数控机床的位置检测装置

合集下载

第四章位置检测装置

第四章位置检测装置

4)莫尔条纹移过的条纹数与光栅移过的刻线 数相等。例如,采用100线/mm光栅时,若光 栅移动了x mm(也就是移过了100×x条光栅 刻线),则从光电元件面前掠过的莫尔条纹 也是100×x条。由于莫尔条纹比栅距宽得多, 所以能够被光敏元件所识别。将此莫尔条纹 产生的电脉冲信号计数,就可知道移动的实 际距离了。
无刷式旋转变压器
它分为两大部分,即旋转变压器本体和附加变压器。附 加变压器的原、副边铁心及其线圈均成环形,分别固定于转 子轴和壳体上,径向留有一定的间隙。旋转变压器本体的转 子绕组与附加变压器原边线圈连在一起,在附加变压器原边 线圈中的电信号,即转子绕组中的电信号,通过电磁耦合, 经附加变压器副边线圈间接地送出去。这种结构避免了电刷 与滑环之间的不良接触造成的影响,提高了旋转变压器的可 靠性及使用寿命,但其体积、质量、成本均有所增加。
(4 1)
(4-2)
根据电磁学原理,转子绕组B1B2 中的感应电势则为
VB KVs sin KVm sin sin t
式中K——旋转变压器的变化; m —Vs的幅值 ; V
——转子的转角,当转子和定子的磁轴垂直时,=0。如 果转子安装在机床丝杠上,定子安装在机床底座上,则角代
第三节 旋转变压器
旋转变压器是一种常用的转角检测元件,它具
有结构简单、动作灵敏、工作可靠、对环境条件要
求低(特别是高温、高粉尘的环境)、输出信号幅
度大和抗干扰能力强等特点,缺点是信号处理比较 复杂。虽然如此,旋转变压器还是被广泛地应用于 半闭环控制的数控机床上。
一、旋转变压器的结构
旋转变压器的结构和两相绕线式异步电机的结构相似,可 分为定子和转子两大部分。定子和转子的铁心由铁镍软磁合金 或硅钢薄板冲成的槽状心片叠成。它们的绕组分别嵌入各自的

第3章数控机床的位置检测讲解

第3章数控机床的位置检测讲解

旋转变压器——抗干扰能力强、工作可靠、结构简单、 动作灵敏、信号输出幅度大,对环境无特殊要求,维护方便, 应用广泛。
脉冲编码盘——工作可靠、精度高,结构紧凑、成本低, 是精密数字控制和伺服系统中常用的角位移数字式检测元 器件,但抗污染能力差,易损坏。
激光干涉仪——精度很高,但抗震性、抗干扰能力差, 价格较贵,应用较少。
原理 1)指示光栅与标尺光栅刻度等宽。 2)平行装配,且无摩擦 3)两尺条纹之间有一定夹角 4)当指示光栅与标尺光栅相对运动时,会产生与光栅线 垂直的横向的条纹,该条纹为莫尔条纹,当移动一个栅 距时,摩尔条纹也移动一个纹距
标尺光栅
θ
莫尔条纹
应用较多的干涉条纹式光栅,是利用光的 衍射现象产生莫尔干涉条纹。当两片光栅 互相平行,其刻线相互成一小角度θ时, 两光栅有相对运动就会生明暗相间的干涉 条纹,将光源来的光经透镜变成平行光, 垂直照射在光栅上,经狭缝s和透镜由光 电元件接受,即可得到与位移成比例的电 信号。
第三章 数控机床的位置检测
第三章 数控机床的位置检测
本章主要介绍数控机床的位置检测装置
提 作用及分类,讲解光栅尺和脉冲编码器
的结构、工作原理及其应用。
要 学时:2学时
第三章 数控机床的位置检测

了解数控机床的位置检测装置作用及类型。
掌握光栅和脉冲编码器的结构特点、工作原理

及应用。
第三章 数控机床的位置检测

学生学习本章节,可结合数控中心的 数控机床来了解光栅和脉冲编码器和
等位置检测装置的结构特点、工作原

理。
第一节 概 述
一、位置检测装置的要求
位置检测装置是NC机床重要组成部分,在闭环系 统中其主要作用是检测位移量,并发出反馈信号与数 控装置的指令信号比较,如有偏差,经放大后控制执 行部件,使其朝消除偏差方向运动,直至偏差为零。

数控机床对检测装置的主要要求

数控机床对检测装置的主要要求
=kUmcos(α-θ)sinωt 转子反转时,同理有:
U2=kUmcos(α+θ) sinωt
转子感应电压的幅值随转子的偏转角而变化。测量出 幅值可测出 转角。
6.2 旋转变压器 三、旋转变压器的应用
由角位移如何计主要算内直容线位移?
将旋转变压器安装在数控机床的丝杠上,当θ角从
0°变化到360°时,表示丝杠上的螺母走了一个导程, 就间接地测量了丝杠的直线位移(导程)的大小。
U 2Km U si n tsin
6.2 旋转变压器
使用较广泛的为正余弦旋转变压器
U1s
U1c
定子
主要内容 U 2kU 1ssinkU 1ccos
1c
θ
45°
R U2 转子
1ccos
1ssin
1s
6.2 旋转变压器
1.鉴相工作方式
给定子的两个绕组通以相同幅值、相同频率,但相位
差π/2的交流主激要磁内容电压
6.2 旋转变压器
旋转变压器的分类
按有无电刷分:接触式和无接触式两种;
主要内容
按极对数分:单对极和多对极;
按输出电压与转子转角间的函数关系分:正余弦旋 转变压器、线性旋转变压器、比例式旋转变压器以 及特殊函数旋转变压器等。
6.2 旋转变压器 6.2.1旋转变压器的结构
轴承
2
机壳
3
转子铁心
4
5
定子铁心
3
主要内容
1
8
变压器
5 6 47
数控机床主要使用无刷旋转变压器,无刷旋转变压器具 有输出信号大、可靠性高、寿命长及不用维修等优点。
6.2 旋转变压器
6.2.2 旋转变压器的工作原理
原理:电磁感应主要,内当容 定子加上一定频率的 激磁电压时,通过电 磁耦合,转子绕组产 生感应电势,其输出 电压的大小取决于定 子和转子两个绕组轴 线在空间的相对位置。

数控机床位置检测装置课件

数控机床位置检测装置课件
复合式位置检测装置
结合接触式和非接触式的特点,如激光扫描仪等。特点是 测量范围大、精度高、稳定性好。
数控机床位置检测装置的发展趋势和前景
01
高精度、高稳定性
随着制造业的发展,对数控机床的加工精度要求越来越高,因此位置检
测装置的高精度、高稳定性是未来的发展趋势。
02
智能化、自动化
随着工业4.0的发展,智能化、自动化是未来的发展方向,因此位置检
测装置的智能化、自动化也是未来的发展趋势。
03
多功能、复合化
为了满足复杂加工需求,位置检测装置的多功能、复合化也是未来的发
展趋势。如将长度、角度、表面粗糙度等多参数测量集成于一体,实现
复合化的测量技术。
02
数控机床位置检测装置的工作原理
感应同步器的工作原理及结构
总结词
感应同步器是利用电磁感应原理实现位移测量的装置。
编码器具有体积小、精度高、响 应速度快等优点。
定期检查编码器的电源和信号输 出是否正常,以及与主轴的连接
是否牢固。
若出现故障,应进行检修或更换 编码器。
磁栅尺的维护与检修
01
02
03
04
磁栅尺具有安装方便、价格较 低等优点。
保持磁栅尺的清洁,避免铁屑 、粉尘等杂质的干扰。
定期检查磁栅尺的磁条是否损 坏或脱落,以及信号输出是否
应用案例二:某型数控铣床的位置检测与控制
总结词
该型数控铣床采用了磁栅尺作为位置检测装置,具有高精度、高分辨率、高可靠 性等特点。
详细描述
该数控铣床采用了磁栅尺作为位置检测装置,具有高精度、高分辨率、高可靠性 等特点。磁栅尺通过磁场感应原理,能够实时监测机床的移动量和位置,为数控 系统提供准确的反馈信息,从而实现了高精度的加工和控制。

第五章 数控机床的位置检测装置 曼初宏

第五章 数控机床的位置检测装置 曼初宏

第四节 光栅测量装置
2.光栅读数头 (1)分光读数头 如图5-15所示,从光源Q发出的光,经过透镜L1照 射到光栅G1和G2上形成莫尔条纹。 (2)垂直入射读数头 这种读数头主要用于每毫米25~125条刻线的 玻璃透射光栅测量装置,如图5-16所示。
图5-15 分光读数头
第四节 光栅测量装置
(3)反射读数头
图5-26 鉴相式测量检测电路框图
2.鉴幅式测量检测电路
第六节 编码器测量装置
一、光电式编码器的结构 光电式编码器是一种光电脉冲发生器,其最初结构就是一种光电 盘。它由光源、聚光镜、光电盘、分度狭缝、光电元件、数模转 换和方向辨别电路及数字显示装置等组成,如所示。
图5-27 光电式编码器测量装置
第六节 编码器测量装置
第五节 磁栅测量装置
图5-20 带状磁尺
第五节 磁栅测量装置
(4)圆形磁尺
图5-22 圆形磁尺
第五节 磁栅测量装置
2.磁头
图5-23 单磁头结构
第五节 磁栅测量装置
图5-24 双磁头结构
第五节 磁栅测量装置
三、磁栅测量装置的工作方式 磁栅测量是模拟测量,必须和检测电路配合才能实施检测。根据检 测方法的不同,磁栅测量可分为鉴相式测量和鉴幅式测量两种工作 方式,其中以鉴相式测量方式应用较多。 1.鉴相式测量检测电路
第一节 位置检测装置概述
2.按检测信号的选取形式不同分类 (1)数字式测量装置 该装置将被测位移量转换为脉冲个数,即数字 形式来表示。 (2)模拟式测量装置 该装置将被测位移量转换为连续变化的模拟电 量来表示,如电压变化、相位变化等,因此可直接对被测量进行检 测,无需量化处理;在小量程内可实现较高精度的测量,可用于直 接测量和间接测量。 3.按测量的绝对值不同分类 (1)增量式测量装置 它只测量相对位移量(位移增量),即每移动一 个测量单位就发出一个测量信号。 (2)绝对式测量装置 对于被测量的任意点的位置,均由一个固定的 零点计算起,每一被测点都有一个相应的测量值。

第三章 数控机床的位置检测

第三章 数控机床的位置检测
6
3.1.2 位置检测装置的分类
模拟式测量: 将被测量用连续变量来表示,如电压变化、相 位变化等。
主要用于小量程的测量,如感应同步器的一个
线距(2mm)内的信号相位变化等。
特点:
●直接测量被测的量,无需变换;
●在小量程内实现较高精度的测量,技术成熟。
7
增量式 :只测量位移量。 测量单位为0.01mm,每移动
3.2.2 鉴相测量系统 相位工作方式:
供给滑尺的激磁信号为频率、幅值相同,相
位角相差90°的交流电压。
u s u m sin t uc u m cost
14
两绕组在定尺上的感生电压:
' U 2 kus cos kU m sin t cos
U kuc cos(
脉冲编码器38结构及工作原理信号处理装置信号处理装置码盘基片透镜光源光敏元件透光狭缝光源39光电码盘随被测轴一起转动在光源的照射下透过光电码盘和光欄板形成忽明忽暗的光信号光敏元件把此光信号转换成电信号通过信号处理装置的整形放大等处理后输出
第3章
数控机床的位置检测装置
● 感应同步器位置检测装置
● 旋转变压器位置检测装置
" 2

2
) kU m cos t sin
据线性叠加原理,定尺上感应的总电压:
U 2 U U kU m sin t cos kU m cos t sin
' 2 " 2
kU m sin(t )
说明: 上式建立了感生电压U2与相位

间的关系。
15
3.2.2 鉴相测量系统
30
莫尔条纹的特点
1)放大作用 2)平均效应

数控机床对检测装置的主要要求和分类

数控机床对检测装置的主要要求和分类

数控机床对检测装置的主要要求和分类
位置检测装置的组成:位置检测装置由检测元件(传感器)和信号处理装置组成。

位置检测装置的作用:实时测量执行部件的位移和速度信号,并变换成位置掌握单元所要求的信号形式。

是闭环、半闭环进给伺服系统的重要组成部分。

闭环和半闭环数控机床的加工精度在很大程度上由位置检测装置的精度打算,在设计数控机床进给伺服系统,尤其是高精度进给伺服系统时,必需细心选择位置检测装置。

位置检测装置的精度:系统精度和辨别率。

1、数控机床对检测装置的主要要求
(1)受温、湿度影响小,工作牢靠,抗干扰力量强;
(2)在机床移动范围内满意精度和速度要求;
(3)使用维护便利,适合机床运行环境;
(4)成本低;
(5)易于实现高速的动态测量。

2、位置检测装置分类
数控系统中的检测装置分为位移、速度和电流三种类型。

(1)安装的位置及耦合方式——直接测量和间接测量;
(2)测量方法——增量型和肯定型;
(3)检测信号的类型——模拟式和数字式;
(4)运动型式——回转型和直线型;
(5)信号转换的原理——光电效应、光栅效应、电磁感应原理、压电效应、压阻效应和磁阻效应等。

第六章位置检测装置

第六章位置检测装置

V1 Vm sint
V1 Vm sint
V1 Vm sint
旋转变压器工作原理
当转子转到使它的磁轴和定子绕组磁轴垂直时转子绕组感应电压; 当转子绕组的磁轴自垂直位置转过一定角度时,转子绕组中产生的感应 电压为
V2 = KV1 sinq = KVm sinwt cosq
式中 K—变压比(即绕组匝数比); Vm—励磁信号的幅值; ω —励磁信号角频率; θ —旋转变压器转角。
脉冲,可以直接把它送到数控装置进行比较、处理。信 号抗干扰能力强、处理简单。
2. 模拟量测量 它是将被测量用连续变量来表示,如电压变化、相
位变化等。它对信号处理的方法相对来说比较复杂。
(三)
增量式测量和绝对式测量
1. 增 量 式 测 量
在轮廓控制数控机床上多采用这种测量方式,增量式测量
只 测 相 对 位 移 量 , 如 测 量 单 位 为 0.001mm , 则 每 移 动
若是n位二进制码盘,就有n圈码道,
分辨角θ=360o/2n,
码盘位数越大,所能分辨的角度越小,测量精度越高。若要提 高分辨力,就必须增多码道,即二进制位数增多。
目前接触式码盘一般可以做到9位二进制,光电式码盘可以做 到18位二进制。
自然码盘的缺点及格莱码盘 用二进制代码做的码盘,如果电刷安装不准,会使得个别电刷错位,
Φc Φccosθ
Φc
Φssinθ
Φs
θ
θ
Φs
这两个励磁电压在转子绕组中都产生了感应电压,如图所示,根 据线性叠加原理,转子中的感应电压应为这两个电压的代数和:
V2 = KVm sinwt sinq + KVm coswt cosq = KVm cos(wt -q )

数控机床的位置检测装置

数控机床的位置检测装置
模拟式测量 将被测量用连续的变量(如相位 变化、电压幅值变化)来表示的。在数控机床 上模拟式测量主要用于小量程的测量,例如 感应同步器的一个线距内信号相位变化等。
二、位置检测装置的分类(3)
直接测量和间接测量
直接测量 将检测装置直接安装在执行部件上。测量 直线位移量,常用光栅,感应同步器等检测装置。其 优点是直接反映工作台的直线位移量,测量精度高。 缺点是检测装置要和行程等长,这对大型数控机床是 一个很大的限制。
间接测量 通过测量与工作台直线运动相关联的回转 运动间接地测量工作台的直线位移,检测装置常用旋 转变压器等。间接测量使用可靠方便,无长度限制, 其缺点是测量信号加入了直线运动转变为回转运动的 传动链误差,从而影响测量精度。
三、常见位置检测装置结构及工作原理(1)
光电脉冲编码器(1)
光电脉冲编码器是一种常用角位移传感器, 属间接测量元件。它通常与驱动电动机同轴 连接。光电编码器随着电动机轴旋转,可以 连续发出脉冲信号。数控系统通过对该信号 的接收、处理和计数,即可得到电动机的旋 转角度,从而算出当前工作台的位移。
直线感应同步器的结构图例
三、常见位置检测装置结构及工作原理(6)
旋转变压器的结构与工作原理(1)
旋转变压器是一种控制用的微电机,它将机械转角变 换成电信号输出。在结构上与两相式异步电动机相似, 由定子和转子组成。定子绕组为变压器的初级,转子 绕组为变压器的次级,励磁电压接到定子绕组上。旋 转变压器结构简单,动作灵敏,对环境无特殊要求, 维护方便,抗干扰性强,工作可靠,因此在数控机床 上广泛应用。
光电脉冲编码器原理图图例
三、常见位置检测装置结构及工作原理(3)
光电脉冲编码器(3)
光电编码器的指示光栅(固定不动)上有两段条纹组A和B, 每组条纹的间距(称为节距)与圆光栅相同,而A组与B组的 条纹彼此错开1/4节距,两组条纹相对应的光电元件所感应的信 号的相位彼此相差90º。当电动机正转时,A信号超前B信号90º, 当电动机反转时B信号超前A信号90º。数控装置正是利用这一 相位关系判断电动机的转动方向,同时利用A信号(或B信号) 的脉冲数计算电动机的转角。因此采用光电编码器所构成的位 置闭环控制的分辨率主要取决于圆光栅一圈的条纹数。

第三节 数控机床的位置检测装置

第三节 数控机床的位置检测装置

直线型
长光栅、激光干涉仪 长光栅、
编码尺
绝对值式磁尺
20:40:43
一、旋转变压器 旋转变压器是一种角度测量装置,它是一种小型交流电动机。 旋转变压器是一种角度测量装置,它是一种小型交流电动机。 1.旋转变压器的结构及其特点 1.旋转变压器的结构及其特点 结构简单,动作灵敏,对环境无特殊要求,维护方便,输出信号幅度大,抗干扰 结构简单,动作灵敏,对环境无特殊要求,维护方便,输出信号幅度大, 工作可靠,广泛应用于数控机床上。 强,工作可靠,广泛应用于数控机床上。 旋转变压器在结构上和两相线饶式异步电动机相似,由定子和转子组成。定子 旋转变压器在结构上和两相线饶式异步电动机相似, 定子和转子组成。 组成 绕组为变压器的一次绕组,转子绕组为变压器的二次绕组。 绕组为变压器的一次绕组,转子绕组为变压器的二次绕组。 接线方式: 接线方式: 定子绕组通过固定在壳体上的接线柱直接引出。 定子绕组通过固定在壳体上的接线柱直接引出。 转子绕组有两种不同的引出方式。根据转子绕组两种不同的引出方式, 转子绕组有两种不同的引出方式。根据转子绕组两种不同的引出方式,旋转变 压器分有有刷式和无刷式两种结构。 压器分有有刷式和无刷式两种结构。
20:40:43
若 θ机
与转子绕组平行, 当 与转子绕组平行,即没有磁力线穿 θ 过转子绕组,因此感应电压为0, 垂直于转子绕组平面时, 过转子绕组,因此感应电压为 ,当磁通φ 垂直于转子绕组平面时,即( 机 - θ电 = ±90 ) 转子绕组中感应电压最大。在实际应用中,根据转子误差电压的大小, 时,转子绕组中感应电压最大。在实际应用中,根据转子误差电压的大小,不断修正定 即励磁幅值), ),使其跟踪 变化。 子励磁信号 θ电 (即励磁幅值),使其跟踪 θ 机 变化。 由上式可知,感应电压 E2 是以ω 为角频率的交变信号,其幅值为U msin(θ 机 − θ电) 为角频率的交变信号, 由上式可知, 已知, 的幅值, 的值, 若电气角 θ电 已知,那么只要测出 E2 的幅值,便可以间接地求出 θ 机 的值,即可以测 出被测角位移的大小。当感应电压的幅值为0时 出被测角位移的大小。当感应电压的幅值为 时,说明电气角的大小就是被测角位移 θ 的大小。旋转变压器在鉴幅工作方式时, 让感应电压的幅值为0, 电 的大小。旋转变压器在鉴幅工作方式时,不断调整 ,让感应电压的幅值为 ,用 θ电 θ电 θ机 的测量, 可通过具体电子线路测得。 代替对 的测量, 可通过具体电子线路测得。

数控机床数控机床的位置检测系统

数控机床数控机床的位置检测系统

软件板图如图6-5
第8页/共27页
中断开始 读2.45
查表得状态序号
Y 等于上一状态号码吗
N 减上一状态序号 等于01
或FF 保留本次序号 可逆计数器加
由序号查表 中断返回
图6-5 判向可逆计数软件框图
第9页/共27页
软件板图中,查表得状态序号就是根据u1′~u16′次序号的不同定义了OO~OFH十六个 状态值。事实上u1′~u16′的变化都是按次序改变的。正转时从: u1′~u16′方向依次 变化。反转时,按 u16′~u1′方向依次变化。正转时,增量总是为01H,反转时,增量总 是为0FFH。只要把此增量与可逆计数器的当前值相加并进行多位操作,便可完成可逆计 数器的操作。
旋转式感应同步器由转子1和定子2组成。用于直线式感应同步器相同的方法制成转子 绕组和定子绕组。所不同的是绕组排列成辐射状,如图6-7所示。转子绕组是单向均匀连 续的。定子绕组亦分为A和B,相对于定子绕组错开1/4节距。
第10页/共27页
第11页/共27页
使用时,对于直线式感应同步器,定尺固定在不动的部件上,滑尺固定在移动的部件上。 对于旋转式感应同步器定子固定在不动的部件上,转子固定在移动的部件上。定尺与滑尺 的两个绕组表面平行其间隙为0.05—0.25mm,定子与半径的平面绕组也平行。其间隙为 0.05—0.25mm。
(6.3.2)
当对两个绕组同时供给励磁电压,滑尺移动时,定磁绕组的总感应电势为上述两个感应
电势的代数和,即
l lA lB KuA cos KuB sin
(6.3.3)
实际使用时,绕组A和B上分别加频率与幅值均相同的正弦变化与余弦变化的励磁电压
uA um sint (6.3.4)

数控机床位置传感器

数控机床位置传感器
2020/6/22
2020/6/22
1. 增量式光电脉冲编码器亦称光电码盘、光电脉冲发生
器等。轴的每圈转动,增量式编码器提供一定数量的脉 冲。 周期性测量或者单位时间内的脉冲计数可以用来移 动的速度。 如果在一个参考点后面脉冲数被累加,计算 值就代表了转动角度或行程的参数。双通道编码器输出 脉冲之间相差为90°。 能使接收脉冲的电子设备接收轴 的旋转感应信号,因此双通道编码器可用来实现双向的 定位控制。另外,三通道增量式旋转编码器每一圈产生 一个称之为零位信号的脉冲。
第五章 数控机床位置传感器
2020/6/22
4.3位置检测装置 4.3.1 位置检测元件的分类及要求 1.位置检测元件的分类
位置检测元件是数控机床闭环伺服系统的重要组成部分。 它的作用是检测工作台的位置和速度的实际值,并向数控装 置或伺服装置发送反馈信号,从而构成闭环控制。检测元件 通常利用光或磁的原理完成对位置或速度的检测。位置检测 系统所能测量的最小位移量称为分辨率。
条纹间距B。若光栅尺的栅距为W,光栅尺相对位移两条 明带或两条暗带之间的距离称为莫尔条纹间距B。若光栅 尺的栅距为W,光栅尺相对位移一个栅距W,莫尔条纹也 上下移动一个条纹间距B,则光电元件输出信号也就变化
2020/6/22
脉冲编码器检测方式的特点如下 (1) 检测方式是非接触式的, 无摩擦和磨损, 驱动力矩小。
(3) 由于照相腐蚀技术的提高,可以制造高分辨率、 高精 度的光电盘。母盘制作后,复制很方便,且成本低。
(2) 由于光电变换器性能的提高, 可得到较快的响应速度。 (4) 抗污染能力差, 容易损坏。
7
2020/6/22
当标尺光栅和指示光栅的线纹方向不平行,相互倾斜一
个很小交角θ时,中间保持0.01~0.1 mm的间隙,在平

数控机床常用检测装置

数控机床常用检测装置

详细描述
旋转变压器与砂轮的驱动电机连接,实时监 测砂轮的转速和角度信息。旋转变压器将监 测到的信号转化为电信号,传输给数控系统 。数控系统根据接收到的信号,精确控制砂 轮的转速和磨削深度,确保磨削过程的稳定 性和精度。
THANKS
感谢观看
故障二
测量数据不准确
排除方法
对检测装置进行校准,检查测量元件是否正常,如 有需要更换测量元件。
机械运动不顺畅
故障三
排除方法
对机械部分进行润滑,检查机械结构是否正常,如有需 要调整或更换机械部件。
05
CATALOGUE
数控机床检测装置的应用案例分析
应用案例一:光电编码器在数控车床中的应用
总结词
光电编码器在数控车床中主要用于检测 主轴的转速和位置,实现精确的切削控 制。
特点
不同类型的检测装置具有不同的特点和应用范围,需要根据具体需求进行选择。接触式检测装置具有 较高的测量精度和可靠性,但易受环境影响;非接触式检测装置具有非接触、高精度、高速度等优点 ,但价格较高,对环境要求较高。
检测装置的发展趋势
发展趋势
随着数控技术的不断发展,数控机床检测装置正朝着高精度、高速度、智能化、集成化等方向发展。未来,随着 传感器技术、计算机技术和人工智能技术的不断进步,数控机床检测装置将更加智能化、自动化和高效化。
01
直线光栅尺是一种高精度的测量传感器,用于测量直线位 移,其测量精度可达±1μm。
02
它由标尺光栅和读数头两部分组成,标尺光栅固定在直线 导轨的一端,读数头与导轨滑块联接并随之运动。
03
当滑块移动时,与读数头相联的指示光束通过标尺光栅的缝隙 部分,在光电元件上形成位移量,该位移量通过后续电路的处

数控复习 判断题

数控复习 判断题

1.开环控制数控机床没有位置检测装置,闭环控制数控机床的位置检测装置安装在机床刀架或工作台等执行部件上。

2.闭环和半闭环控制数控机床都有位置检测装置,半闭环控制机床的位置检测装置安装在伺服电机或丝杠的端部。

3.点位控制数控机床的特点是机床的运动部件只能够实现从一个位置到另一个位置的精确定位,从一个位置到另一个位置的移动轨迹则无严格要求。

4.直线控制数控机床的特点是机床的运动部件不仅要实现从一个位置到另一个位置的精确定位,而且要求机床工作台或刀具以给定的进给速度,沿平行于坐标轴的方向或与坐标轴成45度的方向进行直线移动和切削加工。

5.轮廓控制数控机床的特点是机床的运动部件能够实现两个或两个以上坐标轴的联动控制,使刀具与工件间的相对运动符合工件轮廓要求。

6.两轴半联动除了控制两个坐标轴联动外,还同时控制第三坐标轴做周期性进给运动,可以实现简单曲面的轨迹控制。

7.数控机床采的有是右手笛卡儿坐标系,大拇指指向X轴的正方向,食指指向Y轴的正方向,中指指向Z轴的正方向,刀具远离工件的方向作为坐标轴的正方向。

8.在确定数控机床坐标轴时,一般先确定Z轴,后确定其他轴。

通常将平行于机床主轴的方向定为Z坐标轴,刀具远离工件的方向作为Z轴的正方向。

9.对于工件旋转类机床(如数控车床、外圆磨床)等,X轴方向是在工件的径向上,且平行于横滑座。

10.在数控铣床上加工零件时,为了减少加工面上接刀的痕迹,提高轮廓表面的质量,应避免法向切入、切出,最好沿零件轮廓延长线从切向切入和切出工件。

11.对于刀具旋转类机床,如果Z轴是垂直的,则面对刀具主轴向立柱方向看,X轴的正方向为向右方向,如果Z轴是水平的,则从刀具主轴后端向工件方向看,X轴的正方向为向右方向。

12.选择铣刀类型应与工件表面形状与尺寸等相适应,加工较大的平面应选择面铣刀;加工凹槽、较小的台阶面及平面轮廓应选择立铣刀;加工空间曲面、模具型腔或凸模成形表面等多选用模具铣刀;加工各种直的或圆弧形的凹槽、斜角面、特殊孔等应选用成形铣刀。

位置检测装置

位置检测装置
上一页 下一页 返回
导入案例
真维斯品牌的成功,归功于卓越的产品质量和优秀的产品设 计,得益于10余年来建立的品牌形象和销售网络。更为关键 的是,真维斯有着独到的品牌发展理念:紧跟流行而不引导流 行,做到“名牌的大众化”。真维斯董事长杨勋先生对此的 解释是:“如果真维斯的市场定位是去引导流行或是去创造流 行,真维斯可能走不了这么长的路。我们将真维斯定位在紧 跟流行,就是要及时将世界上最新的、正在流行的东西拿过 来,加入自己的设计风格,放到中国市场上。最广大的休闲 服消费群就在中档服装的这70% ~ 75%消费者中,如果 放弃了这个市场而去做高端市场,胜算就会低很多。
个测量信号。其优点是测量装置比较简单,任何一个对中点 都可作为测量起点。在轮廓控制的数控机床上大都采用这种 测量方式,典型的测量元件有感应同步器、光栅、磁尺等。
上一页 下一页 返回
第一节 概述
缺点是在增量式测量系统中,移距是靠对测量信号计数后 读出的,一旦计数有误,此后的测量结果将全错;另外在发生 某种事故(如断电,刀具损坏等)时,事故排除后,不能再找 到事故前执行部件的正确位置,这是由于这种测量方式没有 一个特定的标志。
上一页 下一页 返回
第一节 概述
.测量装置比较简单,脉冲信号抗干扰能力强。 模拟式测量是将被测的量用连续变量来表示,如电压变化,
相位变化等,数控机床所用模拟式测量主要用于小量程的测 量。在大量程内作精确的模拟式测量时,对技术要求较高。 如旋转变压器,感应同步器等,模拟式测量的特点是: .直接测量被测量,无须变换; .在小量程内实现较高精度的测量,技术较为成熟。
上一页 下一页 返回
导入案例
真维斯“休闲王国”为品牌与最忠实的消费者建立了更活跃 的沟通渠道。消费者只要注册、登录真维斯“休闲王国”, 就可以发现当今流行的休闲时尚是什么,真维斯最近又有哪 些新品促销推广活动。对于那些持有VIP卡的忠实消费者, 真维斯在这里也为其提供了更多获取回报的机会。比如真维 斯每年会举办“激赏之旅”会员活动,组成声势浩大的北京 免费观光团,饱览北京名胜,参观每年一度的中国真维斯杯 休闲装设计大赛总决赛等。这些活动的告知、参与都在社区 中进行。真维斯目前拥有数十万的VIP会员,其中18 ~25 岁的消费者占到了多数,这些年轻的消费者喜爱时尚且已经 习惯了与网络为伴的生活,他们通过网络形成共同的“兴趣 团体”,每天都在进行与真维斯品牌形象、应季新品有关的 信息传播和交流互动。

《数控机床结构原理与应用》第2章 数控机床检测装置

《数控机床结构原理与应用》第2章 数控机床检测装置
上一页 下一页 返回
2.1 概述
数控机床中测量传感器按形状一般有直线型和旋转型两种。 直线型测量工作台的直线位移。其测量精度主要取决于测量 元件的精度,不受机床传动精度的影响。旋转型测量与工作 台直线运动相关联的回转运动,间接测量工作台的直线位移。 其测量精度取决于测量元件和机床传动链两者的精度。
上一页 下一页 返回
2.2 编码器(码盘)
绝对式光电编码器转过的圈数则由RAM保存,断电后由后备 电池供电,保证机床的位置即使断电或断电后又移动过也能 够正确的记录下来。因此采用绝对式光电编码器进给电动机 的数控系统只要出厂时建立过机床坐标系,则以后就不用再 做回参考点的操作,而保证机床坐标系一直有效。绝对式光 电编码器与进给驱动装置或数控装置通常采用通讯的方式, 反馈位置信息。
1.增量式测量与绝对式测量 按照检测装置的编码方式可分为增量式测量和绝对式测量。 (1)增量式测量 增量式测量是只测量位移增量,即工作台每移动一个基本单
位长度单位,测量装置便发出一个测量信号,此信号通常是 脉冲形式。
上一页 下一页 返回
2.1 概述
其优点是检测装置比较简单,能做到高精度,任何一个对中 点均可作为测量起点,其缺点是一旦计数有误,此后结果全 错。发生故障时,事故排除后,再也找不到正确位置。典型 的增量式测量装置有光栅和增量式光电编码器。
上一页 下一页 返回
2.1 概述
3.数字式测量与模拟式测量 (1)数字式测量 数字式测量以量化后的数字形式表示被测的量。其特点是测
量装置简单,信号抗干扰能力强;被测量量化后转换成脉冲 个数,便于显示处理;测量精度取决于测量单位,与量程基 本无关。典型的数字式测量装置有光电编码器、接触式编码 器和光栅。 (2)模拟式测量 模拟式测量是将被测的量用连续的变量表示,如用电压变化、 相位变化来表示。在大量程内作精确的模拟式检测,在技术 上有较高的要求,数控机床中模拟式测量主要用于小量程测 量且实现高精度测量。其特点是直接对被测量进行检测,无 需量化;在小量程内可以实现高精度测量;可用于直接检测 和间接检测。典型的模拟式测量装置有旋转变压器、感应同 步器和磁栅。

数控机床的检测装置

数控机床的检测装置
另外,在转子每转1周时,转子的输出电压将随旋转 变压器的极数不同而不止一次地通过零点,必须在线路 中加相敏检波器来辨别转换点和区别不同的转向。
旋转变压器
• 此外,还可以用3个旋转变压器按1:1、10:1和100:1 的比例相互配合串接,组成精、中、粗3级旋转变压 器测量装置。如果转子以半周期直接与丝杠耦合(即 “精”同步),结果使丝杠位移10mm,则“中”测 旋转变压器工作范围为100mm,“粗”测旋转变压 器的工作范围为1000mm。
转子正转时, U1s、U1c在转子绕组中产生感应 电压,经叠加,得转子感应电压U2
旋转变压器
转子正转时的感应电压: U2=kUmsinωtsinθ+kUmcosωtcosθ=lt;1; θ—相位角,转子偏转角。
转子反转时的感应电压:
U2=kUmcos(ωt+θ) (ωt+θ) ~ θ严格对应关系, 检测出(ωt+θ),可得θ ,可得被测轴的角位移。
如果将旋转变压器安装在数控机床的丝杠上,
当θ角从0°变化到360°时,表示丝杠上的螺母走
了一个导程,这样就间接地测量了丝杠的直线位 移(导程)的大小。
旋转变压器
当测全长时,由于普通旋转变压器属于增量 式测量装置,如果将其转子直接与丝杠相联,转子转动 一周,仅相当于工作台1个丝杠导程的直线位移,不能反 映全行程,因此,要检测工作台的绝对位置,需要加一 台绝对位置计数器,累计所走的导程数,折算成位移总 长度。
增量式检测方式测量位移增量,移动一个测量单位 就发出一个测量信号。 优点:检测装置较简单,任何一个对中点均可作为测量 起点;轮廓控制常采用 缺点:对测量信号计数后才能读出移距,一旦计数有误, 此后的测量结果将全错;发生故障时(如断电、断刀等) 不能再找到事故前的正确位置,必须将工作台移至起点 重新计数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数控机床的位置检测装置
1.数控机床对检测装置的基本要求:
1)稳定可靠、抗干扰能力强。数控机床的工作环 境存在油污、潮湿、灰尘、冲击振动等,检测装置要能 够在这样的恶劣环境下工作稳定,并且受环境温度影响 小,能够抵抗较强的电磁干扰。
2)满足精度和速度的要求。为保证数控机床的精 度和效率,检测装置必须具有足够的精度和检测速度, 位置检测装置分辨率应高于数控机床的分辨率一个数量 级。
3)安装维护方便、成本低廉。受机床结构和应用 环境的限制,要求位置检测装置体积小巧,便于安装调 试。尽量选用价格低廉,性能价格比高的检测装置。
数控机床加工精度,在很大程度上取决于数控机
床位置检测装置的精度,因此,位置检测装置是数控机
床的关键部件之一,它对于提高数控机床的加工精度有
决定性的作用。
数控机床的位置检测装置
光电编码器的测量精度取决于它所能分辨的最小角度, 而这与光栅盘圆周的条纹数有关,即分辨角
分辨角α=360°/条纹
第三讲 数控机床的位置检测装置
数控机床的位置检测装置
在这一讲,我们将主要学习: 数控机床中位置检测装置所起的作用 数控机床对位置检测装置性能的要求 常用位置检测装置的结构和工作原的作用与要求 位置检测装置是数控系统的重要组成部分,在第二
讲中我们知道:在闭环或半闭环控制的数控机床中,必 须利用位置检测装置把机床运动部件的实际位移量随时 检测出来,与给定的控制值(指令信号)进行比较,从而 控制驱动元件正确运转,使工作台(或刀具)按规定的轨 迹和坐标移动。
数控机床的位置检测装置
图5.1 增量式光电编码器示意原理
增量式光电编码器检测装置由光源、聚光镜、光栅盘、 光栅板、光电管、信号处理电路等组成。光栅盘和光 栅板用玻璃研磨抛光制成,玻璃的表面在真空中镀一 层不透明的铬,然后用照相腐蚀法,在光栅盘的边缘 上开有间距相等的透光狭缝。在光栅板上制成两条狭 缝,每条狭缝的后面对应安装一个光电管。
3)按位置检测元件的运动形式分类: 直线型: 测量直线位移
回转型: 测量角位移
数控机床的位置检测装置
3.位置检测装置的主要性能指标 1)精度 符合输出量与输入量之间特定函数关 系的准确程度称作精度,数控机床用传感器要满 足高精度和高速实时测量的要求。 2)分辨率 位置检测装置能检测的最小位置变 化量称作分辨率。分辨率应适应机床精度和伺服 系统的要求。分辨率的高低,对系统的性能和运 行平稳性具有很大的影响。检测装置的分辨率一 般按机床加工精度的1/3~1/10选取(也就是 说,位置检测装置的分辨率要高于机床加工精 度)。
2.位置检测装置的分类 1)按输出信号的形式分类:
数字式: 将被测量以数字形式表示,测量信号一 般为电脉冲。
模拟式: 将被测量以连续变化的物理量来表示 (电压相位 / 电压幅值变化)
数控机床的位置检测装置
2)按测量基点的类型分类: 增量式: 只测量位移增量,并用数字脉冲的个数 表示单位位移的数量。 绝对式: 测量的是被测部件在某一绝对坐 标系中的绝对坐标位置。
6.零漂与温漂 零漂与温漂是在输入量没有变化 时,随时间和温度的变化,位置检测装置的输出 量发生了变化。传感器的漂移量是其重要性能标 志,零漂和温漂反映了随时间和温度的改变,传 感器测量精度的微数小控机变床的位化置检。测装置
二、旋转编码器 旋转编码器是一种旋转式的角位移检测装置,在数控机
床中得到了广泛的使用。旋转编码器通常安装在被测轴 上,随被测轴一起转动,直接将被测角位移转换成数字 (脉冲)信号,所以也称为旋转脉冲编码器,这种测量方 式没有累积误差。旋转编码器也可用来检测转速。 按输出信号形式,旋转编码器可以分为增量式和绝对式 两种类型。 常用的增量式旋转编码器为增量式光电编码器,其原理 如图5.1所示。
数控机床的位置检测装置
图5.3 光电编码器的输出波形
光电编码器的输出波形如图5.3所示。通过 光栏板两条狭缝的光信号A和B,相位角相 差90°,通过光电管转换并经过信号的放大 整形后,成为两相方波信号。
数控机床的位置检测装置
为了判断光栅盘转动的方向,可采用图5.4a)的逻辑控制
电路,将光电管A、B信号(也就是中的0°及90 ° 信号)
数控机床的位置检测装置
3.灵敏度 输出信号的变化量相对于输入信号变 化量的比值为灵敏度。实时测量装置不但要灵敏 度高,而且输出、输入关系中各点的灵敏度应该 是一致的。
4.迟滞 对某一输入量,传感器的正行程的输出 量与反行程的输出量的不一致,称为迟滞。数控 伺服系统的传感器要求迟滞小。
5.测量范围和量程 传感器的测量范围要满足系 统的要求,并留有余地。
数控机床的位置检测装置
当光栅盘随被测工作轴一起转动时,每转过一个缝隙, 光电管就会感受到一次光线的明暗变化,使光电管的电 阻值改变,这样就把光线的明暗变化转变成电信号的强 弱变化,而这个电信号的强弱变化近似于正弦波的信号, 经过整形和放大等处理,变换成脉冲信号。通过计数器 计量脉冲的数目,即可测定旋转运动的角位移;通过计 量脉冲的频率,即可测定旋转运动的转速,测量结果可 以通过数字显示装置进行显示或直接输入到数控系统中
数控机床的位置检测装置
图5.2增量式光电编码器外形结构图
增量式光电编码器外形结构见图5.2。实际应用的光电编码 器的光栅板上有两组条纹A、A和B、B,A组与B组的条纹 彼此错开1/4节距,两组条纹相对应的光敏元件所产生的 信号彼此相差90°相位,用于辨向。此外,在光电码盘的里 圈里还有一条透光条纹C(零标志刻线),用以每转产生一个 脉冲,该脉冲信号又称零标志脉冲,作为测量基准。
放大整形后变成a、b两组方波。a组分成两路,一路直 接微分产生脉冲d,另一组经反相后再微分得到脉冲e。 d、e两路脉冲进入与门电路后分别输出正转脉冲f和反 转脉冲g。 (运用我们学过的数字电子技术知识同学们 从时序图可以分析出) b组方波作为与门的控制信号, 使光电盘正转时f有脉冲输出,反转时g有脉冲输出,这 样就可判别光电编码器的旋转方向。
相关文档
最新文档