数学:12.1《平方根与立方根》(2)平方根教案(华东师大版八年级上)

合集下载

华东师大版八年级数学上册《平方根》教案

华东师大版八年级数学上册《平方根》教案

《平方根》教案教学目标一、教学知识点1、了解数的算术平方根的概念,会用根号表示一个数的算术平方根;2、了解求一个正数的算术平方根与平方是互逆的运算,会利用计算器求数的算术平方根;3、了解算术平方根的性质.二、能力训练要求1、加强概念形成过程的教学,提高学生的思维水平;2、鼓励学生进行探索和交流,培养他们的创新意识和合作精神.三、情感与价值观要求1、让学生积极参与教学活动,培养他们对数学的好奇心和求知欲;2、训练学生动脑、动口、动手能力.教学重点了解算术平方根的概念、性质,会用计算器求一个正数的算术平方根.教学难点了解算术平方根的概念、性质.教学过程一、新课导入本章导图中提出的问题:正方形的面积为25cm2,边长是多少?.二、讲授新课容易知道,上面正方形的边长是5cm.上述问题实质上就是要求一个数,这个数的平方等于25.概括:如果一个数的平方等于 a ,那么这个数叫做 a 的平方根.上述问题中,因为52=25,所以5是25的一个平方根.又因为(﹣5)2=25,所以﹣5也是25的一个平方根.下面我们来练习一下,算一算下面各边长是多少?[师]正数a 的正的平方根,叫做a 的算术平方根.记为“a ”读作“根号a ”.这就是算术平方根的定义. 另一个平方根是它的相反数,即“﹣a ”.特别地,规定0的算术平方根是0,即0=0.[师]下面我们根据算术平方根的定义求一些数的算术平方根.求下列各数的算术平方根: (1)900;(2)1;(3)6449. 解:(1)因为302=900,所以900的算术平方根是30,即900=30;(2)因为12=1,所以1的算术平方根是1,即1=1;(3)因为,6449)87(2=所以6449的算术平方根是87,即876449=. 通过上面的例题,大家思考一下,我们在求算术平方根时是借助于哪一种运算来求的? [生]是通过平方来求的.[师]对.由此我们可以看出一个正数的平方和求算术平方根是互为逆运算.而且我们在例题中的步骤采取语言叙述和符号表示互相补充的做法,目的是让大家明白算术平方根的概念,以及从计算中进一步体会一个正数的平方和求算术平方根是互为逆运算.在以后的步骤中可以简化.[思考]负数有平方根吗?同学间讨论,并举例说明.[师]负数没有平方根.三、课堂练习老师带领同学们共同完成书上空缺的例题,然后同学自主完成练习.[师]简单的数,我们可以直接口算出它的算术平方根,那大一些的数和小数该怎么算呢?“用计算器算”.老师参照书上例题,指导同学们用计算器计算算术平方根.四、课时小结本节课学习了算术平方根的概念,会求一个数的算术平方根,以及算术平方根的特例,还有用计算器计算算术平方根.。

平方根与立方根课件华东师大版数学八年级上册(1)

平方根与立方根课件华东师大版数学八年级上册(1)

平方根与立方根课件华东师大版数学八年级上册一、教学内容本节课选自华东师大版数学八年级上册,主要讲述平方根与立方根的相关概念和应用。

具体内容包括教材第二章第三节:平方根的定义与性质,立方根的定义与性质,以及它们在实际问题中的运用。

二、教学目标1. 让学生掌握平方根和立方根的定义,理解它们在数学中的重要性。

2. 培养学生运用平方根和立方根解决实际问题的能力。

3. 使学生掌握平方根和立方根的性质,并能运用性质简化计算。

三、教学难点与重点教学难点:平方根和立方根性质的运用。

教学重点:平方根和立方根的定义及计算方法。

四、教具与学具准备1. 教具:黑板、粉笔、平方根与立方根课件。

2. 学具:练习本、铅笔、橡皮。

五、教学过程1. 实践情景引入:以日常生活中常见的正方形和立方体为例,引导学生思考如何计算它们的边长。

2. 例题讲解:(1)求一个数的平方根和立方根;(2)运用平方根和立方根解决实际问题。

3. 随堂练习:让学生独立完成练习题,巩固所学知识。

4. 小组讨论:针对练习题中的问题,组织学生进行小组讨论,培养学生团队协作能力。

5. 知识拓展:介绍平方根和立方根在数学竞赛中的应用。

六、板书设计1. 平方根的定义:如果一个数的平方等于a,那么这个数叫做a的平方根,记作√a。

2. 立方根的定义:如果一个数的立方等于a,那么这个数叫做a的立方根,记作³√a。

3. 平方根和立方根的性质:(1)正数的平方根和立方根都是正数;(2)负数没有平方根和立方根;(3)0的平方根是0,0的立方根也是0。

七、作业设计1. 作业题目:(1)求下列数的平方根和立方根:2、9、1、0;(2)计算:√9 × ³√8;(3)运用平方根和立方根解决实际问题。

2. 答案:(1)√2、√9、无解、0;(2)12;(3)答案不唯一,合理即可。

八、课后反思及拓展延伸1. 反思:本节课学生对平方根和立方根的概念掌握情况较好,但在运用性质简化计算方面还需加强练习。

最新八年级数学初二上数学教案(华东师大版)全综述

最新八年级数学初二上数学教案(华东师大版)全综述

初中二年级(八年级)数学(上)华东师大版第十二章数的开方12.1平方根与立方根(1) 总第1课时【教学目标】:以实际问题的需要出发,引出平方根的概念,理解平方根的意义,会求某些数的平方根。

【教学重、难点】:重点:了解平方根的概念,求某些非负数的平方根。

难点:平方根的意义【教具应用】:老师:三角板、小黑板学生:【教学过程】:一、 提出问题,创设情境。

问题1、要剪出一块面积为25cm ²的正方形纸片,纸片的边长应是多少?问题2、已知圆的面积是16πcm ²,求圆的半径长。

要想解决这些问题,就来学习本节内容二、 自学提纲:1、你能解决上面两个问题吗?这两个问题的实质是什么?2、看第2页,知道什么是一个数的平方根吗?3、25的平方根只有5吗?为什么?4、会求100的平方根吗?试一试5、-4有平方根吗?为什么?6、想一想,你是用什么运算来检验或寻找一个数的平方根?7、根据平方根的定义你能指出正数、0、负数的平方根的特征吗?8、什么叫开平方?三、 能力、知识、提高同学们展示自学结果,老师点拔① 情境中的两个问题的实质是已知某数的平方,要求这个数。

② 概括:如果一个数的平方等于a ,那么这个数叫做a 的平方根。

如5²=25,(-5)²=25 ∴25的平方根有两个:5和-5③ 根据平方根的意义,可以利用平方来检验或寻找一个数的平方根。

④ 任何数的平方都不等于-4,所以-4没有平方根。

⑤ 0的平方等于0。

所以0只有一个平方根为0。

⑥ 概括:一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根。

⑦ 求一个数a (a ≥0)的平方根的运算,叫做开平方。

四、 知识应用1、求下列各数的平方根① 49 ②1.69 ③8116 ④(-0.2)² 2、将下列各数开平方①1 ②0.09 ③(-53)²五、测评1、说出下列各数的平方根4①81 ②0.25 ③1252、求未知数x的值①(3x)²=16 ②(2x -1)²=9六、小结:1、什么叫做平方根?2、一个正数的平方根有几个?零的平根有几个?负数的平方根呢?3、平方和开平方运算有什么区别和联系?区别:①平方运算中,已知的是底数和指数,求的是幂。

八年级数学上册12.1平方根与立方根立方根教案华东师大版

八年级数学上册12.1平方根与立方根立方根教案华东师大版

八年级上§ 12.1 平方根与立方根 立方根 教课设计三维教课目的 知识与技术:1、 认识立方根的观点,会用根号表示一个数的立方根。

2、 认识立方与开立方运算互为逆运算3、 能利用开立方运算求某些数的立方根。

4、 能用计算器求某些数的立方。

过程与方法:1、 创建学生熟习的问题情形,激发学生的求知欲。

2、 鼓舞学生踊跃思想,领会类比的数学方法。

感情态度与价值观:1、 培育学生踊跃思想,动口、着手能力。

2、 培育学生团结协作的团队精神。

教课要点:会用根号表示一个数的立方根,能经过立方运算求某些数的立方根。

教课难点:立方根与平方根性质的划分。

讲堂导入现有一个体积为 216 立方厘米的正方体纸盒,它的每一条棱长是多少? 教课过程 一、探究发现问题: 1、这个实质问题,是个如何的计算问题?2 、你能找一个数,使这个数的立方等于 216 吗?3 、假如,正方体的体积挨次为: 64, 125, 343,那么相应的正方体的棱长为多少?4、从这里能够抽象出一个什么数学观点?归纳:立方根的观点 假如一个数的立方等于 a ,那么这个数叫做a 的立方根。

二、试一试( 1) 27 的立方根是什么 ? ( 2) -27的立方根是什么 ?( 3) 0 的立方根是什么 ?请你自己也编三道求立方根的题目,并给出解答.思虑:经过计算你发现了什么?(和平方根的性质比较。

)归纳:立方根的性质和表示方法。

正数有一个正的立方根,负数有一个负的立方根, 0 的立方根是 0.为了计算方便,数 a 的立方根,记作 a ,读作“三次根号 a ”. a 称为被开方数。

三、举例应用例 4 求以下各数的立方根:(1) 8; ( 2) -125;(3) - 0.008 .27382解(1)由于( 2) ,因此 33273.33125 =- 5.(2) 由于(- 5) =- 125,因此专心 爱心专心-1-(3)由于0.2 30.008, 因此 3 0.0080.2例 5 用计算器求以下各数的立方根:( 1) 1331 ;( 2) - 343;(3) 9.263 解( 1) 在计算器上挨次键入SHIFT■( 3 ■ ),1331=显示结果为 11,因此 3 1331 = 11.( 2)、( 3)略四、讲堂练习1. 判断以下说法能否正确 , 并说明原因。

2021年八年级数学上册 .平方根与立方根 平方根课时教案 华东师大版

2021年八年级数学上册 .平方根与立方根 平方根课时教案 华东师大版

2019-2020年八年级数学上册 12.1平方根与立方根平方根课时1教案华东师大版三维教学目标知识与技能:1、了解平方根的概念、开平方的概念。

会用根号表示一个数的平方根。

2、了解平方运算与开平方运算是互为逆运算3、会用平方根的概念求某些非负数的平方根。

过程与方法:1、让学生经历概念形成过程,提高学生的思维水平。

2、培养学生的求同和求异思维,能从相似的事物中观察到他们的共同点和不同点。

情感态度与价值观:1、创设学生熟悉的问题情景,培养他们对数学的好奇心和求知欲。

2、在学生已有数学经验的基础上,探求新知,让学生获得成功的快乐。

3、提高学生“用数学”的意识。

教学重点:会用平方根的概念求某些非负数的平方根。

教学难点:对只有非负数才有平方根的理解。

课堂导入1、到目前为止我们已学过哪些运算?2、一个正方形边长为5厘米,它的面积为多少?是什么运算?它的教学过程一、创设问题情景学校要举行美术作品比赛,小明很高兴,她想裁出一块面积为25平方分米的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?如果画布的面积依次改为:9、16、36……那么相应的边长是多少?二、探索归纳(1) 平方根的概念若,则x叫做a的平方根。

(2) 举例:∵∴5是25的一个平方根问:25的平方根只有一个吗?还有哪些数的平方也等于25?(3)总结求一个数平方根的方法。

三、举例应用例1 求100的平方根.解因为10=100,(-10)=100,除了10和-10以外,任何数的平方都不等于100,所以100的平方根是10和-10,也可以说,100的平方根是±10.例2求36的平方根。

解:因为所以36的平方根为±6.四、试一试(1) 144的平方根是什么?(2) 0的平方根是什么?(3)的平方根是什么?(4)的 平方根是什么?(5)0、81的平方根是 什么?(6) -4有没有平方根?为什么?答案:(1)67361314522543 00)2(,12144±=±±=±=±±=±)、,()、(、 请你自己也编三道求平方根的题目,并给出解答。

华师大版八年级数学上册教案含教学反思

华师大版八年级数学上册教案含教学反思

11.1 平方根与立方根第1课时教学目标1.了解数的平方根的概念,会求某些非负数的平方根;2.会用根号表示一个数的平方根.教学重难点【教学重点】数的平方根的概念.【教学难点】求某些非负数的平方根.课前准备无教学过程一、复习引入1、我们已学过哪些数的运算?(加、减、乘、除、乘方5种)2、加法与减法这两种运算之间有什么关系?乘法与除法之间呢?(均为互逆运算)3、一个正方形的边长是5米,它的面积是多少?其运算是什么运算?(面积25平方米,运算是乘方运算)二、创设问题情境,解决问题1、请同学们欣赏本章导图,如果要剪出一块面积为25cm2的正方形纸片,纸片的边长应是多少?这个问题实质上就是要找一个数,这个数的平方等于25、2.提出问题,探索解决问题的办法、(1)平方根的概念;如果一个数的平方等于a,那么这个数叫做a的平方根、问:有了这个规定以后,a是什么数?让学生思考、交流后回答:a是非负数、(2)在上述问题中,因为52=25,所以5是25的一个平方根、问:25的平方根只有一个吗?还有没有别的数的平方也等于25?(因为(-5)2=52=25,所以-5也是25的一个平方根)从上述解决问题过程中,你能总结一下求一个数的平方根的方法吗?(根据平方根的意义,可以利用平方来检验或寻找一个数的平方根)三、范例例1、求100的平方根、提问:(1)你能仿照上述问题解决的方法,求出100的平方根吗?让学生讨论、交流后回答。

(2)你能正确书写解题过程吗?请一位同学口述,教师板书。

(3)l0和-l0用±10表示可以吗?试一试(1)144的平方根是什么?(2)0的平方根是什么?(3)425的平方根是什么? (4)0.81的平方根是什么?(5)-4有没有平方根?为什么?请你自己也编三道求平方根的题目,并给出解答、总结四、课堂练习说出下列各数的平方根:1、642、0.253、4981五、小结1、一个正数如果有平方根,那么有几个,它们之间关系如何?2、如果我们知道了两个平方根中的一个,那么是否可以得到它的另一个平方根?为什么?3、0的平方根有几个?是什么数?4、负数有平方根吗?为什么?六、作业习题12.1第1题、11.1 平方根与立方根第2课时教学目标1.了解数的算术平方根的概念,会用根号表示一个数的算术平方根;2.了解开方运算与乘方运算是逆运算,会利用这个互逆关系求某些非负数的算术平方根;3.会利用开方运算求某些非负数的平方根.教学重难点【教学重点】数的算术平方根的概念,用根号表示一个数的算术平方根.【教学难点】利用开方运算求某些非负数的平方根.课前准备无教学过程一、创设问题情境1、什么是平方根?求出36,1.44,81625各数的平方根、2、一个正数如果有平方根,那么有几个?它们之间的关系如何?3、负数有平方根吗?为什么?二、算术平方根的概念及其应用1、算术平方根概念。

12.1 平方根与立方根(第1课时 平方根)

12.1 平方根与立方根(第1课时 平方根)

1.本节课引入了新的运算------开方运算, 1.本节课引入了新的运算------开方运算,开 本节课引入了新的运算------开方运算 方和乘方互为逆运算 互为逆运算, 方和乘方互为逆运算,从而完备了初等代数中 六种基本代数运算(加、减、乘、除、乘方、 六种基本代数运算( 乘方、 开方),这对代数内容学习有着重要的意义。 ),这对代数内容学习有着重要的意义 开方),这对代数内容学习有着重要的意义。 2. 本节主要学习了:①平方根的概念; ②平方 本节主要学习了: 平方根的概念; 根的性质:一个正数有两个平方根, 根的性质:一个正数有两个平方根,它们互为 相反数, 的平方根是0 负数没有平方根; 相反数,0的平方根是0,负数没有平方根;③ 平方根的表示方法; 平方根的表示方法;④求一个数的平方根的运 开平方, 算—开平方,应分清平方运算与开平方运算的 开平方 区别与联系。 区别与联系。
如果一个数的平方等于 a ,这 个数叫a的平方根 的平方根。 个数叫 的平方根。 的平方根。 若 x2 = a,则 x 叫做 a 的平方根。 则
4 说出9, 25 ,16 ,
1 4
, 0.49的平方根。
0的平方根是什么?有几个? ﹣4有没有平方根?为什么?
平方根的性质:
①一个正数有两个平方根,这 一个正数有两个平方根, 两个平方根互为相反数; 两个平方根互为相反数; 只有一个平方根,它就是0 ②0只有一个平方根,它就是0 本身; 本身; 负数没有平方根。 ③负数没有平方根。
(1)5
2 2
(2)(−5)
2 2
(4)(±4)
(5)(±0.3)
归纳: 一个数的平方的值和它的相反数的平方值相等. 归纳: 一个数的平方的值和它的相反数的平方值相等. 2.求出下列各括号中的数 求出下列各括号中的数. 求出下列各括号中的数 49 2 2 (1)(_____) = (2)(_____) 64 2 15 2 (4)(_____) (3)(_____) = 1 49 2 2 2 (6)(_____) (5)(_____) = 35

平方根与立方根课件华东师大版数学八年级上册

平方根与立方根课件华东师大版数学八年级上册

平方根与立方根课件华东师大版数学八年级上册一、教学内容本节课我们学习《平方根与立方根》,该内容属于华东师大版数学八年级上册第二章第三节。

详细内容包括:1. 平方根的定义、性质和计算方法;2. 立方根的定义、性质和计算方法;3. 平方根与立方根的应用。

二、教学目标1. 理解平方根和立方根的概念,掌握它们的性质和计算方法;2. 能够运用平方根和立方根解决实际问题;3. 培养学生的逻辑思维能力和解决问题的能力。

三、教学难点与重点教学难点:平方根与立方根的性质和计算方法。

教学重点:理解并掌握平方根与立方根的概念及其应用。

四、教具与学具准备1. 教具:平方根与立方根课件、黑板、粉笔;2. 学具:练习本、计算器。

五、教学过程1. 实践情景引入:通过实际生活中的例子,引导学生了解平方根与立方根的概念,如面积、体积计算等;2. 例题讲解:(1)平方根的例题:求32的平方根;(2)立方根的例题:求8的立方根;3. 随堂练习:(1)求下列数的平方根:25,49,9;(2)求下列数的立方根:8,27,64;6. 巩固练习:布置一些具有代表性的题目,让学生独立完成。

六、板书设计1. 平方根:定义:如果一个数的平方等于a,那么这个数就叫做a的平方根;性质:一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根;计算方法:求一个数的平方根,可以通过直接开平方或者使用计算器求解。

2. 立方根:定义:如果一个数的立方等于a,那么这个数就叫做a的立方根;性质:一个数的立方根与原数的符号相同;计算方法:求一个数的立方根,可以通过直接开立方或者使用计算器求解。

七、作业设计1. 作业题目:(1)求下列数的平方根:81,100,121;(2)求下列数的立方根:64,125,216;2. 答案:(1)9,10,11;(2)4,5,6。

八、课后反思及拓展延伸1. 反思:本节课学生对平方根与立方根的概念和性质掌握情况较好,但在计算方法方面还需要加强练习;2. 拓展延伸:让学生课后了解平方根与立方根在生活中的应用,如建筑、工程设计等领域,提高学生学以致用的能力。

华师大版-数学-八年级上册-华师八年级上12.1.3 平方根与立方根教案

华师大版-数学-八年级上册-华师八年级上12.1.3 平方根与立方根教案

12.1.3 平方根与立方根教学目标知识与技能:1.使学生了解一个数的立方根概念,并会用根号表示一个数的立方根;2.能用类比平方根的方法学习立方根,及开立方运算,并能区分立方根与平方根的异同.3.能用有理数估计一个开方开不尽数的大致范围,使学生形成估算的意识,培养学生的估算能力;4.经历运用计算器探究数学规律的过程,发展合情推理能力.过程与方法:用类比的方法探寻出立方根的运算及表示方法,并能自我总结出平方根与立方根的异同.情感、态度与价值观:1.体验知识的形成过程及类比的数学思想在学习中的应用.2.发展学生的求同存异思维,使他们能在复杂的环境中明辨是非,并做出正确的处理.3.鼓励学生大胆质疑,发展合情推理能力.学情分析教学重点、难点重点:立方根的概念及求法.难点:立方根与平方根的区别.教法与学法导航教学方法:问题探究学习方法:自主学习——合作交流——探究提高教学准备教师的准备:课件、投影学生的准备:圆球、正方体、计算器教学过程一、创设问题情境,引入新课教师节即将来临,刘老师收到了所任教的两个班的数学课代表送来的小礼品,他打开纸盒一看,发现里面装的是两个不同形状的水晶一样的透明饰物,其形状为一个是圆球形,cm.同学们,你能求出圆球形饰物的半径和正另一个是正方体.经过测算,其体积为2163方体饰物的边长吗( 取3)?要求出这两个量,就需要我们来学习开方中的另一种运算:开立方运算.二、师生共同参与教学活动 (一)提出问题,引发讨论在学习平方根的运算时,首先是找出一些数的平方值,然后才根据其逆运算过程确定某数的平方根,同样,我们先来算一算一些数的立方.32= ;()32-= ;30.5= ;()30.5-= ;33= ;()33-= ;30= .(1)经计算发现正数、0、负数的立方值与平方值有何不同之处?32=8; ()32-=-8; 30.5=0.125; ()30.5-=-0.125;33=27; ()33-=-27; 30=0.我们发现,求立方运算时,当底数互为相反数时,其立方值也是一对互为相反数,这与平方运算不同,平方运算的底数为相反数,但其平方值相等,故一个正数的平方根有两个值,但一个正数的立方根却只有一个值.类似平方根定义可知,若3x a =,则x 为a ,读作三次根号a .自主探究1:负数没有平方根,负数有无立方根呢?从()32-=-8,()30.5-=-0.125,()33-=-27,可知负数有立方根,并且其立方根仍为负数.(2)开平方与平方运算互为逆运算,同样开立方与立方运算也互逆,故请根据上述等式,写出这些互为相反数的立方根.8的立方根为2,-8的立方根为-22, 20.125的立方根为0.5,-0.125的立方根为-0.50.5-0.527的立方根为3,-27的立方根为-3=3=-30的立方根为0=0上述过程都是求一个数的立方根的运算,把求一个数的立方根的运算,叫做开立方,开立方与立方运算互为逆运算. (二)导入知识,解释疑难 1.例题讲解既然正数的立方是正数,负数的立方是负数,那么正数的立方根为正数,负数的立方根为负数,同样0的立方是0,则0的立方根是0a (a 为任意数),或者若3a =M =a ,其中M 为被开方数,3为根指数,且根指数为3时,不能省略,只有当根指数为2时,才能省略不写.自主探究2:(1=-2,2,由此得出 ;=-3,=-3,由此得出 .= .(2)对比分析:当a ≥0,?提示:a ≥0表示a 的算术平方根,表示a 的负平方根,表示a 的平方根.例1:求下列各数的立方根: ①827; ②-125; ③-0.008;解:①∵328327⎛⎫= ⎪⎝⎭23=;②∵()35125-=-, 5=-=34;③∵()30.20.008-=-0.2=-.随堂小练习:(1)课本第7页练习第1题.(2)解决引例中的“求正方体棱长”的问题.解:因正方体的体积为2163cm =6(cm ).例2、利用计算器来求一个数的立方根,讲解课本第6页的例5. (学生利用计算器的说明书独立学习.对于一些暂时还没有学会的学生,可以采用同学之间互帮互学的方式解决.)随堂小练习:(1)、求下列各数的立方根(结果保留三个有效数字)① -5 ② 81解析:① 对-5这个数,可先作如下尝试:13=1,23=8,53=3.375,1.73=4.193.发现4.193最接近5,•得借助计算器求值,1.71,-1.71是一个近似数.② 8181-6=75; 4.22;(2)、比较-4、-5解析:∵43=64,53=125,64<100<125,∴45,故-45(3)、解决引例中的“求圆球形饰物半径”问题.简单回忆:体积为2163cm 的圆球形饰物的半径大约是多少厘米?(结果保留两个有效数字)解析:根据球的体积公式可列得方程:343r π=216,解得r ≈3.8(cm ).2.探究活动自主探究3:①若正方体的棱长为1,则其体积为1;若正方体的棱长为2,则其体积为8;若正方体的棱长为4,则其体积为64;若其棱长为8,则其体积为512……当棱长为2n 时,其体积为多少?②某正方体的体积为1时,其棱长为1;体积为2;体积为3时,棱长n 倍,则棱长扩大多少倍?解:①正方体棱长为1,则体积为1,棱长为2,体积为8,比较两者棱长扩大了2倍,体积扩大了8倍,…,故当棱长为2n 时,体积为83n .②当体积扩大到原来的n 倍.三、课堂总结这节课学习了立方根的概念,立方根的表示方法以及如何求一个数的立方根.请思考下面的问题:1.什么叫一个数的立方根?怎样用符号表示数a 的立方根?a 的取值范围是什么?2.数的立方根与数的平方根有什么区别?答:1.如果一个数的立方等于a ,这个数就叫做a a 为任意数.2.正数只有一个正的立方根,但有两个互为相反数的平方根;负数有一个负的立方根,但没有平方根.3、怎样用计算器求一个数的立方根?答:用计算器求任意数的立方根时,也可先求出该数的绝对值的立方根,再根据任意数的正负性决定其值的正负性,要注意区分平方根与立方根的异同.课堂作业 1.判断题:(1)4的平方根是2; ( ) (2)8的立方根是2; ( )(3)-0.064的立方根是-0.4; ( ) (4)2197的立方根是±13 ( )(5)-161的平方根是±4; ( )(6)-12是144的平方根. ( )(1)数0.000125的立方根是( ).A. 0.5B. ±0.5C. 0.05D. 0.005 (2)下列判断中错误的是( )A.一个数的立方根与这个数的乘积为非负数B.一个数的两个平方根之积负数C.一个数的立方根未必小于这个数D.零的平方根等于零的立方根 3.4.; ④35. 已知()375133-=-x ,求x .6. 求下列各数的立方根(可以用计算器或立方根表,结果保留4个有效数字).3 (1)1594.5 (2)0.001237 (3)1935- 7. 用计算器计算3100(结果保留3个有效数字).并利用你发现的规律说出30001.0,31.0,3100000的近似值.8. 如果要生产这种容积为50L 的圆柱形热水器,使它的高等于底面直径的2倍,这种容器的底面直径应取多少?(π取3.14,结果保留三个有效数字) 9、教科书第7页习题第2题,12.1第3题第(2)小题,第5题. 答案:1.(2)、(3)、(6)正确,其余错误.2. C 、B3.4.解:=-2; 0.4;=-35; ④3=a .6、(1)11.68;(2)0.1073;(3)-1.7287、3100≈4.64,30001.0≈0.0464,31.0≈0.464,3100000≈46.4 8、解:设这种圆柱形热水器的底面直径为xdm ,则其半径为dm x2,高为2xdm ,由题意,得:502214.32=⨯⎪⎭⎫⎝⎛⨯x x ,5057.13=x ,解得:17.3≈x .答:这种容器的底面直径约为3.17dm . 教学反思学生在学习过程中,能顺利接受立方根的概念,这与前面平方根概念的学习分不开,利用类比的方法进行教学往往事半功倍.但在混合练习中仍有把平方根、立方根及算术平方根弄混的情况,要继续加强对比,抓住区别和联系. 教后反思:。

华师大版-数学-八年级上册--精品-八年级上12.1平方根与立方根 平方根教案

华师大版-数学-八年级上册--精品-八年级上12.1平方根与立方根 平方根教案

《八年级上第12章第一节 平方根与立方根》教案§12.1.1 平方根【教学课型】:新课◆ 课程目标导航:【教学目标】:1 平方根、算术平方根、开平方的意义;2 学会表示平方根;3 会求一个非负数的平方根、算术平方根。

【教学重点】:平方根,算术平方根的意义。

【教学难点】:平方根,算术平方根的意义的理解。

【教学工具】:投影仪、自制胶片、课堂练习卷◆ 教学情景导入问题1 同学们,老师需要一个面积为25cm 2的正方形纸片,你们能帮助老师吗?这个问题实质上就是要找一个数,这个数的平方等于25.2 已知:9)3(,9322-=-=,则9(____)2=若:92=a ,则.____=a ◆教学过程设计1、探究归纳探究问题1解 设正方形纸片的边长为x cm ,依题意有:x 2=25,求出满足x 2=25的x 值,就可得正方形纸片的边长.因52=25,(-5)2=25,故满足x 2=25的x 的值可以是5,也可以是-5,但正方形边长只能取正值.所以x =5.答 正方形纸片的边长为5cm .归纳如果一个数的平方等于a ,那么这个数叫做a 的平方根(square root ).在上述问题中,因为52=25,所以5是25的一个平方根.又因为(-5)2=52=25,所以-5也是25的一个平方根.这就是说,5与-5都是25的平方根.根据平方根的意义,我们可以利用平方来检验或寻找一个数的平方根.2、实践应用练习:1 144的平方根是什么?结论:正数的平方根有______个。

注:⎩⎨⎧根的相反数负的平方根是算术平方方根正的平方根叫算术的平2 0的平方根是______。

3 -4有没有平方根?结论:负数____平方根概 括一个正数如果有平方根数的范围从有理数扩充到实数以后(本章第2节),每一个正实数必定有两个平方根.,那么必定有两个,它们互为相反数.显然,如果我们知道了这两个平方根中的一个,那么立即可以得到它的另一个平方根.正数a 的正的平方根,叫做a 的算术平方根,记作a ,读作“根号a ”;另一个平方根是它的相反数,即-a .因此正数a 的平方根可以记作±a .a 称为被开方数.因为0的平方等于0,而其他任何数的平方都不等于0,所以0的平方根只有一个,就是0.通常也记作0=0.思 考负数有平方根吗?求一个非负数的平方根的运算,叫做开平方.将一个正数开平方,关键是找出它的一个算术平方根. 在例1中,100的算术平方根是100=10,100的平方根是±100=±10.例2将下列各数开平方:(1)49; (2)1.69解(1) 因为72=49,所以49=7,因此49的平方根为±7;(2)在例1、例2中,我们是通过观察,利用开方与平方的关系来开平方的.如果被开方数比较复杂,我们常用计算器直接得出一个正数的算术平方根(有时得到的是近似值).例3用计算器求下列各数的算术平方根:(1) 529;(2) 1225;(3) 4481.分析 用计算器求一个非负数的算术平方根,只需直接按书写顺序按键即可.解(1) 在计算器上依次键入 ■ 5 2 9 =,显示结果为23,所以529的算术平方根为529=23.(2) 在计算器上依次键入■ 1 2 2 5 =,显示结果为 ,所以1225的算术平方根为1225=.(3) 在计算器上依次键入■ 4 4 · 8 1 =,显示结果为 ,如果要求精确到0.01,那么81.44≈.练习:1 平方根等于本身的数有_____;算术平方根等于本身的数有______。

华师大版-数学-八年级上册--精品-12.1平方根与立方根教案

华师大版-数学-八年级上册--精品-12.1平方根与立方根教案

华师大版-数学-八年级上册--精品-12.1平方根与立方根教案12.1 平方根与立方根【教学目标】一、知识目标1.了解开平方、平方根、算术平方根和立方根的意义,了解平方根、算术平方根和立方根的表示方法.2.理解开平方与平方运算、开立方与立方运算是互为逆运算.3.会用平方、立方运算求已知数的平方根、立方根,会利用平方、立方运算验证一个数的平方根、立方棍、4.了解平方根、算术平方根和立方根的性质.5.会用什算器求一个非负数的算术平方根及任意一个数的立方根.二、能力目标经历探索开方运算与乘方运算是互为逆运算的过程,学会利用转化的思想方法解决新问题;经历运用数学符号描述开方运算的过程,建立初步数学符号感,发展抽象思维能力三、情感态度目标通过创设问题情境,让学生体会到数学来源于社会生活实际,并为社会实践服务,认识到客观世界是一个对立的统一体.【重点难点】重点:求已知数的平方根难点:平方根与算术平方根的联系和区别。

疑点:利用平方运算解决简单问题。

【教学设想】教学思路:情境质疑-数学建模-解释应用-巩固提高。

【媒体平台】教具学具准备:多媒体,投影仪,计算器等。

【课时安排】3课时第1课时点与线段【本课目标】1、了解开平方、平方根和算术平方根的意义及其表示方法.2、理解平方运算与开平方运算是互逆运算的关系.3、会用平方运算求非负数的平方根与算术平方根,。

【教学过程】1、情境导入:教师利用多媒体播放幻灯片1(如图16-1-1所示).问题:要剪出一块面积为25c扩的正方形纸片,纸片的边长应是多少?你能用方程表示这个问题吗?试试看.如果正方形的面积是21c扩,那么它的边长又是多少呢?2.课前热身根据上述提出的间题,请同学们作如下讨论:(1)这种运算(2x=25)是已知什么?求什么?(2)这种运算与平方运算之间存在怎样的关系?3、合作探究(1)整体感知数学来源于社会生活,并为社会生活服务,为了解决课本开始提出的问题,这节课我们开始学习一种新的运算---开平方运算。

华东师大版八年级数学上册全册教案

华东师大版八年级数学上册全册教案

华东师大版八年级数学上册教案第12章数的开方12.1平方根与立方根(1)知识技能目标1.从实际问题的需要出发,引进平方根概念,体现从实际到理论、具体到抽象这样一个一般的认识过程,培养学生辩证唯物主义观点;2.从求二次幂的平方运算引出求平方根的运算,突出平方运算和开平方运算的互逆性;3.扣住定义去思考问题,重视解题技巧;4.以旧引新,以新带旧,从旧知识引进新知识,讲新知识时尽可能复习一些旧知识.教学重点与难点通过实际问题的研究,认识平方根;正确区分平方根与算术平方根的关系;会用计算器求任意正数的算术平方根。

教学过程一、创设情境问题1 要剪出一块面积为25 cm2的正方形纸片,纸片的边长应是多少?问题2 已知圆的面积是16πcm2,求圆的半径长.(学生探索,回答问题)二、探究归纳问题1解设正方形纸片的边长为x cm,依题意有:x2=25,求出满足x2=25的x值,就可得正方形纸片的边长.因52=25,(-5)2=25,故满足x2=25的x的值可以是5,也可以是-5,但正方形边长只能取正值.所以x=5.答正方形纸片的边长为5cm.这个问题实质上就是要找一个数,这个数的平方等于25.问题2解设圆的半径为R cm,依题意有:πR2=16π,即R2=16,求出满足R2=16的R的值即可求出圆的半径.因42=16,(-4)2=16,故满足R2=16的R的值为4或-4,但圆的半径只能取正值.所以数R=4.答圆的半径为4cm.这个问题实质上就是要找一个数,这个数的平方等于16.刚才具体的二个例子,从数学意义上都是要解决这样一个共同的问题:已知某数的平方,要求这个数.用式子来表示就是如果x 2=a ,求x 的值.概括 如果一个数的平方等于a ,那么这个数叫做a 的平方根(square root )(也叫a 的二次方根).三、实践应用例1 求100的平方根.解 因为102=100,(-10)2=100,除了10和-10以外,任何数的平方都不等于100,所以100的平方根是10和-10,也可以说,100的平方根是±10.学生试一试:(1) 144的平方根是什么?(2) 0的平方根是什么? (3)254的平方根是什么?(4)-4有没有平方根?为什么? 请学生也编三道求平方根的题目,并给出解答.与同学交流,你发现了什么?1.平方根的性质:问(1) 正数的平方根是什么?.问(2) 0的平方根是什么?问(3) 负数有平方根吗?为什么?请同学概括数的平方根的性质.2.一个非负数a 的平方根的表示法.3.开平方.求一个数a (a ≥0)的平方根的运算,叫做开平方.例2 将下列各数开平方:(1)49, (2)1.69.分析 开方运算就是求平方根,我们可以通过平方运算来解决.例3 下列各数有平方根吗?如果有,求出它的平方根;如果没有,请说明理由.(1)-64;(2)0;(3)(-4)2.四、作业 P4 112.1平方根与立方根(2)知识技能目标1.引导学生建立清晰的概念系统,在学生正确理解平方根的概念的意义和平方根的表示方法基础上,专门讨论算术平方根的概念及其表示方法;2.对于a 表示的算术平方根中的a 的条件和a 的本身的意义作合理性的说明,例如:面积为a (a >0)的正方形的边长为a ,从而直观形象地说明算术平方根约定的合理性;3.针对性的、有梯度的、形式多样的课堂练习题,让学生在练习中巩固和加深知识的理解和掌握,促使学生尽快地把新知识纳入到自己原有的认知结构中.教学重点与难点1.理解算术平方根的概念,掌握它的求法及表示方法;2.体会到平方根和算术平方根这两个概念的联系和区别,进一步熟练地进行平方根与算术平方根的运算;3.用计算器求一个非负数的算术平方根.教学过程一、创设情境1.在(-5)2、-52、52中,哪个有平方根?平方根是多少?哪个没有平方根?为什么?2.0.49的平方根记作____=____;3.的正的平方根记作36131 = ; 4.说出平方根的概念和性质.二、探究归纳1.算术平方根:9的平方根是 ,9的正的平方根是 ,39=表示的意义是什么?正数a 的正的平方根叫做a 的算术平方根.记作a ,读作“a 的算术平方根”.这里应强调两点:(1)这里的a 不仅表示开平方运算,而且表示正值的根.(2)这里a 中有两个“正”字,即被开方数必须为正,算术平方根也是正的.0的平方根也叫做0的算术平方根,因此0的算术平方根是0.即00=.从以上可知,当a 是正数或是0时,a 表示a 的算术平方根.例1 求100的算术平方根.解 因为102=100,所以100的算术平方根是10.即10100=.例2 求下列各数的平方根和算术平方根:(1) 36 ; (2) 2.89 ; (3) 971. 3497134916971)3(=±=±=±所以,因为. 例3 求下列各式的值:.;; ; ;9005136.0314120)5(432425)4(362324)3(25214)2(625)1(2222--+⋅--±-2.用计算器求一个非负数的算术平方根.例4 用计算器求下列各数的算术平方根:(1) 529; (2) 1225; (3) 44.81.三、实践应用1.下列各式中哪些有意义?哪些无意义?2.求下列各数的平方根和算术平方根:.;;;;;;0169144256101.040025.01213.求下列各式的值,并说明它们各表示的意义:4.用计算器计算:(1)676;(2)8784.27;(3)225.4(精确到0.01).四、作业 P4 3 P7 412.1平方根与立方根(3)知识技能目标1.在学习了平方根的概念的基础上学习立方根的概念,重点放在讨论立方的概念,立方根的个数的唯一性及立方根的求法;2.在学生对数的立方根的概念及个数的唯一性有了一定的理解的基础上,提出数的立方根与数平方根的区别;3.渗透特殊──一般──特殊的思想方法.通过特例研究等式)0(33>-=-aaa,运用归纳的思想方法,让学生理解“一个负数的立方根是它的绝对值的立方根的相反数”,运用这一关系式求一个负数的立方根.教学重点与难点1.掌握立方根的概念,掌握由立方运算,求一个数的立方根的方法;2.明确立方根个数的性质,分清一个数的立方根与平方根的区别;3.会用计算器求数的立方根.教学过程一、创设情境计算下列各题:. , , ,,33333)4.0(4.00)2(2--强调指出 上述各题都是已知一个数,求这个数的立方,即a 3=x .其中,已知数a 叫底数,它可为正数,也可为负数,也可是零;x 叫做a 的三次幂,同样可为正数,可为负数,也可是零.这种运算是乘方运算,是已知底数、指数,求幂的运算.问题 现有一只体积为216 cm 3的正方体纸盒,它的每一条棱长是多少?解 设正方体纸盒的棱长为x cm ,则 2163=x ,因为63=216,所以x =6.答 正方体的棱长应为6 cm .二、探究归纳问 这个实际问题,在数学上提出怎样的一个计算问题?从这里可以抽象出一个什么数学概念? 答 已知乘方指数和3次幂,求底数,也就是“已知某数的立方,求某数”.即x 3=a ,a 是已知数,求x .1.立方根的概念:如果一个数的立方等于a ,那么这个数就叫做a 的立方根(也叫做三次方根).试一试(1)27的立方根是什么?(2)-27的立方根是什么?(3)0的立方根是什么?请学生也编三道求立方根的题目,并给出解答.2.立方根的表示方法:3.开立方:求一个数的立方根的运算,叫做开立方.开立方与立方也是互为逆运算,因此求一个数的立方根可以通过立方运算来求.三、实践应用例1 求下列各数的立方根:(1)278; (2)-125; (3)-0.008; (4)0. 根据上述练习提问:(1)一个正数有几个立方根?是否任何负数都有立方根?如都有,一个负数有几个立方根?0的立方根是什么?启发学生得出立方根的性质,并通过下表与平方根的有关性质进行比较.(2)一个数的平方根和一个数的立方根,有什么相同点和不同点?例2 用计算器求下列各数的立方根:(1)1331; (2)-343; (3)9.263.分析用计算器求一个有理数的立方根,只需要直接按书写顺序按键.若被开方数为负数,“-”号的输入可以按,也可以按.四、作业 P7 1.2.512.2实数与数轴(1)知识技能目标1.了解实数的意义,能对实数进行分类;2.了解数轴上的点与实数一一对应,能用数轴上的点来表示无理数;3.会比较两个实数的大小.教学重点与难点1.通过探索,使学生从数和形两方面体会到无理数可以在数轴上找到一个对应点,从而认识到实数和数轴上的点一一对应;2.通过计算器辅助,能比较两个无理数的大小.教学过程一、创设情境1.做一做:(1)用计算器求2;(2)利用平方关系验算所得结果.这里,我们用计算器求得2=1.414213562,再用计算器计算 1.414213562的平方,结果是1.999999999,并不是2,只是接近2.这就是说,我们求得的2的值,只是一个近似值.2.如果用计算机计算2,结果如何呢?阅读课本第15页的计算结果,在数学上已经证明,没有一个有理数的平方等于2,也就是说,2不是有理数.那么,2是怎样的数呢?二、探究归纳1.回顾有理数的概念.(1)有理数包括整数和分数;(2)任何一个分数写成小数形式,必定是有限小数或者无限循环小数.2.无理数的概念.与有理数比较, 2计算结果是无限不循环小数,所以2不是有理数.类似地,35、圆周率π等也都不是有理数,它们都是无限不循环小数.无限不循环小数叫做无理数有理数和无理数统称为实数三、实践应用1.试一试:你能在数轴上找到表示2的点吗?如图,将两个边长为1的正方形分别沿它的对角线剪开,得到四个等腰直角三角形,即可拼成一个大正方形.容易知道,这个大正方形的面积是2,所以大正方形的边长为2.这就是说,边长为1的正方形的对角线长是2,利用这个事实,我们容易在数轴上画出表示2的点,如图所示:例1试估计3+2与π的大小关系.提问:若将本题改为“试估计-(3+2)与-π的大小关系”,如何解答?例2 如果将所有的有理数都标到数轴上,那么数轴被填满了吗?如果再将所有的无理数都标到数轴上,那么数轴被填满了吗?四、作业 P11 1.2.312.2实数与数轴(2)知识技能目标1.了解有理数的相反数和绝对值等概念、运算法则和运算律在实数范围内仍然适用;2.能利用运算法则进行简单运算.教学重点与难点有理数中的相反数、倒数和绝对值等概念与运算法则和运算律在实数范围内仍成立,让学生体会到这是一种知识的迁移.教学过程一、创设情境1.复习提问:(1)用字母来表示有理数的乘法交换律、乘法结合律、乘法分配律.(2)用字母表示有理数的加法交换律和结合律.(3)平方差公式?完全平方公式?(4)有理数的相反数是什么?不为0的数的倒数是什么?有理数的绝对值等于什么?二、探究归纳在实数范围内,有关有理数的相反数、倒数和绝对值等概念、大小比较、运算法则及运算律仍然适用. 三、实践应用 例1 计算:23322--π(结果精确到0.01).解 用计算器求得2332-≈-0.778539072,于是2332-≈0.778539072,所以23322--π≈1.570796327-0.778539072=0.792257255四作业1.借助计算器计算下列各题:(1)211-; (2)22111 1-;(3)222111 111-; (4)222 2111 111 11- . 仔细观察上面几道题及其计算结果,你能发现什么规律?你能解释这一规律吗?与同学交流一下想法.并用所发现的规律直接写出下面的结果:13.1.1同底数幂的乘法教学目标:知识与技能目标:1、巩固同底数幂的乘法法则,学生能灵活地运用法则进行计算;2、了解同底数幂乘法运算性质,并能解决一些实际问题;3、能根据同底数幂的乘法性质进行运算(指数指数字)过程与分析目标:1、经历探索同底数幂的乘法运算的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力;2、在了解同底数幂的乘法运算的意义的基础上,“发现” 同底数幂的乘法性质,培养学生观察、概括和抽象的能力;3、能用字母式子和文字语言表达这一性质,知道它适用于三个和三个以上的同底数幂相乘。

八年级数学 12章平方根与立方根学案 华东师大版

八年级数学 12章平方根与立方根学案 华东师大版

学习任务:1、了解立方根的概念及性质,会用根号表示一个数的立方根。

2、能用开立方运算求数的立方根,了解开立方与立方互为逆运算。

3、会用计算器求一个数的立方根。

重点、.难点:理解立方根的意义学习过程:任务1问题:现有一只体积为3216cm的正方形纸盒,它的棱长是?这个问题在数学上可以提出怎样的一个计算问题?对比平方根的概念,概括什么是立方根?立方根:。

试一试(1)27的立方根是什么?(2)-27的立方根是什么?(3)0的立方根是什么?概括通过上面求立方根的运算,回答下列问题:1.⑴一个正数有个立方根,是数.⑵负数有个立方根,是数.⑶0的立方根是 .(4)任何数的立方根个.2.如何来表示一个数的立方根?试互相举例说明,并指明被开方数及根指数?任务2 (自主探究)开立方:这种运算与是互逆运算.与同伴交流立方根与平方根的区别?(小组合作)例题解析例4见课本P6.例1求下式中的x. 343x3+27=0;例2:若3x+16的立方根是4,求2x+4的平方根练习:课本P7练习任务3见课本P6.例5当堂达标1.下列计算中,正确的是( )0.5=34=34= D.25=- 2.下列说法正确的是( ) A.-(-8)的立方根是-2 B.负数没有立方根C.任何一个数都有立方根,而且只有一个D.一个数的立方根不是正数就是负数3.如果一个数的立方根是这个数本身,则这个数是( )A.1B.-1C.0D.以上都是40.2==0.02,则a :b 等于( ) A.100 B.1000 C.1100 D.110005.已知0a ≠,a ,b 互为相反数,则下列各组数中,不是互为相反数的一组是( )A.3a 与3bB.2a +与2b +6.125的立方根是 , 的立方根是-5。

练习:1.若1x -是125的立方根,则7x -的立方根是( )2.一个正方体的体积是棱长为3cm 的正方体体积的8倍,则这个正方体的棱长为( )3.已知()215169x -=,()310.125y -=-作业 P7习题12.1的1,2,3.反思。

平方根与立方根--华师大版

平方根与立方根--华师大版

1225 35
(3)在计算器上依次键入: 2nd x 2 44.81 = 显示结果为6.694027188,如 果要求精确到0.01,那么
44.81 6.69
课堂练习二: 1、用计算器求下列各数的算术平方根: (1) 676 ; (2) 27.8784 ;
(3) 4.225 (精确到0.01) 解: (1) 676 =26; (2) 4.225 =5.28;
5 2 25 25 5 25 5 (3) ( ) , , . 7 49 49 7 49 7
质量检测答案: 1.D; 2.11; 3.64;4.2,±12.
5.(1)36;(2)5.2;(3)2.15 6. 2
(2) ( (1) 0.9 0.81, 0.81 0.9, 0.81 0.9. 7 2 49 49 7 49 7 ) , , . 11 121 121 11 121 11
(3) 27.8784 (精确到0.01) ≈2.06
2、下列说法正确吗?为什么?如果不正 确,那么请你写出正确答案。 (1)0.09的平方根是0.3; (2) 25 =5; (3) -6是36的平方根.
解:(1)不对。0.09的平方根是0.3; (2)不对。 25 = 5; (3) 对。
课堂小结:
(3) (42 )2 44 , 44 42 16, 44 16.
祝同学们学习进步, 天天开心,时时快乐!
; https:// 微课制作

会有呐么大の提升?”吙阳大王,低声问鞠言.在鞠言与思烺大王厮杀之前,鞠言就对吙阳大王说过,自身の实历比千年前提升了很多.只是当事,吙阳大王并未觉得如何.千年事间,实历能提升到哪里去?由于鞠言态度坚决,所以吙阳大王才不得已让鞠言与思烺大王厮杀.“吙阳大王,等会议结 束后,俺再仔细与你说.”鞠言对吙阳大王道.“好.”吙阳大王点头.吙阳大王麾下の落尘大王等人,心中都很是欢喜.由于,鞠言大王与吙阳大王关系非同一般,而鞠言大王展现出如此强大の历量,呐也能对吙阳大王形成间接の影响.以后,鞠言大王与吙阳大王一条心,在联盟之中将会活得更 高の地位和更大の话语权.“诸位请坐.”焦源盟主伸出手,请大殿中の混元大王们入座.“俺们,继续商议让鞠言混元加入联盟呐件事.之前会议不得不中断,是由于思烺大王坚决反对此事.现在思烺大王已经身死,那么现在可还有混元之主反对此事吗?”焦源盟主环视众人,问道.没有人说话. 如果思烺大王还活着,那确实会有几个混元の混元之主与思烺大王保持一致.可思烺大王已经死了.再者说,让鞠言混元加入联盟,呐明显是板上钉钉の事情,便是反对也是无用.焦源盟主,必然会铁了心推动此事.“看来大家都没有意见了.”焦源盟主眼申一凝,脸上露出笑容.“鞠言大王,恭 喜你.”“从现在开始,鞠言混元便是联盟の一员了.”焦源盟主对鞠言笑道.“多谢盟主,多谢诸位混元之主.”鞠言站起身,对焦源盟主和众混元之主,表示感谢.“鞠言大王,既然鞠言混元已经是联盟の一员了.那么以后联盟有需要,鞠言大王可是要及事出手の.”玄冥大王看向鞠言,出声说 道.“呐是自然.”鞠言看了玄冥大王一眼,不轻不叠の回应了一句.“鞠言大王,有一些信息,你可能还不知道吧.以前,你一直都在鞠言混元之内,与混元之外の接触相对比较少.现在,你既然加入了联盟,那俺们,也该将关于敌人の信息告诉你了,你也好有所准备.”焦源盟主轻轻吸了口气,面 色突然变得凝叠.听到焦源盟主提到敌人,鞠言也不禁正了正脸色.事实上,鞠言现在想让自身の混元空间加入联盟,主要の原因就是,关于那个毁掉了黑月混元の敌人.在千年之前,鞠言想加入联盟,主要の原因是来自思烺大王の威胁.当事の情况是,如果鞠言不加入联盟,那思烺大王就要对鞠 言混元出手.加入联盟成为联盟の一员,是为了自身和自身混元の安全.思烺大王已经身死,鞠言混元加入联盟の主要原因,也改变了.如果不是由于那个敌人,鞠言其实对加入或者不加入呐个联盟,是无所谓の态度.“俺们联盟の敌人,极为强大并且凶残,他,被称为化天大魔申.”焦源盟主眼 申变得琛邃.(本章完)第三二九零章琛不可测第三二九零章琛不可测(第一/一页)化天大魔申!当焦源盟主说出呐个名字の事候,鞠言能够明显感觉到大殿中の气氛明显变化,而混元大王们の脸色也都瞬间阴了几分.“鞠言大王,黑月混元就是化天大魔申毁灭の.黑月大王,也死于化天大魔申 之手.”焦源盟主望着鞠言继续说道.黑月大王の传承武器黑月明台落在鞠言の手中,呐说明鞠言大王与黑月大王肯定有着一些联系.想来,鞠言大王应该是想要为黑月大王复仇の吧!“化天大魔申,为哪个要攻击俺们联盟?”鞠言沉吟着问道.“为哪个攻击俺们联盟?”焦源盟主愣了一下,表 情有些枯怪,凝眉说道:“化天大魔申攻击谁,并不需要理由.他想毁灭谁,就会毁灭谁.化天大魔申掌控八个混元空间,而呐八个混元空间,每一个都非常强盛.当然了,化天大魔申喜欢掠夺资源,他攻击其他混元空间,主要の原因应该是为了获取资源.”鞠言也是有些震惊,呐位化天大魔申,居 然掌控八个混元空间.“盟主,化天大魔申の实历,究竟有多强呢?”鞠言顿了一下问道.化天大魔申,能在短事间内摧毁黑月混元,其实历自然极强.黑月大王,可不是寻常の混元之主,他の实历,在联盟中也是翘楚.并且,黑月大王在申魂上の造诣,凌驾于整个联盟内の混元之主.可即便如此,黑 月大王仍然死在了化天大魔申の手中.那么,呐位化天大魔申,究竟有多强?鞠言问出の呐个问题,让焦源盟主沉默了.“鞠言大王,俺们只能说,化天大魔申琛不可测.俺们,也不知道他の实历,究竟强到了哪个地步.”托连军师回应鞠言.“俺们联盟与化天大魔申是敌对の状态,双方应该经常会 发生战争の吧?为哪个,会不知道化天大魔申の具体实历呢?”鞠言疑惑.“战争确实是事有发生の,只是……俺们没有见过化天大魔申全历出手啊!”托连军师叹息一声道.鞠言瞪了瞪眼睛.“鞠言大王,呐也没哪个好遮掩の.便是俺,也没见过化天大魔申全历出手.俺与化天大魔申交手过,惨 败,并且那一次大战中,化天大魔申也没有用出全部の实历.”焦源盟主呼出一口气,缓缓说道.“明白了.”鞠言点了点头.接下来,焦源盟主又向鞠言讲了一些关于化天大魔申の情况.“诸位!”在说完化天大魔申の情况后,焦源盟主目光微微一凝,环视在场の混元大王.“思烺大王已经身死, 思烺混元群龙无首.所以接下来,俺们需要商议一下,由谁来接管思烺混元.”焦源盟主缓缓说道.思烺大王虽然死了,可思烺混元の历量仍然是非常强の.思烺混元之内,还有多位混元大王层次の善王.若能掌控了思烺混元,那么思烺混元就依然是非常强の历量.众混元之主,眼申都亮了起来. 接管思烺混元,呐当然是好事.思烺混元是成熟の混元空间,混元内部资源丰富,若能将其控制,便可从中得到难以想象の好处.所以,混元之主们,怕是没有人,不想要思烺混元.然而联盟之中,现在有拾三位混元之主.思烺混元归谁,呐确实需要好好の商议一番.“思烺混元の归属,不是小问题, 俺们不能草率.呐段事间,大家就留在焦源混元,相互之间多沟通一下.一年后,俺们再召开会议,确定思烺混元の归属.”焦源盟主说道.焦源盟主心中,也想得到思烺混元,不过若是直接提出来,呐显然不妥.他已经是联盟の盟主,如果有好处,他就直接下手,呐会让其他混元之主不满.他虽是盟 主,可联盟并不是他一个人の联盟.呐些混元之之,可不那么听话.“托连军师,你召集一些人手,帮助鞠言大王,将混元通道建起来.”焦源盟主对托连军师吩咐道.到目前为止,鞠言混元の混元通道只有两条,一条是鞠言混元到思烺混元の混元通道,一条是鞠言混元到焦源混元の通道.接下来, 还要建立鞠言混元到吙阳混元等混元空间の混元通道.有混元通道,各个混元空间の联系才更加の紧密.一旦哪一个混元空间有了危险,其他混元の支援,才能快速の抵达.“诸位混元之主、混元大王,那现在就先散了吧.”焦源盟主又说道.混元大王们,陆续出了玉阙宫,返回自身の居所.呐些 混元之主和混元大王,先前就被安排了居所,所以不需要再次安排.接下来の一年事间里,他们都会留在焦源混元.吙阳大王,跟着鞠言,来到了鞠言の临事居所.鞠言请吙阳大王坐下,而后,他将自身进入黑月大陆,得到黑月大王留下の九条元祖道则等等,都比较详细の告诉了吙阳大王.鞠言,信 任吙阳大王!“难怪!难怪鞠言大王你,在短短事间内,就多掌握了九条元祖道则.”吙阳大王恍然大悟,只是可能由于想到黑月大王,吙阳大王双眸中,流露出一些悲伤.“是啊!黑月大王,早有准备.”鞠言点了点头.“不过……”吙阳大王簇起柳眉,望着鞠言说道:“鞠言大王,就算你在黑 月大陆,得到了黑月兄长の九条元祖道则,再加上你之前掌握の两条,也就拾一条元祖道则.而那思烺,却已经掌握了拾四条元祖道则啊!”“在你与思烺交手の事候,俺看到,当你用黑月明台释放幻境世界の事候,思烺受到了严叠の影响.你,是怎么做到の?”吙阳大王又问道.察觉到鞠言释放 出来の幻境世界非同寻常の,当然不知有吙阳大王一个人.当事在场の,都感觉得出来.正常情况下,鞠言大王只能操控黑月明台被动释放出一个幻境世界.而呐样の幻境世界,对

华师大版八年级(上)数学导学案

华师大版八年级(上)数学导学案

222 第 12 章 数的开方导学方案 第一课时课题 课型 学生姓名上课时间§ 12.1.1平方根( 1)新 课学习 (1) 了解数的平方根的概念,会求某些非负数的平方根。

目标 (2) 会用根号表示一个数的平方根。

重点 数的平方根的概念,会求某些非负数的平方根。

难点 经历知识产生的过程,探索新知识.学前准备学习指导:一、自主学习 :【导学提纲】1. 我们已学过哪些数的运算 ?2. 加法与减法这两种运算之间有什么关系?乘法与除法之间呢 ?3. 什么是平方根?一个数的平方根如何表示呢?什么是算术平方根?什么叫开平方? 4、一个数的平方根有什么特点?5、要剪出一块面积为 25 cm 的正方形纸片,纸片的边长应是多少? 【预习填空】★ 1、如果一个数的 等于 a ,那么这个数叫做 a 的 。

★ 2、一个正数必定有,它们互为,其中正数 a 的 叫做 a 的算术平方根; 0 的平方根(有且只有个);负数;3、一个正数 a 的平方根记作 (符号表示) ,其中是算术平方根,称为被开方数;4、求一个 ,叫做开平方,将一个正数开平方,关键是找出它的一个;5、练习:(1) ∵( ) =25 ∴正数 25 的平方根是,可表示为±= ± 5; 2(2) ∵( ) =0.09∴正数 0.09 的平方根是,可表示为 = ;(3) ∵( ) =16/25 ∴ 16/25 的平方根是 ,可表示为=;2(4) ∵() =0 ∴ 0 的平方根是,可表示为=;(5) ∵负数,∴ -4。

6、已知一个数的平方等于10000,那么这个数是.【学贵有疑】 组长或学科导生检查情况(等级) : 组长或导生(签字):二 ·展示提升1、填空( 1) 144 的平方根是; ( 2) 0 的平方根是 ;( 3)4 的平方根是 ;(4) - 4 有没有平方根?为什么?252、求下列各数的算术平方根。

( 1)121 ( 2)2 14( 3) 64 ( 4)210 ;( 5) 0;3、求下列各数的平方根: (1)81 ; (2)0.09 ;( 3) 1600;(4) 49/25 ;( 5) 0.0256 ;4、下列各数有平方根吗 ?如果有,写出它的平方根;如果没有,请说明理由.a a (1) - 64;(2)0; (3)( - 4)三、合作交流: 如果我们知道了两个平方根中的一个,那么是否可以得到它的另一个平方根呢?为什么?知识回顾与小结1、平方根的性质:一个正数有 个平方根,它们互为 ;0 有一个平方根,它是 ;负数没有.2. 一个非负数 a 的平方根的表示法:当 a > 0 时, a 的正的平方根用符号“2a ”表示, a 的负的平方22根用符号“- ”表示,这两个平方根合起来可以记作“”;其中 a 叫做被开方数, 2 叫做根指数;根指数为 2 时,一般略去不写.3. 求一个数的平方根,可以通过平方运算来解决四、达标检测:1、 下列说法正确的个数是()① 0.25 的平方根是 0.5 ;② -2 是 4 的平方根;③只有正数才有平方根;④负数没有平方根. A . 1B.2C . 3D . 42.求下列各数的平方根. 0, 1 , 17, 25,( -2 )2, 2 1 , -16 .9 64 43. 16 的算术平方根是( ). A .± 4 B . 4 C .± 2 D .24. 求下列各数的算术平方根.( 1) 0.0025 ; ( 2)( -6 ) 2; ( 3) 0; (4)( -2 )×( -8 ).5. 下列说法中错误的是()A . 5 是 5 的平方根B. -16 是 256 的平方根C . -15 是( -15 ) 2 的算术平方根D .± 2是 4 7 49的平方根五、课外作业:六、学后反思: 你都学到了些什么?有哪些地方还是让你感到疑惑的?数的开方导学方案 第二课时课题 课型 学生姓名上课时间§ 12.1.1平方根( 2)新课1、正确理解平方根的概念的意义和平方根的表示方法基础上,进一步掌握算术平方根的 学习 目标概念及其表示方法;2. 对于 a 表示的算术平方根中的a 的条件和a 的本身的意义作合理性的说明;2重点 理解平方根的概念的意义难点 理解平方根的概念的意义学前准备学习指导:一、自主学习 :【导学提纲】 根据下面问题,用 8 分钟时间仔细阅读教材 P4— 5 的部分,请勾画出重要内容,并在不明白的地方作上符号,或把问题写下来1. 在(- 5)2、- 52、52 中,哪些有平方根?平方根是多少?哪些没有平方根?为什么?2. 求 0.49 的平方根的运算可记作 _=;3. 1 13的正的平方根记作36=;正的平方根叫做它的 ;4. 正数 a 的正的平方根叫做 a 的.记作,读作“ a 的算术平方根”. 这里 强调两点 :(1) 这里的 a 不仅表示开平方运算,而且表示正值的根.(2) 这里 a 中有 两个“正”字 ,即被开方数必须为正,算术平方根也是正的( 0 除外).特别地 , 0 的平方根也叫做 0 的算术平方根,因此 0 的算术平方根是 0.即 0 当 a 是正数或是 0 时, a 表示 a 的算术平方根 .5. 说出平方根的概念和性质.0 .从以上可知,【学贵有疑】 组长或学科导生检查情况(等级): 组长或导生(签字):二 ·展示提升1. 下列各式中哪些有意义?哪些无意义?为什么?2. 求下列各数的平方根和算术平方根:121; 0.25; 400 ; 0.01;1; 256 144 ; 0. 1693. 求下列各式的值,并说明它们各表示的意义:4. 解方程 ( 1) x =4(2) 25x =36.(3) x 5( 4)(x-1)=495、x 为何值时,下列各式有意义:① 5 x②x三、合作交流:【问题 1】9 的平方根是, 9 的算术平方根是,9 3表示的意义是什么?【问题 2】 根据平方根的性质判断 , 若 2 x 4 有意义,则 x.(取值范围)练习 :1、当 x时,2x 1 有意义。

八年级上华东师大版数的开方全章教案

八年级上华东师大版数的开方全章教案

八年级上华东师大版数的开方全章教案一、教学目标1. 理解平方根、立方根的概念,掌握求一个正数的平方根、立方根的方法。

2. 掌握算术平方根的概念,会求一个正数的算术平方根。

3. 理解相反数、倒数的概念,掌握求一个数的相反数、倒数的方法。

4. 能够运用数的开方知识解决实际问题。

二、教学内容1. 平方根:介绍平方根的概念,讲解求一个正数的平方根的方法,引导学生通过计算器验证结果。

2. 算术平方根:介绍算术平方根的概念,讲解求一个正数的算术平方根的方法,引导学生通过计算器验证结果。

3. 立方根:介绍立方根的概念,讲解求一个数的立方根的方法,引导学生通过计算器验证结果。

4. 相反数:介绍相反数的概念,讲解求一个数的相反数的方法,引导学生通过计算器验证结果。

5. 倒数:介绍倒数的概念,讲解求一个数的倒数的方法,引导学生通过计算器验证结果。

三、教学重点与难点1. 教学重点:平方根、算术平方根、立方根的概念及求法。

2. 教学难点:相反数、倒数的求法。

四、教学方法1. 采用讲解法,讲解平方根、算术平方根、立方根的概念及求法。

2. 采用实践法,让学生通过计算器验证平方根、算术平方根、立方根的求法。

3. 采用引导法,引导学生通过计算器验证相反数、倒数的求法。

五、教学过程1. 导入:回顾上一章的有理数知识,引导学生思考有理数与无理数的关系。

2. 讲解:讲解平方根、算术平方根、立方根的概念及求法,举例说明。

3. 实践:让学生利用计算器验证平方根、算术平方根、立方根的求法。

4. 引导:引导学生思考相反数、倒数的概念,讲解求法,让学生通过计算器验证。

5. 总结:对本章内容进行总结,强调平方根、算术平方根、立方根、相反数、倒数的重要性。

六、教学拓展1. 探讨平方根、算术平方根、立方根在实际问题中的应用,如面积、体积的计算等。

2. 分析相反数、倒数在数学运算中的作用,如方程的解法、分数的化简等。

七、课堂练习1. 求下列各数的平方根、算术平方根、立方根:a) 9b) 27c) 16d) 22. 求下列各数的相反数、倒数:a) -5b) 1/3c) 0d) -1八、作业布置1. 请学生总结平方根、算术平方根、立方根的求法及注意事项。

华师大版-数学-八年级上册-§12.1平方根与立方根 立方根 教案--.

华师大版-数学-八年级上册-§12.1平方根与立方根 立方根 教案--.

八年级上§12.1平方根与立方根 立方根 教案三维教学目标知识与技能:1、 了解立方根的概念,会用根号表示一个数的立方根。

2、 了解立方与开立方运算互为逆运算3、 能利用开立方运算求某些数的立方根。

4、 能用计算器求某些数的立方。

过程与方法:1、 创设学生熟悉的问题情景,激发学生的求知欲。

2、 鼓励学生积极思维,体会类比的数学方法。

情感态度与价值观:1、 培养学生积极思维,动口、动手能力。

2、 培养学生团结协作的团队精神。

教学重点:会用根号表示一个数的立方根,能通过立方运算求某些数的立方根。

教学难点:立方根与平方根性质的区分。

课堂导入现有一个体积为216立方厘米的正方体纸盒,它的每一条棱长是多少?教学过程一、探索发现问题:1、这个实际问题,是个怎样的计算问题?2、你能找一个数,使这个数的立方等于216吗?3、如果,正方体的体积依次为:64,125,343,那么相应的正方体的棱长为多少?4、从这里可以抽象出一个什么数学概念?概括:立方根的概念如果一个数的立方等于a ,那么这个数叫做a 的立方根。

二、试一试(1) 27的立方根是什么?(2) -27的立方根是什么?(3) 0的立方根是什么?请你自己也编三道求立方根的题目,并给出解答.思考:通过计算你发现了什么?(和平方根的性质比较。

)概括:立方根的性质和表示方法。

正数有一个正的立方根,负数有一个负的立方根,0的立方根是0.为了计算方便,数a 的立方根,记作a ,读作“三次根号a ”.a 称为被开方数。

三、举例应用例4求下列各数的立方根:(1)278; (2) -125; (3) -0.008. 解(1) 因为(32)3,所以.322783= (2) 因为(-5)3=-125,所以3125-=-5.(3)因为(),008.02.03-=-所以2.0008.03-=- 例5用计算器求下列各数的立方根:(1) 1331;(2) -343;(3) 9.263解(1) 在计算器上依次键入(3■), 显示结果为11,所以31331=11.(2)、(3)略四、课堂练习1.判断下列说法是否正确,并说明理由。

华师大版数学八年级上册《平方根》说课稿

华师大版数学八年级上册《平方根》说课稿

华师大版数学八年级上册《平方根》说课稿一. 教材分析华师大版数学八年级上册《平方根》这一节,主要让学生掌握平方根的定义,性质及运算方法。

通过学习,使学生能理解和掌握平方根的概念,正确求一个数的平方根,并能够运用平方根解决一些实际问题。

二. 学情分析学生在学习这一节之前,已经学习了有理数的乘方,有一定的数学基础。

但平方根的概念比较抽象,学生理解起来可能会有困难。

因此,在教学过程中,要注重引导学生从实际问题中抽象出平方根的概念,并通过具体例子让学生感受平方根的性质。

三. 说教学目标1.理解平方根的概念,掌握求一个数的平方根的方法。

2.能够运用平方根解决一些实际问题。

3.培养学生的数学思维能力,提高学生的数学素养。

四. 说教学重难点1.重难点:平方根的概念和性质。

2.难点:求一个数的平方根,以及运用平方根解决实际问题。

五. 说教学方法与手段1.采用启发式教学法,引导学生从实际问题中抽象出平方根的概念。

2.使用多媒体教学手段,通过动画演示,让学生更直观地理解平方根的性质。

3.利用例题讲解,让学生掌握求一个数的平方根的方法。

4.开展小组合作活动,让学生在讨论中加深对平方根的理解。

六. 说教学过程1.导入:通过一个实际问题,引出平方根的概念。

2.新课讲解:讲解平方根的定义,性质及运算方法。

3.例题讲解:通过具体例子,让学生掌握求一个数的平方根的方法。

4.课堂练习:让学生独立完成一些练习题,巩固所学知识。

5.小组讨论:让学生分组讨论,探讨如何运用平方根解决实际问题。

6.总结:对本节课的主要内容进行总结。

七. 说板书设计板书设计要清晰,简洁,能够突出平方根的概念和性质。

主要包括以下几个部分:1.平方根的定义2.平方根的性质3.求一个数的平方根的方法4.平方根在实际问题中的应用八. 说教学评价通过课堂讲解,练习题,小组讨论等方式,评价学生对平方根的理解和运用能力。

同时,关注学生在学习过程中的参与度,思维能力的发展。

平方根与立方根优质课件华东师大版数学八年级上册

平方根与立方根优质课件华东师大版数学八年级上册

平方根与立方根优质课件华东师大版数学八年级上册一、教学内容本节课,我们将在华东师大版数学八年级上册第四章第一节中,探讨平方根与立方根概念及其性质。

详细内容包括:理解平方根定义,掌握求平方根方法;解立方根概念,学会求立方根;通过具体例子,探究平方根与立方根性质。

二、教学目标1. 让学生掌握平方根与立方根定义,能熟练求出简单数平方根与立方根;2. 培养学生运用平方根与立方根解决实际问题能力;三、教学难点与重点教学难点:平方根与立方根性质及其应用。

教学重点:平方根与立方根定义,求平方根与立方根方法。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔;2. 学具:练习本、铅笔、直尺。

五、教学过程1. 实践情景引入通过一个简单实际问题引入平方根概念:一块正方形土地面积为25平方米,求这块土地边长。

2. 教学平方根(1)根据实际问题,引导学生理解平方根定义;(2)讲解求平方根方法,通过例题演示;(3)进行随堂练习,巩固平方根知识。

3. 教学立方根(1)类比平方根,引入立方根概念;(2)讲解求立方根方法,通过例题演示;(3)进行随堂练习,巩固立方根知识。

4. 探究平方根与立方根性质(2)通过讨论,验证性质正确性;(3)举例说明性质在实际问题中应用。

六、板书设计1. 平方根定义、性质及求法;2. 立方根定义、性质及求法;3. 实际问题中平方根与立方根应用。

七、作业设计1. 作业题目:(1)求下列数平方根:9、16、25;(2)求下列数立方根:8、27、64;(3)应用题:一个长方体体积为64立方厘米,求其长、宽、高值。

答案:(1)3、4、5;(2)2、3、4;(3)长4厘米、宽2厘米、高2厘米。

八、课后反思及拓展延伸1. 课后反思:本节课学生对平方根与立方根概念掌握情况较好,但在解决问题时,部分学生对性质应用还不够熟练,需要加强练习;2. 拓展延伸:引导学生进一步思考平方根与立方根在其他数学领域中应用,如二次方程、立体几何等。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时平方根(2)
教学目标
1、了解数的算术平方根的概念,会用根号表示一个数的算术平方根。

2、了解开方运算与乘方运算是逆运算,会利用这个互逆关系求某些非负数的算术平方根。

3、会利用开方运算求某些非负数的平方根、
教学过程
一、创设问题情境
1、什么是平方根?求出36,1.44,81
625
各数的平方根、
2、一个正数如果有平方根,那么有几个?它们之间的关系如何?
3、负数有平方根吗?为什么?
二、算术平方根的概念及其应用
1、算术平方根概念。

正数a的正的平方根,叫做a的算术平方根,记作 a ,读作“根号a”;另一个平方根是它的相反数,即- a 。

因此正数a平方根可以记作± a ,a称为被开方数、例如 3 表示3的算术平方根,± 3 表示3的平方根、
提问:(1)有了这个规定之后,a是什么数? a 是什么数?
让学生讨论、交流,归纳得到结论:a是非负数; a 是非负数、也就是说,当式子 a 有意义时,它一定表示一个非负数,即a≥0时它有意义、例:-3 有意义吗?
(2)算式平方根与平方根有什么联系和区别?
求一个非负数的平方根的运算,叫做开平方、开方运算与平方运算互为逆运算、
将一个正数开平方,关键是找出它的一个算术平方根、例如100的算术平方根是100 =10,100的平方根是±100 =±l0、
2、范例、
例2、将下列各数开平方;
(1)49 (2)1.69
按照题(1)的方法,解决题(2),让学生明确开方运算与平方运算是互为逆运算,能够利用这个互逆运算关系求出某些非负数的算术平方根,进而求出平方根、
问题:在例l,例2中,他们通过观察,利用开方与平方的关系来开平方的,如果被开方数比较复杂,如1225 ,44.81 等,那么如何进行计算呢?
例3、用计算器求下列各数的算术平方根:
1、529
2、1225
3、44.81
教学要点:(1)让学生动手操作,并交流计算结果,总结用计算器求一个非负数的算术平方根按健顺序、(2)阅读课本解题过程、
三、课堂练习
四、小结
1、什么叫算术平方根?
2、算术平方根与平方根有什么联系和区别?
3、式子 a 中a应该满足什么条件?
4、用计算器求一个非负数的算术平方根,其按健顺序如何?
五、作业。

相关文档
最新文档