智轩考研数学红宝书2010精华习题完全解答---概数第六章 数理统计的基本概念
概率论与数理统计第6章(公共数学版)
Xi
1 n (X1
X2
Xn)
S 2
1 n
n i 1
(Xi
X )2
显然
S 2
1 n
n
[
X
2 i
i 1
2Xi
X
(X )2]
1n [
n i1
X
2 i
2X
n i 1
Xi
n( X )2 ]
1 n
n i 1
X
2 i
2X
X
(X )2
S 2
1 n
n i 1
X
2 i
(X )2
16
样本均方差
样本标准差
4
Yi 2
i 1
4
Yi
2
i1 4
4
Yi
2
4
i1 2
32
T 4( X 2) 4 Yi 2 i 1
X 2
4
Yi
2
i1 4
X 2
~ t(4),
4
Yi
2
4
i1 2
即 T 服从自由度为 4 的 t 分布: T ~ t(4). 由 P{| T | t0 } 0.01.
t0 t0.995 (4) 4.6041.
设( X1, X2,, Xn )为来自总体X的一个样本
则( X1, X2,, Xn )为一个随机向量 X为一个随机变量 X1, X2,, Xn相互独立,且具有和总体X同样的分布
样本的同分布性和相互独立性
11
三、统计量 对所研究的对象收集了有关样本的数据
后,还要对数据进行加工和提炼,将样本的有关 信息,利用数学的工具进行加工.
S
S2
勤径考研智轩考研数学红宝书2010版--概率论与数理统计(第六章 数理统计的基本概念)
139第二篇 数 理 统 计第六章 数理统计的基本概念【数学1,3】2009考试内容 (本大纲为数学1,数学3需要根据大纲作部分增删)总体 个体 简单随机样本 统计量 样本均值 样本方差和样本矩 2c 分布 t 分布 F 分布 分位数 正态总体的常用抽样分布考试要求1. 理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2211()1ni i S X X n ==--å 2. 了解2c 的分布、t 分布和F 分布的概念及性质,了解上侧a 分位数的概念并会查表计算。
3. 了解正态总体的常用抽样方法。
本章导读 3大分布8类枢轴量。
一、总体和样本实际工程中,常常需要检测产品的某一个(或多个)数量指标(如研究100瓦灯泡的寿命这一数量指标)。
需要检测产品的全体称为总体(如6000个100瓦的灯泡),一个灯泡的寿命检测数据记为X ;总体中的某一元素称为样品或个体(如一个100瓦灯泡)。
我们不可能把全部6000个灯泡都测试,所以,需要从总体(6000个灯泡)中随机抽取n 个(如取50n =)样品组成样本,称为抽样,n 称为样本容量,并把样本看成是n 个相互独立且具有完全相同分布的随机变量( 以后简称 “独立同” ),记为()1250, ,, X X X L ,称为简单随即样本。
显然,如果测试还没开始,则()1250, ,, X X X L 就是一个50维随机变量,如果测试已经完成,则()1250, ,, X X X L 就对应有一组具体值()1250, ,, x x x L ,称为样本观察值,即样本值。
样本(12,,,n X X X …)每次测试的所有可能值的全体称样本空间,记为W ,一次测试所得的一组样本观察值()12, ,, n x x x L 是W 中的一个样本点,容量为n 的简单随机样本的数字特征及分布就代表了总体的特性,例如,研究50个灯泡的寿命就能代表6000个灯泡的寿命。
概率论与数理统计第六章课后习题及参考答案
概率论与数理统计第六章课后习题及参考答案概率论与数理统计第六章课后习题及参考答案1.已知总体X ~),(2σµN ,其中2σ已知,⽽µ未知,设1X ,2X ,3X 是取⾃总体X 的样本.试问下⾯哪些是统计量?(1)321X X X ++;(2)µ31-X ;(3)222σ+X ;(4)21σµ++X ;(5)},,max{321X X X ;(6)σ221++X X ;(7)∑=3122i i X σ;(8)2µ-X .解:(1)(3)(4)(5)(6)(7)是,(2)(8)不是.2.求下列各组样本值的平均值和样本差.(1)18,20,19,22,20,21,19,19,20,21;(2)54,67,68,78,70,66,67,70.解:(1)9.19)21201919212022192018(101101101=+++++++++==∑=i i x x ;43.1)(9110122=-=∑=i i x x s .(2)5.67)7067667078686754(1018181=+++++++==∑=i i x x ;018.292)(718122=-=∑=i i x x s .3.(1)设总体X ~)1,0(N ,则2X ~)1(2χ.(2)设随机变量F ~),(21n n F ,则F1~),(12n n F .(3)设总体X ~),(2σµN ,则X ~),(2n N σµ,22)1(S n σ-~)1(2-n χ,nS X /µ-~)1(-n t .(4)设总体X ~)10(2χ,Y ~)15(2χ,且X 与Y 相互独⽴,则=+)(Y X E 25,=+)(Y X D 50.4.设随机变量X 与Y 都服从标准正态分布,则(C)A .Y X +服从正态分布B .22Y X +服从2χ分布C .2X 与2Y 均服从2χ分布D .22YX 服从F 分布5.在总体X ~)3.6,52(2N 中随机抽取⼀容量为36的样本,求样本平均值X 落在8.50到8.53之间的概率.解:因为X ~)3.6,52(2N ,即52=µ,223.6=σ,因为36=n ,22205.1363.6==n σ,所以X ~)05.1,52(2N .由此可得)8.538.50(≤≤X P 05.1528.50()05.1528.53(-Φ--Φ=8302.0)1429.1()7143.1(=-Φ-Φ=.6.设总体X ~)1,0(N ,1X ,2X ,…,10X 为总体的⼀个样本,求:(1))99.15(1012>∑=i i X P ;(2)写出1X ,2X ,…,10X 的联合概率密度函数;(3)写出X 的概率密度.解:(1)由题可知∑==1012i i X X ~)10(2χ,查2χ分布表有99.15)10(210.0=χ,可得10.0=α,即10.0)99.15(1012=>∑=i i X P .(2)1X ,2X ,…,10X 相互独⽴,则联合概率密度函数为}exp{321}21exp{21),,,(1012510121021∑∏==-=-=i i i i x x x x x f ππ.(3)X Y =~)1.0,0(N ,所以有2251.02)0(e 5e1.021)(y y y f -?--==ππ.7.设总体X ~)1,0(N ,1X ,2X ,…,5X 为总体的⼀个样本.确定常数c ,使25242321)(XX X X X c Y +++=~)3(t .解:因为i X ~)1,0(N ,5,,2,1 =i ,所以21X X +~)2,0(N ,)(2121X X +~)1,0(N ,252423X X X ++~)3(2χ,因为25242321252423212632XX X X X X X X X X +++=+++~)3(t ,所以有23=c .8.设1X ,2X ,3X ,4X 是来⾃正态总体)4,0(N 的样本.已知243221)43()2(X X b X X a Y -+-=为服从⾃由度为2的2χ分布,求a ,b 的值.解:由题可知i X ~)4,0(N ,4,3,2,1=i ,故有0)2(21=-X X E ,20)2(21=-X X D ,所以212X X -~)20,0(N .同理4343X X -~)100,0(N .⽽20)2(221X X -~)1(2χ,100)43(221X X -~)1(2χ,故有100)43(20)2(243221X X X X -+-~)2(2χ,⽐较可知201=a ,1001=b .9.设总体X ~)3.0,(2µN ,1X ,2X ,…,n X 为总体的⼀个样本,X 是样本均值,问样本容量n ⾄少应取多⼤,才能使95.0)1.0(≥<-µX P .解:易知X ~)3.0,(2nN µ,由题意有95.013(2/3.01.0/3.0()1.0(≥-Φ=<-=<-nnnX P X P µµ,即应有975.0)3(≥Φn,查正态分布表知975.0)96.1(=Φ,所以取96.13≥n,即5744.34≥n ,取35=n .10.设总体X ~)16,(µN ,1X ,2X ,…,10X 为总体的⼀个样本,2S 为样本⽅差,已知1.0)(2=>αS P ,求α的值.解:由抽样分布定理知22)1(σS n -~)1(2-n χ,因为10=n ,故有2249S ~)9(2χ,得1.0)169169()(22=>=>ααS P S P ,查2χ分布表得684.14)9(21.0=χ,即684.14169=α,解得105.26=α.11.设(1X ,2X ,…,1+n X )为来⾃总体X ~),(2σµN 的⼀个样本,记∑==n i i n X n X 11,∑=--=n i in X X n S 122(11,求证:nn n S X X n n T -?+=+11~)1(-n t .证:由题可知n X ~),(2nN σµ,n n X X -+1~))11(,0(2σn N +,标准化得σnX X nn 111+-+~)1,0(N .⼜因为∑=-=-ni inX XS n 1222)(1)1(σσ~)1(2-n χ,从⽽有nn nnn S XX n n n S n n X X -+=--+-++122111)1(11σσ~)1(-n t ,即nnn S X X n n T -?+=+11~)1(-n t .。
数理统计第6-9章答案
4.设总体
ξ N (1, 2) , ξ1 , ξ 2 , , ξ 4 为其样本,记
2
η 得 服从 χ (m) 分布,自由度 m 取何值? 解:
i =1 ξ − η = k[∑ 4] ,试问 k 取何值时,使 i
ξ N (1, 2)
∑ξ
i =1
4
i
N (4,16) ⇒
4
∑ξ
i =1
ξ1 N (a,
σ2
) = N (20,
与极小值的分布。
| ξ − ξ2 | 的 分 布 , 解 :( 1 ) . 当 样 本 容 量 n = 2 时 , 极 差 的 分 布 即 为 1
η = ξ1 − ξ 2 N (0, 2σ 2 )
) P{| η |< x= } P{| F|η | ( x= =P{| φ |<
3.设总体 服从正态分布
ξ
N (0, σ ) , ξ1 , ξ 2 , , ξ 4 为其样本,试问
η=
解:
(ξ1 − ξ 2 ) 2 (ξ3 + ξ 4 ) 2 服从什么分布?
ξ1 − ξ 2 N (0,
) 2 2 ⇒ ξ3 + ξ 4 σ ξ3 + ξ 4 N (0, ) N (0,1) σ 2 2
公式,得
1 fη ( y1 ,= y2 , , yn ) (2π ) exp{− (Ty ) '(Ty )}| J | 2 n − 1 = (2π ) 2 exp{− y ' y} 2 ∴η N n (0, I n )
−
n 2
其中,
I n 为单位矩阵。
2 ξ 服从正态 N (a, σ 2 ) , ξ1 , ξ 2 , , ξ n 为其样本, ξ 与 S n 分为样本均值及方差. 2 ξ , ξ , , ξ n 相互独立,试求统计量 ξ 又设 n +1 服从正态 N ( a, σ ) ,且与 1 2
智轩考研数学红宝书2010精华习题完全解答---概数第2章 随机变量及其分布
第二章 随机变量及其分布精华习题一、填空题1. 设随机变量X 的分布函数为 0,1,57(), 11,16x x F x x <-ìï+ï=-£<íï 则2(1)P X ==________。
2. 出现3. 456{P X 71(A (C )0,0,2(),02,51, 2.x x F x x x <ìï+ï=£<íï³ïî (D )0,0,()sin ,0,1,.x F x x x x p p <ìï=£<íï³î [ ]2.下列命题正确的是(A )连续型随机变量的密度函数是连续函数。
(B )连续型随机变量的密度函数()f x 满足0()1f x ££。
(C )连续型随机变量的分布函数是连续函数。
(D )两个概率密度函数的乘积还是密度函数。
[ ]3.设随机变量X 的概率密度为()f x ,分布函数为()F x ,且()()f x f x -=,则对于任意实数a ,有()F a -= (A(C 4满足(A (C 5(A (B (C (D 6则P (A 7。
()A8三、解答题1.设随机变量(){}{}11~, , 20, 1342X U a b P X P X -<<=<<=,求, a b 的值和()X f x 。
2.已知随机变量X 的密度函数为()()()) , 2, 1x B x f x Ae x EX DX Y X -=-¥<<+¥==-,求()Y F x 。
3.已知随机变量X 的密度函数为1, 10,()1, 01,0,.X x x f x x x ì+-£<ï=-££íïî其他21Y X =+,求概率密度()Y f x 。
概论论与数理统计课本答案CH6 ans
概率论第六章习题解答习题6.11. 求下列总体分布中参数的矩估计:(1)21,01,(;)0,,x x f x θθθ+−≤≤⎧=⎨⎩其他 其中θ < 1;(2)f (x ; p ) = p (1 − p ) x − 1,x = 1, 2, …;其中0 < p < 1;(3)1211221e ,,(;,)0,,x x f x θθθθθθ−−⎧⎪≥=⎨⎪⎩其他 其中−∞ < θ 1 < +∞,θ 2 > 0. 解:(1)因11320021211E()(21)d ()323226X x x x x x θθθθθθθ−−=+−=+=+=+∫,有θ = 6 E (X ) − 3,故θ 的矩估计为ˆ63X θ=−; (2)因1121111d d d 11E()(1)d d d 1(1)x x x x x x x x q X x p p p x qp q p q p p q q q q p q ∞∞∞∞−−====⎛⎞=⋅−=⋅=====⎜⎟−−⎝⎠∑∑∑∑, 故1E()p X =,p 的矩估计为1ˆpX=; (3)因∫∫∫∞+−−+∞−−∞+−−∞+−−+−=−⋅=⋅=121121121121d eede)1(d e1)(E 2θθθθθθθθθθθθθx x x x x X x x x x212121121eeθθθθθθθθθ+=−−=+∞−−+∞−−x x x ,且∫∫∫∞+−−+∞−−∞+−−∞+−−⋅+−=−⋅=⋅=121121121121d 2eede)1(d e1)(E 22222θθθθθθθθθθθθθx x x x x x X x x x x22212122122222)(E 2d e12e121121θθθθθθθθθθθθθθ++=+=⋅+−=∫∞+−−+∞−−X x x x x x , 则2222122212122)(22)](E [)(E )(D θθθθθθθ=+−++=−=X X X ,即)(D 2X =θ,)(D )(E 1X X −=θ,故θ 1和θ 2的矩估计为n S X −=1ˆθ,nS =2ˆθ. 2. 求下列总体分布中参数的极大似然估计:(1)f (x ; θ ) = θ (1 − θ ) x − 1,x = 1, 2, …;其中0 < θ < 1; (2)λλλ−=e !);(x x f x,x = 0, 1, 2, …;其中λ > 0;(3)222)(ln 2eπ21),;(σµσσµ−−=x xx f ,x = 0;其中−∞ < µ < +∞,σ > 0.解:(1)nx nx x x n ni i n x f x f x f L −−−−∑−=−−⋅−===121)1()1()1()1();();();()(11121θθθθθθθθθθθθ"",即)1ln()(ln )(ln 1θθθ−−∑+==n x n L ni i ,令011)(1d )(ln d 1=−−⋅−∑+⋅==θθθθn x n L n i i ,得xx nni i11==∑=θ, 故θ 的极大似然估计为X1ˆ=θ; (2)λλλλλλλλλλλλn n x n x x x n x x x x x x x f x f x f L ni in−−−−∑=⋅===e !!!e !e !e !);();();()(212121121""",即λλλn x x x x L n ni i −−⋅∑==)!!!ln(ln )(ln 211",令01d )(ln d 1=−⋅∑==n x L n i i λλλ,得x x n ni i ==∑=11λ, 故λ 的极大似然估计为X =λˆ; (3)),;(),;(),;(),(222212σµσµσµσµn x f x f x f L "=212222222212)(ln 212)(ln 2)(ln 22)(ln 1e)π2(1eπ21eπ21eπ21σµσµσµσµσσσσ∑===−−−−−−−−ni i n x nnx nx x x x x x x x "",即21221222)(ln )ln()ln π2(ln 2),(ln σµσσµ∑−−−+−==ni i n x x x x nL ",令0ln 2)1()(ln 2),(ln 21212=−∑=∑−⋅−−=∂∂==σµσµµσµn x x L ni i ni i ,得∑==ni i x n 1ln 1µ,再令02)(ln 12),(ln 412222=∑−+⋅−=∂∂=σµσσσµni i x n L ,得∑−==n i i x n 122)(ln 1µσ, 故µ和σ 2的极大似然估计为∑==n i i X n 1ln 1ˆµ,∑−===∧∑n i n i i i X n X n 1212)ln 1(ln 1σ. 3. 设总体X 的密度函数为⎩⎨⎧<<+=,,0,10,)1();(其他x x x f θθθ求参数θ 的极大似然估计与矩法估计,并看看它们是否一致?今获得样本观测值为0.4, 0.7, 0.27, 0.55,0.68, 0.31, 0.45, 0.83.试分别求θ 的极大似然估计值与矩估计值.解:因121212()(;)(;)(;)(1)(1)(1)(1)()n n n n L f x f x f x x x x x x x θθθθθθθθθθθθ==+⋅++=+""",即ln L (θ ) = n ln (θ + 1) + θ ln (x 1 x 2 … x n ),令12d ln ()1ln()0d 1n L n x x x θθθ=⋅+=+", 则12111ln()ln nn ii nnx x x x θ==−−=−−∑",故θ 的极大似然估计为1ˆ1ln nii nX θ==−−∑;因1211E()(1)d (1)22xX x x x θθθθθθθ++=⋅+=+⋅=++∫,有2E()11E()X X θ−=−,故θ 的矩法估计为21ˆ1X Xθ−=−; 显然参数θ 的极大似然估计与矩法估计不一致;又因样本观测值为0.4, 0.7, 0.27, 0.55, 0.68, 0.31, 0.45, 0.83,有1(0.40.70.83)0.523758x =+++=",故θ 的极大似然估计值为8ˆ10.3982ln 0.4ln 0.7ln 0.83θ=−−=+++",θ 的矩估计值为20.523751ˆ0.099710.52375θ×−==−. 习题6.21. 设容量为3的随机样本X 1 , X 2 , X 3取自概率密度函数为1,0,(;)0,,x f x θθθ−⎧<<⎪=⎨⎪⎩其他的总体.证明1(1)ˆ4X θ=和2(3)ˆ43X θ=都是θ 的无偏估计量. 证:总体X 的分布函数为0,0,(;),0,1,,x x F x x x θθθθ<⎧⎪⎪=≤<⎨⎪≥⎪⎩则容量为3的样本的最小顺序统计量X (1) 的分布函数和密度函数为33(1)0,0,(;)1[1(;)]11,0,1,,x x F x F x x x θθθθθ<⎧⎪⎪⎛⎞=−−=−−≤<⎨⎜⎟⎝⎠⎪⎪≥⎩23(1)(1)3(),0,(;)(;)0,x x f x F x θθθθθ⎧−<<⎪′==⎨⎪⎩其他且最大顺序统计量X (3) 的分布函数和密度函数为33(3)0,0,(;)[(;)],0,1,,x x F x F x x x θθθθθ<⎧⎪⎪⎛⎞==≤<⎨⎜⎟⎝⎠⎪⎪≥⎩23(3)(3)3,0,(;)(;)0,x x f x F x θθθθ⎧<<⎪′==⎨⎪⎩其他得234222321(1)33300031212ˆE()4E()4()d (2+)d 2+234x x x X x x x x x x x θθθθθθθθθθθθθ⎛⎞==⋅−=−=−=⎜⎟⎝⎠∫∫,2432(3)33300044344ˆE()E()d d 334x x X x x x x θθθθθθθ==⋅==⋅=∫∫,故1(1)ˆ4X θ=和2(3)ˆ43X θ=都是θ 的无偏估计量. 2. 设总体X 服从伯努利分布B (1, p ),p 为未知参数(0 < p < 1).样本X 1 , …, X n 来自于X .(1)证明:当n = 1时,p 2不存在无偏估计;(2)若n ≥ 2,求p 2的一个无偏估计量. 解:(1)当n = 1时,样本X 1的概率分布为101~1X p p ⎛⎞⎜⎟−⎝⎠, 则任何统计量T = T (X 1)的数学期望为E (T ) = T (0) ⋅ (1 − p ) + T (1) ⋅ p = T (0) + [T (1) − T (0)] ⋅ p ≠ p 2, 故当n = 1时,p 2不存在无偏估计;(2)若n ≥ 2,有样本均值11n i i X X n ==∑,样本方差2211()1n i i S X X n ==−−∑, 则E()E()X X p ==,22E()D()(1)S X p p p p ==−=−,即222E()E()E()X S X S p −=−=, 故2X S −是p 2的一个无偏估计量.3. 设从均值为µ ,方差为σ 2(> 0)的总体X 中分别抽取容量为n 1 , n 2的两个独立样本,样本均值分别为1X 和2X .试证:对于任意满足条件a + b = 1的常数a 和b ,12ˆaX bX µ=+都是µ 的无偏估计,并确定a 、b 使方差ˆD()µ达到最小. 解:因12E()E()X X µ==,211D()X n σ=,222D()X n σ=,有12ˆE()E()E()()a X b X a b a b µµµµ=+=+=+,故当a + b = 1时,ˆE()µµ=,12ˆaX bX µ=+都是µ 的无偏估计; 又22222222222121112121212()2(1)ˆD()D()D()(1)n n a n a n a a a X b X a a n n n n n n σσµσ⎡⎤+−+−=+=⋅+−⋅=+=⎢⎥⎣⎦, 令212112ˆ2()2d D()0d n n a n a n n µσ+−==,得112n a n n =+,且2212212ˆ2()d D()0d n n n n a µσ+=>,故当112n a n n =+,2121n b a n n =−=+时,方差ˆD()µ达到最小. 4. 设X 1 , X 2 , X 3 , X 4是来自均值为θ 的指数分布的样本,其中θ 未知.证明下列三个估计量1123411()()36T X X X X =+++,212341(6543)10T X X X X =+−+,T 3 = 2 X 1 − X 2 + 3 X 3 − 3 X 4 ,均为θ的无偏估计量,并说明上述估计量中哪个最有效.证:因总体X 服从均值为θ 的指数分布,即X ~ e (1/θ ),有E (X ) = θ ,D (X ) = θ 2 ,则112341111E()[E()E()][E()E()]()()3636T X X X X θθθθθ=+++=+++=,2123411E()[6E()5E()4E()3E()](6543)1010T X X X X θθθθθ=+−+=+−+=,E (T 3) = 2 E (X 1) − E (X 2) + 3 E (X 3) − 3 E(X 4) = 2θ − θ + 3θ − 3θ = θ , 故T 1 , T 2 , T 3均为θ 的无偏估计量;又222221123411115D()[D()D()][D()D()]()()93693618T X X X X θθθθθ=+++=+++=, 22222212341143D()[36D()25D()16D()9D()](3625169)10010050T X X X X θθθθθ=+++=+++=,D (T 3) = 4 D (X 1) + D (X 2) + 9 D (X 3) + 9 D (X 4) = 4θ 2 + θ 2 + 9θ 2 + 9θ 2 = 23θ 2 , 显然D (T 1) < D (T 2) < D (T 3), 故T 1最有效,T 2其次,T 3最差.5. 设ˆθ是参数θ 的无偏估计量,且ˆD()0θ>,试证:2ˆ()θ不是θ 2的无偏估计量. 证:因ˆθ是参数θ 的无偏估计量,即ˆE()θθ=,有2222ˆˆˆˆE[()]()[E()]()D D θθθθθθ=+=+>, 故2ˆ()θ不是θ 2的无偏估计量. 习题6.31. 随机地从一批零件中抽取10个,测得其长度(单位:cm )为:2.13, 2.14, 2.12, 2.13, 2.11, 2.15, 2.14, 2.13, 2.12, 2.13.假设该批零件的长度服从正态分布N (µ , σ 2),试求总体均值µ 的置信系数为95%的置信区间:(1)若已知σ = 0.01;(2)若σ 未知. 解:(1)单个正态总体,已知σ ,估计µ ,总体均值µ 的点估计为X,枢轴量为~(0,1)X U N =,置信系数1 − α = 0.95,置信区间为/2/2(X u u αα−+,因1(2.13 2.14 2.13) 2.1310x =+++=",σ = 0.01,n = 10,u 0.025 = 1.96, 故µ 的置信系数95%的置信区间为(2.13 1.96 2.13 1.96(2.1238,2.1362)−+=;(2)单个正态总体,未知σ ,估计µ ,总体均值µ 的点估计为X,枢轴量为~(1)X T t n =−,置信系数1 − α = 0.95,置信区间为/2/2((1)(1)X t n t n αα−−+−,因1(2.13 2.14 2.13) 2.1310x =+++=", 222221[(2.13 2.13)(2.14 2.13)(2.13 2.13)]0.01159s =−+−++−=",n = 10,t 0.025 (9) = 2.2622,故µ 的95%置信区间为(2.13 2.2622 2.13 2.2622(2.1217,2.1383)−+=.2. 为估计制造某件产品所需的单件平均工时(单位:小时),现制造了五件,记录所需工时为:10.5, 11, 11.2, 12.5, 12.8.设制造单件产品所需工时服从正态分布,试求单件平均工时的置信系数95%的置信区间.解:单个正态总体,未知σ ,估计µ ,总体均值µ 的点估计为X,枢轴量为~(1)X T t n =−,置信系数1 − α = 0.95,置信区间为/2/2((1)(1)X t n t n αα−−+−,因1(10.51112.8)11.65x =+++=",222221[(10.511.6)(1111.6)(12.811.6)]0.99754s =−+−++−=",n = 5,t 0.025 (4) = 2.7764,故µ 的95%置信区间为(11.6 2.7764 2.7764(10.3615,12.8385)−+=.3. 设有两台机床用来生产规格相同的铝合金薄板.随机选取每台机床轧制的产品若干张,测得它们的厚度(单位:cm )如下:机器I :0.243, 0.238, 0.248, 0.245, 0.236, 0.241, 0.239, 机器II :0.261, 0.254, 0.255, 0.257, 0.253, 0.250,设两台机床所生产的薄板的厚度服从方差相等的正态分布.试给出两台机床生产的铝合金薄板平均厚度差的置信系数为95%的置信区间.解:两个正态总体,未知22,x y σσ(但22x yσσ=),估计µ x −µ y ,均值差µ x −µ y 的点估计为X Y −,枢轴量为()()~(2)X Y T t n m µµ−−−=+−, 置信系数1 − α = 0.95,置信区间为(, 因1(0.2430.2380.239)0.24147x =+++=",1(0.2610.2540.250)0.2556y =+++=", 222221[(0.2430.2414)(0.2380.2414)(0.2390.2414)]0.00426x s =−+−++−=",222221[(0.2610.255)(0.2540.255)(0.2500.255)]0.00375ys =−+−++−=", n = 7,m = 6,t 0.025 (11) = 2.2010, 故µ 的95%置信区间为(0.24140.255 2.2010(0.0185,0.0087)−±=−−.4. 由容量为15,取自正态总体N (µ , σ 2)的随机样本算得23.2, 4.24x s ==,确定σ 2和σ 的置信系数90%的置信区间.解:单个正态总体,估计σ 2,总体方差σ 2的点估计为S 2,枢轴量为2222(1)~(1)n S n χχσ−=−,置信系数1 − α = 0.90,置信区间为2222/21/2(1)(1)(,)(1)(1)n S n S n n ααχχ−−−−−,因s 2 = 4.24,n = 15,20.05(14)23.685χ=,20.95(14) 6.571χ=,故σ 2的90%置信区间为14 4.2414 4.24(,(2.5062,9.0336)23.685 6.571××=; σ 的90%置信区间为(1.5831,3.0056)=.5. 设有两个化验员A 和B 独立对某种聚合物中的含氯量用同一种方法各做了10次测定,其测定值的方差分别为220.512,0.665ABs s ==.假定各自的测定值均服从正态分布,方差分别为2Aσ和2Bσ,求22ABσσ的置信系数为0.90的置信区间.解:两个正态总体,估计22A B σσ,方差比22A Bσσ的点估计为22A B S S ,枢轴量为2222~(1,1)A AB B S F F n m S σσ=−−,置信系数1 − α = 0.90,置信区间为2222/22222/21/2/2111(,)(,(1,1))(1,1)(1,1)(1,1)A A A A B B B BS S S S F m n F n m F n m F n m S S S S αααα−⋅⋅=⋅⋅−−−−−−−−,因220.512,0.665A B s s ==,n = 10,m = 10,F 0.05 (9, 9) = 3.18,故22A Bσσ的置信系数为0.90的置信区间为0.51210.512(, 3.18)(0.2421,2.4484)0.665 3.180.665××=.6. 设枪弹的速度(单位:米/秒)服从正态分布.为了比较两种枪弹的速度,在相同的条件下进行了速度测定.算得数据如下:枪弹甲:m = 110,2810x =,s x = 121.41;枪弹乙:n = 100,2682y =,s x = 105.06.试求这两种枪弹的平均速度之差的置信系数近似为95%的置信区间.解:两个正态总体,未知22,x yσσ(大样本),估计µ x −µ y ,均值差µ x −µ y 的点估计为X Y −,大样本情形下枢轴量为()()~(0,1)X Y T N µµ−−−=,置信系数1 − α = 0.95,置信区间为(,因m = 110,2810x =,s x = 121.41,n = 100,2682y =,s x = 105.06,u 0.025 = 1.96,故µ x −µ y 的95%置信区间为(28102682 1.96(97.36,158.64)−±=.复习题六1. 设X 1 , …, X n 为来自总体X 的样本,X 的概率密度函数为22(),0,(;)0,,x x f x θθθθ⎧−<<⎪=⎨⎪⎩其他 其中θ(> 0)是未知参数.试求参数θ 的矩估计量. 解:因3323222002212E()()d ()()23233X x x x x x θθθθθθθθθθ=⋅−=−=−=∫,有θ = 3 E (X ),故θ 的矩估计为ˆX θ=. 注:此题有误,密度函数非零取值范围应为0 < x < θ .2. 伯莱托(Pareto )分布是常用于研究收入的模型,其分布函数为⎪⎩⎪⎨⎧<≥⎟⎠⎞⎜⎝⎛−=,,0,,1),;(111212θθθθθθx x x x F 其中θ 1 > 0,θ 2 > 0.若随机样本X 1 , …, X n 取自该分布,求θ 1与θ 2的极大似然估计量.解:伯莱托分布的密度函数为⎪⎩⎪⎨⎧<≥⋅=′=+,,0,,),;(),;(11112212122θθθθθθθθθθx x x x F x f则1211211212121112212122112122222222)(),;(),;(),;(),(++++=⋅==θθθθθθθθθθθθθθθθθθθθθθθθn n nnn x x x x x x x f x f x f L """,即ln L (θ 1, θ 2) = n ln θ 2 + n θ 2 ln θ 1 − (θ 2 + 1) ln (x 1 x 2 …x n ),显然θ 1越大,ln L (θ 1, θ 2) 就越大,且x i ≥ θ 1,故θ 1的极大似然估计量为)1(11},,min{ˆX X X n =="θ; 令0)ln(ln 1),(ln 2112221=−+⋅=∂∂n x x x n n L "θθθθθ,得111212ln ln 11ln )ln(θθθ−=−=∑=ni i n x n n x x x n ", 故θ 2的极大似然估计量为)1(12ln ln 11ˆX X n ni i −=∑=θ.3. 设总体X 的概率密度为2231/224πe ,0,(;)0,0,xx x f x x ααα−−−⎧⎪>=⎨≤⎪⎩ 试求参数α 的矩估计和极大似然估计,并证明矩估计量是无偏的. 解:因222231/2211/2200E()4πe d 2π(1)de xxX x x x x αααα+∞+∞−−−−−−=⋅=⋅−∫∫22222211/2211/221/21/2002πe2πe d()0(2πe )2πx x x x x ααααααα+∞+∞+∞−−−−−−−−−=−+=+−=∫,故α=,α的矩估计为ˆXα=;因2222221231/2231/2231/221212()(;)(;)(;)4πe4πe4πenx x x n n L f x f x f x x x x αααααααααα−−−−−−−−−==⋅""2213/22124π()eni i x n n n n x x x αα=−−−∑=",即212211ln ()ln 43ln ln π2ln()2nn i i n L n n x x x x ααα==−−+−∑",令231d ln ()1230d n i i L n x αααα==−⋅+=∑,得α=,故α的极大似然估计为ˆα= 4. 设总体X 的密度函数为||1(;)e ,2x f x x λλ−−=−∞<<+∞,试求参数λ(−∞ < λ < +∞)的极大似然估计量.解:112||||||||121111()(;)(;)(;)e e e e 2222ni n i x x x x n n L f x f x f x λλλλλλλλ=−−−−−−−−∑==⋅="",即1ln ()ln 2||ni i L n x λλ==−−−∑,设顺序统计量为x (1) , x (2) , …, x (n ),并且记x (0)为−∞,x (n + 1)为+∞,不妨设x (k ) ≤ λ < x (k + 1),k = 0, 1, …, n − 1, n , 则1111ln ()ln 2()()ln 2()kn k ni i i i i i k i i k L n x x n k x x n k λλλλλ==+==+=−−−−−=−−+−+−∑∑∑∑11ln 2(2)kni i i i k n n k x x λ==+=−+−+−∑∑,若2n k <,有n − 2k < 0,ln L (λ )关于λ 单调增加,若2nk >,有n − 2k < 0,ln L (λ )关于λ 单调减少, 当n 为偶数时,取2nk =,ln L (λ )在()()221n n x x λ+≤<时达到最大,(由连续性知()21n x λ=时也达到最大),故当n 为偶数时,λ 的极大似然估计量ˆλ为区间()()221[,]n n X X+上的任何值;当n 为奇数时,取12n k −=,ln L (λ )在()()1122n n x x λ−+≤<时单调增加,取12n k +=,ln L (λ )在()()1322n n x x λ++≤<时单调减少,即ln L (λ ) 在()12n x λ+=时达到最大,故当n 为奇数时,λ 的极大似然估计量()12ˆn X λ+=.5. 设总体X ~ N (µ , σ 2),X 1 , …, X n 是X 的样本,X 为样本均值,求常数c 和d ,使∑−=+−1121)(n i i i X X c 与∑=−ni i X X d 1||分别为σ 2和σ 的无偏估计.解:因E (X i ) = µ ,2222)](E [)(D )(E µσ+=+=i i i X X X ,则∑∑∑−=++−=++−=+−+=−+=⎥⎦⎤⎢⎣⎡−1112211112211121)](E )(E 2)(E )(E [)2(E )(E n i i i i i n i i i i i n i i i X X X X c X X X X c X X c221122222)1(22)1(]2)()[(σσµµσµσ−=⋅−⋅=−+++=∑−=n c n c c n i ,故当)1(21−=n c 时,21121)(E σ=⎥⎦⎤⎢⎣⎡−∑−=+n i i i X X c ,∑−=+−−1121)()1(21n i i i X X n 为σ 2的无偏估计; 因∑∑≠=−−=−=−ij j i n j j i i X n X n n X n X X X 1111,有i X X −服从正态分布,且E()E()E()0i i X X X X µµ−=−=−=,22222(1)1(1)11D()D()D()(1)i i jj i n n n X X X X n n n n n n σσ≠−−−−=+=+⋅−=∑, 则21~(0,)i n X X N n σ−−~(0,1)X N ,记X Y =Y ~ N (0, 1),则22222200E(||)||d 2d 2y y y Y y yy y+∞−−−+∞+∞−∞===−=∫∫即E(||)i X X −=,11E(||)E(||)n ni i i i d X X d X X d n ==−=−=⋅∑∑,故当d =时,1E ||ni i d X Xσ=⎡⎤−=⎢⎥⎣⎦∑1||n i X X =−为σ 的无偏估计.。
概率与数理统计第六章习题参考解答
《概率论与数理统计》第六章习题exe6-1解:10()0x b f x b ⎧<<⎪=⎨⎪⎩其他01()()2bb E X xf x dx x dx b +∞-∞==⋅=⎰⎰ 令11μ=A ,即2b X =,解得b 的矩估计量为ˆ2b X = 2ˆ2(0.50.60.1 1.30.9 1.60.70.9 1.0) 1.6899bx ==++++++++= exe6-2解:202()()()3x E X xf x dx x dx θθθθ+∞-∞-==⋅=⎰⎰令11μ=A ,即,3θ=X 解得θ的矩估计量为ˆ3X θ= Exe6-3解:(1)由于12222()()()()(1)()E X mpE X D X E X mp p mp μμ==⎧⎨==+=-+⎩令 ⎩⎨⎧==.2211μμA A 求解得221111p m p μμμμ⎧-=-⎪⎪⎨⎪=⎪⎩,p, m 的矩估计量为22211(1)ˆ11ˆˆA A n S pA nX X m p ⎧--=-=-⎪⎪⎨⎪=⎪⎩Exe6-4解:(1)()E X λ= 令11μ=A ,即,λ=X 解得λ的矩估计量为ˆX λ= {}),2,1,0(!===-x e x x X P xλλ{}),2,1,0(!===-i i xi x e x x X P iλλ似然函数11111(){}()!!niii x n nx ni ni i i ii eL P X x e x x λλλλλ=--===∑====∏∏∏11ln ()()ln ln(!)nni i i i L n x x λλλ===-+-∑∑1ln ()0nii x d L n d λλλ==-+=∑解得λ的最大似然估计值为 11ˆnii x x n λ===∑ (2)由(1)知1ˆ(6496101163710)7.210x λ==+++++++++= Exe6-5解:(1)似然函数1(1)111(){}(1)(1)ni i i nnx x ni i i L p P X x p p p p =--==∑===-=-∏∏∑-==-ni i nx np p 1)1(1ln ()ln (1)ln ni i L p n p x p ==+-⋅∑)1ln()(ln 1p n x p n ni i --+=∑=1(1)ln ()01nii x d L p ndp pp=-=-=-∑01)(ln 1=---=∑=pnxp n dp p L d ni i解得p 的最大似然估计值为 11ˆnii npxx===∑ (2)155ˆ5174926px ===++++ Exe6-6解:由22()2()x f x μσ--=(1)2σ已知,似然函数22122()()2211()(,)ni i i x nx n nii i L f x e μμσσμμ=----==∑===∏2211ln ())()2nii L n x μμσ==---∑21ln ()1(22)02nii d L x d μμμσ==--=∑即11()0nniii i x n xμμ==-=-=∑∑解得μ的最大似然估计值 1ˆnii xx nμ===∑(2)μ已知,似然函数为212222)(222)(12122121),()(σμσμπσσπσσ∑⎪⎭⎫ ⎝⎛====----==∏∏ni i i x n x ni n i i e ex f L21222)(21)ln(2)2ln(2)(ln μσσπσ-∑---==n i i x n n L 0)()(212)(ln 2122222=-+-=∑=μσσσσni ixn L d d解得∑=-=n i i x x n 122)(1ˆσ,故2σ的最大似然估计值为 .)(1ˆ122∑=-=n i i i x x n σ Exe6-7解:(1)矩估计量2220()()()(3)2xt x xt xx E X xf x dx x e dx e dx t e dt θθθθθθθθ=--+∞+∞+∞+∞--∞==⋅===Γ=⎰⎰⎰⎰令2X θ=,得ˆ/2X θ= 似然函数211()(,)ix n nii i i x L f x eθθθθ-====∏∏1111ln ()(ln 2ln )ln 2ln nnnii i i i i i x L x x n x θθθθθ====--=--∑∑∑令21ln ()210ni i d L n x d θθθθ==-+=∑解得θ的最大似然估计值为111ˆ22ni i x x n θ===∑ (2)2311()(,)2ixnni i i i x L f x e θθθθ-====∏∏331111ln ()[2ln ln(2)]2ln ln(2)nnnii i i i i i x L x x n x θθθθθ====--=--∑∑∑ 令2321ln ()1602nii d L n xd θθθθθ==-⋅-=∑013)(ln 1223=+⋅-=∑=ni ixn d L d θθθθθ解得θ的最大似然估计值为 111ˆ33n ii x x n θ===∑(3) ),(~p m B X ,m 已知{}∏∏=-=-===ni x m x x m ni i i i ip p C x X P p L 11)1()(1111ln ()[ln ln ()ln(1)]ln ln ln(1)()i inx m i i i nnnx m i i i i i L p C x p m x p C p x p nm x =====++--=++--∑∑∑∑令 11ln ()01n ni ii i x nm x d L p dp p p==-=-=-∑∑即1111(1)1n nniiii i i x xxnmppp p p===+==---∑∑∑ 解得p 的最大似然估计值为 1ˆnii xxpmnm===∑ Exe6-8解:(1)似然函数为{}{}{})1(2)1(2121)(522θθθθθθθ-=⋅-⋅==⋅=⋅==X P X P X P L)1ln(ln 52ln )(ln θθθ-++=L 令 0115)(ln =--=θθθθL d d 解得θ的最大似然估计值为.65ˆ=θ Exe6-9解:1212222)()(22)(12)(111212121),,(),,(),(σβαβασβασβασπσπσπβαβαβα∑∑⎪⎪⎭⎫⎝⎛=====+-+---+--=---===∏∏∏∏ni i ni i i i i i y x ny ni x ni n i i Y n i i X e eey f x f L))()((21ln 2)2ln(),(ln 21212βαβασσπβα+-∑+--∑---===ni i ni i y x n n L0))()((22),(ln 112=+-+--=∂∂∑∑==βαβασβααni i n i i y x L0)()((22),(ln 112=+----=∂∂∑∑==βαβασβαβni i n i i x x L 联立 解得,2ˆ,2ˆyx y x -=+=βα故βα,的最大似然估计量为 .2ˆ,2ˆYX Y X -=+=βαExe6-10解:(1)由1/2EX μθ==,得θ的矩估计量ˆ2X θ= ˆ()2()2()22E E X E X θθθ===⋅= 故θ的矩估计量ˆ2X θ=是θ的无偏估计量。
概率论与数理统计 第六章习题附答案
习题6-11. 若总体(2,9)X N , 从总体X 中抽出样本X 1, X 2, 问3X 1-2X 2服从什么分布?解 3X 1-2X 2~N(2, 117).习题6-21. 选择题(1) 下面关于统计量的说法不正确的是( ).(A) 统计量与总体同分布. (B) 统计量是随机变量. (C) 统计量是样本的函数. (D) 统计量不含未知参数.解 选(A).(2) 已知X 1,X 2,…,X n 是来自总体2(,)X N μσ 的样本, 则下列关系中正确的是( ).(A) ().E X n μ= (B) 2().D X σ= (C) 22().E S σ= (D) 22().E B σ= 解 选(C).(3) 设随机变量X 与Y 都服从标准正态分布, 则( ).(A) X +Y 服从正态分布.(B) X 2+Y 2服从2χ分布.(C) X 2和Y 2都服从2χ分布. (D)22X Y服从F 分布.解因为随机变量X 与Y 都服从标准正态分布, 但X 与Y 不一定相互独立,所以(A),(B),(D)都不对, 故选(C).2. 设X 1,X 2,…,X n 是来自总体X 的样本, 总体X 的均值μ已知,方差σ2未知.在样本函数1nii X=∑,1nii Xμσ=-∑,1nii XSμ=-∑, n μ(21X +22X +…+2n X )中, 哪些不是统计量?解1nii Xμσ=-∑不是统计量.习题6-31.填空题(1) 设总体~(2,25)X N ,12100,,,X X X 是从该总体中抽取的容量为n 的样本, 则()E X = ; ()D X = ; 统计量~X .解 因为总体~(2,25)X N , 而12100,,,X X X 是从该总体中抽出的简单随机样本, 由正态分布的性质知, 样本均值也服从正态分布, 又因为1001111(()22100)n i i i E E X n X =====∑∑,而1002111125(()251001)1004n i i i D D X n X ======∑∑.所以 1~(2,)4N X .3. 在总体2(52,6.3)N 中随机抽取一个容量为36的样本, 求样本均值X 落在50.8到53.8 之间的概率.解 因为2~(,)X N n σμ,所以26.3~(52,)36X N .于是, 标准化随机变量52~(0,1)6.3X N -. 因此(50.852)6(52)6(53.852)6{50.853.8}{}6.3 6.3 6.3X P X P -⨯-⨯-⨯=≤≤剟10.87.2()()0.82936.36.3ΦΦ-=-=.。
概率论与数理统计第六章
例6.3(例6.l续)在例6.l中,若农户年收入以万元 计, 假定N户中收入X为以下几种取值:
0.5, 0.8, l, 1.2和1.5。 取这些值的农户个数分别为:n1, n2, n3, n4, n5, (这里n1+n2+n3+n4+n5=N)。
,
0, x x(1)
Fn
(
x)
k
/
n,
x(k ) x x(k1)
1,
x x(n)
对不同的样本值, 得到的 经验分布函数不同。但 当样本容量较大时, 经验 分布函数Fn(x)是总体分 布函数F(x)的良好近似。
统计量的分布称为抽样分布。数理统 计中常用到来自正态总体的三个分布:
2—分布、 t —分布和F—分布。
而在数理统计中的随机变量,它的分布是未知的 ,或者不完全知道,人们通过对所研究的随机变 量进行重复、独立的观察,得到许多观察值,对 这些数据进行分析,从而对随机变量的分布作出 种种判断。
现实世界中存在着形形色色的数据,分析这些数据 需要多种多样的方法。 因此,数理统计中的方法和支持这些方法的相应理 论是相当丰富的,概括起来可以归纳成两大类: 参数估计──根据数据,用一些方法对分布的未知 参数进行估计。 假设检验──根据数据,用一些方法对分布的未知 参数进行检验。 它们构成了统计推断的两种基本形式。这两种推断 渗透到了数理统计的每个分支。
n i 1
X
2 i
nX
2
)
它反映了总体 方差的信息
样本标准差 S S2 ,
概率论与数理统计第六章数理统计的基本概念习题答案
解:c 2
=
9S 2 16
~
c 2 (9), P(S 2
> a) =
P
æ çè
c
2
>
பைடு நூலகம்9a 16
ö ÷ø
=
0.1.
查表得 9a = 14.684, 16
\ a = 14.684 ´16 = 26.105. 9
大学数学云课堂
028606.设总体X 服从标准正态分布,X1,X 2,L,X n是来自总体X的一个简单随机样本
ò ò E( X ) = +¥ xf (x)dx = 1 +¥ xe- x dx = 0
-¥
2 -¥
ò ò ò E( X 2 ) = +¥ x2 f (x)dx = 1 +¥ x2e- x dx = +¥ x2e-xdx = 2,
-¥
2 -¥
0
\E(S2) = 2
大学数学云课堂
2004研考
å å 么E
é ê ê ê ê
n1 i =1
(Xi
ê ê - Xë )2 + n1 + n2
n1 + n2 - 2
n2
(Y j
-
Y
)2
ù ú
j =1
ú=
-2
ú
ú
n1
+
1 n2
ú ú û -
g E (s 2
2 c12
+s
2
c
2 2
)
ë
û
=
n1
s2 + n2
-
2
[E(c12 )
+
E
(
概率论与数理统计习题详解 周概容 习题6解
由于 X1, X 2,Λ , X n 独立同服从参数为 λ 的泊松分布,可见 ( X1, X 2,Λ , X n ) 的概率函数为
∏ ( ) f (x1, x2,Λ
, xn; λ) =
n i=1
p(xi ; λ) =
e−nλ x1! x2!Λ
λx1+x2 +Λ +xn xn!
xi = 0,1,2,Λ
+
n +1 (n + 1)2
( X n+1
−
X n )2
−
2( X n+1 − X n ) n +1
n+1 i=1
(Xi
−
Xn)
=
nSn2
+ ( X n+1
−
Xn) +
( X n+1 − X n )2 n +1
−
2( X n+1 − X n )2 n +1
=
nSn2
+
n
n +
1
(
X
n+1
−
X n )2;
S
2 0
≈
X
2
−
X
2
=
61.39.
—习题解答●6.2—
以上各式中使用近似等号“≈”,因为计算时使用的不是原始数据,而是数据所在组的组中
值.
S
2 0
≈
X
2
−
X
2
= 61.39 是未修正样本方差,样本方差为
S 2 = n S 2 ≈ 100 × 61.39 = 62.0&1&.
n −1
99
概率论与数理统计六七章习题答案
第六章大数定理和中心极限定理一、大纲要求(1)了解契比雪夫不等式;(2)了解辛钦大数定律,伯努利大数定律成立的条件及结论;(3)了解独立同分布的中心极限定理和棣莫佛—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)的条件和结论,并会用相关定理近似计算有关随机事件的概率.二、重点知识结构图三、基本知识1. 马尔科夫不等式若X 为只取非负值的随机变量,则对任意常数0ε>,有{}EXP X εε≥≤.2. 契比雪夫不等式若DX 存在,则{}2DXP X EX εε-≥≤.3. 辛钦大数定律定理 1 设12,,,,n X X X 是独立同分布的随机变量序列,且具有有限的数学期望()a X E n =,则对任意的0ε>,有{}lim 0n n P X a ε→∞-≥=4. 伯努利大数定律定理2 设()p n B X n ,~,其中n=1,2, …,0<p<1 。
则对任意ε>0,有5.独立同分布的中心极限定理定理3 (林德伯格-列维定理) 设12,,,,n X X X 为独立同分布的随机变量,22,,0,i i EX a DX σσ==<<∞则对任意实数x 有12lim )()n n P X X X na x x →∞⎫++-≤=Φ⎬⎭式中, ()x Φ是标准正态分布(0,1)N 的分布函数,即2/2()t x e dt +∞--∞Φ=6. 棣莫佛-拉普拉斯中心极限定理定理3(棣莫佛-拉普拉斯定理) 设12,,,,n X X X 独立同分布,i X 的分布是{}{}1,01,(01)i i P X p P X p p ====-<<则对任意实数x ,有12lim )()n n P X X X np x x →∞⎧⎫⎪++-≤=Φ⎬⎪⎭0lim =⎭⎬⎫⎩⎨⎧≥-∞→εp n X P n n四、典型例题例1 设随机变量X 和Y 的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则根据契比雪夫不等式{}6_____P X Y +≥≤.解 因为 ()0E X Y E X E Y +=+= ()2c o v (,D X Y D X D Y X Y +=++2DX DY ρ=++ 1420.52=+-⨯⨯= 根据契比雪夫不等式{}2DXP X EX εε-≥≤所以 {}3163612P X Y +≥≤= 例2 某保险公司经多年资料统计表明,在索赔户中被盗户占20%,在随意抽查的100家索赔户中以被盗的索赔户数为随机变量,利用中心极限定理,求被盗的索赔户大于14户且小于30户的概率近似值.[分析]本题的随机变量服从参数100,0.2n p ==的二项分布.如果要精确计算,就要用伯努利二项公式:{}291001001514300.20.8kk k k P X C -=<<=∑.如果求近似值,可用契比雪夫不等式估计.解 由于~(100,0.2)X N ,所以1000.220EX np ==⨯=168.02.0100)1(=⨯⨯=-=p np DX{}1430P X P <<=<<=Φ(2.5)-Φ(-1.5)()927.0)5.1(5.2=-Φ+Φ因此被盗的索赔户大于14户且小于30户的概率近似值为0.927.例3 某车间有200台机床,它们彼此工作独立,开工率都为0.6,工作时耗电都为1kW,问供电所至少给这个车间多少度电,才能以99.9%的概率保证这个车间不会因供电不足而影响生产.解 用X 表示工作的机床台数,则~(200,0.6)X B .设要向车间供电a kW,则有由棣莫佛-拉普拉斯定理得{}P o X a P ⎧⎫<≤=<≤020p q ⎛⎫⎛⎫⎫⎫≈Φ-≈⎪⎪⎪⎪⎪⎪⎭⎭⎭⎭()0.999 3.1≈Φ≥=Φ即3.1≥ 因此120 3.48141a ≥+= 例4 用契比雪夫不等式确定当掷一均匀硬币时,需掷多少次,才能保证使得出现正面的频率在0.4~0.6之间的概率不小于90%,并用正态逼近计算同一个问题.解 设需掷n 次,用n S 表示出现正面的次数,则1~(,)2n S B n ,有契比雪夫不等式得0.40.60.50.1n n S S P P n n ⎧⎫⎧⎫<<=-<⎨⎬⎨⎬⎩⎭⎩⎭211110022110.900.014n n n⨯⨯≥-=-≥ 所以10002504n ≥=. 由棣莫佛-拉普拉斯定理得0.40.6n S P P n ⎧⎫<<=<⎨⎬⎩⎭(((0.2210.90=Φ-Φ-=Φ-≥即(Φ≥0.95,查表得 1.645>,故68n ≥.例5 假设12,,,n X X X 是独立同分布的随机变量,且()k k i a X E =(1,2,3,4)k =,证明当n 充分大时,随机变量211n n i i Z X n ==∑近似服从正态分布,并指出其分布参数.证 由12,,,n X X X 是独立同分布的随机变量序列可知, 22212,,,nX X X 独立同分布,且有()22a X E i =, 2242i DX a a =-2211n n i i EZ EX a n ===∑, 2242211n n i i a a DZ DX n n=-==∑由林德伯格-列维定理可知,对任意x 有⎰∞--∞→=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧<--x t n n dte x n a a a Z P 22242221lim π即n Z 近似服从正态分布2422(,)a a N a n-. 例6 有一批建筑房屋用的木柱,其中80%的长度超过3m ,现从这批木柱中随机地取出100根,问其中至少有30根短于3m 的概率是多少?解 设10i X ⎧=⎨⎩()31,2,,1003i m i i m = 当所取的第根木柱短于当所取的第根木柱不短于 则()~1,0.2i X B ,记1001i i X X ==∑,则()~100,0.2X B .由棣莫佛-拉普拉斯定理得{}{}30130P X P X ≥=-<1P =-≤()302011 2.50.0062100.4-⎛⎫≈-Φ=-Φ= ⎪⨯⎝⎭例7 假设男婴的出生率为2243,某地区有7000多名产妇,试估计她们的生育情况.[分析] n 重伯努利实验中A 出现的频率nu n依概率收敛于它的概率p ,当n 很大时,有n u np ≈.解 设10i X ⎧=⎨⎩()1,2,,7000i i = 第名产妇生男婴否则显然, 12,,,n X X X 独立同分布且均服从01-分布2243p ⎛⎫= ⎪⎝⎭,1nn i i u X ==∑表示7000名产妇中生男婴的人数,有伯努利大数定理得()2243n u n n →→∞ 由于7000n =已是足够大,因此227000358143n u ≈⨯≈即该地区估计有3581名男婴出生.例8 某电视机厂每月生产10000台电视机,但它的显像管车间的正品率为0.8,为了以0.997的概率保证出厂的电视机都装上正品的显像管,该车间每月应生产多少只显像管?解 设显像管正品数为X ,月总产量为n ,则有()~,0.8X B n ,从而 0.8E X n =, ()n p np DX 16.01=-=为了使电视机都装上正品的显像管,则每月至少生产10000只正品显像管,即所求为{}100000.997P X n ≤<=由棣莫佛-拉普拉斯定理得{}100000.997P X n P ≤<=≤<=即997.05.016.08.016.08.010000=⎭⎬⎫⎩⎨⎧<-≤-n n n X n n P(0.997Φ-Φ=由题意可知,0<,且n 较大,即(1Φ≈,所以0.997Φ=2.75=,故)(1027.14只⨯≈n因此,每月至少要生产41027.1⨯只显像管才能以0.997的概率保证出厂的10000台电视机都能装上正品的显像管.例9 一养鸡场购进1万个良种鸡蛋,已知每个鸡蛋孵化成雏鸡的概率为0.84,每只雏鸡发育成种鸡的概率为0.90,试计算这批鸡蛋得到种鸡不少于7500只的概率.解 设{}k A k =第只鸡蛋孵化成雏鸡, {}k B k =第只鸡蛋育成种鸡,令 ()11,2,,100000k k k B X k B ⎧==⎨⎩ 当发生当不发生 则诸k A 独立同分布,且{}{}{}{}{}{}1k k k k k k k k P X P B P A P B A P A P B A ===+0.840.900.756=⨯+={}{}244.00===k k B P X P显然, 100001kk X X==∑表示10000个鸡蛋育成的种鸡数,则()~10000,0.756X B ,而64.1844244.07560)1(,7560756.010000=⨯=-=⨯=p np np根据棣莫佛-拉普拉斯定理可得()~0,1nkXnpN -=∑于是,所求概率为{}10000756075001k X P X P ⎧⎫-⎪⎪≥=≥≈-Φ⎪⎪⎩⎭∑()1.400.92=Φ= 因此,由这批鸡蛋得到的种鸡不少于7500只的概率为92%.五、课本习题全解6-1 设11nn i i Y X n ==∑,再对n Y 利用契比雪夫不等式:{}12222220n i i n n n n D X DY n P Y EY n n εεεε=→∞⎛⎫ ⎪⎝⎭-≥≤=≤−−−→∑ 故{}n X 服从大数定理. 6-2 设出现7的次数为X ,则有 ()~10000,0.1,1000,900X B E X n p D X === 由棣莫佛-拉普拉斯定理可得{}100096810001696810.14303015X P X P --⎧⎫⎛⎫<=<=-Φ=⎨⎬ ⎪⎩⎭⎝⎭6-3 11,212i i EX DX ==由中心极限定理可知,10110i X -⨯∑,所以101011616110.136i i i i P X P X ==⎧⎫⎧⎫>=-≤=-Φ=-Φ=⎨⎬⎨⎬⎩⎭⎩⎭∑∑6-4 设报各人数为X ,则.100,100==DX EX . 由棣莫佛-拉普拉斯定理可得()0228.021*********}120{=Φ-=⎭⎬⎫⎩⎨⎧-≥-=≥DX EX X P X P6-5 设()11,2,,100000i i X i i ⎧==⎨⎩ 第个人死亡第个人没有死亡,则{}{}10.006,00.994i i P X P X ====总保险费为51210000 1.210⨯=⨯(万元)(1) 当死亡人数在达到51.210/1000120⨯=人时,保险公司无收入.4100.00660,0.1295np =⨯==所以保险公司赚钱概率为)()12100000.129512060P X X X np ⎧⎫⎪++-≤⨯-⎬⎪⎭()7.771=Φ=因而亏本的概率为10P P '=-=.(2)若利润不少于40000,即死亡人数少于80人时,)()12100000.12958060P X X X np ⎧⎫⎪++-≤⨯-⎬⎪⎭()2.590.9952=Φ= 若利润不少于60000,即死亡人数少于60人时,)()12100000.12956060P X X X np ⎧⎫⎪++-≤⨯-⎬⎪⎭()00.5=Φ=若利润不少于80000,即死亡人数少于40人时,)()12100000.12954060P X X X np ⎧⎫⎪++-≤⨯-⎬⎪⎭()2.5920.0048=Φ-=6-6 设总机需备Y 条外线才能有95%的把握保证每个分机外线不必等候,设随机变量()11,2,,2600i i X i i ⎧==⎨⎩ 第架电话分机用外线第架电话分机不用外线,则{}{}10.04,00.96P X P X ====0.04,0.040.00160.0384i i EX DX ==-=由中心极限定理可得16%950384.026004.02602601≈=⎪⎭⎫⎝⎛⨯⨯-Φ=⎭⎬⎫⎩⎨⎧≤∑=Y Y Y X P i i6-7 密度函数为 ()10.50.50x f x -<<⎧=⎨⎩当其他故数学期望为 0.50.50E X x d x -==⎰()0.52220.5112DX EX EX x dx -=-==⎰(1)设i X 为第i 个数的误差,则9973.01)3(251515300130013001=-Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤=⎭⎬⎫⎩⎨⎧≤∑∑∑===i i i i i i DX X P X P30030011151150.0027i i i i P X P X ==⎧⎫⎧⎫>=-≤=⎨⎬⎨⎬⎩⎭⎩⎭∑∑(2)110210.9440.77n i i P X n =⎧⎫≤=Φ-≥⇒≤⎨⎬⎩⎭∑ (3)3001210.99714.855i i Y P X Y Y =⎧⎫⎛⎫≤=Φ-≥⇒≤⎨⎬ ⎪⎝⎭⎩⎭∑6-8 kg kg EX 32105,105--⨯=⨯=σ (1)设i X 为第i 个螺钉的重量,则23100510,5100.05nEX --=⨯⨯⨯=0228.0)2(105.051.51.510011001=Φ-=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧->-=⎭⎬⎫⎩⎨⎧>∑∑==σn nEX X P X P i i i i(2)设()1.11,2,,5000.1i i Y i i ⎧==⎨⎩ 第个螺钉的重量超过5kg第个螺钉的重量不超过5kg,则33.3)1(4.11=-=p np np9951.0)58.2(33.34.1120)1(450050015001=Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧->--=⎭⎬⎫⎩⎨⎧⨯<∑∑==p np np Y P Y P i i i i %6-9 设随机变量()11,2,,10000i i X i ⎧==⎨⎩ 第个人按时进入掩体其他,按时进入掩体的人数为Y ,则()1,~10000,0.9ni i Y X Y B ==∑,所以有10000.9900,9000.190EY DY =⨯==⨯=设有k 人按时进入掩体,则916884645.19090095.090900===-=⎪⎪⎭⎫⎝⎛-Φk k k k 或所以至少有884人,至多有916.六、自测题及答案1.设随机变量X 服从(),B n p ,则对区间(),a b ,恒有lim _______.n P a b →∞⎧⎫⎪⎪<≤=⎨⎬⎪⎪⎩⎭2.一大批产品中优质品占一半,现每次抽取一个,看后放回再抽,问在100次抽 取中取到优质品次数不超过45的概率等于_______.3. 129,,X X X 相互独立, ()1,11,2,9i i EX DX i === ,则对任意给定的0ε>,有( ).9922119922111(A)11(B)119(C)91(D)919i i i i i i i i P X P X P X P X εεεεεεεε--==--==⎧⎫⎧⎫-<≥--<≥-⎨⎬⎨⎬⎩⎭⎩⎭⎧⎫⎧⎫-<≥--<≥-⎨⎬⎨⎬⎩⎭⎩⎭∑∑∑∑4.设12,,,,n X X X 为独立随机变量序列,且()1,2,i X i = 服从参数为λ的泊松分布,则有().()()()()111(A)lim (B)0,1(C),(D)n i n ni i n i i n i i X n P x x n X N n X N n n n P X x x λλλ→∞===⎧⎫-⎪⎪⎪≤=Φ⎬⎪⎪⎪⎩⎭⎧⎫≤=Φ⎨⎬⎩⎭∑∑∑∑当充分大的时,近似服从当充分大的时,近似服从当充分大的时,5.设12,,X X 为独立随机变量序列,且服从服从参数为λ的指数分布,则( ).()()()()112211(A)lim (B)lim 1(C)lim (D)lim n n i i i i n n nni i i n n n X X P x x P x x n X n X n P x x P x x n λλλλλλ==→∞→∞=→∞→∞⎧⎫⎧⎫--⎪⎪⎪⎪⎪⎪⎪⎪≤=Φ≤=Φ⎨⎬⎨⎬⎪⎪⎪⎪⎪⎪⎪⎪⎩⎭⎩⎭⎧⎫⎧⎫--⎪⎪⎪⎪⎪⎪⎪≤=Φ≤=Φ⎬⎨⎬⎪⎪⎪⎪⎪⎪⎪⎩⎭⎩⎭∑∑∑∑6.设随机变量12,,,n X X X 相互独立, 12n X X X X =+++ ,根据林德伯格-列维定理,当n 充分大时, X 近似服从正态分布,只要12,,,n X X X ( )(A)(B)(C)(D)有相同的数学期望有相同的方差服从同一指数分布服从同一离散型分布7.某校有1000名学生,每人以80%的概率去图书馆自习,问图书馆至少应设多少个座位,才能以99%的概率保证去上自习的同学都有座位坐?8.某种电子器件的寿命(小时)具有数学期望μ(未知),方差2400σ=.为了估计μ,随机地取n 只这种器件,在时刻0t =投入测试(设测试是相互独立的)直到失败,测得寿命为12,,,nX X X ,以11ni i X X n ==∑作为μ的估计,为了使{}10.95P X μ-<≥,问n 至少为多少?9.利用中心极限定理证明11lim !2i n n n i n e i -→∞=⎡⎤=⎢⎥⎣⎦∑ [答案]1. 由棣莫佛-拉普拉斯定理可得22lim t b a n P a b dt -→∞⎧⎫⎪⎪<≤=⎨⎬⎪⎪⎩⎭⎰2. 令Y 表示100次抽取中取得优质品的次数()11,2,,1000i i X i i ⎧==⎨⎩ 当第次取到优质品当第次没有取到优质品则 ()1001,~100,0.5i i Y X Y B ==∑那么 1000.5,1000.50.E Y D Y =⨯=⨯⨯=由棣莫佛-拉普拉斯定理可得{}504515Y P Y P P -⎧⎫≤=≤=≤-⎨⎬⎩⎭()()11110.84130.1587≈Φ-=-Φ=-=3.由题意可得 99119,9i i i i EX EX DX DX ======∑∑又因为 9211i i DXP X EX εε=⎧⎫-<≥-⎨⎬⎩⎭∑故(D)项正确.4.因为()1,2,i X i = 服从参数为λ的泊松分布,故,i i EX DX λλ==,由林德伯格-列维定理得()lim n i n X n P x x λ→∞⎧⎫-⎪⎪⎪≤=Φ⎬⎪⎪⎪⎩⎭∑ 当n 充分大时,1nii X=∑近似服从(),N n n λλ分布,故C 项正确.5.由题意可知 211,i i EX DX λλ==由林德伯格-列维定理可得()22limntixnX nP x dt xμ-→∞⎧⎫-⎪⎪⎪≤==Φ⎬⎪⎪⎪⎩⎭∑⎰即()l i mninX nP x xλ→∞⎧⎫-⎪⎪⎪≤=Φ⎬⎪⎪⎪⎩⎭∑6.由于林德伯格-列维定理要求12,,,nX X X独立同分布,且具有有限的数学期望与方差.因此C项正确.7.设X表示同时去图书馆上自习的人数,并设图书馆至少有n个座位,才能以99%的概率保证去上自习的同学都有座位,即n满足{}0.99P X n≤≥.因为()~1000,0.8X B,所以{}⎪⎭⎫⎝⎛⨯⨯⨯-Φ-⎪⎭⎫⎝⎛⨯⨯⨯-Φ≈≤2.08.010008.01000`2.08.010008.01000`nnXP8000.9912.65n-⎛⎫=Φ≥⎪⎝⎭查表得8002.3312.65n-≥,故829.5n≥.因此图书馆至少应有830个座位.8.由于12,,,nX X X独立同分布,且2,400i iEX DXμσ===.由林德伯格-列维定理得{}1P X Pμ⎫⎛-<=<≈Φ-Φ⎝⎭⎝⎭21210.95=Φ-=Φ-≥⎝⎭⎝⎭即0.975Φ≥⎝⎭,查表得 1.9620≥,故2400 1.961536.64n≥⨯=.因此n至少为1537.9.设{}n X为独立同服从参数为1的泊松分布的随机变量序列,则1nkkX=∑服从参数为n的泊松分布,因此有101!!k k n n nn nn k k k k n n P X n e e e k k ---===⎧⎫≤==+⎨⎬⎩⎭∑∑∑由林德伯格-列维定理可得()11lim lim 02n k n k n n k X n P X n P →∞→∞=⎧⎫-⎪⎪⎧⎫≤=≤=Φ=⎨⎬⎩⎭⎪⎪⎩⎭∑∑ 所以11lim lim !k n n n n k n n k k n e P X n e k --→∞→∞==⎧⎫⎡⎤⎧⎫=≤-⎨⎨⎬⎬⎢⎥⎩⎭⎣⎦⎩⎭∑∑ 11lim lim 2n n k n n k P X n e -→∞→∞=⎧⎫=≤-=⎨⎬⎩⎭∑第7章数理统计的基础知识一、大纲要求(1)理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,了解直方图和样本分布函数的意义和作用.(2)了解2χ分布、t分布、F分布的概念和性质,了解分位数的概念并掌握查表计算.(3)了解正态总体的抽样分布.二、重点知识结构图三、基本知识1.总体和个体在数理统计中,把研究对象的全体称为总体或母体,把组成总体的每一个研究对象(元素或单元)称为个体.总体分为有限总体和无限总体.有限总体是指其总体中的成员只有有限个.相应的,无限总体是指其总体中的成员有无限个.2.样本在一个总体中,抽取n 个个体12,,,n X X X ,这n 个个体总称为总体X 的样本或子样, n 称为样本容量.样本特性:① 代表性,样本中的每一个分量()1,2,i X i n = 与总体X 有相同的分布。
概率论与数理统计第六章习题答案
第六章习题6-11、由一致估计的定义,对0ε∀>{}{}{}()1212max ,,,max ,,,n n P X X X P X X X θεεθεθ-<=-+<<+()()F F εθεθ=+--+()0, 0, 01, X x xF x x x θθθ<⎧⎪=≤≤⎨⎪>⎩及(){}()()()()1212max ,,,n n X X X X X X F x F x F x F x F x ==⋅⋅⋅()1F εθ∴+=(){}()12max ,,,1nn x F P X X X εθεθθ⎫⎛-+=<-+≈- ⎪⎝⎭{}()12max ,,,111()nn x P X X X n θεθ⎫⎛∴-<=--→→∞ ⎪⎝⎭2、证明:EX μ=()1111111ni i n n i i i i nn n i i i i i i i i a X E a E X a a a a μμ======⎫⎛⎪ ⎪ ==⋅=⎪ ⎪⎝⎭∑∑∑∑∑∑ 11niii nii a Xa==∴∑∑是μ的无偏估计量3、证明: ()() ()()22D E E θθθ=-()() ()()()2222E D E D θθθθθθ∴=+=+> 2θ∴不是2θ的无偏估计量4、证明:()~X P λEX λ∴=,()()222E X DX EX λλ=+=+()22E X EX λ∴-=,即()22E X X λ-=用样本矩2211n i i A X n ==∑,1A X =代替相应的总体矩()2E X 、EX所以得2λ的无偏估计量: 22111n i i A A X X n λ==-=-∑ 5、()~,X B n p ,EX np ∴=()()()()22222111E X np p n p np n n p EX n n p =-+=+-=+-()()()()222111E X EX E X X p n n n n -⎫⎛∴=-=⎪ --⎝⎭所以用样本矩2211n i i A X n ==∑,1A X =分别代替总体矩()2E X 、EX得2p 的无偏估计量: ()()()222121111ni i i A A p X X n n n n =-==---∑6、()~,1X N m ,()i E X m ∴=,()1i D X =,(1,2)i =()()()11212212121333333E m E X X E X E X m m m ⎫⎛∴=+=+=+= ⎪⎝⎭()()()1121221414153399999D m D X X D X D X ⎫⎛=+=+=+= ⎪⎝⎭同理可得: ()2E m m =, ()258D m =, ()3E m m =, ()212D m =123,,m m m ∴都是m 的无偏估计量,且在 123,,m m m 中, 3m 的方差最小习题6-21、(1)()11cccEX x c xdx cx dx θθθθθθθθ+∞+∞-+-=⋅==-⎰⎰EXEX cθ∴=-,令X EX =X X c θ∴=-为矩估计量,θ的矩估计值为 x x cθ=-,其中11n i i x x n ==∑似然函数为:()()11211,,,;nnn n n ii i i L x x x c xcx θθθθθθθ-+-====∏∏ ,i x c > 对数似然函数:()()()1ln ln ln 1ln nii L n n c x θθθθ==+-+∑求导,并令其为0,得:1ln ln ln 0ni i d L nn c x d θθ==+-=∑ 1ln ln Lnii nx n cθ=∴=-∑,即θ的最大似然估计量为 1ln ln Lnii nXn cθ==-∑(2)21111EX EX x x dx EX θθθθθ-⎫⎛=⋅=⇒= ⎪--⎝⎭⎰ 以X EX =,得: 21X X θ⎫⎛=⎪ -⎝⎭为θ的矩估计量θ的矩估计值为: 21x x θ⎫⎛=⎪ -⎝⎭,其中11ni i x x n ==∑ 而()1121211,,,;n nnn i i i i L x x x x x θθθθθ--==⎫⎛==⎪⎝⎭∏∏ ,01i x ≤≤()()1ln ln 1ln 2nii nL x θθθ=∴=+-∑令1ln 11ln 022ni i d L n x d θθθ==+⋅⋅=∑, 21ln L ni i n x θ=⎫⎛⎪ ⎪ ∴=⎪⎪⎝⎭∑ 所以θ的最大似然估计量 21ln L ni i n x θ=⎫⎛⎪ ⎪ =⎪ ⎪⎝⎭∑ (3)()~,X B m p ,EXEX mp p m∴=⇒=p ∴的矩估计量: 111n i i X p X X m mn m====∑p ∴的矩估计值为: 11n i i p x mn ==∑ 而()()()111211,,,;11nniii i ii i i nnx m x m x x x x n mm i i L x x x p Cpp C pp ==--==∑∑=-=⋅⋅-∏∏ ,0,1,,ix m = ()()()111ln ln ln ln 1i nnn x mi i i i i L p C x p m x p ====+⋅+-⋅-∑∑∑令() 111ln 111101n n n i i L ii i i d L x m x p x x dp p p mn m ====⋅--⋅=⇒==-∑∑∑ p ∴的最大似然估计量为: 1L p X m=2、(1)()01;2EX xf x dx xdx θθθθ+∞-∞===⎰⎰令11n i i EX X X n ===∑,22X X θθ∴=⇒=2X θ∴= (2)由观测的样本值得:6111(0.30.80.270.350.620.55)0.481766i i x x ===+++++≈∑20.9634x θ∴== 3、由1111122EX X θθθθθ+=⨯+⨯++⨯== 21X θ∴=-为θ的矩估计量 4、设p :抽得废品的概率;1p -:抽得正品的概率 引入{1, i i X i =第次抽到废品0,第次抽到正品,1,2,,60i =()1i P X p ∴==,()01i P X p ==-,且i EX p =所以对样本1260,,,X X X 的一个观测值1260,,,x x x由矩估计法得,p 的估计值为: 601141606015ii p x ====∑,即这批产品的废品率为1155、()()2212213132EX θθθθθ=⨯+⨯-+⨯-=-,()1412133x =⨯++=EX x = , 3526x θ-∴==为矩估计值 ()()()()()()()34511223312121i i i L P X x P X x P X x P X x θθθθθθ========⋅⋅-=-∏()()ln ln25ln ln 1L θθθ=++-令() ln 1155016Ld L d θθθθθ=⨯-=⇒=- 6、(1)λ的最大似然估计 LX λ=, ()0LX P X e e λ--∴=== (2)设X :一个扳道员在五年内引起的严重事故的次数()~X P λ∴,122n =得样本均值:5011(044142221394452) 1.123122122r r x r s ==⨯⋅=⨯⨯+⨯+⨯+⨯+⨯+⨯=∑()1.12300.3253x P X e e --∴====习题6-33、从总体中抽取容量为n 的样本12,,,n X X X 由中心极限定理:()~0,1,/X U N n nμσ-=→∞(1)当2σ已知时,近似得到μ的置信度为1α-的置信区间为:22,X u X u n n αασσ⎫⎛-⋅+⋅⎪ ⎝⎭ (2)当2σ未知时,用2σ的无偏点估计2s 代替2σ:~(0,1),/X N n s nμ-→∞于是得到μ的置信度为1α-的置信区间为:22,s s X u X u n n αα⎫⎛-⋅+⋅⎪ ⎝⎭一般要求30n ≥才能使用上述公式,称为大样本区间估计 4、40n = 属于大样本,2,X N n σμ⎫⎛∴⎪ ⎝⎭ 近似μ∴的95%的置信区间近似为:2x u n ασ⎫⎛±⋅⎪ ⎝⎭其中642x =,3σ=,40 6.32n =≈,21.96u α=()23642 1.966420.9340x u n ασ⎫⎛⎫⎛∴±⋅=±⨯≈±⎪ ⎪⎝⎭⎝⎭故μ的95%的置信区间上限为642.93,下限为641.075、100n =属于大样本,2~,X N n σμ⎛⎫∴ ⎪⎝⎭近似μ∴的99%的置信区间近似为:2x u n ασ⎫⎛±⋅⎪ ⎝⎭其中10x =,3σ=,100n =,22.58u α=()()2310 2.58100.7749.226,10.774100x u n ασ⎛⎫⎛⎫∴±⋅=±⨯=±= ⎪ ⎪⎝⎭⎝⎭由此可知最少要准备10.77410000107740()kg ⨯=这种商品,才能以0.99的概率满足要求。
智轩考研数学红宝书2010精华习题完全解答---概数第3章 二维随机变量及其分布
第三章 二维随机变量及其分布精华习题一、填空题1. 设123123~(0, 2), ~(1, 3), ~(0, 6), , , X N X N X N X X X 且相互独立,则 123(2328)P X X X £++£=_________。
2.3. 则4. 5. 67. 8. 则9. 10 1, 2X X ï>ïî12.设, X Y 相互独立,且都服从()0, 1U ,则U XY =,V X Y =-的概率密度()()U V f u f v =_______。
二、选择题1.设X ,Y 均服从分布101212555X p -æöç÷ç÷ç÷èø,已知{}01P X Y +==,则{}P X Y ==[ ] ()()()()43215555A B C D345.0=中t670, 0.Y y <î (A )11e -- (B )21e -- (C )1112e -- (D )212e -- [ ]8. 设X 与Y 相互独立,11~(), ~1344X P Y l -æöç÷ç÷èø,Z XY =,则{}{}22P Z P Z =-=-=()()()()2211112244A eB eC eD e l l l l l l l l ---- 三、解答题12 3 4.率P 561Z7 8.设()()24, 0, ~, , , , 0, x e y x XX Y f x y U X V X Y W Y other-ì<<==-=+=íî,求概率密度()()()(), , , , U V W F u F v F w F u w 。
智轩考研数学红宝书2010精华习题完全解答---概率论与数理统计第1章 随机事件与概率
第一章 随机事件与概率精华习题一、填空题1.已知()()0.4, 0.5P A P C ==,A B Ì,, A C 独立,则()|P A C AB C -+=______。
2.设A ,B 满足11(),(),(|)(|)1,23P A P B P A B P A B ==+=且则()P A B +=_________。
3.4数n 567 1 2((3((C )AD 与B D - (D )A C +与BD [ ] 4.设A ,B ,C 为任意三个事件,则下列事件中一定独立的是(A )()()()()A B A B A B A B ++++与AB (B )A -B 与C(C )AC 与C (D )AB 与B+C [ ]5.设事件A ,B ,C 满足P(AB)=P(A) P(B),0< P(B),P(C)<1,则有(A )P(AB|C)=P(A|C)P(B|C) (B)(|)(|)(|)P A B P A B P C C += (C )(|)(|)(|)P A B P A B P C C += (D )(|)(|)P A B P A B = [ ] 6.下列命题一定正确的是(A )若P(A)=0,则A 为不可能事件(((7((8(9((1. 2(13(1(24.设某人的眼镜第一次落地打破的概率为310,第二次落地打破的概率为410,第三次落地打破的概率为910,求眼镜次落地3次被打破的概率。
5.甲、乙两人轮流射击,先击中目标者为胜。
设甲、乙击中目标的概率分别为,a b 。
甲先射,求甲、乙分别为胜者的概率。
6.玻璃杯成箱出售,每箱20只,假设各箱含0,1,2只残次品的概率分别为:0.8,0.1和0.1。
一顾客欲购买一箱玻璃杯,在购买时,由售货员随意取一箱,而顾客开箱随机地察看4只:若无残次品,则买下该箱玻璃杯,否则退回,试求:(1)顾客买此箱玻璃杯的概率a;(2)在顾客买的此箱玻璃杯中,确实没有残次品的概率b。
智轩考研数学红宝书2010精华习题完全解答---概数第四章 随机变量的数字特征
第四章 随机变量的数字特征精华习题一、填空题1. 设二维随机变量()(), ~01; X Y U x y x <<<,32Z X =+,则DZ _____=。
2.3于456123 (C)D(XY)<D(X)D(Y) (D)()(E E X E YY =ç÷èø[ ] 4.设二维连续型随机变量(X,Y)服从222{(,)|}D x y x y a =+£上的均匀分布,则(A)X和Y不相关,不独立。
(B)X和Y相互独立。
(C)X和Y相关。
(D)X和Y均服从() , a a -上的均匀分布。
[ ]5.已知随机变量()~0, 1X N ,随机变量2Y X =,则X与Y(A)相关且不独立 (B )不相关且独立(C )不相关且不独立 (D )相关且独立 [ ]三、解答题1.设,X Y 是两个离散随机变量,可能的取值为1, 1X =-;1, 0, 1Y =-;0.2;EX = 0.25;EY ={P 23 4.52Y6第四章 随机变量的数字特征精华习题完全解答二、填空题1.设二维随机变量()(), ~01; X Y U x y x <<<,32Z X =+,则DZ _____=。
【解】设A =“每次检验调整设备”,Y =“10件产品中所发现的次品数”,则()~10, 0.1Y B ,()~4, X B p (){}{}{}()()()()()01019011010210110.10.90.10.90.2640.26 1.04; 140.260.740.75p P A P Y P Y P Y C C EX np DX np p ==³=-=-==--===´==-=´´=4.设随机变量X的分布函数0,1,0.2,10,()0.6,01,1, 1.x x F x x x <-ìï-£<ï=í£<ïï³î(||)____,E X =则 (||)_____.D X =5 61()()()()22222E E X E X D X m m m m m s s ìïí-=-+-=-+=éùïëûî2.设随机变量X和Y相互独立,均服从()0, 1U ,则服从相应区间或区域上均匀分布的是(A)2X (B)X+Y (C)X-Y (D)(X,Y) [ ]【解】选()D 。
智轩考研数学红宝书2010版--线性代数 (第三章 向量)
第三章 向 量2009考试内容 (本大纲为数学1,数学2-3和农学数学需要根据大纲作部分增删)向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量空间及其相关概念 n 维向量空间的基变换和坐标变换 过渡矩阵 向量的内积 线性无关向量组的正交规范化方法 规范正交基 正交矩阵及其性质 考试要求1. 理解n 维向量、向量的线性组合与线性表示的概念。
2. 理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法。
3. 理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩。
4. 理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系。
5. 了解n 维向量空间、子空间、基底、维数、坐标等概念。
6. 了解基变换和坐标变换公式,会求过渡矩阵。
7. 了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法。
8.了解规范正交基、正交矩阵的概念以及它们的性质。
一、 n 维向量与n 维空间一个n 维向量(存在n 个坐标分量)由一个n 行行矩阵或一个n 列列矩阵组成,在没有说明的情形下,向量指列矩阵,它具有矩阵的全部性质,n 个n 维向量(列矩阵)的集合,在线性无关情形下构成n 维向量组(即n 个同型向量组成的实体向量空间),切记两种维度的空间是独立的,单个向量的维数(列矩阵的行数)相当于某一抽象空间n R 的维度;无关向量组的个数(即向量组所含单个向量的个数)相当于一个实体空间m R 的维度,任意向量a 的表示是针对m R 空间。
向量组对应列分块形式的矩阵,即()12s A a a a =L 。
矩阵与向量存在内涵关系,矩阵的每行或每列就是一个向量,一个矩阵就相当于一个向量组,但是矩阵和其相应的向量组的等价性是不同的,因为两个矩阵的等价只要求秩相等,而两个向量组等价不仅要求秩相等,而且要求能相互线性表出。
Geitel第六章_数理统计的基础知识习题解答
1 n 2 1 2 2 E ( ) n ( 2 n( 2 2 ) 2 n 2 n 1 i 1 n n 1
1 (n 1) 2 2 n 1
习题 6-2 1. 设随机变量 X 和 Y 都服从标准正态分布,则( (A) (C) ).
1
因为
E ( X ) ,D( X ) 2
所以 E ( X i )
,D( X i ) 2 , ( i 1, 2, 3…,n )
E ( X i2 ) ( X i ) [ E ( X i )]2 2 2
所以
E( X ) E(
1 n 1 n 1 n X i ) E ( X i ) M , n i 1 n i 1 n i 1
2 X 12 X 10 服从 2 2 2( X 11 X 15 )
分布,参数为
.
解 X i ~ N (0,2 ) ,
2
2
Xi ~ N (0,1) 2
2
( i 1,2,……,15)
2 2
X X X X 2 2 所以 1 ...... 10 ~ (10) , 11 ...... 15 ~ (5) 2 2 2 2
2
(1)不是统计量,因为(3)中含有未知常数 . 解 (1) (2) (4)是统计量, 2. 随机地从某专业学生中,抽取 10 名学生的数学期末考试成绩如下:91,85,53,60, 78,90,82,67,78,80,求 10 名学生数学成绩的样本均值和样本方差的观察值. 解 X (91 85 53 60 78 90 82 67 78 80) / 10 76.4
考研数学(三)题库 概率论与数理统计(第六章 数理统计的基本概念)打印版【圣才出品】
钉子的长度 X 服从于正态分布 N(μ,σ2),在下列两种条件下分别求总体均值 μ 的置信度
为 0.90 的置信区间。
(1)已知 σ=0.01;
(2)未知 σ2。
_
解:依题意知,x=2.125, s s2 0.01713
U
(1)σ=0.01,1-α=0.9,α/2=0.05,n=16,
X
n
N 0,1 ,P{|U|
X2
1 n 1
n
i 1
D
Xi
E
Xi
2
n n 1
D
X
EX
2
n DX n 1 DX DX
n 1
n 1 n
(3)样本均值
x
1 10
10 i1
xi
1 433
10
4
2 1
65
4 8
4
样本方差
s2
1 10 1
10 i 1
xi
x
2
1 9
0
11
0
4
9
4
1
0 16
4
经验分布函数
0
1
10
2 10
圣才电子书 十万种考研考证电子书、题库视频学习平台
第六章 数理统计的基本概念
解答题
1.从总体 X~N(μ,σ2)中抽取一个样本容量为 16 的样本,μ 和 σ2 均未知,试求: (1)P{S2/σ2≤2.041}; (2)D(S2)。 解:(1)由正态总体统计量的分布性质知(n-1)S2/σ2~χ2(n-1)(n=16) 所以 P{S2/σ2≤2.041}=P{15S2/σ2≤15×2.041}=1-P{χ2(15)>30.615}=0.99 (2)由 χ2 的性质可知 D(χ2(n))=2n,所以 D((n-1)S2/σ2)=(n-1)2D(S2)/σ4=2(n-1) D(S2)=2σ4/(n-1)=2σ4/15
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 数理统计的基本概念精华习题
一、填空题
1. 设)2,0(,,,2
4321N X X X X 是来自正态总体的样本,则统计量
243221)43(
1)2(1Y X X
X X -+-=
服从______分布。
. 2.
3456则
71 2((C D
3.设1234, , , X X X X 是取自总体()~0, 4X N 的简单随机样本,()2
122X a X X =-+()2
3434b X X - ()2
~n c
,则
()()()()2 4 C 1 2 24A n B n n D n ====或或
【解】选()C 。
因为()2
~X n c ,故, a b 不可能同时为零,但可以其中一个或全不为零。
12(((3
第六章 数理统计的基本概念精华习题完全解答
一、填空题
1.设)2,0(,,,2
4321N X X X X 是来自正态总体的样本,则统计量
243221)43(
1)2(1Y X X X X -+-=
服从______分布。
. 2
3 45.设随机变量()~, X F n n ,则概率{}1P X <= __________。
【解】()(){}{}{}{}111~, ~, 111112X F n n F n n P X P Y P P X P X X X ìü
Þ
Þ<=<=<=>Þ<=íýîþ。
6. 设总体()2, 01
~0, X x x X f x other <<ì=íî
,12, X X 来自X 的简单随机样本,12U X =,21V X =+,
则12U P V ìü
£=í
ýîþ
_______。
【解】()12, ~X X ()1212124, 01, 01
, 0, x x x x f x x other <<<<ì=íî
2P <
7 1 2 (( A B C D
【解】选()C
()0, 1~~1N t n =
-。
(
((故32
(1 ()
112
22
22221
11
11211111i i n
n
i i i i n n ES E X X
E X nX n n n l
l l ====+æöæö=-=-=-=ç÷ç÷---èøèøåå2.设总体~(1, )X B p ,n X X X ,,,21L 为来自总体X 的简单随机样本, (1)求n X X X ,,,21L 的分布律;
(2)求
i n
i X å
=1
的分布律;
(3)求)(),(),(2
S E X D X E 。
【解】(1)求n X X X ,,,21L 的联合分布律为
{}()()1
1
11122, , , 1n
n
k
k k k x x
n n P X x X x X x p p ==-åå====-L 。
(
n
(3。