金属陶瓷(硬质合金)
陶瓷的分类及性能
陶瓷材料的力学性能陶瓷材料陶瓷、金属、高分子材料并列为当代三大固体材料之间的主要区别在于化学键不同。
金属:金属键高分子:共价键(主价键)范德瓦尔键(次价键)陶瓷:离子键和共价键。
普通陶瓷,天然粘土为原料,混料成形,烧结而成。
工程陶瓷:高纯、超细的人工合成材料,精确控制化学组成。
工程陶瓷的性能:耐热、耐磨、耐腐蚀、绝缘、抗蠕变性能好。
硬度高,弹性模量高,塑性韧性差,强度可靠性差。
常用的工程陶瓷材料有氮化硅、碳化硅、氧化铝、氧化锆、氮化硼等。
一、陶瓷材料的结构和显微组织1、结构特点陶瓷材料通常是金属与非金属元素组成的化合物;以离子键和共价键为主要结合键。
可以通过改变晶体结构的晶型变化改变其性能。
如“六方氮化硼为松散的绝缘材料;立方结构是超硬材料”2、显微组织晶体相,玻璃相,气相晶界、夹杂(种类、数量、尺寸、形态、分布、影响材料的力学性能。
(可通过热处理改善材料的力学性能)陶瓷的分类玻璃—工业玻璃(光学,电工,仪表,实验室用);建筑玻璃;日用玻璃陶瓷—普通陶瓷日用,建筑卫生,电器(绝缘),化工,多孔……特种陶瓷-电容器,压电,磁性,电光,高温……金属陶瓷--结构陶瓷,工具(硬质合金),耐热,电工……玻璃陶瓷—耐热耐蚀微晶玻璃,光子玻璃陶瓷,无线电透明微晶玻璃,熔渣玻璃陶瓷…2.陶瓷的生产(1)原料制备(拣选,破碎,磨细,混合)普通陶瓷(粘土,石英,长石等天然材料)特种陶瓷(人工的化学或化工原料--- 各种化合物如氧、碳、氮、硼化合物)(2)坯料的成形(可塑成形,注浆成形,压制成形)(3)烧成或烧结3. 陶瓷的性能(1)硬度是各类材料中最高的。
(高聚物<20HV,淬火钢500-800HV,陶瓷1000-5000HV)(2)刚度是各类材料中最高的(塑料1380MN/m2,钢MN/m2)(3)强度理论强度很高(E/10--E/5);由于晶界的存在,实际强度比理论值低的多。
2 (E/1000--E/100)。
金属陶瓷(硬质合金)
1.3 硬质合金的性能特点、分类及应用
1.3.1硬质合金的性能特点 (1)高硬度、耐磨性好、高热硬性 高硬度、耐磨性好、 (2)抗压强度、弹性模量高 抗压强度、 抗压强度高可达6000MPa, 抗压强度高可达6000MPa,但抗弯强度 6000MPa 低,只有高速钢的1/3~1/2。弹性模 只有高速钢的1 量很高,韧性很差。 量很高,韧性很差。
TIC 刀具
(3)通用硬质合金 ) 主要成分是碳化钨、碳化钛、碳化钽(或碳化铌)及钴。 主要成分是碳化钨、碳化钛、碳化钽(或碳化铌)及钴。这 类硬质合金又称通用硬质合金或万能硬质合金。 类硬质合金又称通用硬质合金或万能硬质合金。 其牌号由“ 两字汉语拼音字首) 其牌号由“YW”(“硬”、“万”两字汉语拼音字首)加顺 ( 序号组成, 序号组成,如 YW1。 。
1.4 烧结成型
硬质合金烧结成型就是将粉末压制成坯料,再进烧结炉加热到 硬质合金烧结成型就是将粉末压制成坯料, 一定温度(烧结温度),并保持一定的时间(保温时间), ),并保持一定的时间 ),然后 一定温度(烧结温度),并保持一定的时间(保温时间),然后 冷却下来, 冷却下来,从而得到所需性能的硬质合金材料 。 硬质合金烧结过程可以分为四个基本阶段: 硬质合金烧结过程可以分为四个基本阶段: 1:脱除成形剂及预烧阶段,在这个阶段烧结体发生如下变化: :脱除成形剂及预烧阶段,在这个阶段烧结体发生如下变化: 成型剂的脱除,烧结初期随着温度的升高, 成型剂的脱除,烧结初期随着温度的升高,成型剂逐渐分解 或汽化,排除出烧结体,与此同时, 或汽化,排除出烧结体,与此同时,成型剂或多或少给烧结体增 增碳量将随成型剂的种类、数量以及烧结工艺的不同而改变。 碳,增碳量将随成型剂的种类、数量以及烧结工艺的不同而改变。 粉末表面氧化物被还原,在烧结温度下, 粉末表面氧化物被还原,在烧结温度下,氢可以还原钴和钨的 氧化物,若在真空脱除成型剂和烧结时,碳氧反应还不强烈。粉 氧化物,若在真空脱除成型剂和烧结时,碳氧反应还不强烈。 末颗粒间的接触应力逐渐消除,粘结金属粉末开始产生回复和再 末颗粒间的接触应力逐渐消除, 结晶,表面扩散开始发生,压块强度有所提高。 结晶,表面扩散开始发生,压块强度有所提高。
硬质合金金相实验方法及实验结果
(一)硬质合金简介用粉末冶金的方法(包括:球磨、混料、压制成型和烧结)值得的WC-Co或WC-TiC -Co 合金称为金属陶瓷硬质合金。
简称为硬质合金。
随着工业生产的飞跃发展,硬质合金制品的应用及研究也不断扩大和深入。
(二)性能和用途金属陶瓷硬质合金是一种较硬的材料,在某种场合下可以代替金刚石材料。
他的特点是具有高的熔点,高的硬度,高的耐磨性及比高速钢更高的热硬性;切削温度高至1000℃,而刀具的硬度尚未显著下降。
因此在金属切削中,它的切削效率是一般钢制刀具无可比拟的。
同时,硬质合金制品的使用寿命也比钢制品高的多。
钨钴类合金一般强度和冲击韧性较高,而钨钛钴合金的耐磨性、热硬性、和允许的切削速度则较高。
硬质合金主要用于制造切削刀具刀头;又用作各种模具、轧棍、矿山及石油钻探工具等。
(三)组织与缺陷钨钴类合金:组织由过剩的WC和以钴为基(溶有WC)的粘结相组成。
缺陷则有污垢、η相、裂纹、WC相聚集的粗大颗粒。
(四)技术要求低倍组织硬质合金的低倍组织应均匀一致。
不允许有黑心、气孔、分层、裂纹及脏污等缺陷。
高倍组织。
主要观察硬质合金中各相的组成,以及晶粒的大小、分布情况等。
允许有个别粗大的碳化钨相晶粒存在,但不允许有大量堆积或普遍晶粒长大现象。
(五)金相试样的制备和检验方法1、试样的制备硬质合金金相试样的制备方法与一般钢铁试样不同,现将我对硬质合金金相试样的制备方法介绍如下,以供参考。
(1)取样和磨制由于硬质合金制品表面与中心的组织存在差异,所以一般取制品的折断面或者剖面作为金相试样的磨面,有些制品不能进行破坏和折断,则可取比较有代表性的表面,将其磨去一定深度后进行检查。
(注:磨面最好进行倒角处理)将选定的试样观察面在磨床上磨平(若选定的观察面已经是平的,可免去此步骤),然后准备好一块抛光布(此步骤并非抛光),将大号金刚石粉末用手指沾取适量均匀涂于抛光机的抛光布上半径大约5厘米左右的圆周上,启动抛光机,于抛光布上洒适量的水(防止试样发热和利于试样磨平),然后小心的将试样放到告诉旋转的抛光布上进行磨平,磨的时候用力要均匀,并随时观察,感觉有干涩感的时候要即时洒水。
TiC基硬质合金
演讲:
TiC基硬质合金
钛基硬质合金的英文名为“Cermet” 过去 有人称之为“金属陶瓷”。 但国际标准化组织ISO153-1991将其划归在 硬质合金大类内,材料代号HT。 TiC基硬质合金是以TiC为主要成份的TiC-NiMo合金。
TiC基硬质合金的主要成分
硬质相:TiC或Ti(C,N)占60%~80%以上。 粘结相:Ni-Mo或Ni-Co-Mo 对比WC基硬质合金 WC 硬质相:主要是WC,含量达65%~97%。
国内外生产厂家
奥地利Metallwerk Plansee公司生产的WZ系列 英国Hard Metal Tools公司生产的HR系列 日本Tungaloy公司生产的NTK系列 美国Kennametal公司生产的K系列和美国Firth Sterling公司生产的FS系列 我国湖南株洲硬质合金厂生产的YN系列
传统TiC基合金晶粒度较大, 烧结过程中形成 过厚的(TiMo)C中间相, 合金韧性低, 刀具 抗崩刃性差, 且高温硬度低, 使用受到限制。 在TiC-Ni-Mo系中添加WC、TaC、TiN等碳 化物和氮化物使合金硬质相固溶强化, 同时, 粘结相中Mo、W和Ta的大量溶解及Ti浓度 的降低,也使粘结相得到强化。
发展现状
在国外,TiC基和Ti(C,N)基硬质合金所占比 重已达到可转位刀片总需求量的30%以上。 近几年来,随着涂层钛基硬质合金、超细 晶粒和纳米晶粒以及梯度结构钛基硬质合 金的开发,使材料的综合性能大大提高, 应用范围更加扩大。
发展趋势
据预测,今后在钢的切削方面,TiC基和 Ti(C,N)基硬质合金所占比重将达到可转位 刀片总需求量50%,并将成为铣削钢材的 最佳刀具材料。
粘结相
Ni作为粘结金属,增加其含量,可提高合 金的强度,但却会使合金的硬度降低。 向Ni中添加Mo(或Mo2C),可改善液态金属 对TiC的湿润性,使TiC晶粒变细。 当Ni含量一定时,增加Mo的含量,可提高 合金的强度和硬度。Ni和Mo的含量通常为 20%~30%。
金属陶瓷
金属陶瓷材料一、金属陶瓷的定义材料是人类文明的里程碑,是人类赖以生存和得以发展的重要物质基础。
正是材料的使用、发现和发明,才使人类在与自然界的斗争中,走出混沌蒙昧的时代,发展到科学技术高度发达的今天。
当今世界,能源、信息、材料已成为人类现代文明进步的标志,继金属、有机高分子材料以后,金属陶瓷材料正以其卓越的性能、繁多的品种和广泛的用途进入各行各业,其发展之快,作用之大,令世人瞩目。
金属陶瓷材料具有比强度高、比模量高、耐磨损、耐高温等优良性能,在众多场合已被作为新材料的代名词,成为现代高新技术、新兴产业和传统工业技术改造的物质基础,也是发展现代国防所不可缺少的重要部分,引起了世界各国尤其是发达国家的高度重视,纷纷投入巨资进行研究开发,把金属陶瓷材料作为本国高技术发展的一个重要领域。
图1 金属陶瓷复合材料性能图1、金属陶瓷的概念金属陶瓷是由陶瓷硬质相与金属或合金粘结相组成的结构材料。
从金属陶瓷英文单词Cermets来,是由Ceramic(陶瓷)和Metal(金属)结合构成的。
金属陶瓷既保持了陶瓷的高强度、高硬度、耐磨损、耐高温、抗氧化和化学稳定性等特性,又具有较好的金属韧性和可塑性。
由于“金属陶瓷”和“硬质合金”两个学科术语没有明确的分界,所以具体材料也很难划分界线,从材料的组元看,“硬质合金”应该归入“金属陶瓷”,IE. Campbell就将“硬质合金”归入到“金属陶瓷”。
2、金属陶瓷的历史WC-Co基金属陶瓷作为研究最早的金属陶瓷,由于具有很高的硬度(HRA80~92),极高的抗压强度6000MPa(600kg/mm2),已经应用于许多领域。
但是由于W和Co资源短缺,促使了无钨金属陶瓷的研制与开发,迄今已历经三代:第一代是“二战”期间,德国以Ni粘结TiC生产金属陶瓷;第二代是20世纪60年代美国福特汽车公司添加Mo到Ni粘结相中改善TiC和其他碳化物的润湿性,从而提高材料的韧性;第三代金属陶瓷则将氮化物引入合金的硬质相,改单一相为复合相。
常用硬质合金的牌号 -回复
常用硬质合金的牌号-回复硬质合金,也被称为硬质合金材料或金属陶瓷材料,是由一种或几种金属元素和非金属元素的高硬度相组成的复合材料。
它具有硬度高、抗磨损、耐冲击、高强度等优良的力学性能,因此在诸多领域得到广泛应用。
以下是一些常用硬质合金的牌号,以及其特点和应用领域的介绍。
1. YG6:该牌号是指使用了镍基合金作为粘结相的固液相合金。
它具有优良的硬度、耐磨性和抗压性能。
广泛应用于机械加工、石油钻具、金属切削刀具等领域。
2. YG8:与YG6相似,YG8也是一种镍基合金的固液相合金,但其含碳量稍高。
这使得YG8具有更好的耐蚀性和耐磨性。
它通常被用于制作石油钻头、煤矿用机械零件、地砖切削刀片等。
3. YT5:YT5是一种钨基合金。
它具有较高的硬度和耐腐蚀性能,特别适用于制作加工硬度较高的材料、如钢铁、铸铁、不锈钢等。
因此,YT5广泛应用于车削刀具、铣削刀具等切削工具中。
4. YT15:YT15是另一种钨基合金,相较于YT5具有更高的硬度和耐磨性。
因此,YT15常用于制造高速切削刀具,如钻头、铣刀等。
5. YW1:YW1是一种钨钛合金,含有钛元素。
它具有良好的切削性能和耐腐蚀性能,尤其适用于制造各种切削刀具,如车刀、铣刀、钻头等。
6. YW2:YW2与YW1类似,也是一种钨钛合金,但其钛含量稍高。
这使得YW2具有更好的耐磨性和抗热性能。
因此,YW2常被用于制造耐磨切削刀具以及高温环境下的切削工具。
7. YS2T:YS2T是一种钛碳化钨合金。
它具有极高的硬度和耐磨性,尤其适用于加工硬度较高的材料,如钢铁、铸铁等。
因此,YS2T广泛应用于制造工作量大而硬度高的切削刀具。
通过以上介绍,我们可以看出不同牌号的硬质合金具有不同的特点和应用领域。
选择合适的硬质合金牌号对于提高切削工具的性能、延长工具使用寿命具有重要意义。
因此,在使用硬质合金时,需要根据具体的应用需求选择合适的牌号,并进行合理的刀具设计和切削参数的选择,才能充分发挥硬质合金的优势。
金属陶瓷材料
形成金属陶瓷的必要条件有:(1)金属对陶瓷的润湿性要好。润湿力愈强,金属形成连续相的可能性越大,而陶瓷颗粒聚集成大颗粒的趋向就愈小,金属陶瓷的性能就愈好。改善两相润湿途径可在金属陶瓷相中加入第2种多价金属,其点阵类型要求与第1种金属相同。例如AL2O3一cr中加入Mo,也可以加入少量其他氧化物(如V2O3、MoO3、wO3等),降低了金属陶瓷烧结温度,改善润湿性。(2)金属和陶瓷相在烧结和使用中应无剧烈的化学反应发生。反应也仅限于两相的界面上生成新的陶瓷相。若反应剧烈,则金属相不以纯金属状态存在而变成化合物,成为数种化合物聚合体,无法起到利用金属相来改善陶瓷抵抗机械作用和温度急变的作用。高温下金属相与陶瓷相之间应有一定的溶解作用。通过溶解和析晶过程及陶瓷相均匀分布,从而改善制品性能。溶解作用过大或出现低熔物,会降低金属陶瓷的高温强度。(3)金属相与陶瓷相的膨胀系数相差不可太大,否则会降低金属陶瓷的抗热震性。如在TiC%26mdash;Ni金属陶瓷中,碳化钛的线膨胀系数为7.61%26times;10-6/℃,而镍的线膨胀系数为17.7%26times;10-6/℃二者相差一倍多,因而存在大的内应力,制品的抗热震性就差。金属陶瓷中两相膨胀系数差小于5%26times;10-6/℃时,对制品的抗热震性影响大降低。而陶瓷能耐高温、耐腐蚀,但脆性大,导电率低,高温流动性差。
如果把金属和陶瓷掺合在一起,就可以在高熔点的情况下得到强度高,硬度大、抗氧化能力强,并具有一定的延展性和良好的热稳定性的金属陶瓷。中国资产管理网
制造金属陶瓷材料比较简单,只需要在氧化铝中加入一些金属铬;在碳化钛中加入一些金属镍,就可以制造成金属陶瓷。掺有超微陶瓷粉末的金属铝,是一种重量轻、强度高、韧性大、
性能金属陶瓷硬度高、高温强度大,高温蠕变性好,抗热震性好,且具有抗氧化、抗腐蚀和抗磨损等性能。
常用刀具材料
常用刀具材料
常用刀具材料包括不锈钢、高速钢、硬质合金、陶瓷和轻质钛合金等。
不锈钢是常见的刀具材料之一。
它具有耐腐蚀性能,不易生锈,使刀具使用寿命更长。
不锈钢刀具可以使用长时间而不会受到容易生锈的问题影响,同时还具有较好的韧性和可塑性。
高速钢也是常用的刀具材料之一。
高速钢刀具具有较高的硬度、耐磨性和耐高温性能,因此在高速切削应用中使用广泛。
高速钢刀具适用于高速旋转刀具,可以在较高速度下完成切削作业。
硬质合金,也被称为金属陶瓷,是由钨碳化物颗粒和金属钴粉末构成的。
硬质合金刀具具有极高的硬度和耐磨性能,可以在高速切削和重负载切削条件下进行切削作业。
硬质合金刀具常用于切削硬质材料,如钛合金和高温合金等。
陶瓷是一种非常硬和脆性的材料,因此在刀具制造中被广泛应用。
陶瓷刀具具有极高的硬度和耐磨性,可以在高温和高速切削条件下进行切削作业。
陶瓷刀具常用于对非金属材料进行切削加工,如陶瓷、玻璃和纤维等。
轻质钛合金是一种比传统钢材更轻但具有较高强度的材料。
轻质钛合金刀具可以减轻工人的劳动强度,并提高生产效率。
轻质钛合金刀具适用于需要长时间操作刀具的工作环境,如航空航天和汽车制造等领域。
综上所述,不锈钢、高速钢、硬质合金、陶瓷和轻质钛合金等常用刀具材料各具特点,可以根据具体工作需求选择合适的刀具材料。
硬质合金与钨钢区别 你不知道的事
今天要给大家介绍硬质合金与钨钢的区别,对于这两个大家都清楚吗?下面我们一起来了解下吧。
钨钢:成品中约含钨18%合金钢,钨钢归于硬质合金,又称之为钨钛合金。
硬度为维氏10K,仅次于钻石。
正因如此,钨钢的商品(多见的有钨钢手表),具有不易被磨损的特性。
常用于车床刀具、冲击钻钻头、玻璃刀刀头、瓷砖割刀之上,坚固不怕退火,但质脆。
硬质合金:归于粉末冶金领域,硬质合金又名金属陶瓷,是以金属碳化物(WC、TaC、NBC等),或许金属氧化物(如A1203、ZR02等)为首要成分,掺加适量的金属粉末(CO、cr、mo、ni、fe等)通过粉末冶金方法制成,具有金属某些特质的陶瓷。
钨钢属于硬质合金,但硬质合金不一定是钨钢。
他们之间的区别是:(1)质合金是由由难熔金属的硬质化合物和粘结金属通过粉末冶金工艺制成,是一种硬度极高的合金材料,硬质合金具有硬度高、耐磨、强度和韧性较好、耐热、耐腐蚀等一系列优良性能,特别是它的高硬度和耐磨性,即使在500℃的温度下也基本保持不变,在1000℃时仍有很高的硬度。
具有金属某些特质的陶瓷。
(2)钨钢又称之为钨钛合金或高速钢或工具钢。
硬度为维氏10K,仅次于钻石,是指至少含有一种金属碳化物组成的烧结复合材料,钨钢、硬质合金都具有硬度高、耐磨、强度和韧性较好、耐热、耐腐蚀等一系列优良性能。
钨钢的优点主要在于他的高硬度和耐磨性高硬度即使他在1000℃时仍有很高的硬度。
易可以称作为第二金刚石。
碳化物组份(或相)的晶粒尺寸通常在0.2-10微米之间。
钨钢只是硬质合金的一种硬度在HRC85-92之间,常被用来做到的。
清河县润鼎硬质合金刀具有限公司位于河北省清河县工业区。
是一家集回收销售于一体的企业,公司常年以高价、面向全国、专业、不限量从事收购各种稀有金属。
长期高价回收:硬质合金(钨钢)废料,各种废钨钢铣刀,钨钢钻头,钨钢立铣刀,数控车刀,碳化钨辊环,线切割钨钢磨具,拉丝磨具,顶锤,焊接刀头。
废高速钢钻头,高速钢丝锥,及各种粉末冶金高速钢。
金属陶瓷介绍
金属陶瓷目录金属陶瓷的定义金属陶瓷的历史金属陶瓷的组成金属陶瓷的分类金属陶瓷的性能金属陶瓷的用途1.电器触头上的运用展开金属陶瓷的定义金属陶瓷的历史金属陶瓷的组成金属陶瓷的分类金属陶瓷的性能金属陶瓷的用途1.电器触头上的运用展开编辑本段金属陶瓷的定义金属陶瓷是由陶瓷硬质相与金属或合金粘结相组成的结构材料。
从金属陶瓷英文单词Cermets来,是由Ceramic(陶瓷)和Metal(金属)结合构成的。
金属陶瓷既保持了陶瓷的高强度、高硬度、耐磨损、耐高温、抗氧化和化学稳定性等特性,又具有较好的金属韧性和可塑性。
由于“金属陶瓷”和“硬质合金”两个学科术语没有明确的分界,所以具体材料也很难划分界线,从材料的组元看,“硬质合金”应该归入“金属陶瓷”,IE. Campbell就将“硬质合金”归入到“金属陶瓷”。
编辑本段金属陶瓷的历史WC-Co基金属陶瓷作为研究最早的金属陶瓷,由于具有很高的硬度(HRA80~92),极高的抗压强度6000MPa(600kg/mm2),已经应用于许多领域。
但是由于W和Co资源短缺,促使了无钨金属陶瓷的研制与开发,迄今已历经三代:第一代是“二战”期间,德国以Ni粘结TiC生产金属陶瓷;第二代是20世纪60年代美国福特汽车公司添加Mo到Ni粘结相中改善TiC 和其他碳化物的润湿性,从而提高材料的韧性;第三代金属陶瓷则将氮化物引入合金的硬质相,改单一相为复合相。
又通过添加Co相和其他元素改善了粘结相。
近年来,金属陶瓷研制的另一个新方向是硼化物基金属陶瓷。
由于硼化物陶瓷具有很高的硬度、熔点和优良的导电性,耐腐蚀性,从而使硼化物基金属陶瓷成为最有发展前途的金属陶瓷。
编辑本段金属陶瓷的组成金属陶瓷(cermet)为了使陶瓷既可以耐高温又不容易破碎,人们在制作陶瓷的粘土里加了些金属粉,因此制成了金属陶瓷。
金属基金属陶瓷是在金属基体中加入氧化物细粉制得,又称弥散增强材料。
主要有烧结铝(铝-氧化铝) 、烧结铍(铍-氧化铍)、TD镍(镍-氧化钍)等。
硬质合金熔点
硬质合金熔点硬质合金,又称金属陶瓷,是由金属和非金属(或金属间化合物)两种或多种材料组成的复合材料。
它具有高硬度、耐磨、高强度、耐高温等优异性能,广泛应用于工业领域。
而硬质合金的熔点是指在何种温度下,硬质合金会由固态转变为液态。
硬质合金的主要成分是由钴、镍等金属与碳化物、氮化物等非金属化合物组成的。
这些材料具有较高的熔点,使得硬质合金具有良好的高温稳定性。
一般来说,硬质合金的熔点较高,常见的熔点范围在1200℃~1800℃之间。
具体的熔点取决于硬质合金中不同成分的含量和相互作用。
硬质合金的熔点对其应用性能有着重要的影响。
首先,高熔点保证了硬质合金在高温下的稳定性。
在高温环境下,一些材料容易软化、熔化或发生相变,而硬质合金由于具有较高的熔点,能够保持其原有的硬度和强度,不易变形或损坏。
因此,硬质合金在高温工艺中的应用非常广泛,如切削、钻孔、磨削等加工过程。
熔点的高低也对硬质合金的加工和制备工艺有着重要影响。
由于硬质合金的成分比较复杂,需要通过熔融和冷却等工艺来制备。
如果熔点过高,将增加制备的难度和成本;而熔点过低,则可能导致材料的不稳定性和性能下降。
因此,硬质合金的熔点需要在一定范围内选择,以便满足不同应用的需求。
硬质合金的熔点还与其结构和成分有关。
硬质合金中的金属和非金属材料之间存在着复杂的相互作用,这些相互作用会影响材料的熔点和熔化过程。
例如,金属和非金属之间的化学键强度、晶体结构的稳定性等因素都会对熔点产生影响。
因此,在设计和制备硬质合金时,需要综合考虑材料的结构和成分,以获得理想的熔点和性能。
硬质合金的熔点是其重要的物理性质之一,对其应用性能和加工工艺都有着重要影响。
熔点的高低需要根据具体应用来选择,以满足不同工况下的需求。
此外,熔点的确定还需要考虑材料的结构和成分等因素。
随着科学技术的不断进步,人们对硬质合金熔点的研究也在不断深入,相信未来硬质合金将在更广泛的领域得到应用。
碳氮化钛基硬质合金(金属陶瓷)简介
碳氮化钛基硬质合金金属陶瓷简介BRIEF INTRODUCTION OF CERMETS CUTTING TOOL TiCN基金属陶瓷具有良好的使用性能与WC基硬质合金相比它具有低密度、高硬度、对钢的摩擦系数小加工中显示出较高的红硬性、相近的强度、较低的腐蚀性和导热性切削时抗粘结磨损和抗扩散磨损在相同切削条件下TiCN基金属陶瓷刀具具有较高的寿命或在寿命相同的情况下可采用较高的切削速度被加工件有较好的光洁度。
因此TiCN基金属陶瓷在许多加工场合下可成功取代WC基硬质合金填补了WC基硬质合金和陶瓷之间的空白特别适用于钢材的半精加工和精加工及耐磨耐蚀零件。
TiCN substrate cermets cutting tool has very good application. Compared with tungsten carbide cutting tool cermets cutting tool has advantages of lower density harder much lower friction for machining steel better thermal stability when machining close toughness lower causticity and heat conduction better wear-resistance. Working in the same condition TiCN based cermets cutting tool has longer using life and can be used under faster cutting speed. We can get more finish work-piece with smoother surface using cermets cutting tool. From above we have used TiCN based cermets cutting tool to replace WC based carbide cutting tool in some fields successfully. It fills up the gap between WC based carbide and ceramic. It is suitable for semi-finishing and finishing machining of steel and wear part specially. TiCN基金属陶瓷采用精制高纯原料通过严格控制各个工艺环节而制备的具有优异特性的陶瓷制品具有高强度、高硬度、轻质抗腐蚀、抗氧化耐热性好等优异性能。
碳化钛硬质合金
碳化钛硬质合金(TiC-based cemented carbide)以Tic为主要成分、镍钼为粘结相制成的硬质合金。
又称为金属陶瓷硬质合金。
它具有高硬度、高耐磨性等特点,主要用于各种钢材的切削加工,也可用作耐磨、耐蚀零件。
TiC基硬质合金出现于1929年,50年代将它作为高温金属陶瓷而进行了大量研究,这项研究基本上是失败的。
由于镍对Tic的润湿性较差,易使TiC%26mdash;Ni合金产生碳化物聚集长大,使性能降低。
1960年左右,美国福特公司制成了镍钼合金粘结的TiC基金属陶瓷硬质合金。
在镍中添加钼,烧结时形成Mo2C,并在TiC晶粒上形成不平衡的TiC-Mo2C固溶体,得到一种环形结构晶粒。
这种晶粒外壳钼含量高、钛含量低,中间部位缺钼或低钼高钛。
由于金属镍对TiC-Mo2C相的润湿性较好,避免了镍和TiC直接接触,使合金性能大幅度提高。
这一发现是Tic基硬质合金发展过程中的重要突破。
为了扩大TiC基硬质合金的应用范围,致力于研制粗加工用高韧性牌号,日本东芝公司1971年在TiC%26mdash;Mo(Mo2C)-Ni中添加TiN有明显效果,使该合金性能大幅度提高。
某些国家已研究出许多优良牌号,并已系列化,它们生产的TiC基和TiCN基硬质合金牌号和性能见表1。
其应用范围已由精加工、半精加工扩大到粗加工,由切削扩大到铣削等苛刻条件下的加工,从切削工具应用扩大到其他工具的应用,从而使这种材料的生产和应用得到了迅速发展。
1989年日本金属陶瓷硬质合金可转位刀片的产量(按片数计)已占所有可转位刀片总产量的28.3%,接近于钨钴硬质合金可转位刀片的产量。
中国生产的TiC硬质合金的成分和性能见表2。
Tic硬质合金生产的工艺方法是将TiC、Ni和Mo(或Mo2C)一起进行湿磨,压坯通常于真空中在1300~1500℃下进行液相烧结;也可以采用熔渗法和高温自蔓延合成法制取。
采用熔渗法制取TiC-Mo2C%26mdash;Ni合金时,预先制取TiC多孔烧结体(骨架),然后用Ni%26mdash;Mo熔体熔渗骨架,从而形成致密烧结体;采用高温自蔓延合成法制取TiC-Mo2C%26mdash;Ni合金时,将钛粉、炭黑、钼粉和镍粉进行配料球磨、干燥和压团,然后在石墨模内进行高温自蔓延合成反应,并在燃烧波通过之后旋加0.05MN的载荷下保持6~10s。
金属陶瓷的研究进展_徐强
第19卷第4期Vol.19N o.4硬 质 合 金C EMEN T ED C ARBI DE2002年12月Dec.2002综合评述金属陶瓷的研究进展徐 强 张幸红 曲伟 韩杰才(哈尔滨工业大学复合材料研究所,哈尔滨,150001)摘 要 综述了金属陶瓷的发展、类型和应用,并对金属陶瓷的发展趋势进行了评述。
关键词 金属陶瓷 类型 应用 发展趋势1 引 言金属陶瓷,是一种由金属或合金同一种或几种陶瓷相所组成的非均质的复合材料,其中后者约占15%~85%(体积),同时在制备的温度下,金属和陶瓷相之间的溶解度相当小[1]。
它既保持有陶瓷的高强度、高硬度、耐磨损、耐高温、抗氧化和化学稳定性等特性,又有较好的金属韧性和可塑性,是一类非常重要的工具材料和结构材料。
其用途极其广泛,几乎涉及到国民经济的各个部门和现代技术的各个领域,对工业的发展和生产率的提高起着重要的推动作用,对金属陶瓷的研究已成为材料研究领域中一个非常重要的研究课题。
金属陶瓷(Cerm et)是由陶瓷(Ceramics)中的词头Cer与金属(Metal)中的词头Met结合起来构成[2]。
由于“金属陶瓷”和“硬质合金”两个学科术语没有明确的分界,所以具体材料也很难划分界线。
从材料的组元看,“硬质合金”应该归入“金属陶瓷”,I.E.Cam pbell就曾把“硬质合金”归入到“金属陶瓷”之内[2],本文采用了他的观点,即将“硬质合金”归于“金属陶瓷”。
研究金属陶瓷的目的是要制取具有良好综合性能的材料,而这些性能是仅用金属或仅用陶瓷所不能得到的。
WC-Co基金属陶瓷作为研究最早的金属陶瓷,由于具有很高的硬度(HRA80~92),极高的抗压强度(600kg/m m2),已经应用于许多领域。
但是由于W和Co资源的短缺,促使了无钨金属陶瓷的研制与开发,迄今已历经三代[4,5,6]。
第一代是二战期间,德国以Ni粘结TiC生产金属陶瓷;第二代是60年代美国福特汽车公司发明的,它添加Mo到Ni粘结相中改善TiC和其它碳化物的润湿性,从而提高材料的韧性;第三代金属陶瓷则将氮化物引入合金的硬质相,改单一相为复合相,又通过添加Co 和其它元素改善了粘结相。
金属陶瓷刀具的性能及发展
金属陶瓷刀具的性能及发展在机械加工过程中,切削加工是工业生产中最基本、最普通和最重要的方法之一,它直接影响工业生产的效率、成本和能源消耗。
提高加工效率,将会带来巨大的社会、经济效益。
近年来,陶瓷刀具产业取得了快速的发展,现代陶瓷刀具材料多为复合材料。
目前应用于刀具的陶瓷材料主要为氧化铝系、氮化硅系、硼化钛系和金属陶瓷等系列。
而其中的金属陶瓷基复合材料是上世纪三十年代逐渐发展起来的一种新型材料。
由于金属陶瓷具有硬度高、耐磨性好、导热性好等优良的综合性能而被广泛用作工具材料。
以下是金属陶瓷刀具的图片。
一、金属陶瓷刀具的发展历程金属陶瓷用于切削刀具最早始于上世纪二十年代对TiC化合物的实验研究,上世纪五十年代,TiC-Mo-Ni金属陶瓷首次作为刀具材料用于钢的高速精密切削。
它虽然具有与硬质合金不相上下的高强度和高硬度,但其韧性比较差。
为了提高金属陶瓷的韧性,改善其切削性能,上世纪七十年代人们最终开发出了一种韧性很高的细颗粒TiC-TiN基金属陶瓷。
从那时以来,金属陶瓷在刀具开发中的应用日趋广泛。
二、金属陶瓷刀具的特点及加工范围金属陶瓷刀具在硬质合金行业中一般是指TiCN/TiC/TiN为硬质相,添加Co 或Ni作为粘接相,在很多场合中,添加元素周期表地IVB、VB及VIB族金属中的一种以上的氮化物、碳化物及碳氮化物作为添加剂以增强金属陶瓷的力学、高温性能的一种刀具。
金属陶瓷刀具的特点:(1)硬度高;(2)与被加工工件材料的亲和力低,不易产生积屑瘤;(3)化学稳定性好;(4)耐热性,耐磨性好。
适合加工范围:金属陶瓷刀具适合加工各种钢件和铸铁件的半精加工和精加工,当切削深度在 2.5mm以下,每转进给量在0.25mm/r以下,每齿进给量在0.2.mm/齿以下时,金属陶瓷刀具具有出色的切削性能。
加工以上材质的金属陶瓷刀具都可以提供稳定的刀具寿命和良好的表面光洁度。
但在断续切削领域不适合金属陶瓷刀具,容易发生刀片破损现象。
金属陶瓷及金属陶瓷刀片的基本概念
金属陶瓷及金属陶瓷刀片的基本概念一、金属陶瓷1. 金属陶瓷的定义金属陶瓷英文单词cermet或ceramet是由ceramic(陶瓷)和metal(金属)结合构成的。
金属陶瓷是一种复合材料,它的定义在不同时期略有不同,如,有的定义为由陶瓷和金属组成的一种材料,或由粉末冶金方法制成的陶瓷与金属的复合材料。
《辞海》定义为:由金属和陶瓷原料制成的材料,兼有金属和陶瓷的某些优点,如前者的韧性和抗弯性,后者的耐高温、高强度和抗氧化性能等。
美国ASTM专业委员会定义为:一种由金属或合金与一种或多种陶瓷相组成的非均质的复合材料,其中后者约占15%~85%体积分数,同时在制备的温度下,金属和陶瓷相之问的溶解度相当小。
从狭义的角度定义的金属陶瓷是指复合材料中金属和陶瓷相在三维空间上都存在界面的一类材料。
2. 金属陶瓷的基本特性金属陶瓷既保持了陶瓷的高强度、高硬度、耐磨损、耐高温、抗氧化和化学稳定性等特性,又具有较好的金属韧性和可塑性。
由于“金属陶瓷”和“硬质合金”两个学科术语没有明确的分界,所以具体材料也很难划分界线,从材料的组成看,“硬质合金”应该归入“金属陶瓷”。
3. 金属陶瓷的发展历史WC-Co基金属陶瓷作为研究最早的金属陶瓷,由于具有很高的硬度(HRC 80~92),极高的抗压强度6000MPa (600kg.N/mm),已经应用于许多领域。
由于W和Co资源逐渐的短缺,促使了无钨金属陶瓷的研制与开发,迄今已历经三代:第一代是“二战”期间,德国以Ni粘结TiC生产金属陶瓷;第二代是20世纪60年代美国福特汽车公司添加Mo到Ni粘结相中改善TiC和其他碳化物的润湿性,从而提高材料的韧性;第三代金属陶瓷则将氮化物引入合金的硬质相,改单一相为复合相。
又通过添加Co相和其他元素改善了粘结相。
二、金属陶瓷刀具1. 金属陶瓷刀具的优点⑴硬度高,适合高速加工;⑵与被加工工件材料的亲和力低,不易产生积屑瘤,加工后工件光洁度高;⑶化学稳定性好,不容易与工件发生化学反应,性能稳定;⑷耐热性,耐磨性好,高温状态下硬度比较号,适合干式加工。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
TIC 刀具
(3)通用硬质合金
主要成分是碳化钨、碳化钛、碳化钽(或碳化铌)及钴。这 类硬质合金又称通用硬质合金或万能硬质合金。 其牌号由“YW”(“硬”、“万”两字汉语拼音字首)加顺 序号组成,如 YW1。
钨钛钽刀具
1.3.3 硬质合金的应用
硬质合金主要用于制造切削刀具、冷作模具、量具和耐磨零件。钨钴类合金刀 具主要用来切削加工产生断续切屑的脆性材料;钨钴钛类合金主要用来切削加工韧 性材料;通用硬质合金既可切削脆性材料,又可切削韧性材料。硬质合金也用于冷 拔模、冷冲模、冷挤压模及冷镦近年来发展的一种新型硬质合金,是以一种或几种碳化物 (WC、TiC)等为硬化相,以合金钢(高速钢、铬钼钢)粉末为 粘结剂,经配料、压型、烧结而成。钢结硬质合金具有与钢一样 的可加工能力,可以锻造、焊接和热处理。 缺点:脆性大、韧性低、难以加工成型,制约了工程结构陶瓷 发展及其应用。
表1 硬质合金的发展情况
碳化钨基硬质合金 年份
1923~1925 1930~1931 1938 1956 1959 1968~1969 1965~1978 1967~1970 1965~1975 1969~1971 1974~1977 1973~1978
无碳化钨基硬质合金 年份
1929~1931 1930~1931 1931 1931 1938 1944 1949 1950 1952~1966 1957
硬质合金
WC-Co WC- TaC( VC, NbC)-Co WC-Cr3C2-Co WC-TiC-Ta (Nb) C-Cr3C2-Co WC-TiC-HfC-Co WC-TiC-TaC (NbC)-HfC-Co TiC,TiN,Ti (CN),HfC,Hf和 Al2O3涂层的WC基合金 亚微细WC-Co 热等静压 热化学表面硬化 多晶金刚石复合的WC基硬质合金 复碳化物,碳氧化物-氮化物以及 碳化物-碳氮化物-氮化物-氧化物 复合涂层 添加Ru的复杂硬质合金
(1) 钨钴类硬质合金 由碳化钨和钴组成,常用代号有YG3、YG6、YG8等。代号中“YG” 为“硬”、“钴”两字的汉语拼音字首,后面的数字表示钴的含量 (质量分数×100)。 例如,YG8,表示平均WCo=8%,其余为碳化钨的钨钴类硬 质合金。
WC 刀具
(2)钨钴钛类硬质合金 由碳化钨、碳化钛和钴组成,常用代号有YT5、YT15、YT30 等。代号中“YT”为“硬”、“钛”两字的汉语拼音字首,后面 的数字表示碳化钛的含量(质量分数×100)。 硬质合金中,碳化物含量越多,钴含量越少,则硬质合金的硬 度、热硬性及耐磨性越高,但强度及韧性越低。 例如,YT15,表示平均WTi=15%,其余为碳化钨和钴含量的 钨钛钴类硬质合金。
1.4 烧结成型
硬质合金烧结成型就是将粉末压制成坯料,再进烧结炉加热到 一定温度(烧结温度),并保持一定的时间(保温时间),然后 冷却下来,从而得到所需性能的硬质合金材料 。 硬质合金烧结过程可以分为四个基本阶段: 1:脱除成形剂及预烧阶段,在这个阶段烧结体发生如下变化: 成型剂的脱除,烧结初期随着温度的升高,成型剂逐渐分解 或汽化,排除出烧结体,与此同时,成型剂或多或少给烧结体增 碳,增碳量将随成型剂的种类、数量以及烧结工艺的不同而改变。 粉末表面氧化物被还原,在烧结温度下,氢可以还原钴和钨的 氧化物,若在真空脱除成型剂和烧结时,碳氧反应还不强烈。粉 末颗粒间的接触应力逐渐消除,粘结金属粉末开始产生回复和再 结晶,表面扩散开始发生,压块强度有所提高。
1976~1979
制成的刀片的使用寿命可比标准的可转位刀片高出好几倍,而 且切削速也可以提高25~30%,从此获得了广泛的应用,这是 硬质合金生产发展过程中的又一个重大进展。此外,六十年代 末期引入硬质合金生产领域的热静压技术,以及七十年代移植 到硬质合金生产领域的喷雾干燥技术,使硬质合金生产工艺又 向前迈进了一大步。 我国硬质合金工业是从20世纪50年代初建设株洲硬质合金 厂开始的,50多年来,从无到有,不断发展,取得了令世人瞩 目的成就,但整体技术水平特别是高附加值制品的生产与世界 先进水平比较仍存在较大差距。
1.3 硬质合金的性能特点、分类及应用
1.3.1硬质合金的性能特点 (1)高硬度、耐磨性好、高热硬性 (2)抗压强度、弹性模量高 抗压强度高可达6000MPa,但抗弯强度 低,只有高速钢的1/3~1/2。弹性模 量很高,韧性很差。
硬质合金焊接刀片
(3)耐蚀性和抗氧化性良好,热膨胀因数比钢低 缺点:抗弯强度低、脆性大、导热性差 加工:采用电加工(电火花、线切割)和专门的砂轮磨削 1.3.2硬质合金的分类、编号
(3)高熔点材料 一些高熔点的金属和金属化合物如W、Mo、WC、TiC等,用熔炼 和铸造方法生产比较困难,可用粉末冶金方法生产,如各种金属陶 瓷、钨丝及Mo、TA、Nb等难熔金属和高温合金。 (4)特殊电磁性能材料 如多孔过滤材料,假合金材料等 缺点:由于设备和模具的限制,粉末冶金还只能生产尺寸有限 和形状不很复杂的制品,烧结零件的韧性较差,生产效率不高,成 本较高。
1.2 粉末冶金方法及其应用
20世纪初研制了一种粉末经压制成型并经烧结而制成零件或毛 坯,这种方法称粉末冶金法。 粉末冶金的应用主要有以下几 个方面: (1)减摩材料 应用最早的是含油轴承。 (2)结构材料 它是用碳钢或合金钢的粉末为 原料,采用粉末冶金方法制造结构 零件。这种制品的精度较高、表面 光洁,不需或少需切削加工即为成 品零件。 可用于制造液压泵齿轮、电钻 齿轮、凸轮等。
硬质合金
Ti-Mo2C-Ni,Cr,Mo TaC-Ni TiC-TaC-Co Tic-Cr,Mo,W,Ni,Co TiC-VC-Ni,Fe TiC-NbC-Ni,Co TiC-VC-Nb-Mo2C-Ni TiC (Mo2C,TaC)-Ni,Co-Cr TiC-可热处理钢结合金 TiC-TiB2
1968~1970 (TiMo)C (固溶体Ni,Mo,Cr) 1969~1970 TiC-TiN-Ni 1968~1973 TiC-Al2O3 1972~1975 Ti-TaN-Ni