③④ 6.平行四边形的一边长是12,那么这个平行四边形的两条对角线的长可以是( ) A .10和34B .18和20C .14和10D .10和127.如图,平行四边形ABCD 中,AB=18,BC =12,∠DAB =60°,E 在AB 上,且AE :EB =1:2,F 是BC 的中点,过D 分别作DP ⊥AF 于P ,DQ ⊥CE 于Q ,则下列结论正确的个数是( )(1)CE 平分∠BCD ;(2)AF=CE ;(3)连接DE 、DF ,则ADFCDE S S ∆=;(4)DP :DQ=23:13 A .4个 B .3个C .2个D .1个8.如图,在ABCD 中,AD=2AB ,CE AB ⊥,垂足E 在线段AB 上,F 、G 分别是AD 、CE 的中点,连接FG ,EF 、CD 的延长线交于点H ,则下列结论:①12DCF BCD ∠=∠;②EF CF =:③2BECCEFSS=;④3DFE AEF ∠=∠.其中,正确结论的个数是( )A .1个B .2个C .3个D .4个9.如图,正方形ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸片,使AD 落在BC 上,点A 恰好与BD 上的点F 重合,展开后折痕DE 分别交AB ,AC 于点E 、G ,连结GF ,给出下列结论①∠AGD =110.5°;②S △AGD =S △OGD ;③四边形AEFG 是菱形;④BF 2OF ;⑤如果S △OGF =1,那么正方形ABCD 的面积是2,其中正确的有( )个.A .2个B .3个C .4个D .5个10.如图,在ABC 中,AB =AC =6,∠B =45°,D 是BC 上一个动点,连接AD ,以AD 为边向右侧作等腰ADE ,其中AD =AE ,∠ADE =45°,连接CE .在点D 从点B 向点C 运动过程中,CDE △周长的最小值是( )A .62B .626+C .92D .926+二、填空题11.如图,∠MAN=90°,点C 在边AM 上,AC=4,点B 为边AN 上一动点,连接BC ,△A′BC 与△ABC 关于BC 所在直线对称,点D ,E 分别为AC ,BC 的中点,连接DE 并延长交A′B 所在直线于点F ,连接A′E .当△A′EF 为直角三角形时,AB 的长为_____.12.如图,在矩形ABCD 中,4AB =,2AD =,E 为边CD 的中点,点P 在线段AB 上运动,F 是CP 的中点,则CEF ∆的周长的最小值是____________.13.如图,ABC ∆是边长为1的等边三角形,取BC 边中点E ,作//ED AB ,//EF AC ,得到四边形EDAF ,它的周长记作1C ;取BE 中点1E ,作11//E D FB ,11//E F EF ,得到四边形111E D FF ,它的周长记作2C .照此规律作下去,则2020C =______.14.如图,在矩形ABCD 中,AD =2AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①∠AED =∠CED ;②OE =OD ;③BH =HF ;④BC ﹣CF =2HE ;⑤AB =HF ,其中正确的有_____.15.如图,Rt ABE ∆中,90,B AB BE ︒∠==, 将ABE ∆绕点A 逆时针旋转45︒,得到,AHD ∆过D 作DC BE ⊥交BE 的延长线于点C ,连接BH 并延长交DC 于点F ,连接DE 交BF 于点O .下列结论:①DE 平分HDC ∠;②DO OE =; ③CD HF =; ④2BC CF CE -=; ⑤H 是BF 的中点,其中正确的是___________16.在锐角三角形ABC 中,AH 是边BC 的高,分别以AB ,AC 为边向外作正方形ABDE 和正方形ACFG ,连接CE ,BG 和EG ,EG 与HA 的延长线交于点M ,下列结论:①BG=CE ;②BG ⊥CE ;③AM 是△AEG 的中线;④∠EAM=∠ABC .其中正确的是_________.17.菱形ABCD 的周长为24,∠ABC=60°,以AB 为腰在菱形外作底角为45°的等腰△ABE ,连结AC ,CE ,则△ACE 的面积为___________.18.如图,在菱形ABCD 中,AC 交BD 于P ,E 为BC 上一点,AE 交BD 于F ,若AB=AE ,EAD 2BAE ∠∠=,则下列结论:①AF=AP ;②AE=FD ;③BE=AF .正确的是______(填序号).19.已知:一组邻边分别为6cm 和10cm 的平行四边形ABCD ,DAB ∠和ABC ∠的平分线分别交CD 所在直线于点E ,F ,则线段EF 的长为________cm .20.定理:直角三角形斜边上的中线等于斜边的一半,即:如图1,在Rt △ABC 中,∠ACB =90°,若点D 是斜边AB 的中点,则CD =12AB ,运用:如图2,△ABC 中,∠BAC =90°,AB =2,AC =3,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED 连接BE ,CE ,DE ,则CE 的长为_____.三、解答题21.在四边形ABCD 中,AD ∥BC ,AB=8cm ,AD=16cm ,BC=22cm ,∠ABC=90°.点P 从点A 出发,以1cm/s 的速度向点D 运动,点Q 从点C 同时出发,以3cm/s 的速度向点B 运动,其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t 秒.(1)当t= 时,四边形ABQP 成为矩形?(2)当t= 时,以点P 、Q 与点A 、B 、C 、D 中的任意两个点为顶点的四边形为平行四边形?(3)四边形PBQD 是否能成为菱形?若能,求出t 的值;若不能,请说明理由,并探究如何改变Q 点的速度(匀速运动),使四边形PBQD 在某一时刻为菱形,求点Q 的速度.22.如图正方形ABCD ,DE 与HG 相交于点O (O 不与D 、E 重合).(1)如图(1),当90GOD ∠=︒, ①求证:DE GH =; ②求证:2GD EH DE +>;(2)如图(2),当45GOD ∠=︒,边长4AB =,25HG =,求DE 的长. 23.已知,在△ABC 中,∠BAC =90°,∠ABC =45°,D 为直线BC 上一动点(不与点B ,C 重合),以AD 为边作正方形ADEF ,连接CF .(1)如图1,当点D 在线段BC 上时,BC 与CF 的位置关系是 ,BC 、CF 、CD 三条线段之间的数量关系为 ;(2)如图2,当点D 在线段BC 的延长线上时,其他条件不变,请猜想BC 与CF 的位置关系BC ,CD ,CF 三条线段之间的数量关系并证明;(3)如图3,当点D 在线段BC 的反向延长线上时,点A ,F 分别在直线BC 的两侧,其他条件不变.若正方形ADEF 的对角线AE ,DF 相交于点O ,OC =132,DB =5,则△ABC 的面积为 .(直接写出答案)24.如图1,点E 为正方形ABCD 的边AB 上一点,EF EC ⊥,且EF EC =,连接AF ,过点F 作FN 垂直于BA 的延长线于点N . (1)求EAF ∠的度数;(2)如图2,连接FC 交BD 于M ,交AD 于P ,试证明:2BD BG DG AF DM =+=+.25.如图,在四边形ABCD 中,AD BC =,AD BC ∥,连接AC ,点P 、E 分别在AB 、CD 上,连接PE ,PE 与AC 交于点F ,连接PC ,D ∠=BAC ∠,DAE AEP ∠=∠. (1)判断四边形PBCE 的形状,并说明理由; (2)求证:CP AE =;(3)当P 为AB 的中点时,四边形APCE 是什么特殊四边形?请说明理由.26.如图,正方形ABCD 的对角线AC ,BD 相交于点O ,点E 是AC 的一点,连接EB ,过点A 做AM ⊥BE ,垂足为M ,AM 与BD 相交于点F .(1)猜想:如图(1)线段OE 与线段OF 的数量关系为 ;(2)拓展:如图(2),若点E 在AC 的延长线上,AM ⊥BE 于点M ,AM 、DB 的延长线相交于点F ,其他条件不变,(1)的结论还成立吗?如果成立,请仅就图(2)给出证明;如果不成立,请说明理由. 27.阅读下列材料,并解决问题:如图1,在Rt ABC ∆中,90C ∠=︒,8AC =,6BC =,点D 为AC 边上的动点(不与A 、C 重合),以AD ,BD 为边构造ADBE ,求对角线DE 的最小值及此时ADAC的值是多少.在解决这个问题时,小红画出了一个以AD ,BD 为边的ADBE (如图2),设平行四边形对角线的交点为O ,则有AO BO =.于是得出当OD AC ⊥时,OD 最短,此时DE 取最小值,得出DE 的最小值为6.参考小红的做法,解决以下问题:(1)继续完成阅读材料中的问题:当DE 的长度最小时,ADAC=_______; (2)如图3,延长DA 到点F ,使AF DA =.以DF ,DB 为边作FDBE ,求对角线DE 的最小值及此时ADAC的值.28.如图①,在ABC 中,AB AC =,过AB 上一点D 作//DE AC 交BC 于点E ,以E 为顶点,ED 为一边,作DEF A ∠=∠,另一边EF 交AC 于点F .(1)求证:四边形ADEF 为平行四边形;(2)当点D 为AB 中点时,ADEF 的形状为 ;(3)延长图①中的DE 到点,G 使,EG DE =连接,,,AE AG FG 得到图②,若,AD AG =判断四边形AEGF 的形状,并说明理由.29.在边长为5的正方形ABCD 中,点E 在边CD 所在直线上,连接BE ,以BE 为边,在BE 的下方作正方形BEFG ,并连接AG .(1)如图1,当点E 与点D 重合时,AG = ; (2)如图2,当点E 在线段CD 上时,DE =2,求AG 的长; (3)若AG =517,请直接写出此时DE 的长.30.如图,在矩形ABCD 中,AB a ,BC b =,点F 在DC 的延长线上,点E 在AD 上,且有12CBE ABF ∠=∠.(1)如图1,当a b =时,若60CBE ∠=︒,求证:BE BF =;(2)如图2,当32b a =时, ①请直接写出ABE ∠与BFC ∠的数量关系:_________;②当点E 是AD 中点时,求证:2CF BF a +=; ③在②的条件下,请直接写出:BCF ABCD S S ∆矩形的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】过B 作BF ∥MN 交AD 于F ,则∠AFB =∠ANM ,根据正方形的性质得出∠A =∠EBC =90°,AB =BC ,AD ∥BC ,推出四边形BFNM 是平行四边形,得出BF =MN =CE ,证Rt △ABF ≌Rt △BCE ,推出∠AFB =∠ECB 即可. 【详解】 解:过B 作BF ∥MN 交AD 于F , 则∠AFB =∠ANM , ∵四边形ABCD 是正方形,∴∠A =∠EBC =90°,AB =BC ,AD ∥BC , ∴FN ∥BM ,BF ∥MN , ∴四边形BFNM 是平行四边形,∴BF =MN ,∵CE =MN ,∴CE =BF ,在Rt △ABF 和Rt △BCE 中BF CE AB BC =⎧⎨=⎩∴Rt △ABF ≌Rt △BCE (HL ),∴∠ABF =∠MCE =35°,∴∠ANM =∠AFB =55°,故选:C .【点睛】本题考查了直角三角形全等的判定即性质,还涉及正方形的性质以及平行四边形的判定与性质,构造全等三角形是解题关键.2.C解析:C【解析】【分析】由中点性质先得AF =3,再用勾股定理求出AG =DG =AG =,已知△DEG 的周长为10,所以求得EG+DE 的值,进一步证得AB=2DE,BD=2EG,从而求得△ABC 的周长.【详解】∵ E,F 分别是AB,AC 中点,EF 交AD 于G,∴EF ∥BC ,11AF AC 6322==⨯= ∵AD 是高∴∠ADC=∠AGF=90°在Rt △AGF 中AG ===∵EF ∥BC∴1AG AF DG FC== ∴FG 是△ADC 的中位线∴DC=2GF=2∴ ∵ △DEG 的周长为10,∴ 在Rt △ADB 中,点E 是AB 边的中点,点G 是AD 的中点,∴AB=2DE ,BD=2EG∴AB+BD=2(EG+DE)=20-42∴△ABC的周长为:AB+BD+DC+AC=20-42+2+6=28-42故答案为C【点睛】此题主要考查了直角三角形的性质、勾股定理、中位线性质等知识点.在直角三角形中,斜边上的中线等于斜边的一半.3.D解析:D【解析】【分析】+的最小值连接DP,当点D,P,E在同一直线上时,由△PCF≌△PCB可得DP=BP,BP EP+最小值等于线段AF的长.为DE长,依据△ADF≌△DCE,AF=DE,即可得到BP EP【详解】解:如图,连接DP,∵PC=PC, ∠PCD=∠PCB=45°∴△PCF≌△PCB∴BP=DP∴BP+PE =DP+PE+的最小值为DE长,∴当点D,P,E在同一直线上时,BP EP又∵AB=CD,∠ADF=∠ECD,DF=EC,∴△ADF≌△DCE∴AF=DE,+最小值等于线段AF的长,∴BP EP故选:D.【点睛】本题考查的是轴对称,最短路线问题,根据题意作出A关于BD的对称点C是解答此题的关键.4.A解析:A【分析】过F作AB的平行线FG,由于F是AD的中点,那么G是BC的中点,即Rt△BCE斜边上的中点,由此可得BC=2EG=2FG,即△GEF、△BEG都是等腰三角形,因此求∠B的度数,只需求得∠BEG的度数即可;易知四边形ABGF是平行四边形,得∠EFG=∠AEF,由此可求得∠FEG的度数,即可得到∠AEG的度数,根据邻补角的定义可得∠BEG的度数,由此得解.【详解】解:过F作FG∥AB交BC于G,连接EG,∵在平行四边形ABCD中,AB∥CD,AD∥BC,∴FG∥AB∥CD,∵FG∥AB,AD∥BC,∴四边形ABGF是平行四边形,∴AF=BG,又∵F为AD中点∴G是BC的中点;∵BC=2AB,F为AD的中点,∴BG=AB=FG=AF,∵在Rt△BEC中,EG是斜边上的中线,∴BG=GE=FG=12 BC;∴∠BEG=∠B=72°,∴∠AEG=∠AEF+∠FEG=180°﹣∠BEG=108°,∵AE∥FG,∴∠EFG=∠AEF,∵GE=FG,∴∠EFG=∠FEG,∴∠AEF=∠FEG=12∠AEG=54°,故选:A.【点睛】此题主要考查了平行四边形的性质、直角三角形的性质以及等腰三角形的判定和性质,正确地构造出辅助线是解决问题的关键.5.D解析:D【分析】由题意得出条件证明△ABC≌△DAF,根据对应角相等可推出②正确;由F是AB中点根据边长转换可以推出④正确;先推出△ECF≌△DFA得出对应边相等推出ADFE为平行四边形且有组临边不等得出①错误;再由以上全等即可得出④正确.【详解】∵△ABD是等边三角形,∴∠BAD=60°,AB=AD,∵∠BAC=30°,知∴∠FAD=∠ABC=90°,AC=2BC,∵F为AC的中点道,∴AC=2AF,∴BC=AF,∴△ABC≌△DAF,∴FD=AC,∴∠ADF=∠BAC=30°,∴DF⊥AB,故②正确,∵EF⊥AC,∠ACB=90°,∴FG∥BC,∵F是AB的中点,∴GF=12 BC,∵BC=12AC,AC=CE,∴GF=14CE,故④说法正确;∵AE=CE,CF=AF,∴∠EFC=90°,∠CEF=30°,∵∠FAD=∠CAB+∠BAD=90°,∴∠EFC=∠DAF,∵DF⊥AB,∴∠ADF=30°,∴∠CEF=∠ADF,∴△ECF≌△DFA(AAS),∴AD=EF,∵FD=AC,∴四边形属ADFE为平行四边形,∵AD≠DF,∴四边形ADFE不是菱形;故①说法不正确;∴AO=12 AF,∴AO=12 AC,∵AE=AC,则AE=4AO,故③说法正确,故选D.【点睛】本体主要考查平行四边形的判定,等边三角形,三角形全等的判定,关键在于熟练掌握基础知识,根据图形结合知识点进行推导.6.B解析:B【分析】作CE ∥BD ,交AB 的延长线于点E ,根据平行四边形的性质得到△ACE 中,AE=2AB=24,再根据三角形的三边关系即可得到答案.【详解】解:如图,作CE ∥BD ,交AB 的延长线于点E ,∵AB=CD ,DC ∥AB∴四边形BECD 是平行四边形,∴CE=BD ,BE=CD=AB ,∴在△ACE 中,AE=2AB=24<AC+CE ,∴四个选项中只有A ,B 符合条件,但是10,34,24不符合三边关系,故选:B .【点睛】此题考查平行四边形的性质,三角形的三边关系,利用平行线将对角线及边转化为三角形是解题的关键.7.B解析:B【分析】由平行四边形ABCD 中,AB=18,BC =12,AE :EB =1:2,得EB= BC ,结合AB ∥CD ,即可判断(1);过点F 作FM ⊥AB 交AB 的延长线于点M ,在Rt ∆AMF 中,利用勾股定理求出AF=13∆BCE 中,求出CE 的值,即可判断(2);由12A DF BCD A S S =,12A DE BCD C S S =,即可判断(3);由1122AF DP CE DQ ⋅=⋅,即可判断(4). 【详解】 ∵平行四边形ABCD 中,AB=18,BC =12,AE :EB =1:2,∴EB= BC =12,∴∠BEC=∠BCE ,∵AB ∥CD ,∴∠BEC=∠DCE ,∴∠BCE=∠DCE ,∴CE 平分∠BCD ,∴(1)正确;过点F 作FM ⊥AB 交AB 的延长线于点M ,∵AD∥BC,∴∠CBM=∠DAB =60°,∠BFM=30°,∵F 是BC 的中点,∴BF=12BC=6, ∴BM=12BF=3,FM=3BM=33, ∴AM=18+3=21, ∴AF=222221(33)613AM FM +=+=,∵EB= BC =12,∠ABC=180°-60°=120°,∴CE=3×BC=123,∴AF ≠CE ,∴(2)错误;∵在平行四边形ABCD 中,12A DF BCD A SS =,12A DE BCD C S S =, ∴ADF CDE S S ∆=,∴(3)正确; ∵DP ⊥AF ,DQ ⊥CE ,ADF CDE SS ∆= ∴1122AF DP CE DQ ⋅=⋅, ∴DP :DQ=CE :AF=23:13,∴(4)正确.故答案是:B .【点睛】本题主要考查平行四边形的性质,含30°角的直角三角形的性质以及勾股定理,添加辅助线构造直角三角形,是解题的关键.8.C解析:C【分析】由点F 是AD 的中点,结合ABCD 的性质,得FD=CD ,即可判断①;先证∆AEF ≅∆DHF ,再证∆ECH 是直角三角形,即可判断②;由EF=HF ,得2HEC CEF S S =,由CE AB ⊥,CE ⊥CD ,结合三角形的面积公式,即可判断③;设∠AEF=x ,则∠H=x ,根据直角三角形的性质,得∠FCH=∠H=x ,由FD=CD ,∠DFC=∠FCH=x ,由FG ∥CD ∥AB ,得∠AEF=∠EFG=x ,由EF=CF ,∠EFG=∠CFG=x ,进而得到3DFE AEF ∠=∠,即可判断④.【详解】∵点F 是AD 的中点,∴2FD=AD , ∵在ABCD 中,AD=2AB ,∴FD=AB=CD ,∴∠DFC=∠DCF ,∵AD ∥BC ,∴∠DFC=∠BCF ,∴∠DCF=∠BCF ,即:12DCF BCD ∠=∠, ∴①正确;∵AB ∥CD ,∴∠A=∠FDH ,∠AEF=∠H ,又∵AF=DF ,∴∆AEF ≅∆DHF (AAS ),∴EF=HF ,∵CE AB ⊥,∴CE ⊥CD ,即:∆ECH 是直角三角形,∴EF CF ==12EH , ∴②正确;∵EF=HF ,∴2HEC CEF S S =∵CE AB ⊥,CE ⊥CD ,垂足E 在线段AB 上,∴BE CH <,∴BEC HCE SS <, ∴2BEC CEFS S <, ∴③错误;设∠AEF=x ,则∠H=x ,∵在Rt ∆ECH 中,CF=FH=EF ,∴∠FCH=∠H=x ,∵FD=CD ,∴∠DFC=∠FCH=x ,∵点F ,G 分别是EH ,EC 的中点,∴FG ∥CD ∥AB ,∴∠AEF=∠EFG=x ,∵EF=CF ,∴∠EFG=∠CFG=x ,∴∠DFE=∠DFC+∠EFG+∠CFG=3x ,∴3DFE AEF ∠=∠.∴④正确.故选C .【点睛】本题主要考查平行四边形和直角三角形的性质定理的综合,掌握直角三角形斜边上的中线等于斜边的一半,是解题的关键.9.B解析:B【分析】①由四边形ABCD 是正方形,可得∠GAD =∠ADO =45°,又由折叠的性质,可求得∠ADG 的度数,从而求得∠AGD ;②证△AEG ≌△FEG 得AG =FG ,由FG >OG 即可得;③先计算∠AGE =∠GAD+∠ADG =67.5°,∠AED=∠AGD -∠EAG=67.5°,从而得到∠AGE =∠AED ,易得AE=AG ,由AE =FE 、AG =FG 即可得证;④设OF =a ,先求得∠EFG =45°,易得∠GFO =45°,在Rt △OFG 中,GFa ,从而可证得BF =EF =GF;⑤由S △OGF =1求出a 2,再表示出BE 及AE 的长,利用正方形的面积公式可得出结论.【详解】解:∵四边形ABCD 是正方形,∴∠EAG=∠GAD =∠ADO =45°,∠AOB=90°,由折叠的性质可得:∠ADG =12∠ADO =22.5°, ∴∠AGD =180°-∠GAD -∠ADG =112.5°,故①错误;由折叠的性质可得:AE =EF ,∠AEG =∠FEG ,在△AEG 和△FEG 中,AE FE AEG FEG EG EG =⎧⎪∠=∠⎨⎪=⎩,∴△AEG ≌△FEG (SAS ),∴AG =FG ,∵在Rt △GOF 中,AG =FG >GO ,∴S △AGD >S △OGD ,故②错误;∵∠AGE =∠GAD+∠ADG =67.5°,∠AED=∠AGD -∠EAG=67.5°,∴∠AGE =∠AED ,∴AE =AG ,又∵AE =FE ,AG =FG ,∴AE =EF =GF =AG ,∴四边形AEFG 是菱形,故③正确;设OF =a ,∵△AEG ≌△FEG ,∴∠EFG =∠EAG=45°,又∵∠EFO =90°,∴∠GFO =45°,∴在Rt △OFG 中,GF ,∵∠EFO =90°,∠EBF =45°,∴在Rt △EBF 中,BF =EF =GF a ,即BF OF ,故④正确;∵S △OGF =1, ∴12OF 2=1,即12a 2=1, 则a 2=2,∵BF =EF a ,且∠BFE =90°,∴BE =2a ,又∵AE =EF ,∴AB =AE+BE +2a =)a ,则正方形ABCD 的面积是)2a 2=(6+=12+故⑤正确;故选:B .【点睛】本题考查了四边形的综合,熟练掌握正方形的性质、折叠的性质、等腰直角三角形的性质以及全等三角形、菱形的判定与性质等知识是解题的关键.10.B解析:B【分析】 如图(见解析),先根据等腰直角三角形的判定与性质可得90,BAC DAE BC DE ∠=∠=︒==,再根据三角形全等的判定定理与性质可得BD CE =,从而可得CDE △周长为BC +,然后根据垂线段最短可求出AD的最小值,由此即可得.【详解】在ABC 中,6,45AB AC B ==∠=︒,ABC ∴是等腰直角三角形,2290,62BAC BC AB AC ∠=︒=+=,在ADE 中,,45AD AE ADE =∠=︒,ADE ∴是等腰直角三角形,2290,2DAE DE AD AE AD ∠=︒=+=,90BAD CAD CAE CAD ∴∠+∠=∠+∠=︒,BAD CAE ∴∠=∠,在ABD △和ACE △中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,()ABD ACE SAS ∴≅,BD CE ∴=,CDE ∴周长为622CD CE DE CD BD DE BC DE AD ++=++=+=+, 则当AD 取得最小值时,CDE △的周长最小,由垂线段最短可知,当AD BC ⊥时,AD 取得最小值,AD ∴是BC 边上的中线(等腰三角形的三线合一),1322AD BC ∴==(直角三角形斜边上的中线等于斜边的一半), CDE ∴周长的最小值为62232626+⨯=+,故选:B .【点睛】本题考查了等腰直角三角形的判定与性质、直角三角形斜边上的中线、三角形全等的判定定理与性质、垂线段最短等知识点,正确找出两个全等三角形是解题关键.二、填空题11.43 4【解析】分析:当△A′EF 为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,根据对称的性质和平行线可得:A'C=A'E=4,根据直角三角形斜边中线的性质得:BC=2A'B=8,最后利用勾股定理可得AB 的长;②当∠A'FE=90°时,如图2,证明△ABC是等腰直角三角形,可得AB=AC=4.详解:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,.∵△A′BC与△ABC关于BC所在直线对称,∴A'C=AC=4,∠ACB=∠A'CB,∵点D,E分别为AC,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A'EF,∴AC∥A'E,∴∠ACB=∠A'EC,∴∠A'CB=∠A'EC,∴A'C=A'E=4,Rt△A'CB中,∵E是斜边BC的中点,∴BC=2A'E=8,由勾股定理得:AB2=BC2-AC2,∴AB=22;84=43②当∠A'FE=90°时,如图2,.∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;.综上所述,AB的长为43或4;故答案为43或4.点睛:本题考查了三角形的中位线定理、勾股定理、轴对称的性质、等腰直角三角形的判定、直角三角形斜边中线的性质,并利用分类讨论的思想解决问题.12.222+【分析】由题意根据三角形的中位线的性质得到EF=12PD,得到C△CEF=CE+CF+EF=CE+12(CP+PD)=12(CD+PC+PD)=12C△CDP,当△CDP的周长最小时,△CEF的周长最小;即PC+PD的值最小时,△CEF的周长最小;并作D关于AB的对称点D′,连接CD′交AB于P,进而分析即可得到结论.【详解】解:∵E为CD中点,F为CP中点,∴EF=12 PD,∴C△CEF=CE+CF+EF=CE+12(CP+PD)=12(CD+PC+PD)=12C△CDP∴当△CDP的周长最小时,△CEF的周长最小;即PC+PD的值最小时,△CEF的周长最小;如图,作D关于AB的对称点T,连接CT,则PD=PT,∵AD=AT=BC=2,CD=4,∠CDT=90°,∴22224442CT CD DT++=∵△CDP的周长=CD+DP+PC=CD+PT+PC,∵PT+PC≥CT,∴PT+PC≥42∴PT+PC的最小值为2,∴△PDC 的最小值为4+∴C △CEF =12C △CDP =2.故答案为:2.【点睛】本题考查轴对称-最短距离问题以及三角形的周长的计算等知识,解题的关键是学会利用轴对称解决最值问题.13.201812【分析】根据几何图形特征,先求出1C 、2C 、3C ,根据求出的结果,找出规律,从而得出2020C .【详解】∵点E 是BC 的中点,ED ∥AB ,EF ∥AC∴DE 、EF 是△ABC 的中位线∵等边△ABC 的边长为1∴AD=DE=EF=AF =12 则1C =1422⨯= 同理可求得:2C =1,3C =12发现规律:规律为依次缩小为原来的12 ∴2020C =201812 故答案为:201812.【点睛】 本题考查找规律和中位线的性质,解题关键是求解出几组数据,根据求解的数据寻找规律.14.①②③④【分析】①根据角平分线的定义可得∠BAE =∠DAE =45°,可得出△ABE 是等腰直角三角形,根据等腰直角三角形的性质可得AE =,从而得到AE =AD ,然后利用“角角边”证明△ABE 和△AHD 全等,根据全等三角形对应边相等可得BE =DH ,再根据等腰三角形两底角相等求出∠ADE =∠AED =67.5°,根据平角等于180°求出∠CED =67.5°,从而判断出①正确; ②求出∠AHB =67.5°,∠DHO =∠ODH =22.5°,然后根据等角对等边可得OE =OD =OH ,判断出②正确;③求出∠EBH =∠OHD =22.5°,∠AEB =∠HDF =45°,然后利用“角边角”证明△BEH 和△HDF 全等,根据全等三角形对应边相等可得BH =HF ,判断出③正确;④根据全等三角形对应边相等可得DF =HE ,然后根据HE =AE ﹣AH =BC ﹣CD ,BC ﹣CF =BC ﹣(CD ﹣DF )=2HE ,判断出④正确;⑤判断出△ABH 不是等边三角形,从而得到AB ≠BH ,即AB ≠HF ,得到⑤错误.【详解】∵在矩形ABCD 中,AE 平分∠BAD ,∴∠BAE =∠DAE =45°,∴△ABE 是等腰直角三角形,∴AE =. ∵AD =,∴AE =AD .在△ABE 和△AHD 中,∵90BAE DAE ABE AHD AE AD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABE ≌△AHD (AAS ),∴BE =DH ,∴AB =BE =AH =HD ,∴∠ADE =∠AED 12=(180°﹣45°)=67.5°,∴∠CED =180°﹣45°﹣67.5°=67.5°,∴∠AED =∠CED ,故①正确;∵∠AHB 12=(180°﹣45°)=67.5°,∠OHE =∠AHB (对顶角相等),∴∠OHE =∠AED ,∴OE =OH .∵∠DOH =90°﹣67.5°=22.5°,∠ODH =67.5°﹣45°=22.5°,∴∠DOH =∠ODH ,∴OH =OD ,∴OE =OD =OH ,故②正确;∵∠EBH =90°﹣67.5°=22.5°,∴∠EBH =∠OHD .在△BEH 和△HDF 中,∵EBH OHD BE DH AEB HDF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BEH ≌△HDF (ASA ),∴BH =HF ,HE =DF ,故③正确;由上述①、②、③可得CD =BE 、DF =EH =CE ,CF =CD ﹣DF ,∴BC ﹣CF =(CD +HE )﹣(CD ﹣HE )=2HE ,所以④正确;∵AB =AH ,∠BAE =45°,∴△ABH 不是等边三角形,∴AB ≠BH ,∴即AB ≠HF ,故⑤错误;综上所述:结论正确的是①②③④.故答案为①②③④.【点睛】本题考查了矩形的性质,全等三角形的判定与性质,角平分线的定义,等腰三角形的判定与性质,熟记各性质并仔细分析题目条件,根据相等的度数求出相等的角,从而得到三角形全等的条件或判断出等腰三角形是解题的关键,也是本题的难点.15.①②④⑤【分析】根据∠B=90°,AB=BE ,△ABE 绕点A 逆时针旋转45°,得到△AHD ,可得△ABE ≅△AHD ,并且△ABE 和△AHD 都是等腰直角三角形,可证AD//BC ,根据DC ⊥BC ,可得∠HDE=∠CDE ,根据三角形的内角和可得∠HDE=∠CDE,即DE平分∠HDC,所以①正确;利用∠DAB=∠ABC=∠BCD=90°,得到四边形ABCD是矩形,有∠ADC=90°,∠HDC=45°,由①有DE平分∠HDC,得∠HDO=22.5°,可得∠AHB=67.5°,∠DHO=22.5°,可证OD=OH,利用 AE=AD易证∠OHE=∠HEO=67.5°,则有OE=OH,OD=OE,所以②正确;利用AAS证明ΔDHE≅ΔDCE,则有DH=DC,∠HDE=∠CDE=22.5°,易的∠DHF=22.5°,∠DFH=112.5°,则△DHF不是直角三角形,并DH≠HF,即有:CD≠HF,所以③错误;根据△ABE是等腰直角三角形,JH⊥JE,∵J是BC的中点,H是BF的中点,得到2JH=CF,2JC=BC,JC=JE+CE,易证BC−CF=2CE,所以④正确;过H作HJ⊥BC于J,并延长HJ交AD于点I,得IJ⊥AD,I是AD的中点,J是BC的中点,H是BF的中点,所以⑤正确;【详解】∵Rt△ABE中,∠B=90°,AB=BE,∴∠BAE=∠BEA=45°,又∵将△ABE绕点A逆时针旋转45°,得到△AHD,∴△ABE≅△AHD,并且△ABE和△AHD都是等腰直角三角形,∴∠EAD=45°,AE=AD ,∠AHD=90°,∴∠ADE=∠AED,∴∠BAD=∠BAE+∠EAD=45°+45°=90°,∴AD//BC,∴∠ADE=∠DEC,∴∠AED=∠DEC,又∵DC⊥BC,∴∠DCE=∠DHE=90°∴由三角形的内角和可得∠HDE=∠CDE,即:DE平分∠HDC,所以①正确;∵∠DAB=∠ABC=∠BCD=90°,∴四边形ABCD是矩形,∴∠ADC=90°,∴∠HDC=45°,由①有DE平分∠HDC,∴∠HDO=12∠HDC=12×45°=22.5°,∵∠BAE=45°,AB=AH,∴∠OHE=∠AHB= 12(180°−∠BAE)=12×(180°−45°)=67.5°,∴∠DHO=∠DHE−∠FHE=∠DHE−∠AHB=90°−67.5°=22.5°,∴OD=OH,在△AED中,AE=AD,∴∠AED=12(180°−∠EAD)=12×(180°−45°)=67.5°,∴∠OHE=∠HEO=67.5°,∴OE=OH ,∴OD=OE ,所以②正确;在△DHE 和△DCE 中,DHE DCE HDE CDE DE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ΔDHE ≅ΔDCE(AAS),∴DH=DC ,∠HDE=∠CDE=12×45°=22.5°, ∵OD=OH ,∴∠DHF=22.5°,∴∠DFH=180°−∠HDF−∠DHF=180°−45°−22.5°=112.5°,∴△DHF 不是直角三角形,并DH≠HF ,即有:CD≠HF ,所以③不正确;如图,过H 作HJ ⊥BC 于J ,并延长HJ 交AD 于点I ,∵△ABE 是等腰直角三角形,JH ⊥JE ,∴JH=JE ,又∵J 是BC 的中点,H 是BF 的中点,∴2JH=CF ,2JC=BC ,JC=JE+CE ,∴2JC=2JE+2CE=2JH+2CE=CF+2CE=BC ,即有:BC−CF=2CE ,所以④正确;∵AD//BC ,∴IJ ⊥AD ,又∵△AHD 是等腰直角三角形,∴I 是AD 的中点,∵四边形ABCD 是矩形,HJ ⊥BC ,∴J 是BC 的中点,∴H 是BF 的中点,所以⑤正确;综上所述,正确的有①②④⑤,故答案为:①②④⑤.【点睛】本题考查了全等三角形的判定与性质、旋转的性质、矩形的性质、角平分线的性质以及等腰直角三角形的判定与性质;证明三角形全等和等腰直角三角形是解决问题的关键.16.①②③④【分析】根据正方形的性质和SAS可证明△ABG≌△AEC,然后根据全等三角形的性质即可判断①;设BG、CE相交于点N,AC、BG相交于点K,如图1,根据全等三角形对应角相等可得∠ACE=∠AGB,然后根据三角形的内角和定理可得∠CNG=∠CAG=90°,于是可判断②;过点E作EP⊥HA的延长线于P,过点G作GQ⊥AM于Q,如图2,根据余角的性质即可判断④;利用AAS即可证明△ABH≌△EAP,可得EP=AH,同理可证GQ=AH,从而得到EP =GQ,再利用AAS可证明△EPM≌△GQM,可得EM=GM,从而可判断③,于是可得答案.【详解】解:在正方形ABDE和ACFG中,AB=AE,AC=AG,∠BAE=∠CAG=90°,∴∠BAE+∠BAC=∠CAG+∠BAC,即∠CAE=∠BAG,∴△ABG≌△AEC(SAS),∴BG=CE,故①正确;设BG、CE相交于点N,AC、BG相交于点K,如图1,∵△ABG≌△AEC,∴∠ACE=∠AGB,∵∠AKG=∠NKC,∴∠CNG=∠CAG=90°,∴BG⊥CE,故②正确;过点E作EP⊥HA的延长线于P,过点G作GQ⊥AM于Q,如图2,∵AH ⊥BC ,∴∠ABH +∠BAH =90°,∵∠BAE =90°,∴∠EAP +∠BAH =90°,∴∠ABH =∠EAP ,即∠EAM =∠ABC ,故④正确;∵∠AHB =∠P =90°,AB =AE ,∴△ABH ≌△EAP (AAS ),∴EP =AH ,同理可得GQ =AH ,∴EP =GQ ,∵在△EPM 和△GQM 中,90P MQG EMP GMQ EP GQ ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△EPM ≌△GQM (AAS ),∴EM =GM ,∴AM 是△AEG 的中线,故③正确.综上所述,①②③④结论都正确.故答案为:①②③④.【点睛】本题考查了正方形的性质、三角形的内角和定理以及全等三角形的判定和性质,作辅助线构造出全等三角形是难点,熟练掌握全等三角形的判定和性质是关键.17.9或31).【分析】分两种情况画图,利用等腰直角三角形的性质和勾股定理矩形计算即可.【详解】解:①如图1,延长EA 交DC 于点F ,∵菱形ABCD 的周长为24,∴AB=BC=6,∵∠ABC=60°,∴三角形ABC 是等边三角形,∴∠BAC=60°,当EA⊥BA时,△ABE是等腰直角三角形,∴AE=AB=AC=6,∠EAC=90°+60°=150°,∴∠FAC=30°,∵∠ACD=60°,∴∠AFC=90°,∴CF=12AC=3,则△ACE的面积为:12AE×CF=12×6×3=9;②如图2,过点A作AF⊥EC于点F,由①可知:∠EBC=∠EBA+∠ABC=90°+60°=150°,∵AB=BE=BC=6,∴∠BEC=∠BCE=15°,∴∠AEF=45°-15°=30°,∠ACE=60°-15°=45°,∴AF=12AE,AF=CF=22AC=32∵AB=BE=6,∴AE=2∴2236AE AF-=∴EC=EF+FC=3632则△ACE的面积为:12EC×AF=1(3632)329(31)2⨯⨯=.故答案为:9或31).【点睛】本题考查了菱形的性质、等腰三角形的性质、等边三角形的判定与性质,解决本题的关键是掌握菱形的性质.18.②③【分析】根据菱形的性质可知AC⊥BD,所以在Rt△AFP中,AF一定大于AP,从而判断①;设∠BAE=x,然后根据等腰三角形两底角相等表示出∠ABE,再根据菱形的邻角互补求出∠ABE,根据三角形内角和定理列出方程,求出x的值,求出∠BFE和∠BE的度数,从而判断②③.【详解】解:在菱形ABCD中,AC⊥BD,∴在Rt△AFP中,AF一定大于AP,故①错误;∵四边形ABCD是菱形,∴AD∥BC,∴∠ABE+∠BAE+∠EAD=180°,设∠BAE=x°,则∠EAD=2x°,∠ABE=180°-x°-2x°,∵AB=AE,∠BAE=x°,∴∠ABE=∠AEB=180°-x°-2x°,由三角形内角和定理得:x+180-x-2x+180-x-2x=180,解得:x=36,即∠BAE=36°,∠BAE=180°-36°-2×36°=70°,∵四边形ABCD是菱形,∴∠BAD=∠CBD=12∠ABE=36°,∴∠BFE=∠ABD+∠BAE=36°+36°=72°,∴∠BEF=180°-36°-72°=72°,∴BE=BF=AF.故③正确∵∠AFD=∠BFE=72°,∠EAD=2x°=72°∴∠AFD=∠EAD∴AD=FD又∵AD=AB=AE∴AE=FD,故②正确∴正确的有②③故答案为:②③【点睛】本题考查了菱形的性质,等腰三角形的性质,熟记各性质并列出关于∠BAE的方程是解题的关键,注意:菱形的对边平行,菱形的对角线平分一组对角.19.2或14【分析】利用当AB=10cm,AD=6cm,由于平行四边形的两组对边互相平行,又AE平分∠BAD,由此可以推出所以∠BAE=∠DAE,则DE=AD=6cm;同理可得:CF=CB=6cm,而EF=CF+DE-DC,由此可以求出EF长;同理可得:当AD=10cm,AB=6cm时,可以求出EF长【详解】解:如图1,当AB=10cm,AD=6cm∵AE平分∠BAD∴∠BAE=∠DAE,又∵AD∥CB∴∠EAB=∠DEA,∴∠DAE=∠AED,则AD=DE=6cm同理可得:CF=CB=6cm∵EF=DE+CF-DC=6+6-10=2(cm)如图2,当AD=10cm,AB=6cm,∵AE平分∠BAD,∴∠BAE=∠DAE又∵AD∥CB∴∠EAB=∠DEA,∴∠DAE=∠AED则AD=DE=10cm同理可得,CF=CB=10cm EF=DE+CF-DC=10+10-6=14(cm)故答案为:2或14.图1 图2【点睛】本题主要考查了角平分线的定义、平行四边形的性质、平行线的性质等知识,关键是平行四边形的不同可能性进行分类讨论.20513【分析】根据12•BC•AH=12•AB•AC,可得AH613,根据12AD•BO=12BD•AH,得OB=613,再根据BE=2OB 1213EC.【详解】设BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∠BAC=90°,AB=2,AC=3,由勾股定理得:BC13∵点D是BC的中点,∴AD =DC =DB =132, ∵12•BC •AH =12•AB •AC , ∴AH =613, ∵AE =AB ,DE =DB ,∴点A 在BE 的垂直平分线上,点D 在BE 的垂直平分线上,∴AD 垂直平分线段BE ,∵12AD •BO =12BD •AH , ∴OB =613, ∴BE =2OB =1213, ∵DE =DB=CD , ∴∠DBE=∠DEB ,∠DEC=∠DCE ,∴∠DEB+∠DEC=12×180°=90°,即:∠BEC=90°, ∴在Rt △BCE 中,EC =22BC BE - =221213(13)()13-=51313. 故答案为:51313. 【点睛】本题主要考查直角三角形的性质,勾股定理以及翻折的性质,掌握“直角三角形斜边长的中线等于斜边的一半”以及面积法求三角形的高,是解题的关键.三、解答题21.(1)112;(2)112或4;(3)四边形PBQD 不能成为菱形 【分析】(1)由∠B=90°,AP ∥BQ ,由矩形的判定可知当AP=BQ 时,四边形ABQP 成为矩形; (2)由(1)可求得点P 、Q 与点A 、B 为顶点的四边形为平行四边形;然后由当PD=CQ 时,CDPQ 是平行四边形,求得t 的值;。
湖北省襄阳市2021年八年级上学期数学期末考试试卷(II)卷
湖北省襄阳市2021年八年级上学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分)下列叙述正确的个数有:(3)无限小数都是无理数(4)有限小数都是有理数(5)实数分为正实数和负实数两类。
()A . 1个B . 2个C . 3个D . 4个2. (1分)下列各式中,能用完全平方公式分解因式的是()A . 4x2-2x+1B . 4x2+4x-1C . x2-xy+y2D . x2-x+3. (1分) 1﹣的值()A . 比﹣2大B . 比﹣3大C . 比﹣3小D . 比﹣4小4. (1分) (2016八上·沈丘期末) 下列命题的逆命题为真命题的是()A . 如果a=b,那么a2=b2B . 平行四边形是中心对称图形C . 两组对角分别相等的四边形是平行四边形D . 内错角相等5. (1分)某市对2400名年满15岁的男生的身高进行了测量,结果身高(单位:m)在1.68~1.70这一小组的频率为0.25,则该组的人数为().A . 600人B . 150 人C . 60人D . 15人6. (1分)(2019·北部湾模拟) 下列代数式运算正确的是()A . a+(a+b)=a2+bB . (a3)2=a6C . (a+b)2=a2+b2D .7. (1分) (2019七下·宁都期中) 如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,若∠A=26°,则∠CDE度数为().A . 45°;B . 64° ;C . 71°;D . 80°.8. (1分) (2019七下·南山期末) 下面说法正确的是()A . 如果两个三角形全等,则它们必是关于直线成轴对称的图形B . 等腰三角形是轴对称图形,底边中线是它的对称轴C . 有一边对应相等的两个等边三角形全等D . 有一个角对应相等的两个等腰三角形全等9. (1分) (2017八上·哈尔滨月考) 如图,△ABC中,AB=AC=5,BC=6,AD是BC边上的中线且AD=4,是AD上的动点,是AC边上的动点,则的最小值是()A . 6B . 4C .D . 不存在最小值10. (1分) (2019九上·川汇期末) 如图,△ABC的顶点是正方形网格的格点,则()A .B .C .D .二、填空题 (共5题;共5分)11. (1分)(2018·莘县模拟) 计算:()﹣2﹣× =________.12. (1分)设(2x﹣1)4(2x+1)=a5x5+a4x4+a3x3+a2x2+a1x+a0(其中a5表示五次项的系数,依此类推),则a5+a4+a3+a2+a1=________13. (1分) (2017八上·肥城期末) 如图EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论有________(填序号).14. (1分) (2019八上·宝安期末) 如图,在中,的平分线与的平分线交于点D,过点D作BC的平行线交AB于点E,交AC于点F,已知,则 ________.15. (1分) (2015七下·启东期中) 如图,一个宽度相等的纸条按如图所示方法折叠一下,则∠1=________度.三、解答题 (共8题;共15分)16. (1分) (2019七下·金坛期中) 求下列代数式的值:(1),其中;(2),其中 .17. (2分) (2019八上·南关期末) 分解因式:2m3﹣8mn218. (2分) (2019八上·南浔期中) 如图AB=AC,AD=AE,∠1=∠2,则CE=BD,完成下列推理过程;解:∵∠1=∠2()∴∠1+∠EAB=∠2+∠EAB即∠DAB=∠EAC在△AEC和△ADB中∴△AEC≌△ADB()∴CE=BD().19. (3分) (2017七上·温江期末) 为了解我市的空气质量情况,某环保兴趣小组从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示“优”的扇形的圆心角度数;(3)请估计该市这一年(365天)达到“优”和“良”的总天数.20. (2分) (2017七下·抚宁期末) 如图,在△BCD中,BC=4,BD=5,(1)求CD的取值范围(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.21. (2分)(2017·靖江模拟) 如图,已知:在平行四边形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,AE=CG,AH=CF,且EG平分∠HEF.求证:(1)△AEH≌△CGF;(2)四边形EFGH是菱形.22. (1分) (2017八下·东城期中) 如图,在中,为边长的一点,已知 , ,, ,求的长.23. (2分) (2016八上·海南期中) 如图,已知△ABC为等边三角形,D、E分别为BC、AC边上的两动点(与点A、B、C不重合),且总使CD=AE,AD与BE相交于点F.(1)求证:AD=BE;(2)求∠BFD的度数.参考答案一、单选题 (共10题;共10分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共15分)16-1、16-2、17-1、18-1、19-1、19-2、19-3、20-1、20-2、21-1、21-2、22-1、23-1、23-2、。
湖北省襄阳市襄州区2019-2020学年八年级上学期期末学业质量调研测试数学试题(扫描版)
襄州区2019-2020学年度上学期期末学业质量调研测试八年级数学试题一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2019年8月1日,襄阳市开始实施垃圾分类,以下是几种垃圾分类的图标,其中哪个图标是轴对称图形( )A .B .C .D .2. 下列运算正确的是( )A .3412a a a •=B .01a =C .236(3)27a a =D .632a a a ÷=3. 下列分式是最简分式的是( ) A .2a a B .63yC .211x x +-D . 1xx +4. 如图,,A B 两点分别位于一个池塘的两端,小明想用绳子测量,A B 间的距离,如图所示的这种方法,是利用了三角形全等中的( )A .SSSB .SAS C. ASA D .AAS 5.计算3(42)2x x x -+÷的结果正确的是( )A .221x +B .221x -+ C. 321x -+ D .482x x -+6. 已知三角形的两边长分别为3和4,则第三边长x 的范围是( ) A .17x << B .15x << C. 34x << D .无法确定7.若2(2)(1)2x x x mx +-=+-,则m 的值为( ) A .1 B .-3 C. 3 D .-18.如图,在ABC ∆中,=90C ∠,按以下步骤作图:①分别以,A B 为圆心,以大于12AB 的长为半径作弧,两弧相交于两点,M N ; ②作直线MN 交AB 于点D ,交BC 于点E ,连接AE .若15B ∠=,则EAC ∠等于( )A .22.5B .30 C. 45 D .609.关于x 的分式方程230x x a+=-的解为4x =,则常数a 的值为( ) A .1a = B .2a = C. 4a = D .10a =10. 如图,在ABC ∆中,90ACB ∠=,D 是AB 上的点,过点D 作DE AB ⊥交BC 于点F ,交AC 的延长线于点E ,连接CD ,DCA DAC ∠=∠,则下列结论正确的有( )①DCB B ∠=∠;②12CD AB =;③ADC ∆是等边三角形;④若=30E ∠,则DE EF CF =+. A .①②③④ B .①②③ C. ①②④ D .②③④二、填空题(本大题共6个小题,每小题3分,共18分,请将每小题正确答案写在题中的横线上.)11.当x 时,分式11x x+-有意义. 12.如果代数式229()x mx ax b ++=+,那么m 的值为 .13. 一个多边形的每一个外角都是60°,则这个多边形的内角和等于 度.14. 今年我国多地发现猪瘟疫情,疫情发生后,农业农村部第一时间采取措施,使疫情得到了有效控制.疫情是由一种病毒引起的,这种病毒的直径约85纳米(1纳米=0.000000001米).数据85纳米用科学记数法可以表示为 米.15. 如图,在四边形ABCD 中,90A ∠=,3AD =,连接BD ,BD CD ⊥,ADB C ∠=∠.若P 是BC边上一动点,则DP 长的最小值为 .16. 如图,等边三角形ABC 的边长为3,过点B 的直线l AB ⊥,且ABC ∆与''A BC ∆关于直线l 对称,D 为线段'BC 上一动点,则AD CD +的最小值是 .三、解答题:本大题共有9个小题,共72分.解答应写出演算步骤或文字说明,并将答案写在对应的答题区域内.17. 化简:(1)232112(3)()3x y xy xy -÷-•-; (2)2(2)(2)(2)x y x y x y +---. 18. 解方程: (1)9633x x=+-; (2)解方程:214111x x x +-=--. 19. 先化简,再求值:222311()a ab a b a b a b-÷+-+-,其中340a b --=. 20. 在平面直角坐标系中,ABC ∆的三个顶点的位置如图所示:(1)请画出ABC ∆关于y 轴对称的'''A B C ∆;(其中'''A B C 、、分别是A B C 、、的对应点,不写画法),并直接写出'''A B C 、、三点的坐标; (2)求ABC ∆的面积.21. 已知,,a b c 分别是ABC ∆的三边.(1)分别将多项式ac bc -,222a ab b -+-进行因式分解;(2)若222ac bc a ab b -=-+-,试判断ABC ∆的形状,并说明理由.22. 如图,//AD BC ,90BAD ∠=,以点B 为圆心,BC 长为半径画弧,与射线AD 相交于点E ,连接BE ,过C 点作CF BE ⊥,垂足为F .(1)线段BF = (填写图中现有的一条线段); (2)证明你的结论.23. 在ABC ∆中,AB AC =,AM 是ABC ∆的外角CAE ∠的平分线. (1)如图,求证://AM BC ;(2)如图,若D 是BC 中点,DN 平分ADC ∠交AM 于点N ,DQ 平分ADB ∠交AM 的反向延长线于Q ,判断QDN ∆的形状并说明理由.(3)如图,在(2)的条件下,若90BAC ∠=将QDN ∠绕点D 旋转一定角度,DN 交边AC 于F ,DQ 交边AB 于H ,当14ABC S ∆=时,则四边形AHDF 的面积为 .24. 高速铁路列车(简称:高铁)是人们出行的重要交通工具,2019年11月29日,汉十高铁开通运营,预示襄阳迈进了高铁时代.已知高铁平均速度是普通铁路列车(简称:普客)平均速度的3倍.同样行驶690km ,高铁比普客少用4.6h . (1)求高铁的平均速度;(2)某天李老师乘坐8:40出发的高铁,到里程1050km 的A 市参加当天14:00召开的会议.若他从A 市高铁站到会议地点最多还需要1.5h ,试问在高铁准点到达的情况下,他能在开会之前赶到会议地点吗? 25. 已知等边ABC ∆的边长为4cm ,点,P Q 分别是直线,AB BC 上的动点.(1)如图,当点P 从顶点A 沿AB 向B 点运动,点Q 同时从顶点B 沿BC 向C 点运动,它们的速度都为1/cm s ,到达终点时停止运动,设它们的运动时间为t 秒,连接,AQ PQ ; ①当2t =时,求AQP ∠的度数. ②当t 为何值时PBQ ∆是直角三角形?(2)如图,当点P 在BA 的延长线上,Q 在BC 上,若PQ PC =,请判断,AP CQ 和AC 之间的数量关系,并说明理由.试卷答案一、选择题1-5: BCDBB 6-10: AADDC二、填空题11. 1≠ 12. 6± 13. 720 14. 88.510-⨯ 15. 3 16.6三、解答题17.(1)解:原式14()3xy xy =•-2243x y =-(2)解:原式2222444x y x xy y =--+-242xy y =-18.(1)解:279186x x -=+159x = 35x =经检验:35x =是分式方程的解.(2)解:222114x x x ++-+= 解得:1x =经检验:1x =是原方程的增根.∴原方程无解. 19.解:原式(3)()()()()a ab a b a ba b a b a b a b --++=÷+-+-(3)2()()()()a a b aa b a b a b a b -=÷+-+-(3)()()()()2a a b a b a b a b a b a -+-=•+-32a b-=∵340a b --=,∴34a b -= ∴原式422==. 20.(1)如图'''A B C ∆:'(2,3)A ,'(3,1)B ,'(1,2)C --,(2)11145342153222ABC S ∆=⨯-⨯⨯-⨯⨯-⨯⨯ 5.5= 21.解:(1)()ac bc c a b -=-22222(2)a ab b a ab b -+-=--+ 2222()a ab b a b -+-=--(2)∵222ac bc a ab b -=-+-∴2()()c a b a b -=-- ∴()()0c a b a b +--=∵,,a b c 分别是ABC ∆的三边, ∴0c a b +-> ∴0a b -= ∴a b =∴ABC ∆为等腰三角形. 22.(1)AE(2)证明:∵CF BE ⊥ ∴90A BFC ∠=∠= ∵//AD BC ∴AEB FBC ∠=∠在AEB ∆和FBC ∆中,BAD BFC AEB FBC BE BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AEB FBC AAS ∆≅∆ ∴BF AE =23.证明:(1)∵AB AC = ∴B C ∠=∠ ∵AM 平分EAC ∠. ∴12EAM MAC EAC ∠=∠=∠ ∵EAC B C ∠=∠+∠ ∴12B EAC ∠=∠ ∴EAM B ∠=∠ ∴//AM BC(2)ADN ∆是等腰直角三角形, 理由是:∵D 是BC 中点,AB AC =,∴AD BC ⊥ ∴==90ADB ADC ∠∠∵DN 平分ADC ∠,DQ 平分ADB ∠,∴45ADN NDC ∠=∠=,45ADQ BDQ ∠=∠=, ∴90QDN ∠=, ∵//AM BC ,∴45AND NDC ∠=∠=,45AQD BDQ ∠=∠=, ∴AND AQD ∠=∠ ∴DQ DN =∴ADN ∆是等腰直角三角形.(3)724.解:(1)设高铁的平均速度为/xkm h ,则普通铁路列车的平均速度为1/3xkm h 依题意,得:6906904.613x x -= 解得:300x =.经检验:300x =是所列分式方程的解,且符合题意.新人教部编版初中数学“活力课堂”精编试题答:高铁的平均速度为300/km h . (2)1050300 1.55()h ÷+=211485()33h -=∵1553<∴在高铁准点到达的情况下,他能在开会之前赶到会议地点. 25.解:(1)①依题意得:2AP PB BQ CQ ==== ∵ABC ∆是等边三角形, ∴AQ BC ⊥,60B ∠=,∴90AQB ∠=,BPQ ∆是等边三角形, ∴60BQP ∠=∴906030AQP AQB BQP ∠=∠-∠=-=②由题意知,AP BQ t ==,4PB t =-, 当90PQB ∠=时,∵60B ∠=∴2PB BQ =,得42t t -=,解得43t =当90BPQ ∠=时,∵60B ∠=∴2BQ BP =,得2(4)t t =-,解得:83t =∴当第43秒或第83秒时,PBQ ∆为直角三角形. (2)解:AC AP CQ =+,理由如下: 过点Q 作//QF AC ,交AB 于F , 则BQF ∆是等边三角形∴BQ QF =,60BQF BFQ ∠=∠=, ∵ABC ∆为等边三角形,∴BC AC =,60BAC BFQ ∠=∠=. ∴120QFP PAC ∠=∠=新人教部编版初中数学“活力课堂”精编试题∵PQ PC = ∴QCP PQC ∠=∠∵QCP B BPQ ∠=∠+∠,PQC ACB ACP ∠=∠+∠,B ACB ∠=∠ ∴BPQ ACP ∠=∠ 在PQF ∆和CPA ∆中,BPQ ACP QFP PAC PQ PC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴PQF CPA ∆≅∆ ∴AP QF = ∴AP BQ =∴BQ CQ BC AC +== ∴AP CQ AC +=。
湖北省襄阳市八年级上学期数学第二次月考试卷
湖北省襄阳市八年级上学期数学第二次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2016九上·沙坪坝期中) 下列平面图形中,不是轴对称图形的是()A .B .C .D .2. (2分) (2019八下·永年期末) 若点P(-2,a)在第二象限,则a的值可以是()A . 1B . -1C . 0D . -23. (2分) (2019九上·邢台开学考) 从空中落下一个物体,它降落的速度随时间的变化而变化,即落地前的速度随时间的增加而逐渐增大,这个问题中自变量是()A . 物体B . 速度C . 时间D . 空气4. (2分) (2020七下·乌鲁木齐期末) 在下列各数:3.1415926,,0.2,,,,中,无理数的个数是()A . 2B . 3C . 4D . 55. (2分)一个正方体的水晶砖,体积为100cm3 ,它的棱长大约在()A . 4cm~5cm之间B . 5cm~6cm之间C . 6cm~7cm之间D . 7cm~8cm之间6. (2分)已知等腰三角形的顶角是n°,那么它的一腰上的高与底边的夹角等于()A .B . 90°-C .D . 90°-n°7. (2分) (2019八下·江门月考) 甲、乙两人分别从,两地相向而行,他们距地的距离与时间的关系如图所示,下列说法错误的是()A . 甲的速度是B . 甲出发4.5小时后与乙相遇C . 乙比甲晚出发2小时D . 乙的速度是8. (2分)如图,在▱ABCD中,如果点M为CD中点,AM与BD相交于点N,那么S△DMN:S□ABCD为()A .B .C .D .二、填空题 (共10题;共10分)9. (1分) (2018七下·浦东期中) 若x2=5,则x=________.10. (1分)(2018·天津) 将直线向上平移2个单位长度,平移后直线的解析式为________.11. (1分)(2019·营口) 2018年国家级经济开发区成为经济发展重要增长点,实现进口总额62000亿元,用科学记数法表示为________元.12. (1分)(2017·宿迁) 如果代数式有意义,那么实数x的取值范围为________.13. (1分) (2019八上·莲湖期中) 已知函数y=2xm﹣1+1是一次函数,则m=________.14. (1分) (2018八上·镇江月考) 点A(-4 , 8)到x轴的距离是________.15. (1分) (2019九上·路北期中) 如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=20,CD=16,求线段OE的长________.16. (1分)如上图,已知等腰Rt△AA1A2的直角边长为1,以Rt△AA1A2的斜边AA2为直角边,画第2个等腰Rt△AA2A3 ,再以Rt△AA2A3的斜边AA3为直角边,画第3个等腰Rt△AA3A4 ,…,依此类推直到第100个等腰Rt△AA100A101 ,则由这100个等腰直角三角形所构成的图形的面积为________。
湖北省襄阳市襄城区襄阳阳光学校八年级上学期第二次月考数学试题
湖北省襄阳市襄城区襄阳阳光学校2020-2021学年八年级上学期第二次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列交通标识中,是轴对称图形的是( )A .B .C .D . 2.点(3,2)A -关于y 轴对称的点的坐标为( )A .(3,2)B .(3,2)-C .(3,2)--D .(2,3)- 3.下列计算正确的是( )A .x 2·x 2=2x 4B .(-2a)3= -8a 3C .(a 3)2=a 5D .m 3÷m 3=m 4.如图,Rt △ABC 中,AD 是∠BAC 的平分线,DE ⊥AB ,垂足为E ,若AB=10cm ,AC=6cm ,则BE 的长度为( )A .10cmB .6cmC .4cmD .2cm 5.如图所示,三角形纸片被正方形纸板遮住了一部分,小明根据所学知识画出了一个与该三角形完全重合的三角形,那么这两个三角形完全重合的依据是( )A .SSSB .SASC .AASD .ASA 6.点P 在∠AOB 的平分线上,点P 到OA 边的距离等于5,点Q 是OB 边上的任意一点,则下列选项正确的是( )A .PQ≤5B .PQ<5C .PQ≥5D .PQ>5 7.若(x ﹣2)(x +3)=x 2+ax +b ,则a ,b 的值分别为( )A .a =5,b =﹣6B .a =5,b =6C .a =1,b =6D .a =1,b =﹣68.若22(3)16x m x +-+是完全平方式,则m 的值等于( ).A .3B .-5C .7D .7或-19.已知2a b -=2b c -=,则222a b c ab bc ac ++---的值为( )A .B .C .10D .1510.已知:如图在△ABC ,△ADE 中,∠BAC=∠DAE=90°,AB=AC ,AD=AE ,点C ,D ,E 三点同一条直线上,连接BD ,BE .以下四个结论:①BD=CE ;②BD ⊥CE ;③∠ACE+∠DBC=45°;④∠BAE +∠DAC =180°.其中结论正确的个数是( )A .1B .2C .3D .4二、填空题 11.因式分解:a 3﹣2a 2b+ab 2=_____.12.已知x 2+x+1=5,则(7-x)(8+x)=____________.13.如图的三角形纸片中,8,6,5AB cm BC cm AC cm ===,沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,则ADE ∆的周长为__________.14.边长分别为a 和2a 的两个正方形按如图的样式摆放,则图中阴影部分的面积为_________.15.等腰三角形一腰上的高与另一腰所成的夹角为45°,则这个等腰三角形的顶角度数为_____________________________ .16.如图所示,在边长为2的正三角形ABC 中,E 、F 、G 分别为AB 、AC 、BC 的中点,点P 为线段EF 上一个动点,连接BP 、GP ,则△BPG 的周长的最小值是 _ ▲ .三、解答题17.先化简,再求值:(4ab 3-8a 2b 2)÷4ab +(2a +b)(2a -b),其中a =2,b =1.18.如图,在△ABC 中,∠BAC=90°,∠B=50°,AE ,CF 是角平分线,它们相交于为O ,AD 是高,求∠BAD 和∠AOC 的度数.19.如图,已知(2,4)A -(4,2)B ,(2,1)C -,三点.(1)作ABC ∆关于x 轴的对称图形111A B C ∆,写出点C 关于x 轴的对称点1C 的坐标; (2)P 为x 轴上一点,请在图中找出使PAB ∆的周长最小时的点P 并直接写出此时点P 的坐标(保留作图痕迹).20.如图,点B 在线段AC 上,点E 在线段BD 上,∠ABD=∠DBC,AB=DB ,EB=CB ,M ,N 分别是AE ,CD 的中点.试探索BM 和BN 的关系,并证明你的结论.21.已知:如图所示,在ΔABC 和ΔADE 中,AB=AC ,AD=AE ,∠BAC=∠DAE,,且点B ,A ,D 在同一条直线上,连接BE,CD,M,N 分别为BE,CD 的中点, 连接AM,AN,MN . ⑴.求证:BE=CD⑵.求证:ΔAMN 是等腰三角形.22.已知多项式4322x -3x ax 7x b +++能被2x x-2+整除,求a b的值. 23.如图,在等边三角形ABC 的外侧作直线AP ,点C 关于直线AP 的对称点为点D ,连接AD ,BD ,其中BD 交直线AP 于点E .(1)依题意补全图形;(2)若∠P AC =20°,求∠AEB 的度数;(3)连结CE ,写出AE ,BE ,CE 之间的数量关系,并证明你的结论.24.某八年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,△ABC 的两内角∠ABC 与∠ACB 的平分线交于点E ,求证:∠BEC=90°+1∠A;2(2)如图2,△ABC的内角∠ABC的平分线与△ABC的外角∠ACM的平分线交于点E,请写出∠E与∠A的数量关系,并证明.(3)如图3,△ABC的两外角∠DBC与∠BCF的平分线交于点E,请你直接写出∠E 与∠A的数量关系,不需证明.25.如图1,直线AB分别与x轴、y轴交于A、B两点,OC平分∠AOB交AB于点C,点D为线段AB上一点,过点D作DE∥OC交y轴于点E,已知AO=m,BO=n,且m、n满足n2﹣12n+36+|n﹣2m|=0.(1)求A、B两点的坐标;(2)若点D为AB中点,延长DE交x轴于点F,在ED的延长线上取点G,使DG=DF,连接BG.①BG与y轴的位置关系怎样?说明理由;②求OF的长;(3)如图2,若点F的坐标为(10,10),E是y轴的正半轴上一动点,P是直线AB上一点,且P的横坐标为6,是否存在点E使△EFP为等腰直角三角形?若存在,求出点E的坐标;若不存在,说明理由.参考答案1.B【解析】某个图形沿着一条直线折叠,直线两旁的部分能够完全重合的图形是轴对称图形,以上图形中,B是轴对称图形,故选B2.A【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数.【详解】解:根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,A 关于y轴对称的点为(3,2).∴点(3,2)故选:A【点睛】本题考查了坐标系中的轴对称,掌握坐标系中的轴对称的特点是解题的关键.在平面直角坐标系中,关于x轴对称的点,横坐标相同,纵坐标互为相反数,关于y轴对称的点,纵坐标相同,横坐标互为相反数.3.B【分析】先根据同底数幂的乘法、积的乘方、幂的乘方、同底数幂的除法分别求出每个式子的值,再判断即可.【详解】A、结果是x4,故本选项错误;B、结果是-8a3,故本选项正确;C、结果是a6,故本选项错误;D、结果是1,故本选项错误;故选:B.【点睛】本题考查了同底数幂的乘法、积的乘方、幂的乘方、同底数幂的除法等知识点,能正确求出每个式子的值是解此题的关键.4.C试题解析:∵AD 是∠BAC 的平分线,∴CD=DE ,在Rt △ACD 和Rt △AED 中,{CD DE AD AD==, ∴Rt △ACD ≌Rt △AED (HL ),∴AE=AC=6cm ,∵AB=10cm ,∴EB=4cm .故选C .5.D【分析】图中三角形没被污染的部分有两角及夹边,根据全等三角形的判定方法解答即可.【详解】解:由图可知,三角形两角及夹边还存在,∴根据可以根据三角形两角及夹边作出图形,所以,依据是ASA .故选:D .【点睛】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键. 6.C【解析】【分析】根据角平分线上的点到角的两边距离相等可得点P 到OB 的距离为5,再根据垂线段最短解答.【详解】解:∵点P 在∠AOB 的平分线上,点P 到OA 边的距离等于5,∴点P 到OB 边的距离为5,∵点Q 是OB 边上的任意一点,故选C .【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.7.D【分析】等式左边利用多项式乘多项式法则计算,再利用多项式相等的条件求出a 与b 的值即可.【详解】解:∵(x ﹣2)(x+3)=x 2+x ﹣6=x 2+ax+b ,∴a =1,b =﹣6,故选:D .【点睛】此题考查了多项式乘多项式以及多项式相等的条件,熟练掌握运算法则是解本题的关键. 8.D【分析】根据完全平方公式: ()2222x y x xy y ±=±+,即可列出关于m 的方程,从而求出m 的值.【详解】解:∵22(3)16x m x +-+是完全平方式 ∴()222222(3)162(3)44816x m x x m x x x x +-+=+-+=±=±+∴2(3)8m -=±解得:m=7或-1故选:D .【点睛】此题考查的是根据完全平方公式求多项式的系数,掌握完全平方公式的特征是解决此题的关键.9.D【分析】先将原式变形得到222a b c ab bc ac ++---=12[(a-b)2+(b-c)2+(a-c)2 ],再由2a b -=2b c -=得到4a c -=,然后利用整体代入计算求值即可.【详解】∵2a b -=2b c -=∴4a c -=,∴222a b c ab bc ac ++---, =12[(a 2+b 2-2ab)+(b 2+c 2-2bc)+(a 2+c 2-2ac) =12[(a-b)2+(b-c)2+(a-c)2 ]=12[(2)2+(2)2+42 ] =1302⨯ =15.故选:D.【点睛】本题考查了因式分解的应用:利用因式分解的方法把所给的代数式和等式进行变形,然后得到更为简单的数量关系,再利用整体思想解决问题.10.D【分析】①由AB=AC ,AD=AE ,利用等式的性质得到夹角相等,利用SAS 得出△ABD ≌△ACE ,由全等三角形的对应边相等得到BD=CE ;②由△ABD ≌△ACE 得到一对角相等,再利用等腰直角三角形的性质及等量代换得到BD 垂直于CE ;③由等腰直角三角形的性质得到∠ABD+∠DBC=45°,等量代换得到∠ACE+∠DBC=45°; ④由题意,∠BAE +∠DAC=360°-∠BAC-∠DAE=180°.【详解】解:①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD ,即∠BAD=∠CAE ,在△BAD 和△CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△CAE(SAS),∴BD=CE ,本选项正确;②∵△BAD ≌△CAE ,∴∠ABD=∠ACE ,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,则BD ⊥CE ,本选项正确;③∵△ABC 为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°,∵∠ABD=∠ACE∴∠ACE+∠DBC=45°,本选项正确;④由题意,∠BAE +∠DAC=360°-∠BAC-∠DAE=360°-90°-90°=180°,本选项正确; 故选D .【点睛】本题考查了全等三角形的判定与性质以及等腰直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.11.a (a ﹣b )2.【解析】【分析】先提公因式a ,然后再利用完全平方公式进行分解即可.【详解】原式=a (a 2﹣2ab+b 2)=a (a ﹣b )2,故答案为a (a ﹣b )2.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.52【分析】根据“代数式x2+x+1=5”得x2+x=4,根据多项式的乘法将(7-x)(8+x)变形整理后即可得到答案.【详解】∵x2+x+1=5∴x2+x=4,∴(7-x)(8+x)=56-(x2+x)=56-4=52.故答案为:52.【点睛】本题考查了代数式求值,正确掌握等式的性质是解题的关键.13.7cm【分析】由折叠的性质,可知:BE=BC,DE=DC,通过等量代换,即可得到答案.【详解】∵沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,∴BE=BC,DE=DC,∴ADE的周长=AD+DE+AE=AD+DC+AE=AC+AE=AB+BC+AC-BC-BE=8+6+5-6-6=7cm,故答案是:7cm【点睛】本题主要考查折叠的性质,根据三角形的周长定义,进行等量代换是解题的关键.14.2a2.【分析】结合图形,发现:阴影部分的面积=大正方形的面积的+小正方形的面积-直角三角形的面积.【详解】阴影部分的面积=大正方形的面积+小正方形的面积-直角三角形的面积=(2a)2+a2-12×2a×3a=4a2+a2-3a2=2a2.故答案为:2a2.【点睛】此题考查了整式的混合运算,关键是列出求阴影部分面积的式子.15.45°或135°【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成立,因而可分两种情况进行讨论.【详解】解:分两种情况:①当高在三角形内部时(如图1),∵∠ABD=45°,∴顶角∠A=90°−45°=45°;②当高在三角形外部时(如图2),∵∠ABD=45°,∴顶角∠CAB=90°+45°=135°.故答案为45°或135°.【点睛】此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键.16.3【分析】连接AG交EF于M,根据等边三角形的性质证明A、G关于EF对称,得到P,△PBG周长最小,求出AB+BG即可得到答案.【详解】解:要使△PBG的周长最小,而BG=1一定,只要使BP+PG最短即可,连接AG交EF于M,∵等边△ABC ,E 、F 、G 分别为AB 、AC 、BC 的中点,∴AG ⊥BC ,EF ∥BC ,∴AG ⊥EF ,AM=MG ,∴A 、G 关于EF 对称,即当P 和E 重合时,此时BP+PG 最小,即△PBG 的周长最小,AP=PG ,BP=BE ,最小值是:PB+PG+BG=AE+BE+BG=AB+BG=2+1=3.故答案为3.17.242a ab -,12.【分析】根据整式的除法法则和乘法公式把式子进行化简,再把a 、b 的值代入即可求出结果.【详解】原式=b 2-2ab+4a 2-b 2=242a ab -,当a=2,b=1时,原式=4×22-2×2×1=12. 考点:整式的运算.18.∠BAD=40°,∠AOC=115°.【解析】【分析】先根据直角三角形的两个锐角互余,求得BAD ∠,再根据角平分线的定义,求得11452022CAE BAC ACF ACB ∠=∠=︒∠=∠=︒,,最后根据三角形内角和定理,求得AOC △中AOC ∠的度数.【详解】∵AD 是高, 50B ∠=,Rt ABD ∴中, 905040BAD ∠=-=,90,50BAC B ∠=∠=,∴△ABC 中, 905040ACB ∠=-=,∵AE ,CF 是角平分线,1145,2022CAE BAC ACF ACB ∴∠=∠=∠=∠=, ∴△AOC 中, 1804520115.AOC ∠=--=19.(1)画图见解析;(2)画图见解析,点P 的坐标为(2,0)【分析】(1)分别作出点A 、B 、C 关于x 轴的对称点,再顺次连接可得;(2)连接AB 1,交x 轴于点P ,根据图形可得点P 的坐标.【详解】(1)如图所示,111A B C ∆即为所求;1C 的坐标为(2,1),(2)如图所示,连接1AB ,交x 轴于点P ,点P 的坐标为(2,0).【点睛】本题考查了作图-轴对称变换,轴对称-最短路线问题,熟练掌握轴对称的性质是解题的关键. 20.BM ⊥BN .见解析【解析】试题分析:根据SAS 推出△ABE ≌△DBC ,推出AE=DC ,∠EAB=∠BDC ,∠AEB=∠DCB ,求出∠ABD=∠DBC=90°,BM=AM=EM=AE ,BN=CN=DN=CD ,推出∠ABM=∠DBN ,∠EBM=∠NBC 即可.解:BM=BN,BM⊥BN,理由是:在△ABE和△DBC中,,∴△ABE≌△DBC(SAS),∴AE=DC,∠EAB=∠BDC,∠AEB=∠DCB,∵∠ABD=∠DBC,∠ABD+∠DBC=180°,∴∠ABD=∠DBC=90°,∵M为AE的中点,N为CD的中点,∴BM=AM=EM=AE,BN=CN=DN=CD,∴BM=BN,∠EAB=∠MBA,∠CDB=∠DBN,∠AEB=∠EBM,∠NCB=∠NBC,∵∠EAB=∠BDC,∠AEB=∠DCB,∴∠ABM=∠DBN,∠EBM=∠NBC,∴∠ABC=2∠DBN+2∠EBM=180°,∴∠EBN+∠EBM=90°,∴BM⊥BN.考点:全等三角形的判定与性质;直角三角形斜边上的中线.21.(1)证明见解析;(2)证明见解析;【解析】试题分析:(1)由∠BAC=∠DAE,等式左右两边都加上∠CAE,得到一对角相等,再由A B=AC,AF为公共边,利用SAS可得出三角形ABE与三角形ACD全等,由全等三角形的对应边相等可得出BE=CD;(2)由M与N分别为BE,CD的中点,且BE=CD,可得出ME=ND,由三角形ABE与三角形ACD全等,得到对应边AE=AD,对应角∠AEB=∠ADC,利用SAS可得出三角形AME与三角形AND全等,利用全等三角形的对应边相等可得出AM=AN,即三角形AMN为等腰三角形.∠=∠试题解析:⑴.∵BAC CAD∠+∠=∠+∠∴BAC CAE CAD CAE∠=∠即BAE CAD在BAE和CAD中AB AC CAD AE AD =⎧⎪⎨⎪=⎩∠BAE=∠∴BAE ≌CAD∴CE CD =⑵.由BAE ≌CAD 知:12∠∠=又∵M N 、分别为BE CD 、的中点,且CE CD =∴BM CN =在BAM 和CAN 中{12BM CNAB AC=∠=∠=∴BAM ≌CAN∴AM AN = 即AMN 是等腰三角形【点睛】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.22.-2.【分析】由多项式2x 4-3x 3+ax 2+7x+b 能被x 2+x-2整除,得到2x 4-3x 3+ax 2+7x+b=A (x 2+x-2)=A (x-1)(x+2),把x=1与x=-2代入,使其值为0列出关于a 与b 的方程组,求出方程组的解得到a 与b 的值,即可求出原式的值.【详解】∵多项式2x 4-3x 3+ax 2+7x+b 能被x 2+x-2=(x-1)(x+2)整除,∴2x 4-3x 3+ax 2+7x+b=A (x 2+x-2)=A (x-1)(x+2),当x=1时,多项式为2-3+a+7+b=0,即a+b=-6;当x=-2时,多项式为32+24+4a-14+b=0,即4a+b=-42,解得:a=-12,b=6,则12=26ab-=-.【点睛】此题考查了整式的除法,熟练掌握运算法则是解本题的关键.23.(1)补图见解析;(2)60°;(3)CE+AE=BE.【分析】(1)根据题意补全图形即可;(2)根据轴对称的性质可得AC=AD,∠PAC=∠PAD=20°,根据等边三角形的性质可得AC=AB,∠BAC=60°,即可得AB=AD,在△ABD 中,根据等腰三角形的性质和三角形的内角和定理求得∠D的度数,再由三角形外角的性质即可求得∠AEB的度数;(3)CE +AE=BE,如图,在BE上取点M使ME=AE,连接AM,设∠EAC=∠DAE=x,类比(2)的方法求得∠AEB=60°,从而得到△AME为等边三角形,根据等边三角形的性质和SAS即可判定△AEC≌△AMB,根据全等三角形的性质可得CE=BM,由此即可证得CE+AE=BE.【详解】(1)如图:(2)在等边△ABC中,AC=AB,∠BAC=60°由对称可知:AC=AD,∠P AC=∠P AD,∴AB=AD∴∠ABD=∠D∵∠P AC=20°∴∠P AD=20°∴∠BAD=∠BAC+∠PAC +∠PAD =100°()1180402D BAD ︒︒∴∠=-∠=. ∴∠AEB =∠D +∠P AD =60°(3)CE +AE =BE .在BE 上取点M 使ME =AE ,连接AM ,在等边△ABC 中,AC =AB ,∠BAC =60°由对称可知:AC =AD ,∠EAC =∠EAD ,设∠EAC =∠DAE =x .∵AD =AC =AB , ∴()11802602D BAC x x ︒︒∠=-∠-=- ∴∠AEB =60-x +x =60°. ∴△AME 为等边三角形.∴AM=AE ,∠MAE=60°,∴∠BAC=∠MAE=60°,即可得∠BAM=∠CAE.在△AMB 和△AEC 中,AB AC BAM CAE AM AE =⎧⎪∠=∠⎨⎪=⎩,∴△AMB ≌△AEC .∴CE =BM .∴CE +AE =BE .【点睛】本题是三角形综合题,主要考查了轴对称的性质、三角形的内角和定理、等边三角形的性质及全等三角形的判定与性质等知识点,解决第三问时,通过做辅助线,把AE 转化到BE上,再证明CE=BM即可得结论.24.(1)证明见解析;(2)∠A=2∠E,证明见解析;(3)∠E=90°-12∠A.【分析】(1)先根据角平分线的性质得出∠EBC=12∠ABC,∠ECB=12∠ACB,再由三角形内角和定理得出∠BEC+∠EBC+∠ECB=180°,利用等量代换即可得出结论;(2)先根据角平分线的性质得出∠EBC=12∠ABC,∠ECM=12∠ACM,再由三角形外角的性质即可得出结论;(3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠EBC与∠ECB,然后再根据三角形的内角和定理列式整理即可得解.【详解】(1)∵BE、CE分别平分∠ABC和∠ACB,∴∠EBC=12∠ABC,∠ECB=12∠ACB,∴∠BEC+∠EBC+∠ECB=180°,∴∠BEC=180°-(∠EBC+∠ECB)=180°-(12∠ABC+12∠ACB)=180°-12(∠ABC+∠ACB)=180°-12(180°-∠A)=180°-90°+12∠A=90°+12∠A.(2)∵BE是∠ABC的平分线,CE是∠ACM的平分线,∴∠EBC=12∠ABC,∠ECM=12∠ACM.∵∠ACM是△ABC的外角,∠ECM是△BCE的外角,∴∠ACM=∠A+∠ABC,∠ECM=∠BEC+∠EBC,∴∠ECM=12∠ACM=12(∠A+∠ABC)=∠BEC+∠EBC,即12∠A+∠EBC=∠BEC+∠EBC,∴∠A=2∠B∠A=2∠C,即∠A=2∠E;(3)结论∠E=90°-12∠A.∵∠CBD与∠BCF是△ABC的外角,∴∠CBD=∠A+∠ACB,∠BCF=∠A+∠ABC,∵BE,CE分别是∠ABC与∠ACB的平分线,∴∠EBC=12(∠A+∠ACB),∠ECB=12(∠A+∠ABC).∵∠EBC+∠ECB+∠E=180°,∴∠E=180°-∠EBC-∠ECB,=180°-12(∠A+∠ACB)-12(∠A+∠ABC),=180°-12∠A-12(∠A+∠ABC+∠ACB),=180°-12∠A-90°=90°-12∠A.【点睛】本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.25.(1)A(3,0),B(0,6);(2)①BG与y轴垂直,理由见解析,②OF=1.5(3)存在点E(0,4),使△EFP为等腰直角三角形【分析】(1)先求出m,n的值,即可得出结论;(2)①先判断出△BDG≌△ADF,得出BG=AF,∠G=∠DFA,最后根据平行线的性质得出∠DFA=45°,∠G=45°,即可得出结论;②利用等腰三角形的性质,建立方程即可得出结论;(3)先求出点P坐标,进而得出Rt△FME≌Rt△ENP,进而得出求出OE,即可得出结论.【详解】(1)由n2-12n+36+|n-2m|=0.得:(n-6)2+|n-2m|=0,∴n=6,m=3,∴A(3,0),B(0,6).(2)①BG⊥y轴.在△BDG与△ADF中,BD DA BDG FDA DG DF =⎧⎪∠=∠⎨⎪=⎩∴△BDG ≌△ADF∴BG=AF ,∠G=∠DFA∵OC 平分∠ABC ,∴∠COA=45°,∵DE ∥OC ,∴∠DFA=45°,∠G=45°.∵∠FOE=90°,∴∠FEO═45°∵∠BEG=45°,∴∠EBG=90°,即BG 与y 轴垂直.②从①可知,BG=FA ,△BDE 为等腰直角三角形.∴BG=BE .设OF=x ,则有OE=x ,3+x=6-x ,解得x=1.5,即:OF=1.5.(3)∵A (3,0),B (0,6).∵直线AB 的解析式为:y=-2x+6,∵P 点的横坐标为6,故P (6,-6)要使△EFP 为等腰直角三角形,必有EF=EP ,且∠FEP═90°,如图2,过F 、P 分别向y 轴作垂线垂足分别为M 、N .∵∠FEP═90°∴∠FEM+∠PEN=90°,又∠FEM+∠MFE=90°∴∠PEN=∠MFE∴Rt△FME≌Rt△ENP∴ME=NP=6,∴OE=10-6=4.即存在点E(0,4),使△EFP为等腰直角三角形【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,非负的性质,等腰三角形的性质,角平分线的性质,求出点P的坐标是解本题的关键.。
湖北省襄阳市2020年(春秋版)八年级上学期数学期末考试试卷(II)卷
湖北省襄阳市2020年(春秋版)八年级上学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分) (2015八上·平罗期末) 以下列各线段为边,能组成直角三角形的是()A . 2,5,8B . 1,1,2C . 4,6,8D . 3,4,52. (2分)(2017·河西模拟) 分式方程的解为()A . x=﹣1B . x=1C . x=2D . x=33. (2分) (2017八上·宁都期末) 剪纸是中国最古老的民间艺术之一,是中华传统文化中的一块瑰宝.下列四个剪纸图案中不是轴对称图形的是()A .B .C .D .4. (2分) (2017八下·顺义期末) 下列图形中,内角和与外角和相等的是()A .B .C .D .5. (2分)如图,在△ABC中,AB=AC=BD,且D为BC上一点,CD=AD,则∠B的度数为()A . 20°B . 36°C . 35°D . 40°6. (2分)如图,O是线段AB的中点,M是线段AO的中点,若AM=2cm,则AB的长为()A . 10cmB . 8cmC . 6cmD . 4cm二、填空题 (共8题;共9分)7. (1分) (2019七上·桐梓期中) |a+3|+(b﹣2)2=0,求ab=________.8. (1分)用小数表示:3.27×10﹣5=________ .9. (1分) (2017七下·宁波期中) 已知x2+y2+6x+4y=-13,则yx的值为________10. (1分) (2017八上·天津期末) 若分式有意义,则x的取值范围是________.11. (1分)工人师傅砌墙的时候,常在长方形门框上斜定一根木条,他利用的原理是________ .12. (1分) (2019八上·江苏期中) 如图,在△ABC中,∠ABC=45°,AC=9cm,F是高AD和BE的交点,则BF的长是________.13. (2分) (2019七下·南京月考) 如图,直线a经过平移后得到直线b,若∠3=30°,则∠1+∠2=________°.14. (1分)(2018·葫芦岛) 如图,在矩形ABCD中,点E是CD的中点,将△BCE沿BE折叠后得到△BEF、且点F在矩形ABCD的内部,将BF延长交AD于点G.若,则 =________.三、解答题 (共11题;共80分)15. (5分) (2017七上·永定期末) 先化简,后求值:,其中x在数轴上的对应点到原点的距离为个单位长度.16. (5分) (2018八上·涞水期末) 计算:计算与化简,解分式方程(1)a•a5﹣(2a3)2+(﹣2a2)3(2)先化简(a﹣),再求值,其中a=3,b=1(3)分解因式:(m﹣n)(3m+n)2+(m+3n)2(n﹣m)(4)解分式方程:.17. (5分)按要求作图(1)把图中(实线部分)补成以虚线L为对称轴的轴对称图形,你会得到一只美丽的蝴蝶图案。
湖北省襄阳市襄阳四中学2020-2021学年数学八年级第二学期期末学业质量监测模拟试题含解析
湖北省襄阳市襄阳四中学2020-2021学年数学八年级第二学期期末学业质量监测模拟试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题4分,共48分)1.随机抽取10名八年级同学调查每天使用零花钱的情况,结果如表,则这10名同学每天使用零花钱的中位数是( )每天使用零花钱情况单位(元)2 3 4 5人数 1 5 2 2A.2元B.3元C.4元D.5元2.在平行四边形ABCD中,AB=3,BC=4,当平行四边形ABCD的面积最大时,下结论正确的有( )①AC=5 ②∠A+∠C=180°③AC⊥BD ④AC=BDA.①②④B.①②③C.②③④D.①③④3.如图,△ABC中,D、E分别是AB、AC边的中点,延长DE至F,使EF=13DF,若BC=8,则DF的长为()A.6 B.8 C.4 D.8 34.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A .OA OC =,OB OD =B .AB CD =,AO CO =C .//AD BC ,AD BC =D .BAD BCD ∠=∠,//AB CD 5.已知反比例函数y =的图象上有两点A (x 1,y 1),B (x 2,y 2),当x 1<0<x 2时,有y 1<y 2,则m 的取值范围是( )A .m <0B .m >0C .m <D .m >6.如果一个正多边形内角和等于1080°,那么这个正多边形的每一个外角等于( )A .45B .60C .120D .1357.下列事件中,是必然事件的是( )A .3天内下雨B .打开电视机,正在播放广告C .367人中至少有2人公历生日相同D .a 抛掷1个均匀的骰子,出现4点向上8.下列各组数中不能作为直角三角形的三边长的是( )A .3,4,5B .6,8,10C .7,24,25D .34,3,59.如图,李老师骑自行车上班,最初以某一速度匀速行进,路途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校.在课堂上,李老师请学生画出他行进的路程y (千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )A .B .C .D .10.下列运算错误的是( )A 235=B 236=C .623÷=D .2183232=⨯= 11.二次根式中字母 x 的取值范围是( ) A .x≠﹣3 B .x≥﹣3 C .x >﹣3 D .全体实数12.已知点(-2, 1y ),(-1, 2y ),(1, 3y )都在直线y=-3x+b 上,则1y 、2y 、3y 的值大小关系是( )A .3y >1y >2yB .1y >2y >3yC .1y <2y <3yD .3y <1y <2y二、填空题(每题4分,共24分)13.如图,在平面直角坐标系中,函数y =2x 和y =-x 的图象分别为直线l 1,l 2,过点(1,0)作x 轴的垂线交l 1于点A 1,过A 1点作y 轴的垂线交l 2于点A 2,过点A 2作x 轴的垂线交l 1于点A 3,过点A 3作y 轴的垂线交l 2于点A 4,…依次进行下去,则点A 2019的坐标为______.14.如图,矩形ABCD 中,1, 2AB CB ==,连接AC ,以对角线AC 为边按逆时针方向作矩形11ACC B ,使矩形11ACC B 矩形ADCB ;再连接AC ,以对角线1AC 为边,按逆时针方向作矩形,使矩形22ACC B 矩形11ACC B , ..按照此规律作下去,若矩形ABCD 的面积记作1S ,矩形11ACC B 的面积记作2S ,矩形22ACC B 的面积记作3S , ... 则2019S 的值为__________.15.已知一等腰三角形有两边长为6,4,则这个三角形的周长为_______.1628=_____.17.若关于x 的分式方程233x m x x -=--+2无解,则m 的值为________. 18.写出在抛物线244y x x =--上的一个点________.三、解答题(共78分).为了解学生19.(8分)某学校开展课外体育活动,决定开设A:篮球、B:乒乓球、C:武术、D:跑步四种活动项目最喜欢哪一种活动项目(每人只选取一种).随机抽取了m名学生进行调查,并将调查结果绘成如下统计图,请你结合图中信息解答下列问题:()1m=______;()2在扇形统计图中“乒乓球”所对应扇形的圆心角的度数为______;()3请把图的条形统计图补充完整;()4若该校有学生1200人,请你估计该校最喜欢武术的学生人数约是多少?=.求证:20.(8分)如图,将平行四边形ABCD的对角线BD向两个方向延长,分别至点E和点F,且使BE DF四边形AECF是平行四边形.21.(8分)“黄金1号”玉米种子的价格为5元/kg.如果一次购买5kg以上的种子,超过5kg部分的种子价格打8折.(1)购买3kg种子,需付款元,购买6kg种子,需付款元.(2)设购买种子x kg,付款金额为y元,写出y与x之间的函数解析式.(3)张大爷要购买种子5千克,李大爷要购买种子4千克,怎样购买让他们花钱最少?他们各应付款多少元?(结果保留整数)22.(10分)如图,AD是△ABC的中线,AE∥BC,BE交AD于点F,交AC于G,F是AD的中点.(1)求证:四边形ADCE是平行四边形;(2)若EB是∠AEC的角平分线,请写出图中所有与AE相等的边.23.(10分)已知△ABC 的三边长a 、b 、c 满足|12a-4|+(2b- 12)2+ 10c -=0,试判断△ABC 的形状,并说明理由. 24.(10分)平面直角坐标系xOy 中,对于点M 和图形W ,若图形W 上存在一点N (点M ,N 可以重合),使得点M 与点N 关于一条经过原点的直线l 对称,则称点M 与图形W 是“中心轴对称”的对于图形1W 和图形2W ,若图形1W 和图形2W 分别存在点M 和点N (点M ,N 可以重合),使得点M 与点N 关于一条经过原点的直线l 对称,则称图形1W 和图形2W 是“中心轴对称”的.特别地,对于点M 和点N ,若存在一条经过原点的直线l ,使得点M 与点N 关于直线l 对称,则称点M 和点N 是“中心轴对称”的.(1)如图1,在正方形ABCD 中,点(1,0)A ,点(2,1)C ,①下列四个点1(0,1)P ,2 (2,2)P ,31,02P ⎛⎫- ⎪⎝⎭,413,2P ⎛⎫-- ⎪ ⎪⎝⎭中,与点A 是“中心轴对称”的是________; ②点E 在射线OB 上,若点E 与正方形ABC D 是“中心轴对称”的,求点E 的横坐标E x 的取值范围;(2)四边形GHJK 的四个顶点的坐标分别为(-2,2)G ,(2,2)H ,(2,2)J -,(2,2)K --,一次函数3y x b =+图象与x 轴交于点M ,与y 轴交于点N ,若线段与四边形GHJK 是“中心轴对称”的,直接写出b 的取值范围.25.(12分)因为一次函数y kx b =+与0() y kx b k =-+≠的图象关于y 轴对称,所以我们定义:函数y kx b =+与互为()0y kx b k =-+≠“镜子”函数.(1)请直接写出函数32y x =-的“镜子”函数:________.(2)如图,一对“镜子”函数y kx b =+与()0y kx b k =-+≠的图象交于点A ,分别与x 轴交于B C 、两点,且AO=BO ,△ABC 的面积为16,求这对“镜子”函数的解析式.26.某种型号油电混合动力汽车,从A 地到B 地燃油行驶需纯燃油费用76元,从A 地到B 地用电行驶需纯用电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.(1)求每行驶1千米纯用电的费用;(2)若要使从A 地到B 地油电混合行驶所需的油、电费用合计不超过39元,则至少需用电行驶多少千米?参考答案一、选择题(每题4分,共48分)1、B【解析】【分析】将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【详解】解:共10名同学,中位数是第5和第6的平均数,故中位数为3,故选:B .【点睛】本题考查了中位数,正确理解中位数的意义是解题的关键.2、A【解析】【分析】当▱ABCD 的面积最大时,四边形ABCD 为矩形,得出∠A=∠B=∠C=∠D=90°,AC=BD ,根据勾股定理求出AC ,即可得出结论.【详解】根据题意得:当▱ABCD的面积最大时,四边形ABCD为矩形,∴∠BAD=∠ABC=∠BCD=∠CDA=90°,AC=BD,∴∠BAD+∠BCD=180°,=,①正确,②正确,④正确;③不正确;故选A.【点睛】本题考查了平行四边形的性质、矩形的性质以及勾股定理;得出▱ABCD的面积最大时,四边形ABCD为矩形是解决问题的关键.3、A【解析】【分析】根据三角形中位线的性质得出DE的长度,然后根据EF=13DF,DE+EF=DF求出DF的长度.【详解】解:∵D、E分别为AB和AC的中点,∴DE=12BC=4,∵EF=13DF,DE+EF=DF,∴DF=6,∴选A.【点睛】本题主要考查的是三角形中位线的性质,属于基础题型.理解中位线的性质是解决这个问题的关键.4、B【解析】【分析】根据平行四边形的判定方法,对每个选项进行筛选可得答案.【详解】A、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,故A选项不符合题意;B、AB=CD,AO=CO不能证明四边形ABCD是平行四边形,故本选项符合题意;C、∵AD//BC,AD=BC,∴四边形ABCD是平行四边形,故C选项不符合题意;D、∵AB∥CD,∴∠ABC+∠BCD=180°,∠BAD+∠ADC=180°,又∵∠BAD=∠BCD,∴∠ABC=∠ADC,∵∠BAD=∠BCD,∠ABC=∠ADC,∴四边形ABCD是平行四边形,故D选项不符合题意,故选B.【点睛】本题主要考查平行四边形的判定问题,熟练掌握平行四边形的性质,能够熟练判定一个四边形是否为平行四边形.平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.5、C【解析】【分析】【详解】试题分析:根据反比例函数图象上点的坐标特征得到图象只能在一、三象限,故,则1-2m>0,∴m>.故选C.考点:反比例函数图象上点的坐标特征.6、A【解析】【分析】首先设此多边形为n边形,根据题意得:180(n-2)=1080,即可求得n=8,再由多边形的外角和等于360°,即可求得答案.【详解】设此多边形为n边形,根据题意得:180(n-2)=1080,解得:n=8,∴这个正多边形的每一个外角等于:360°÷8=45°.故选A.【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.7、C【解析】【分析】根据随机事件和必然事件的定义分别进行判断.【详解】A. 3天内会下雨为随机事件,所以A选项错误;B. 打开电视机,正在播放广告,是随机事件,所以B选项错误;C. 367人中至少有2人公历生日相同是必然事件,所以C选项正确;D. a抛掷1个均匀的骰子,出现4点向上,是随机事件,所以D选项错误.故选C.【点睛】此题考查随机事件,解题关键在于掌握其定义.8、A【解析】【分析】勾股定理的逆定理:若一个三角形的两边长的平方和等于第三边的平方,则这个三角形的直角三角形.【详解】)2+)2=7≠2A.【点睛】本题属于基础应用题,只需熟练掌握勾股定理的逆定理,即可完成.9、C【解析】【分析】本题可用排除法.依题意,自行车以匀速前进后又停车修车,故可排除A项.然后自行车又加快速度保持匀速前进,故可排除B,D.【详解】最初以某一速度匀速行进,这一段路程是时间的正比例函数;中途由于自行车故障,停下修车耽误了几分钟,这一段时间变大,路程不变,因而选项A一定错误.第三阶段李老师加快了速度,仍保持匀速行进,结果准时到校,这一段,路程随时间的增大而增大,因而选项B,一定错误,这一段时间中,速度要大于开始时的速度,即单位时间内路程变化大,直线的倾斜角要大.故本题选C.【点睛】本题考查动点问题的函数图象问题,首先看清横轴和纵轴表示的量,然后根据实际情况:时间t和运动的路程s之间的关系采用排除法求解即可.10、A【解析】【分析】根据二次根式的乘法法则和二次根式的性质逐个判断即可.【详解】解:A、236⋅=,故本选项符合题意;B、236⋅=,故本选项不符合题意;C、623÷=,故本选项不符合题意;D、2=⨯=,故本选项不符合题意;183232故选:A.【点睛】本题考查了二次根式的乘除和二次根式的性质,能灵活运用二次根式的乘法法则进行化简是解此题的关键,注意⋅=.a b ab(a0,b0)11、D【解析】【分析】根据任何实数的平方是非负数,可得答案.【详解】二次根式中字母x的取值范围是x+3任意实数,x是任意实数.故选:D.【点睛】此题考查二次根式有意义的条件,解题关键在于掌握其定义.12、B【解析】【分析】先根据直线y=-1x+b判断出函数的图象特征,再根据各点横坐标的大小进行判断即可.【详解】∵直线y=-1x+b,k=-1<0,∴y随x的增大而减小,又∵-2<-1<1,∴y1>y2>y1.故选B.【点睛】本题考查的是一次函数的图像与性质,即一次函数y=kx+b(k≠0)中,当k>0,y随x的增大而增大;当k<0,y随x的增大而减小.二、填空题(每题4分,共24分)13、(-21009,-21010)【解析】【分析】根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8等的坐标,根据坐标的变化找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”,依此规律结合2019=504×4+3即可找出点A2019的坐标.【详解】当x=1时,y=2,∴点A1的坐标为(1,2);当y=-x=2时,x=-2,∴点A2的坐标为(-2,2);同理可得:A3(-2,-4),A4(4,-4),A5(4,8),A6(-8,8),A7(-8,-16),A8(16,-16),A9(16,32),…,∴A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数).∵2019=504×4+3,∴点A 2019的坐标为(-2504×2+1,-2504×2+2),即(-21009,-21010).故答案为(-21009,-21010).【点睛】本题考查了一次函数图象上点的坐标特征、正比例函数的图象以及规律型中点的坐标,根据坐标的变化找出变化规律“A 4n+1(22n ,22n+1),A 4n+2(-22n+1,22n+1),A 4n+3(-22n+1,-22n+2),A 4n+4(22n+2,-22n+2)(n 为自然数)”是解题的关键.14、2018403552【解析】【分析】首先根据矩形的性质,求出AC ,根据边长比求出面积比,依次类推,得出规律,即可得解.【详解】∵四边形ABCD 是矩形,∴AD ⊥DC ,∴==∵按逆时针方向作矩形ABCD 的相似矩形AB 1C 1C ,∴矩形AB 1C 1C 的边长和矩形ABCD 2∴矩形AB 1C 1C 的面积和矩形ABCD 的面积的比5:4,∵矩形ABCD 的面积=2×1=2, ∴矩形AB 1C 1C 的面积=52, 依此类推,矩形AB 2C 2C 1的面积和矩形AB 1C 1C 的面积的比5:4∴矩形AB 2C 2C 1的面积=2352∴矩形AB 3C 3C 2的面积=3552, 按此规律第n 个矩形的面积为:2152nn - 则20182018220181401935205522S ⨯-==故答案为:2018 403552.【点睛】本题考查了矩形的性质,勾股定理,相似多边形的性质,解此题的关键是能根据求出的结果得出规律.15、14或16.【解析】【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为4和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】(1)若4为腰长,6为底边长,由于6−4<4<6+4,即符合三角形的两边之和大于第三边.所以这个三角形的周长为6+4+4=14.(2)若6为腰长,4为底边长,由于6−6<4<6+6,即符合三角形的两边之和大于第三边.所以这个三角形的周长为6+6+4=16.故等腰三角形的周长为:14或16.故答案为:14或16.【点睛】此题考查三角形三边关系,等腰三角形的性质,解题关键在于分情况讨论16、【解析】【分析】原式化为最简二次根式,合并即可得到结果.【详解】=.故答案为【点睛】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.17、1【解析】分析:把原方程去分母化为整式方程,求出方程的解得到x 的值,由分式方程无解得到分式方程的分母为0,求出x 的值,两者相等得到关于m 的方程,求出方程的解即可得到m 的值. 详解:2233x m x x -=+-- 去分母得:x ﹣2=m +2(x ﹣3),整理得:x =4﹣m .∵原方程无解,得到x ﹣3=0,即x =3,∴4﹣m =3,解得:m =1.故答案为1.点睛:本题的关键是让学生理解分式方程无解就是分母等于0,同时要求学生掌握解分式方程的方法,以及转化思想的运用.学生在去分母时,不要忽略分母为1的项也要乘以最简公分母.18、(0,﹣4)(答案不唯一)【解析】【分析】把(0,﹣4)点的横坐标代入函数式,比较纵坐标是否相符,即可解答.【详解】将(0,﹣4)代入244y x x =--,得到-4=0-0-4 ,故(0,﹣4)在抛物线上,故答案为:(0,﹣4).【点睛】此题考查二次函数图象上点的坐标特征,解题关键在于把点代入解析式.三、解答题(共78分)19、(1)50;(2)108°;(3)见解析;(4)1.【解析】【分析】(1)由B 项目人数及其所占百分比可得总人数m ;(2)用360°乘以B 项目对应百分比可得;(3)根据各项目人数之和为50求得A 项目人数即可补全图形;(4)总人数乘以样本中C 项目人数所占比例即可得.【详解】()1m 1530%50=÷=,故答案为50;()2在扇形统计图中“乒乓球”所对应扇形的圆心角的度数为36030%108⨯=,故答案为108;()3A项目人数为()-++=人,501551020补全图形如下:()4估计该校最喜欢武术的学生人数约是51200120⨯=人.50【点睛】本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20、详见解析【解析】【分析】由四边形ABCD是平行四边形易知OA=OC,OC=OD,再证得OE=OF,即可得出结论.【详解】证明:连接AC,设AC与BD交于点O四边形ABCD是平行四边形.∴==,OA OC OB OD,=又BE DFOE OF ∴=∴四边形AECF 是平行四边形,【点睛】此题考查了平行四边形的性质和判定,全等三角形的判定和性质,解题时要注意选择适宜的判定方法.21、(1)15,1;(2)5,05,45, 5.x x y x x ≤≤⎧=⎨+>⎩;(3)张大爷和李大爷一起购买花钱最少,张大爷应付款23元,李大爷应付款18 元.【解析】【分析】(1)根据题意,可以分别计算出购买3kg 和购买6kg 种子需要付款的金额;(2)根据题意,可以分别写出0≤x≤5和x >5时对应的函数解析式;(3)根据题意,可知张大爷和李大爷一起购买花钱最少,然后算出他们需要付款的金额即可.【详解】解:(1)由题意可得,购买3kg 种子需要付款:5×3=15(元),购买6kg 种子需要付款:5×5+(6−5)×5×0.8=1(元),故答案为:15,1.(2)由题意可得,当0≤x≤5时,y=5x ,当x >5时,y=5×5+5×0.8(x−5)=4x +5, ∴5,05,45, 5.x x y x x ≤≤⎧=⎨+>⎩ (3)一次性购买9kg 种子花钱最少.若单独购买,则张大爷和李大爷分别付款25元和20元,若一起购买9kg ,则把9x =代人45y x =+得,41y =.541239⨯≈(元), 441189⨯≈(元) ∴张大爷和李大爷一起购买花钱最少,张大爷应付款23元,李大爷应付款18 元.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,列出一次函数解析式.22、见解析【解析】试题分析:(1)由已知条件易证△AFE≌△DFB,从而可得AE=BD=DC,结合AE∥BC即可证得四边形ADCE是平行四边形;(2)由(1)可知,AE=BD=CD;由BE平分∠AEC,结合AE∥BC可证得△BCE是等腰三角形,从而可得EC=BC,结合AD=EC、AF=DF,可得AF=DF=AE;由此即可得与AE相等的线段有BD、CD、AF、DF共四条.试题解析:(1)∵AE∥BC,∴∠AEF=∠DBF,∠EAF=∠FDB,∵点F是AD的中点,∴AF=DF,∴△AFE≌△DFB,∴ AE=CD,∵AD是△ABC的中线,∴DC=AD,∴AE=DC,又∵AE∥BC,∴四边形ADCE是平行四边形;(2)∵BE平分∠AEC,∴∠AEB=∠CEB,∵AE∥BC,∴∠AEB=∠EBC,∴∠CEB=∠EBC,∴EC=BC,∵由(1)可知,AD=EC,BD=DC=AE,∴AD=BC,又∵AF=DF,∴AF=DF=BD=DC=AE,即图中等于AE的线段有4条,分别是:AF、DF、BD、DC.23、△ABC为直角三角形,理由见解析.【解析】【分析】根据绝对值、平方、二次根式的非负性即可列出式子求出a,b,c的值,再根据勾股定理即可判断. 【详解】△ABC为直角三角形,理由,由题意得12a-4=0.2b-12=0,10-c=0 ,所以a=8、b=6,c=10.所以a2 +b2=c2 ,△ABC为直角三角形.【点睛】此题主要考查勾股定理的应用,解题的关键是根据非负性求出各边的长.24、(1)①P1,P1;②22≤x E≤10;(2)23≤b≤2+23或-2-23≤b≤-23.【解析】【分析】(1)①根据画出图形,根据“中心轴对称”的定义即可判断.②以O为圆心,OA为半径画弧交射线OB于E,以O为圆心,OC为半径画弧交射线OB于F.求出点E,点F的坐标即可判断.(2)如图3中,设GK交x轴于P.求出两种特殊位置的b的值即可判断:当一次函数y=3x+b经过点G(-2,2)时,2=-23+b,b=2+23,当一次函数y=3x+b经过点P(-2,0)时,0=-23+b,b=23,观察图象结合图形W1和图形W2是“中心轴对称”的定义可知,当23≤b≤2+23时,线段MN与四边形GHJK是“中心轴对称”的.再根据对称性,求出直线与y轴的负半轴相交时b的范围即可.【详解】解:(1)如图1中,①∵OA=1,OP1=1,OP1=1,∴P1,P1与点A是“中心轴对称”的,故答案为P1,P1.②如图2中,以O为圆心,OA为半径画弧交射线OB于E,以O为圆心,OC为半径画弧交射线OB于F.∵在正方形ABCD中,点A(1,0),点C(2,1),∴点B(1,1),∵点E在射线OB上,∴设点E的坐标是(x,y),则x=y,即点E坐标是(x,x),∵点E与正方形ABCD是“中心轴对称”的,∴当点E与点A对称时,则OE=OA=1,过点E作EH⊥x轴于点H,则OH2+EH2=OE2,∴x2+x2=12,解得x=22,∴点E的横坐标x E=22,同理可求点:F 1010,∵E (2,2),F (10,10), ∴观察图象可知满足条件的点E 的横坐标x E 的取值范围:22≤x E ≤102. (2)如图3中,设GK 交x 轴于P .当一次函数3经过点G (-2,2)时,3,3,当一次函数3经过点P (-2,0)时,3,3观察图象结合图形W 1和图形W 2是“中心轴对称”的定义可知,当33时,线段MN 与四边形GHJK 是“中心轴对称”的.根据对称性可知:当33时,线段MN 与四边形GHJK 是“中心轴对称”的.综上所述,满足条件的b 的取值范围:3333【点睛】本题属于一次函数综合题,考查了正方形的性质,“中心轴对称”的定义,一次函数的性质等知识,解题的关键是理解题意,学会性质特殊点特殊位置解决问题,属于中考压轴题.25、 (1)y=-3x-2;(2)4y x =+;4y x =-+.【解析】【分析】(1)根据“镜子”函数的定义解答即可;(2)根据“镜子”函数的定义可得y kx b =+与 ()0y kx b k =-+≠的图象关于y 轴对称,即可得出AO=BO=CO ,设OA=OB =OC=x ,根据△ABC 的面积为16列方程求出x 的值,即可得点A 、B 、C 的坐标,利用待定系数法求出k 、b 的值即可得答案.【详解】(1)∵函数y kx b =+与互为()0y kx b k =-+≠“镜子”函数.∴函数32y x =-的“镜子”函数是 3 2y x =--,故答案为: 3 2y x =--(2)∵函数y kx b =+与0() y kx b k =-+≠是一对“镜子”函数,∴一次函数y kx b =+与 ()0y kx b k =-+≠的图象关于y 轴对称,∴BO=CO ,∴AO=BO=CO ,设 AO BO CO x ===,根据题意可得12162x x ⨯= 解得4x =∴()4,0B -,()()4,0,0,4C A将B 、A 的坐标分别代入y kx b =+中得404k b b -+=⎧⎨=⎩, 解得:14k b =⎧⎨=⎩∴其函数解析式为4y x =+,∴其“镜子”函数解析式为4y x =-+.∴这对“镜子”函数的解析式为4y x =+和4y x =-+.【点睛】本题考查待定系数法求一次函数解析式,根据关于y 轴对称的点的坐标特征得出OA=OB=OC 是解题关键.26、(1)每行驶1千米纯用电的费用为0.26元.(2)至少需用电行驶74千米.【解析】【分析】(1)根据某种型号油电混合动力汽车,从A 地到B 地燃油行驶纯燃油费用76元,从A 地到B 地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元,可以列出相应的分式方程,然后解分式方程即可解答本题;(2)根据(1)中用电每千米的费用和本问中的信息可以列出相应的不等式,解不等式即可解答本题.【详解】(1)设每行驶1千米纯用电的费用为x元,根据题意得:760.5 x = 26 x解得:x=0.26经检验,x=0.26是原分式方程的解,答:每行驶1千米纯用电的费用为0.26元;(2)从A地到B地油电混合行驶,用电行驶y千米,得:0.26y+(260.26﹣y)×(0.26+0.50)≤39解得:y≥74,即至少用电行驶74千米.。
襄阳市八年级数学上册第二单元《全等三角形》检测卷(答案解析)
一、选择题1.如图,在ABC 中,8AB AC ==厘米,6BC =厘米,点D 为AB 的中点.如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上,由C 点向A 点运动,为了使BPD CPQ △≌△,点Q 的运动速度应为( )A .1厘米/秒B .2厘米/秒C .3厘米/秒D .4厘米/秒 2.芜湖长江三桥是集客运专线、市域轨道交通、城市主干道路于一体的公铁合建桥梁,2020年9月29日公路段投入运营,其侧面示意图如图所示,其中AB CD ⊥,现添加以下条件,不能判定ABC ABD △≌△的是( )A .ACB ADB ∠=∠B .AB BD =C .AC AD = D .CAB DAB ∠=∠3.如图,,,AB AD CB CD AC BD ==、相交于点O ,则下列说法中正确的个数是( ) ①OD OB =;②点O 到CB CD 、的距离相等;③BDA BDC ∠=∠;④BD AC ⊥A .4B .3C .2D .14.如图,点O 是△ABC 中∠BCA ,∠ABC 的平分线的交点,已知△ABC 的面积是12,周长是8,则点O 到边BC 的距离是( )A .1B .2C .3D .45.如图,在ABC 中,AD BC ⊥于D ,CE AB ⊥于E ,AD 与CE 交于点F .请你添加一个适当的条件,使AEF ≌CEB △.下列添加的条件不正确的是( )A .EF EB = B .EA EC = C .AF CB =D .AFE B ∠=∠ 6.已知如图,AC ⊥BC ,DE ⊥AB ,AD 平分∠BAC ,下面结论错误的是( )A .BD +ED =BCB .DE 平分∠ADBC .AD 平分∠EDC D .ED +AC >AD 7.下列命题的逆命题是假命题的是( )A .直角三角形两锐角互余B .全等三角形对应角相等C .两直线平行,同位角相等D .角平分线上的点到角两边的距离相等8.下列说法不正确的是( )A .三边分别相等的两个三角形全等B .有两边及一角对应相等的两个三角形全等C .有两角及一边对应相等的两个三角形全等D .斜边和一条直角边分别相等的两个直角三角形全等9.点Р在AOB ∠的角平分线上,点Р到OA 边的距离等于5,点Q 是OB 边上的任意一点,则下列选项正确的是( )A .5PQ >B .5PO ≥C . 5PQ <D .5PO ≤ 10.下列命题中,假命题是( )A .在同一平面内,垂直于同一条直线的两直线平行B .到线段两端点距离相等的点在这条线段的垂直平分线上C .一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等D .一边长相等的两个等腰直角三角形全等11.根据下列条件,能画出唯一ABC 的是( )A .3AB =,4BC =,7CA =B .4AC =,6BC =,60A ∠=︒ C .45A ∠=︒,60B ∠=︒,75C ∠=︒D .5AB =,4BC =,90C ∠=︒12.下列说法正确的是 ( )A .一直角边对应相等的两个直角三角形全等B .斜边相等的两个直角三角形全等C .斜边相等的两个等腰直角三角形全等D .一边长相等的两个等腰直角三角形全等 二、填空题13.如图所示的是一张直角ABC 纸片(90C ∠=︒),其中30BAC ∠=︒,如果用两张完全相同的这种纸片恰好能拼成如图2所示的ABD △,若2BC =,则ABD △的周长为______.14.如图,AOP BOP ∠=∠,PD OA ⊥,C 是OB 上的动点,连接PC ,若4PD =,则PC 的最小值为_________.15.如图,点D 、E 分别在线段AB 、AC 上,BE 与CD 相交于点O .若AB AC =,AD AE =,60A ∠=︒,80ADC ∠=︒,则B 的度数为______.16.如图,点P 是AOC ∠的角平分线上一点,PD OA ⊥,垂足为点D ,且5PD =,点M 是射线OC 上一动点,则PM 的最小值为__.17.如图,在ABC 中,点D 是BC 上的一点,已知30DAC ∠=︒,75DAB ∠=︒,CE 平分ACB ∠交AB 于点E ,连接DE ,则DEC ∠=________度.18.如图,90,,,ACB AC BC AD CE BE CE ∠=︒=⊥⊥,垂足分别为,D E ,若9,6AD DE ==,则BE 的长为________________________.19.如图所示,已知点A 、D 、B 、F 在一条直线上,∠A=∠F ,AC=FE ,要使△ABC ≌△FDE ,还需添加一个条件,这个条件可以是___________________ .(只需填一个即可)20.如图,AD 是ABC 中BAC ∠的平分线,DE AB ⊥交AB 于点E ,DF AC ⊥交AC 于点F .若28ABC S =,4DE =,8AB =,则AC =_________.三、解答题21.如图,点A ,D ,B ,E 依次在同一条直线上,BC DF =,AD BE =,ABC EDF ∠=∠,求证:A E ∠=∠.22.如图,已知在ABC 中,AB AC =,90BAC ∠=︒,别过B 、C 两点向过A 的直线作垂线,垂足分别为E 、F .求证:EF BE CF =+.23.如图,,AD BF 相交于点,//,O AB DF AB DF =,点E 与点C 在BF 上,且BE CF =.(1)求证:ABC DFE ∆≅∆;(2)求证:点О为BF 的中点.24.如图,BD //GE ,150AFG ∠=∠=︒,AQ 平分FAC ∠,交BD 的延长线于点Q ,交DE 于点H ,15Q ∠=︒,求CAQ ∠的度数.25.如图,点P 是锐角∠ABC 内一点,BP 平分∠ABC ,点M 在边BA 上,点N 在边BC 上,且PM =PN .求证:∠BMP +∠BNP =180°.26.如图,一条河流MN 旁边有两个村庄A ,B ,AD ⊥MN 于D .由于有山峰阻挡,村庄B 到河边MN 的距离不能直接测量,河边恰好有一个地点C 能到达A ,B 两个村庄,与A ,B 的连接夹角为90°,且与A ,B 的距离也相等,测量C ,D 的距离为150m ,请求出村庄B 到河边的距离.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据三角形全等的性质与路程、速度、时间的关系式求解.【详解】解:设△BPD ≌△CPQ 时运动时间为t ,点Q 的运动速度为v ,则由题意得:BP CP BD CQ =⎧⎨=⎩, 即3634t t vt =-⎧⎨=⎩, 解之得:14t v =⎧⎨=⎩, ∴点Q 的运动速度为4厘米/秒,故选D .【点睛】本题考查三角形全等的综合应用,熟练掌握三角形全等的判定与性质、路程、速度、时间的关系式及方程的思想方法是解题关键.2.B解析:B【分析】根据已知条件可得∠ABC=∠ABD=90°,AB=AB ,结合全等三角形的判定定理依次对各个选项判断.【详解】解:∵AB CD ⊥,∴∠ABC=∠ABD=90°,∵AB=AB ,∴若添加ACB ADB ∠=∠,可借助AAS 证明ABC ABD △≌△,A 选项不符合题意; 若添加AB BD =,无法证明ABC ABD △≌△,B 选项符合题意;若添加AC AD =,可借助HL 证明ABC ABD △≌△,C 选项不符合题意;若添加CAB DAB ∠=∠,可借助ASA 证明ABC ABD △≌△,D 选项不符合题意; 故选:B .【点睛】本题考查全等三角形的判定.熟练掌握全等三角形的判定定理,并能结合题上已知条件选取合适的定理是解题关键.3.B解析:B【分析】先根据全等三角形的判定定理得出△ACD ≌△ACB ,△ABO ≌△ADO ,再根据全等三角形的性质即可得出结论.【详解】解:在△ABC 和△ADC 中,∵AB AD BC CD AC AC ⎧⎪⎨⎪⎩===,∴△ABC ≌△ADC (SSS ),∴∠BAC=∠DAC , ∠DCA=∠BCA∴点O 到CB 、CD 的距离相等.故②正确在△ABO 与△ADO 中AB AD BAC DAC OA OA ⎧⎪∠∠⎨⎪⎩===,∴△ABO ≌△ADO (SAS ),∴BO=DO ,∠BOA=∠DOA∵∠BOA+∠DOA=180°∴∠BOA=∠DOA=90°,即BD AC ⊥故①④正确;∵AD≠CD∴BDA BDC∠≠∠,故③错误所以,正确的结论是①②④,共3个,故选:B.【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法是解题的关键.4.C解析:C【分析】过点O作OE⊥AB于E,OF⊥AC于F,连接OA,根据角平分线的性质得:OE=OF=OD然后根据△ABC的面积是12,周长是8,即可得出点O到边BC的距离.【详解】如图,过点O作OE⊥AB于E,OF⊥AC于F,连接OA.∵点O是∠ABC,∠ACB平分线的交点,∴OE=OD,OF=OD,即OE=OF=OD∴S△ABC=S△ABO+S△BCO+S△ACO=12AB·OE+12BC·OD+12AC·OF=12×OD×(AB+BC+AC)=12×OD×8=12OD=3故选:C【点睛】此题主要考查了角平分线的性质以及三角形面积求法,角的平分线上的点到角的两边的距离相等,正确表示出三角形面积是解题关键.5.D解析:D【分析】根据垂直关系,可以判断△AEF与△CEB有两对角相等,就只需要添加一对边相等就可以了.【详解】解:∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠AEF=∠CEB=90°,∠ADB=∠ADC=90°,∴∠EAF+∠B=90°,∠BCE+∠B=90°,∴∠EAF=∠BCE .A.在Rt △AEF 和Rt △CEB 中AEF CEB EAF BCE EF EB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴AEF ≌CEB △(AAS ),故正确;B.在Rt △AEF 和Rt △CEB 中 AEF CEB EA ECEAF BCE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AEF ≌CEB △(ASA ),故正确;C.在Rt △AEF 和Rt △CEB 中 AEF CEB EAF BCE AF CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴AEF ≌CEB △(AAS ),故正确;D.在Rt △AEF 和Rt △CEB 中 由AEF CEB EAF BCE AFB B ∠=∠⎧⎪∠=∠⎨⎪∠=∠⎩不能证明AEF ≌CEB △,故不正确; 故选D .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .添加时注意:AAA 、SSA 不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.6.B解析:B【分析】根据角平分线上的点到角的两边的距离相等可得DE =DC ,然后利用AAS 证明△ACD ≌△AED ,再对各选项分析判断后利用排除法.【详解】解:∵AC ⊥BC ,DE ⊥AB ,AD 平分∠BAC ,∴DE =DC ,A 、BD +ED =BD +DC =BC ,故本选项正确;在△ACD 与△AED 中,90DAC DAE ACD AED AD AD ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴△ACD≌△AED(AAS),∴∠ADC=∠ADE,∴AD平分∠EDC,故C选项正确;但∠ADE与∠BDE不一定相等,故B选项错误;D、∵△ACD≌△AED,∴AE=AC,∴ED+AC=ED+AE>AD(三角形任意两边之和大于第三边),故本选项正确.故选:B.【点睛】本题考查了角平分线的性质,角平分线上的点到角的两边的距离相等,证明ACD AED△≌△是解题的关键.7.B解析:B【分析】先分别写出这些定理的逆命题,再进行判断即可.【详解】解:A.直角三角形的两锐角互余的逆命题是两锐角互余的三角形是直角三角形,是真命题;B.全等三角形的对应角相等的逆命题是对应角相等的三角形是全等三角形,是假命题;C.两直线平行,同位角相等的逆命题是同位角相等,两直线平行,是真命题;D.角平分线上的点到角两边的距离相等的逆命题是到角两边的距离相等的点在角平分线上,是真命题.故选:B.【点睛】此题考查了命题与定理,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.8.B解析:B【分析】直接利用三角形全等的判定条件进行判定,即可求得答案;注意而SSA是不能判定三角形全等的.【详解】解:A,三边分别相等的两个三角形全等,故本选项正确;B,两边和一个角对应相等的两个三角形不一定全等,故本选项错误;C,两个角和一个边对应相等的两个三角形,可利用ASA或AAS判定全等,故本选项正确;D,斜边和一条直角边分别相等的两个直角三角形全等,故本选项正确.故选:B【点睛】此题考查了全等三角形的判定.注意普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等.9.B解析:B【分析】根据角平分线上的点到角的两边距离相等可得点P到OB的距离为5,再根据垂线段最短解答.【详解】∵点P在∠AOB的平分线上,点P到OA边的距离等于5,∴点P到OB的距离为5,∵点Q是OB边上的任意一点,∴PQ≥5.故选:B.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.10.D解析:D【分析】根据垂线的性质,线段垂直平分线的判定,全等三角形的判定对各选项分析判断后利用排除法求解.【详解】A、同一平面内,垂直于同一条直线的两直线互相平行,真命题,本选项不符合题意;B、到线段两端点距离相等的点在这条线段的垂直平分线上,真命题,本选项不符合题意;C、一条直角边和另一条直角边上的中线对应相等的两个直角三角形,首先根据“HL”定理,可判断两个小直角三角形全等,可得另一条直角边相等,然后,根据“SAS”,可判断两个直角三角形全等,真命题,本选项不符合题意;D、有一边相等的两个等腰直角三角形不一定全等,如:一个等腰直角三角形的直角边与另一个等腰直角三角形的斜边相等,这两个等腰直角三角形并不全等,假命题,本选项符合题意.故选:D.【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.11.D解析:D【分析】利用构成三角形的条件,以及全等三角形的判定得解.【详解】+=,不满足三边关系,不能画出三角形,故选项错误;解:A,AB BC CAB,不满足三角形全等的判定,不能画出唯一的三角形,故选项错误;C,不满足三角形全等的判定,不能画出唯一的三角形,故选项错误;D,可以利用直角三角形全等判定定理HL证明三角形全等,故选项正确.故选:D【点睛】本题考查三角形全等的判定以及构成三角形的条件,解题的关键是熟练掌握全等三角形的判定方法.12.C解析:C【分析】根据全等三角形的判定定理:SSS、SAS、ASA、AAS、HL定理针对四个选项分别进行判断即可.【详解】A. 一直角边对应相等的两个直角三角形不一定全等,还要知道它的边或角才能证明,故此选项错误;B. 斜边相等的两个直角三角形不一定全等,还要知道它的边或角才能证明,故此选项错误;C. 斜边相等的两个等腰直角三角形全等,对应角相等,根据AAS即可证明全等,故此选项正确;D. 一边长相等的两个等腰直角三角形不一定全等,必须说明是对应边相等,故此选项错误.故选:C.【点睛】本题考查了全等三角形的判定,掌握证明三角形全等的条件尤其是必须含有边这个条件是解题的关键.二、填空题13.12【分析】根据题意证明三角形全等即可得解;【详解】如图所示由题可知∴∴∴BCD在一条直线上∵∴△ABD是等边三角形∴△ABD的周长;故答案是12【点睛】本题主要考查了全等三角形的判定与性质结合等边解析:12【分析】根据题意证明三角形全等即可得解;【详解】如图所示,由题可知ABC ADC ≅△△,∴30BAC DAC ∠=∠=︒,90ACB ACD ∠=∠=︒,2BC BD ==,∴60BAD ∠=︒,180BCD ∠=︒,∴B ,C ,D 在一条直线上,∵60B D ∠=∠=︒,∴△ABD 是等边三角形,∴△ABD 的周长()3312BD BC CD ==+=; 故答案是12.【点睛】本题主要考查了全等三角形的判定与性质,结合等边三角形的性质计算是解题的关键. 14.4【分析】当PC 垂直于OB 时PC 最小根据角平分线的性质可求最小值【详解】解:当PC ⊥OB 时PC 最小∵PC ⊥OB ∴PC=PD=4故答案为:4【点睛】本题考查了垂线段最短和角平分线的性质能够根据垂线段最解析:4【分析】当PC 垂直于OB 时,PC 最小,根据角平分线的性质可求最小值.【详解】解:当PC ⊥OB 时,PC 最小,∵AOP BOP ∠=∠,PD OA ⊥,PC ⊥OB ,∴PC=PD=4,故答案为:4.【点睛】本题考查了垂线段最短和角平分线的性质,能够根据垂线段最短的性质判断出点C 的位置,并根据角平分线的性质得出PC=PD 是根关键.15.40°【分析】由全等三角形的判定证得△ABE ≌△ACD (SAS )由全等三角形的性质可得∠B =∠C 根据三角形内角和定理求出∠C 继而即可求解【详解】在△ABE 和△ACD 中∴△ABE ≌△ACD (SAS )∴解析:40°【分析】由全等三角形的判定证得△ABE ≌△ACD (SAS ),由全等三角形的性质可得∠B =∠C ,根据三角形内角和定理求出∠C ,继而即可求解.【详解】在△ABE 和△ACD 中,AB AC AD AE A A ==∠=∠⎧⎪⎨⎪⎩∴△ABE ≌△ACD (SAS )∴∠B =∠C∵60A ∠=︒,80ADC ∠=︒,∴∠C =180°-∠A -∠ADC =40°,∴∠B=40°故答案为:40°.【点睛】本题考查全等三角形的判定和性质,三角形内角和定理,解题的关键是熟练掌握全等三角形的判定和性质证得∠B =∠C .16.5【分析】根据角平分线的性质及垂线段最短解答【详解】根据垂线段最短可知:当PM ⊥OC 时PM 最小∵OP 平分PD=5∴PM=PD=5故答案为:5【点睛】此题考查角平分线的性质垂线段最短掌握点到直线的所有解析:5【分析】根据角平分线的性质及垂线段最短解答.【详解】根据垂线段最短可知:当PM ⊥OC 时,PM 最小,∵OP 平分AOC ∠,PD OA ⊥,PD=5,∴PM=PD=5,故答案为:5.【点睛】此题考查角平分线的性质,垂线段最短,掌握点到直线的所有连线中垂线段最短是解题的关键.17.15【分析】过点E 作EM ⊥AC 于MEN ⊥AD 于NEF ⊥BC 于H 如图先计算出∠EAM=75°则AE 平分∠EAD 根据角平分线的性质得EM=EN 再由CE 平分∠ACB 得到EM=EH 则EN=EH 于是根据角平分解析:15【分析】过点E 作EM ⊥AC 于M ,EN ⊥AD 于N ,EF ⊥BC 于H ,如图,先计算出∠EAM=75°,则AE 平分∠EAD ,根据角平分线的性质得EM=EN ,再由CE 平分∠ACB 得到EM=EH ,则EN=EH ,于是根据角平分线定理的逆定理可判断DE 平分∠ADB ,则∠1=12∠ADB ,根据三角形外角性质得∠1=∠DEC+∠2,即∠1=∠DEC+12∠ACB ,∠ADB=∠DAC+∠ACB ,所以∠DEC==12∠DAC=15°. 【详解】解:过点E 作EM AC ⊥于M ,EN AD ⊥于N ,EH BC ⊥于H ,如图.∵ 30DAC ∠=,75DAB ∠=,∴ 75EAM ∠=,∴ AE 平分MAD ∠,∴ EM EN =.∵ CE 平分ACB ∠,∴ EM EH =,∴ EN EH =,∴ DE 平分ADB ∠,∴112ADB ∠=∠. ∵ 12DEC ∠=∠+∠,而122ACB ∠=∠,∴ 112DEC ACB ∠=∠+∠,而ADB DAC ACB ∠=∠+∠,∴ 11301522DEC DAC ∠=∠=⨯= .故答案为:15.【点睛】本题考查了平分线的性质和三角形外角的性质,掌握性质是解题的关键.18.3【分析】由AD ⊥CEBE ⊥CE 可以得到∠BEC=∠CDA=90°再根据∠ACB=90°可以得到∠BCE=∠CAD 从而求得△CEB ≌△ADC 然后利用全等三角形的性质可以求得BE 的长【详解】解:∵∠A解析:3【分析】由AD ⊥CE ,BE ⊥CE ,可以得到∠BEC=∠CDA=90°,再根据∠ACB=90°,可以得到∠BCE=∠CAD ,从而求得△CEB ≌△ADC ,然后利用全等三角形的性质可以求得BE 的长.【详解】解:∵∠ACB=90°,BE ⊥CE ,AD ⊥CE ,∴∠BCE+∠DCA=90°,∠BEC=∠CDA=90°,∴∠ACD+∠CAD=90°,∴∠BCE=∠CAD ,在△CEB 和△ADC 中,BCE CAD BEC CDA AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CEB ≌△ADC (AAS );∴BE=CD ,CE=AD=9.∵DC=CE-DE ,DE=6,∴DC=9-6=3,∴BE=3.故答案为:3【点睛】本题考查全等三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.19.∠C ∠E 或ABFD(ADFB)或∠ABC ∠FDE 或DE ∥BC 【分析】要判定△ABC ≌△FDE 已知∠A=∠FAC=FE 具备了一组角和一组边对应相等故可以添加∠C ∠E 利用ASA 可证全等(也可添加其它条件解析:∠C =∠E 或AB =FD(AD =FB)或∠ABC =∠FDE 或DE ∥BC【分析】要判定△ABC ≌△FDE ,已知∠A=∠F ,AC=FE ,具备了一组角和一组边对应相等,故可以添加∠C =∠E ,利用ASA 可证全等.(也可添加其它条件).【详解】增加一个条件:∠C =∠E ,在△ABC 和△FDE 中,C E AC FE A F ∠∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△FDE(ASA);或添加AB =FD(AD =FB) 利用SAS 证明全等;或添加∠ABC =∠FDE 或DE ∥BC 利用AAS 证明全等.故答案为:∠C =∠E 或AB =FD(AD =FB)或∠ABC =∠FDE 或DE ∥BC (答案不唯一).【点睛】本题考查了全等三角形的判定;判定方法有ASA 、AAS 、SAS 、SSS 等,在选择时要结合其它已知在图形上的位置进行选取.20.【分析】首先由角平分线的性质可知DF=DE=4然后由S △ABC=S △ABD+S △ACD 及三角形的面积公式得出结果【详解】解:∵AD 是∠BAC 的平分线DE ⊥ABDF ⊥AC ∴DF=DE=4又∵S △ABC解析:【分析】首先由角平分线的性质可知DF=DE=4,然后由S △ABC =S △ABD +S △ACD 及三角形的面积公式得出结果.【详解】解:∵AD 是∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,∴DF=DE=4.又∵S △ABC =S △ABD +S △ACD ,AB=8, ∴12×8×4+ 12×AC×4=28, ∴AC=6.故答案是:6.【点睛】本题主要考查了角平分线的性质;利用三角形的面积求线段的长是一种很好的方法,要注意掌握应用.三、解答题21.证明见解析.【分析】先根据已知条件得出AB ED =,再利用SAS 证明ABC EDF △≌△,最后根据全等三角形的性质即可得出答案.【详解】证明:∵AD BE =,∴AD DB BE DB +=+,∴AB ED =.在ABC 和EDF 中,AB ED ABC EDF BC DF =⎧⎪∠=∠⎨⎪=⎩,∴()ABC EDF SAS △≌△,∴A E ∠=∠.【点睛】本题考查了全等三角形的判定及性质,熟练掌握全等三角形的判定方法是解题的关键. 22.见解析【分析】证明△BEA ≌△AFC ,得到AE=CF ,BE=AF ,即可得到结论.【详解】证明:BE EA ⊥,CF AF ⊥,90BAC BEA AFC ∴∠=∠=∠=︒,90EAB CAF ∴∠+∠=︒,90EBA EAB ∠+∠=︒,CAF EBA ∴∠=∠,在ABE △和AFC △中,BEA AFC EBA CAF AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)BEA AFC ∴△≌△.AE CF ∴=,BE AF =.EF AF AE BE CF ∴=+=+..【点睛】此题考查全等三角形的判定及性质,熟记三角形的判定定理是解题的关键.23.(1)见解析;(2)见解析【分析】(1)由已知可证∠B=∠F ,BC=EF ,然后根据SAS 可以得到结论;(2)同(1)有∠B=∠F ,再结合已知条件和对顶角相等可以证得ΔABO ≅ΔDFO ,从而得到OB=OF ,所以点O 为BF 中点 .【详解】证明:(1)∵AB//DF ,∴∠B=∠F ,∵BE=CF ,∴BE+CE=CF+CE ,即BC=EF ,∴在ΔABC 和ΔDFE 中,AB DF B F BC EF =⎧⎪∠=∠⎨⎪=⎩,∴ΔABC ≅ΔDFE (SAS );(2)与(1)同理有∠B=∠F ,∴在ΔABO 和ΔDFO 中,AOB DOF B F AB DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ΔABO≅ΔDFO(AAS),∴OB=OF,∴点O为BF中点.【点睛】本题考查三角形全等的应用,熟练掌握三角形全等的判定与性质并灵活应用是解题关键.24.∠CAQ=65°【分析】先根据三角形外角和定理求出∠EHQ的度数,再根据平行的性质和判定证明DE∥AF,可以求出∠FAQ的度数,再由角平分线的性质即可得出结果.【详解】解:∵∠EHQ是△DHQ的外角,∴∠EHQ=∠1+∠Q=65°,∵BD∥GE,∴∠E=∠1=50°,∵∠AFG=∠1=50°,∴∠E=∠AFG,∴DE∥AF,∴∠FAQ=∠EHQ=65°,∵AQ平分∠FAC,∴∠CAQ=∠FAQ=65°.【点睛】本题考查角平分线的性质,平行线的性质和判定,解题的关键是熟练运用这些性质定理进行求解.25.见解析【分析】过点P作PE⊥BA于点E, 作PF⊥BC于点F,根据角平分线性质定理可得PE=PF,再由HL 可证Rt△MEP≌Rt△NFP,进而证得∠PME=∠PNF,从而证得∠BMP+∠BNP=180°.【详解】证明:如图所示,过点P作PE⊥BA于点E, 作PF⊥BC于点F,∴∠MEP=∠NFP=90°.∵BP平分∠ABC,∴PE=PF.在Rt△MEP与Rt△NFP中,PE PF PM PN =⎧⎨=⎩, ∴Rt △MEP ≌Rt △NFP (HL ).∴∠PME =∠PNF .∵∠BMP +∠PME =180°,∴∠BMP +∠BNP =180°.【点睛】本题主要考查了全等三角形的判定与性质,通过证明三角形全等得出对应角相等是解决问题的关键.26.150米【分析】根据题意,判断出△ADC ≌△CEB 即可求解.【详解】解:如图,过点B 作BE ⊥MN 于点E ,∵∠ADC =∠ACB =90°,∴∠A =∠BCE (同角的余角相等).在△ADC 与△CEB 中,90ADC CEB A BCEAC CB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△CEB (AAS ).∴BE =CD =150m .即村庄B 到河边的距离是150米.【点睛】本题主要考查的是全等三角形的实际应用,熟练掌握全等三角形的判定及性质是解答本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖北省襄阳市八年级上册数学第二次学情检测试卷
姓名:________ 班级:________ 成绩:________
一、精心选一选 (共10题;共20分)
1. (2分)若三角形的两边长为2和5,则第三边长m的取值范围是()
A . 2<m<5
B . 3<m<7
C . 3<m<10
D . 2<m<7
2. (2分)在平面直角坐标系中,点P(-3,2)在()
A . 第一象限
B . 第二象限
C . 第三象限
D . 第四象限
3. (2分)(2020·无锡模拟) 下列命题是真命题的是()
A . 对角线相等的四边形是矩形
B . 对角线互相垂直的矩形是正方形
C . 顺次联结矩形各边中点所得四边形是正方形
D . 同位角相等
4. (2分)下列哪个选项中的不等式与不等式5x>8+2x组成的不等式组的解集为<x<5()
A . x+5<0
B . 2x>10
C . 3x﹣15<0
D . ﹣x﹣5>0
5. (2分)
已知△ABC平移后得△A′B′C′且A′(-2,3),B′(-4,-1),C(m,n),C′(m+5,n-3),则A,B两点坐标为()
A . (3,6),(1,2)
B . (-7,6),(-9,2)
C . (1,8),(-1,4)
D . (-7,-2),(0,-9)
6. (2分) (2019七下·隆昌期中) 如果不等式的解集是,则()
A .
B .
C .
D .
7. (2分) (2018九上·惠来期中) 如图,在中,,,,D为BC的中点,则线段AD的长为
A .
B . 2
C .
D . 3
8. (2分) (2017八下·合浦期中) 如图,PD⊥AB,PE⊥AC,垂足分别为D、E,且PD=PE,则△APD与△APE 全等的理由是()
A . SAS
B . AAS
C . SSS
D . HL
9. (2分)下列条件:①三角形的一个外角与相邻内角相等;②∠A=∠B=∠C;③AC:BC:AB=1:;2
④AC=n2-1,BC=2n,AB=n2+1(n>1).能判定△ABC是直角三角形的条件个数为()
A . 1
B . 2
C . 3
D . 4
10. (2分) (2019八上·垣曲期中) 勾股定理在平面几何中有着不可替代的重要地位,在我国古算书(周髀
算经》中就有“若勾三,股四,则弦五”的记载,如图1是由边长均为1的小正方形和Rt△ABC构成的,可以用其面积关系验证勾股定理,将图1按图2所示“嵌入”长方形LMJK,则该长方形的面积为()
A . 120
B . 110
C . 100
D . 90
二、填空题 (共8题;共8分)
11. (1分) (2018八上·东台期中) 若等腰三角形的一个角为70゜,则其顶角的度数为________ .
12. (1分) (2020八上·苍南期末) “x的3倍减去y的差是正数”用不等式表示为________ 。
13. (1分)如图,已知BE=CD,要使△ABE≌△ACD,要添加一个条件是________.(只填一种情况).
14. (1分)(2018·无锡) 命题“四边相等的四边形是菱形”的逆命题是________.
15. (1分)如图所示,是象棋棋盘的一部分,若“帅”位于点(2,-1)上,“相”位于点(4, -1)上,则“炮”所在的点的坐标是________
16. (1分)(2015·义乌) 在Rt△ABC中,∠C=90°,BC=3,AC=4,点P在以C为圆心,5为半径的圆上,连结PA,PB.若PB=4,则PA的长为________.
17. (1分)(2020·沈阳) 如图,在矩形中,,,对角线相交于点O,点P为边上一动点,连接,以为折痕,将折叠,点A的对应点为点E,线段与
相交于点F.若为直角三角形,则的长________.
18. (1分)(2017·北仑模拟) 如图1,菱形纸片ABCD的边长为2,∠ABC=60°,翻折∠B,∠D,使点B,D 两点重合于对角线BD上一点P,EF,GH分别是折痕(如图2).设AE=x(0<x<2),给出下列判断:
①当x=1时,点P是菱形ABCD的中心;
②当x= 时,EF+GH>AC;
③当0<x<2时,六边形AEFCHG面积的最大值是;
④当0<x<2时,六边形AEFCHG周长的值不变.
其中正确结论是________.(填序号)
三、解答题 (共6题;共60分)
19. (5分)(2020·阜阳模拟) 解不等式,并把它的解集在数轴上表示出来.
20. (15分)(2020·朝阳模拟) 已知∠AOB=60°,P为它的内部一点,M为射线OA上一点,连接PM,以P 为中心,将线段PM顺时针旋转120°,得到线段PN,并且点N恰好落在射线OB上.
(1)依题意补全图1;
(2)证明:点P一定落在∠AOB的平分线上;
(3)连接OP,如果OP=2 ,判断OM+ON的值是否变化,若发生变化,请求出值的变化范围,若不变,请求出值.
21. (5分)如图,在△ABC中,∠ACB=90°,CD是△ABC的一条高线,若∠B=28°.求∠ACD的度数.
22. (10分)(2019·孝感模拟) 如图,点A在∠MON的边ON上,AB⊥OM于B,AE=OB,DE⊥ON于E,AD=AO,DC⊥OM于C.
(1)求证:四边形ABCD是矩形;
(2)若DE=3,OE=9,求AB、AD的长.
23. (10分)某机器人公司为扩大经营,决定购进 6 台机器用于生产某种小机器人.现有甲、乙两种机器供选择,其中每台机器的价格和日生产量如下表所示.经过预算,本次购买机器的费用不能超过 34 万元.
甲种机器乙种机器
价格/(万元/台)57
每台机器的日生产量/个60100
(1)按要求该公司有几种购买方案?
(2)若该公司购进的6台机器的日生产量不能少于380个,那么为了节约资金,应选择哪种购买方案?
24. (15分)(2020·武汉模拟) 某客商准备采购一批特色商品,经调查,用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.
(1)求一件A,B型商品的进价分别为多少元?
(2)若该客商购进A,B型商品共250件进行试销,其中A型品的件数不大于B型商品的件数,且不小于80件,已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出,设购进A型商品m件,求该客商销售这批商品的利润y与m之间的函数关系式,并写出m的取值范围;
(3)在(2)的条件下,客商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元(0<a<80),若该客商售完所有商品并捐献资金后获得的最大收益是17100元,求的a值.
参考答案一、精心选一选 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共8题;共8分)
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
17-1、
18-1、
三、解答题 (共6题;共60分)
19-1、20-1、
20-2、
20-3、
21-1、
22-1、
22-2、
23-1、
23-2、24-1、24-2、24-3、。