2013年人教版初二上数学期中测试题
2013人教版初二数学期中试题及答案
2013~2014学年上学期期中学生学习能力评价初二数学试卷一、选择题(各选项中只有一项是正确的,共10小题,每小题3分,共30分)1. 观察下图中各组图形,其中成轴对称的为 ( )A .3个B .2个C . 1个D .4个2.如果一个三角形的三条高的交点恰好是这个三角形的一个顶点,那么这个三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定3.下列图形不具有稳定性的是 ( ) A .锐角三角形 B .直角三角形 C .等腰梯形 D .等腰直角三角形4. 若一个多边形的每个外角都等于60°,则它的内角和等于 ( ) A .180° B .720° C .1080° D .540°5. 一个多边形的对角线的条数与它的边数相等,这个多边形的边数是 ( ) A .5 B .6 C .7 D .86.已知三角形的周长为9,且三边长都是整数,则满足条件的三角形共有 ( ) A.2个 B.3个 C.4个 D.5个7. 如图,在Rt △ABC 中,∠B=90°,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知∠BAE=10°,则∠C 的度数为 ( )A .40°B .50°C .60°D .70°8.如果两个三角形的两边和其中一边上的高分别对应相等,那么这两个三角形的第三边所对的角 ( )A. 相等B. 不相等C.互余或相等D.互补或相等9.已知△ABC 不是等边三角形,P 是△ABC 所在平面上一点,P 不与点A 重合且又不在直线BC 上,要想使△PBC 与△ABC 全等,则这样的P 点有 ( ) A .1个 B .2个 C .3个 D .4个10. 如图所示,∠E=∠F=90°,∠B=∠C ,AE=AF ,结论: ①EM=FN ;②CD=DN ;③∠FAN=∠EAM ;④△ACN ≌△ABM .其中正确的有 ( )A .1个B .2个C .3个D .4个二、填空题(共10小题,每小题3分,共30分)11.已知等腰三角形的一个内角是500,则它的另外两个内角是 .12.如图,AO 平分∠BAC ,AB=AC ,图中有 ______ 对三角形全等.13.如图所示,点F 、C 在线段BE 上,且∠1=∠2,AC=DF ,若使△ABC ≌△DEF ,则需补充一个条件是 .第12题图 第13题图 第14题图14.如图,正方形ABCD 的边长为5cm ,则图中阴影部分的面积为______cm 2.15.已知P 1点关于x 轴的对称点P 2(5-2a ,2a -7)是第三象限内的整点(横、纵坐标都为整数的点,称为整点),则P 1点的坐标是__________.16.如图,在△ABC 中,AC 的垂直平分线交AC 于E ,交BC 于D ,△ABD 的周长是16cm ,AC=5cm ,则△ABC 的周长是__________.第16题图 第18题图17.在平面镜里看到背后墙上电子钟示数为这时的实际时间应该是 .18.如图,∠1+∠2+∠3+∠4=______度.19.若一个多边形截去一个角后,变成六边形,则原来多边形的边数可能是_________.20.如图,在直角三角形ABC 中,∠BAC=90°,作BC 边上的高AD 0,再作△ABD 中AB 边上的高D 0D 1,按照同样的方法 作下去,作出D 1D 2,D 2D 3,…,当作 出D n-1D n 时,图中共出现____个直角 三角形.三、解答题(共6小题,共40分)21.作图题:(6分)(1)画出△ABC 关于直线MN 对称的△A 1B 1C 1.(2)请计算出△ABC 的面积.22.如图,在△ABF 和△CDE 中,AB=CD, ∠A=∠C 且AE=CF,求证: △ABF ≌△CDE. (6分)23.如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 面积是282cm ,AB =8cm ,AC =6cm ,求DE 的长.(6分)24.如图, ∠ACD 是△ABC 的外角,CE 平分∠ACD,F 是CA 延长线上的一点,FG ∥EC 交AB 于点G,若∠ECD=62°,∠ABC=40°,求∠FGA 的度数.(7分)25.如图,已知AD 是BC 边上的中线,E 、F 在直线AD 上,且DF=DE,试判断BE 与CF 的关系?请说明理由.(7分)B CDF E A GF EDC B A26.如图(1),AB=CD,AD=BC,O是AC的中点,过点O的直线分别与AD、BC相交于点M、N,那么∠1与∠2有什么关系?请说明理由.若过点O的直线旋转至图(2)、(3)的情况,其余条件不变,那么∠1与∠2又有何关系,请直接写出,不用证明.(8分)初二数学期中考试答案一、ABCBA BADCC二、11、50°、80°或65°、65°12、413、∠A=∠D或∠B=∠E或BC=EF或BF=CE14、12.515、(-1,1)16、21cm17、20:1518、28019、5,6,720、2n+3三、21、(1)略(2)3.522、略23、DE=4cm24、22°25、平行且相等26、∠1=∠2图(2)∠1=∠2图(3)∠1=∠2。
初二数学人教版期中测试卷
一、选择题(每题4分,共40分)1. 下列各数中,无理数是()A. √4B. 0.333…C. √9D. √32. 下列各数中,绝对值最大的是()A. -2B. -3C. 2D. 33. 下列各数中,有理数是()A. πB. √2C. 1/2D. 无理数4. 下列各数中,正数是()A. -2B. 0C. 2D. -√25. 下列各数中,负数是()A. -2B. 0C. 2D. √26. 下列各数中,非负有理数是()A. -2B. 0C. 2D. -√27. 下列各数中,正有理数是()A. -2B. 0C. 2D. -√28. 下列各数中,负无理数是()A. -2B. 0C. 2D. √29. 下列各数中,非负无理数是()A. -2B. 0C. 2D. √210. 下列各数中,正无理数是()A. -2B. 0C. 2D. √2二、填空题(每题4分,共40分)11. 3/4 + 2/5 = ______12. 2√2 - √2 = ______13. (2/3) × (-4) = ______14. (-2/3) ÷ (2/3) = ______15. (-3/4) × (-4/5) = ______16. 2√2 ÷ √2 = ______17. √9 × √16 = ______18. √4 ÷ √2 = ______19. (-√3) × (-√3) = ______20. 2√2 + 3√2 = ______三、解答题(每题10分,共40分)21. (1)已知a=2,b=3,求a+b和a-b的值。
(2)已知a=√2,b=√3,求a+b和a-b的值。
22. (1)计算下列各式的值:① (3/4) × (-4/5) - (2/3) ÷ (2/3)② √2 + √3 - √6(2)化简下列各式:① 2√2 - √2 + 3√2② √4 ÷ √2 + √9 × √16四、应用题(每题10分,共20分)23. 某商品原价为x元,打折后价格为y元,已知打折后的价格是原价的0.8倍,求原价和打折后的价格。
2013年最新人教版八年级数学上册第一学期期中试卷
图4NMDCBA 图2ABED FCD 图3ACFEB图1NP O MACB黑虎庙镇中学2013新人教版八年级数学上册第一学期期中模拟试卷一.填空题(本题共10题,每小题3分,共30分)1.△ABC ≌△DEF ,且△ABC 的周长为18,若AB =5,AC =6,则EF = .2. 点A (2,-1)关于x 轴对称的点的坐标是 .3.如图1,PM =PN ,∠BOC =30°,则∠AOB = .4.如图2,在△ABC 中,AB =AC ,AD ⊥BC 于D 点,E 、F 分别为DB 、DC 的中 点,则图中共有全等三角形 对.5. 已知△ABC ≌△DEF , 且∠A =30°, ∠E =75°, 则∠F = .6.如图3,在△ABC 和△FED , A D =FC ,AB =FE ,当添加条件 时, 就可得到△ABC ≌△FED .(只需填写一个你认为正确的条件)7.如图4, 已知AB =AC ,∠A =40°,AB 的垂直平分线MN 交AC 于点D ,则∠DBC = 度. 8.等腰三角形中有一个角等于500,则另外两个角的度为 . 9. 等腰三角形的两边分别为1和2,则其周长为 .10. 如右图,△ABC 的顶点分别为)3,0(A ,B(-4,0),)0,2(C ,且△BCD 与△ABC 全等,则点D 坐标可以是 。
二.选择题(本题共10题,每小题3分,共30分)1等腰三角形一腰上的高与另一腰的夹角为60,则顶角的度数为 ( ) A.30° B.30°或150° C.60150或D.60或1202. .如图,把长方形ABCD 沿EF 对折后使两部分重合, 若∠AEF=110°则∠1=( )A.30°B.35°C.40°D.50° 3.下列图形是轴对称图形的有( )班级:姓名: 考号:密封 线ABCxyA B DCM NE FCBA DA.2个B.3个C.4个D.5个4.下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等.其中真命题的个数有()A.3个B.2个C.1个D.0个5.已知:在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=32,且BD:DC=9:7,则点D到AB边的距离为()A.18B.16C.14D.126. 某地为了发展旅游业,要在三条公路围成的一块平地建一个度假村,使度假村到三条公路的距离相等,这个度假村的选址地点共有()处A 1B 2C 3D 47等腰三角形ABC在直角坐标系中,底边的两端点坐标是(-2,0),(6,0),则其顶点的坐标能确定的是()A.横坐标 B.纵坐标C.横坐标及纵坐标 D.横坐标或纵坐标8. 如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠NB. AM∥CNC.AB=CDD. AM=CN9.下列各组图形中,是全等形的是()A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形10. 如右图:∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于()A.5 B.4 C. 3 D.2三.解答题(共60分)21、如图,在所给正方形网格图中完成下列各题:(用直尺画图,保留痕迹)(1) 画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2) 在DE上画出点Q,使△QAB的周长最小.EACBDBCE AF22.已知:如图, AB=AC ,AD=AE .求证:BD=CE .23在ABC △中,AB ⊥CB ,∠ABC=90°,E 为CB 延长线上一点,点F 在AB 上,且AE ⊥CF .(1)求证:Rt Rt ABE CBF △≌△; (2)若∠CAE=60°,求∠ACF 的度数.24.如图,△ABC 中,∠BAD=90°,AB=AD ,△ACE 中,∠CAE=90°,AC=AE. 求证:.(1)∠CDA =∠EBA (2)线段DC 与BE 有何关系?25如图,AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F ,连接E,F证明:(1)AE=AF ; (2)DA 平分∠EDF ;(3)请你猜想:AD 与EF 有何关系,不必说明理由。
2013-2014学年人教版初二上期中考试数学试题含答案
迈陈中学2013-2014学年度八年级上册期中测试数学试卷(满分150分,考试时间90分钟)姓名: 班级: 座号: 成绩:一、选择题:本大题共12小题,每小题4分,满分48分.在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题(每小题3分,共30分)1、下面有4个汽车标志图案,其中是轴对称图形的是 ( )① ② ③ ④A 、②③④B 、①②③C 、①②④D 、①②④ 2、如图,已知MB =ND ,∠MBA =∠NDC ,下列条件中不能判定△ABM ≌△CDN 的是( )A .∠M =∠NB . AM ∥CNC .AB = CD D . AM =CN3、如图,△ABC ≌△CDA ,AB=5,BC=6,AC=7,则AD 的边长是--( )A .5B .6C .7D .不能确定4、已知等腰三角形的两边长分别为4cm 、8cm ,则该等腰三角形的周长是( )A .12cmB .16cmC .16cm 或20cmD .20cm5、已知:如图,AC=AE ,∠1=∠2,AB=AD ,若∠D=25°,则∠B的度数为 ( )A 、25°B 、30°C 、15°D 、30°或15°6、画∠AOB 的角平分线的方法步骤是:①以O 为圆心,适当长为半径作弧,交OA 于M 点,交OB 于N 点; ②分别以M 、N 为圆心,大于MN 21的长为半径作弧,两弧在∠AOB 的内部相交于点C ; ③过点C 作射线OC. 射线OC 就是∠AOB 的角平分线。
这样作角平分线的根据是 ( ) A 、SSS B 、SAS C 、 ASA D 、 AAS7、如图所示,已知△ABC 中,∠BAC =90°,AB =AC ,∠BAD =30°,AD =AE , 则∠EDC 的度数为( )A 、10°B 、15°C 、20°D 、30°ABDC MNADBC第5题第3题第2题8、在△ABC 内一点P 满足PA=PB=PC ,则点P 一定是△ABC ( )A 、三条角平分线的交点B 、三边垂直平分线的交点C 、三条高的交点D 、三条中线的交点 9、一个多边形的内角和是外角和的2倍,则这个多边形的边数是( ) A 、4 B 、5 C 、6 D 、710、如图,点P 为∠AOB 内一点,分别作出点P 关于OA 、OB的对称点1P 、2P ,连接1P ,2P 交OA 于M ,交OB 于N ,若1P 2P =6,则△PMN 的周长为( ) A 、4 B 、5 C 、6 D 、79.下列图形中:①平行四边形;②有一个角是30°的直角三角形;③长方形;④等腰三角形. 其中是轴对称图形有( )个 A .1个B .2个C .3个D .4个第10题图 第11题图 第12题图11.如图,ABC △中,AB AC =,30A ∠=,DE 垂直平分AC ,则B C D ∠的度数为( ) A.80 B.75 C.65 D.4512.如图 所示,AB = AC ,要说明△ADC ≌△AEB ,需添加的条件不能..是( ) A .∠B =∠CB. AD = AEC .∠ADC =∠AEB D. DC = BE二、填空题:本大题共4小题,每小题4分,共16分)13、如图,在△ABC 中,∠C =90°,BD 平分∠ABC ,若CD =3cm ,则点D 到AB 的距离为____________cm.ABD ECA BCEDF14、如图把Rt △ABC (∠C=90°)折叠,使A 、B 两点重合,得到折痕ED •,•再沿BE 折叠,C 点恰好与D 点重合,则∠A 等于________度.15、已知点P 到x 轴、y 轴的距离分别是2和3,且点P 关于y 轴对称的点在第四象限,则点P 的坐标是 .16、如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,CD 是斜边AB 上的高,若AB =8,则BD=__________.三、解答题(本大题共10小题,其中17-18每小题6分,19-22每小题8分,23-25每小题10分,26题12分,共86分。
新版人教版2013年秋八年级上数学期中检测卷(11-13章)
新课标2013秋八年级数学期中检测卷一、选择题1、下列说法正确的是( )A :全等三角形是指形状相同的两个三角形 C :全等三角形的周长和面积分别相等 C :全等三角形是指面积相等的两个三角形 D :所有的等边三角形都是全等三角形 2、如图:若△ABE ≌△ACF ,且AB=5,AE=2,则EC 的长为( ) A :2B :3C :5D :2.5 3、如图:在△ABC 中,AB=AC ,∠BAD=∠CAD ,则下列结论:①△ABD ≌△ACD ,②∠B=∠C ,③BD=CD ,④AD ⊥BC 。
其中正确的个数有( )A :1个B :2个C :3个D :4个4、如图:AB=AD ,AE 平分∠BAD ,则图中有( )对全等三角形。
A :2 B :3 C :4 D :5 www.12999.c o m5、如图:在△ABC 中,AD 平分∠BAC 交BC 于D ,AE ⊥BC 于E ,∠B=40°,∠BAC=82°,则∠DAE=( )A :7° B :8° C :9° D :10°6、如图:在△ABC 中,AD 是∠BAC 的平分线,DE ⊥AC 于E ,DF ⊥AB 于F ,且FB=CE ,则下列结论::①DE=DF ,②AE=AF ,③BD=CD ,④AD ⊥BC 。
其中正确的个数有( ) A :1个 B :2个 C :3个 D :4个(第2题)FECBA (第4题)EDCBA(第3题)D CBA7、如图:EA ∥DF ,AE=DF ,要使△AEC ≌△DBF ,则只要( ) A :AB=CD B :EC=BF C :∠A=∠D D :AB=BC8、如图:在不等边△ABC 中,PM ⊥AB ,垂足为M ,PN ⊥AC ,垂足为N ,且PM=PN ,Q 在AC 上,PQ=QA ,下列结论:①AN=AM ,②QP ∥AM ,③△BMP ≌△QNP ,其中正确的是( ) A :①②③ B :①② C :②③ D :①9、在等腰三角形、等边三角形、正方形和长方形中,对称轴的条数分别是( )。
人教版数学八年级上册期中测试题
人教版数学八年级上册期中测试题(总13页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2永昌职中2011-2012学年度第一学期八年级数学期中试题一、选择题:1、.下列图形是轴对称图形的有( )A :1个B :2个C :3个D :4个 2、在,A B CDE,3-364,π2,3.中,无理数的个数是( ) A .1个 B .2个 C .3个D .4个3、下列语句:16 4 ()222-=±③平方根等于本身的数是0和1384,其中正确的有( )个 A .1 B. 24、下图中是轴对称图形的字母有( )。
M X S EA 、4个B 、3个C 、2个D 、1个5、等腰三角形的周长是18cm ,其中一边长为4cm ,其它两边长分别为( )A.4cm,10cm B.7cm,7cmC.4cm,10cm或7cm,7cm D.无法确定6、黄瑶拿一张正方形的纸按下图沿虚线连续对折后剪去带直角的部分,然后打开后的形状是()7、等腰三角形的一个内角是50。
,则另外两个角的度数分别是( )(A)65°,65°. (B)50°,80°.(C)65°,65°或50°,80°. (D)50°,50°.8、如图7,已知:△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()M NA B DC=AC B.∠BAE=∠CAD=DC =DE9、下列说法错误的是()A、1的平方根是1B、-1的立方根是-134C 、2是2的算术平方根 D 、-4是2)16(-的平方根 10、如图8,已知ND MB =,NDC MBA ∠=∠,下列条件中不能判定△ABM ≌△CDN 的是( ) (A )N M ∠=∠ (B )CD AB = (C )CN AM =(D )AM ∥CN11、如图,在三角形ABC 中,∠C=90,AC=4cm,AB=7cm,AD 平分∠BAC 交BC 于点D ,DE ⊥AB 于点E ,则EB 的长是 ( )A .3cm, D.不能确定12、如图,一块三角形的玻璃打碎成了三块,某同学要到玻璃店配一块与此玻璃一样形状、大小完全一样的玻璃,最省事的办法是带哪一块去 ( ) A. ① B.② C. ③ D.不能确定 13、下列说法正确的是: ( )A.一直角边相等的两个直角三角形全等;B.斜边相等的两个直角三角形全等;C.斜边相等的两个等腰直角三角形全等D.一边相等的两个等腰直角三角形全等14、下列说法错误的是 ( )5A.关于某直线对称的两个图形一定能够重合;B.两个全等的三角形一定关于某直线对称;C.轴对称图形的对称轴至少有一条;D.长方形是轴对称图形 15、下列两点是关于x 轴对称的点是 ( )A. (-1,3)和(1,-3)B. (3,-5)和(-3,-5)C.(-2,4)和(2,-4)D.(5,-3)和(5,3)16、等腰三角形的一边长7cm,另一边长5cm ,那么这个三角形的周长是( ); ; cm; 或19cm 17的立方根值为( )± C. 4 D. 2 18、下列说法正确的是( )A a2 的算术平方根是aB 49的平方根根是—7C a 的倒数是a 1D a 的相反数是—a19、下列数中,有理数的个数是( )—31 ,2,, 2π, 0 , —25, — , 33 .A 3B 4C 5D 620、若10 x ,则x,x 1,2x ,x 的大小关系( )6A x>x 1>2x >xB x >x>x 1>2xC x 1>x >x>2xD 2x >x 1> x>x21、若∠AOP=∠BOP=15°,PC ∥OA,PD ⊥OA,PC=4,则PD=( ) A 4 B 3 C 2 D 122、如图,⊿ABC 中边AB 的垂直平分线分别交BC 、AB 于点D 、E,AE=3, ⊿ADC 的周长为9㎝,则 ⊿ABC 的周长( )A 10㎝B 12㎝C 15㎝D 17㎝23、如图:数轴上表示1,2的对应点分别为A,B ,点B 关于点A 的对称点为C ,则点C 表示的数是( ) A 2-1 B 1-2 C 2-2 D 2-224 )A 35000 B 3005.0- C 305.0- D 3500 25、已知等腰三角形的一边长为4cm ,另一边为8cm ,则它的周长是( ) A 16㎝ B 20㎝ C 12㎝ D 16㎝或20㎝23题图26、下列说法:①一条直角边和斜边上的高对应相等的两个直角三角形全等②有两条边相等的两个直角三角形全等③若两个直角三角形面积相等,则它们全等④两边和其中一边的对角对应相等的两个三角形全等。
2013秋新人教版数学八年级上期中测试题
八年级上期期中质量检测数学试卷一、选择题1、2008年5月12日,四川汶川发生了特大地震.震后,国内外纷纷向灾区捐物捐款,截至5月26日12时,捐款达308.76亿元.把它用科学记数法表示为( ) A .930.87610⨯元B .103.087610⨯元C .110.3087610⨯元D .113.087610⨯元2、已知2222()8 ()12 a b a b a b +=-=+,,则的值为( ) A .10 B .8 C .20 D .43、如图,将边长为8㎝的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN ,则线段CN 的长是( ) A .3cm B .4cm C .5cm D .6cm4、若k bac a c b c b a =+=+=+,则直线y=kx+k 的图象必经过( )A 、第一、二象限B 、第二、三象限C 、第二、三、四象限D 、以上均不正确5、如图,小正方形边长为1,连接小正方形的三个顶点,可得△ABC ,则AC 边上的高为( ). A.322 B.3510C.355D.4556、如图4,在直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是双曲线3y x=(0x >)上的一个动点,当点B 的横坐标逐渐增大时,OAB △的面积将会( ) A .逐渐增大 B .不变 C .逐渐减小 D .先增大后减小y OA B 图47、已知x 为整数,且918232322-++-++x x x x 为整数,则所有符合条件的x 的值的和是( )A 、11B 、12C 、13D 、148、如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE +的和最小,则这个最小值为( )A .23B .26C .3D .69、若A 、B 两点关于y 轴对称,且点A 在双曲线xy 21=上,点B 在直线y=x+3上,设点A 的坐标为(a ,b),则=+abb a ( ) A 、1 B 、2 C 、16 D 、1710、 设“●,▲,■”分别表示三种不同的物体,如下图所示,前两架天平保持平衡,如果要使第三架天平也平衡,那么“?”处应放“■”的个数为 ( )A. 5B. 4C. 3 D 。
2013年新人教版八年级数学上期中试题
2013年新人教版八年级数学上期中试题 一、选择题(每小题3分,共30分)1.一个多边形内角和是10800,则这个多边形的边数为 ( )A 、 6B 、 7C 、 8D 、 9 2.能将三角形面积平分的是三角形的( )A 、 角平分线B 、 高C 、 中线D 、外角平分线3.已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( )A .13cmB .6cmC .5cmD .4cm4.三角形一个外角小于与它相邻的内角,这个三角形是( )A .直角三角形B .锐角三角形C .钝角三角形D .属于哪一类不能确定 5.下列说法正确的是( )A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等 6.如图所示,已知△ABE ≌△ACD ,∠1=∠2,∠B =∠C , 下列不正确的等式是( )A.AB =ACB.∠BAE =∠CADC.BE =DCD.AD =DE7. 在△ABC 和△A B C '''中,AB =A B '',∠B =∠B ',补充条件后仍不一定能保证△ABC ≌△A B C ''',则补充的这个条件是( ) A .BC =B C '' B .∠A =∠A ' C .AC =A C '' D .∠C =∠C '8.如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( ) A.△ACE ≌△BCD B.△BGC ≌△AFC C.△DCG ≌△ECF D.△ADB ≌△CEA9.与三角形三个顶点距离相等的点,是这个三角形的( ) A . 三条中线的交点B . 三条角平分线的交点C . 三条高的交点D . 三边的垂直平分线的交点 10.下列轴对称图形中,对称轴条数最少的是( )A . 等腰直角三角形B . 等边三角形C . 正方形D . 长方形二、填空题(每小题3分,共24分)11.如图,一面小红旗其中∠A=60°, ∠B=30°,则∠BCD= 。
2013-2014学年八年级数学(上)人教版期中检测题参考答案
期中检测题参考答案** 解析:第1,2,4个图形都是轴对称图形,第3个图形不是轴对称图形.** 解析:∠ABD与∠BAD,∠BAD与∠DAC,∠DAC与∠ACD,∠ABC与∠ACB分别互余. ** 解析:A中,1.5+2.3=3.8<3.9,不能构成三角形;B中,3.5+3.6=7.1,不能构成三角形;C中,6+1>6,6-1<6,能构成三角形;D中,4+4=8<10,不能构成三角形.故选C.** 解析:△AOB≌△COD,△AOD≌△COB,△ACD≌△CAB,△ABD≌△CDB.** 解析:设∠B=x°,则∠BAD=∠CAD= x°,∠DAE=x°,故∠ADE=2 x°.又AE⊥BC,故∠ADE+∠DAE=90°,即2x°+x°=90°,故x=36,则∠ACB=180°-3×36°=72°.** 解析:根据角平分线的性质求解.** 解析:根据已知条件不能得出CD=DE.** 解析:三角形的外角和为360°.** 解析:①角是轴对称图形,对称轴是角的平分线所在的直线,而非角平分线,故①错误;②等腰三角形至少有1条对称轴,至多有3条对称轴,等边三角形有3条对称轴,故②正确;③关于某直线对称的两个三角形一定可以完全重合,所以肯定全等,故③正确;④两图形关于某直线对称,对称点可能重合在直线上,故④错误.综上有②③两个说法正确,故选B.** 解析:由题图及已知可得∠A=∠A,AB=AC,故添加条件∠B=∠C,由ASA可得△ABD≌△ACE;添加条件AD=AE,由SAS可得△ABD≌△ACE;添加条件∠BDC=∠CE B,可得∠B=∠C,由ASA可得△ABD≌△ACE.添加条件BD=CE不能说明△ABD≌△ACE.故选D.** 解析:△和△,△和△,△和△,△和△,共4对.12. ③解析:根据轴对称图形的特征,观察发现选项①②④都正确,选项③下子方法不正确.13. 108 解析:本题考查了线段的垂直平分线的性质、等腰三角形的性质及判定、三角形的内角和、角平分线的定义.如图,连接OB,OC,易证△AOB≌△AOC.又∵OD是AB的垂直平分线,∴AO=BO=CO,∴点A,B,C在以点O为圆心,以AO为半径的圆上,∴∠BOC=2∠BAC=108°,∠BA O=∠ABO=∠CAO=∠ACO=27°.又∵EO=EC,∴∠OBC=∠OCB=∠COE=36°,∴∠OEC=180°-∠COE-∠OCB=180°-36°-36°=108°.14.直角解析:如图,∵垂直平分,∴.又∠15°,∴∠∠15°,∠∠∠30°.又∠60°,∴∠∠90°,∴∠90°,即△是直角三角形.15.3+1 解析:要使△PEB的周长最小,需PB+PE最小,根据“轴对称的性质以及两点之间线段最短”,可知当点P与点D重合时,PB+PE最小,如图.在Rt△PEB中,∠B=60°,PE=CD=1,可求出BE=33,PB=233,所以△PEB的周长的最小值=BE+PB+PE=3+1.点拨:在直线同侧有两个点M,N时,只要作出点M关于直线的对称点M′,连接M′N交直线于点P,则直线上的点中,点P到M,N的距离之和最小,即PM+PN的值最小.**°解析:∠ANB+∠MNC=180°-∠D=180°-90°=90°.17. 108°解析:如图,∵在△中,,∴∠=∠.∵,∴∠∠∠1.∵∠4是△的外角,∴∠∠∠2∠.∵,∴∠∠∠.在△中,∠∠∠180°,即5∠180°,∴∠36°,∴∠∠∠2∠°°,第17题答图即∠108°.**°解析:如图,、的垂直平分线分别交于点、,则,,则∠∠,∠∠.设∠∠°,∠∠°,因为∠115°,所以∠115°.根据三角形内角和定理,180°,解得∠50°.19.分析:作出线段,使与关于对称,借助轴对称的性质,得到,借助∠∠,得到.根据题意有,将等量关系代入可得.解:如图,在上取一点,使,连接..可知与关于对称,且,∠∠所以∠∠2∠,所以∠∠,所以.又,由等量代换可得.20.解:(1)∠BAC=180°-42°-72°=66°(三角形内角和为180°).(2) ∠ADC=∠B+∠BAD(三角形的一个外角等于和它不相邻的两内角之和).∵AD是角平分线,∴∠BAD=∠CAD(角平分线定义),∴∠ADC=42°+33°=75°.21.解:∵ AD 是角平分线,∴∠EAD =∠CAD (角平分线定义). ∵ AE =AC (已知),AD =AD (公共边相等),∴ △AED ≌△ACD (SAS ).∴ ED =DC (全等三角形对应边相等).∵ BD =3,ED =2,∴ BC =5.22.解:(1)∵ AD ⊥BC ,∴ ∠ADC =∠ADB =90°.∵ BE ⊥AC ,∴ ∠BEA =∠BEC =90°.∴ ∠DBH +∠C=90°,∠DAC +∠C =90°,∴ ∠DBH =∠DAC .(2)∵ ∠DBH =∠DAC (已证),∠BDH =∠CDA =90°(已证),AD =BD (已知),∴△BDH ≌△ADC (ASA ).23.解:因为垂直平分,所以. 因为,所以. 因为△的周长为,所以 故.24. 解:∵ AD ⊥DB ,∴∠ADB =90°. ∵ ∠ACD =70°,∴∠DAC =20°. ∵ ∠B =30°,∴∠DAB =60°,∴∠CAB =40°. ∵ AE 平分∠CAB ,∴∠BAE =20°,∴∠AED =50°.25. 解:∵ ∠1=∠2,∴ ∠BAC =∠DAE .)(,32对顶角相等DFC AFE ∠=∠∠=∠ ,∴ E C ∠=∠.又∵ AC =AE ,∴ △ABC ≌△ADE (ASA ).26.解:小林的思考过程不正确.过程如下:连接BC ,∵ AB =DC ,AC =DB ,BC =BC ,∴△ABC ≌△DCB (SSS ), ∴ ∠A =∠D (全等三角形对应角相等).又∵ ∠AOB =∠DOC (对顶角相等),AB =DC (已知), ∴△ABO ≌△DCO (AAS ).。
人教版八年级数学上册北京13中期中试题.docx
初中数学试卷桑水出品北京市第十三中学2012—2013学年度八年级数学期中测试本试卷分试卷和答题纸两部分,试卷第1 页至第6页,答题纸第1 页至第4 页,共100分,考试时间100分钟。
请在答题纸第1、3 页左侧密封线内书写班级、姓名、准考证号。
考试结束后,将答题纸交回。
一.选择题 (本题共30分,每小题3分) 1.下列二次根式中,最简二次根式是( ) A .x 9B . 23xC .42-xD .x 2.02.下列各组数中,能构成直角三角形的三边长的是( )A. 4,5,6B. 1,1C. 6,8,11D. 5,12,23 3. 已知反比例函数y =5m x-的图象在第二、四象限,则m 的取值范围是 A. m≥5 B. m>5 C. m≤5 D. m<5 4. 下列命题中错误..的是 ( ) A. 对角线相等的四边形是矩形 B. 两组对边分别相等的四边形是平行四边形C. 矩形的对角线相等 D . 平行四边形的对边相等 5.下列变形中,正确的是( )A .(23)2=2×3=6B .2)52(-=-52 C .169+=169+ D .)4()9(-⨯-=49⨯6.已知(-2,1y ),(-1,2y ),(1,3y )在反比例函数y=-x1的图象上,则下列结论 正确的是( )EDA A .1y <2y <3yB .3y <1y <2yC .1y >2y >3yD . 3y <2y < 1y 面积相等的三角形(不包括...△ADE ....)共有( )个 A. 3 B. 4 C. 5 D. 6 8.在同一坐标系中,函数ky x=(k≠0)和y kx k =-+(k≠0)的图象大致是() xyOxyO x yOxyOA B CD9. 如图,在直角坐标系中,将矩形OABC 沿OB 对折,使点A 落在A 1处,已知OA=3,AB=1,则点A 1的坐标是( ).A . (33,) B . (33,) C . (2323,) D . (2321,) 10.如图,是一个边长6分米的立方体ABCD---EFGH ,一只甲虫在棱EF 上且距离F 点1分米的P 处.它要 爬到顶点D ,需要爬行的最短距离是( )分米. A.13 B.12C.11D.157二.填空题(11-15每小题2分,16-20每小题3分,共25分) 11.在函数x y -=2中,自变量x 的取值范围是12.在△ABC 中,D 、E 分别是AB 、AC 的中点,若DE=2cm ,则BC=___ __cm . 13.若03)2(2=-++y x ,则y x -的值为___________. 14. 如图,在□ABCD 中,E BC AC ,⊥为AB 中点,OA B CDE若CE=3,则CD= 15.如图,点P 是反比例函数xky =(k≠0)图象上的一点, PD ⊥x 轴于点D,若△POD 的面积为1,则这个反比例函数的解析式为 .16. 矩形ABCD 中,对角线AC 、BD 相交于点O ,∠AOB=60°,AC=10cm ,则 BC=_____cm .17.已知一次函数y 1=kx+b 与反比例函数y 2=kx 在同一直角坐标系中的图象如图所示,则当y 1<y 2时,x 的取值范围是 .18.如图,已知ABCD 中,AE ⊥BC 交BC 延长线于E ,AF⊥DC 于F ,∠EAF=30︒,AE=3厘米,AF=2厘米,则 ABCD的周长为 厘米.19.如图,将矩形纸片ABCD 沿对角线AC 折叠,使点B 落到点B′的位置,AB′与CD 交于点E .若AB=8,DE=3,P 为线段AC 上的任意一点,PG⊥AE 于G ,PH⊥EC 于H ,则PG+PH 的值 .20.Rt△ABC 中,∠BAC=90°,AB=AC=2,以AC 为一边,在△ABC 外部作等腰直角三角形 ACD ,则线段BD 的长为 。
人教版八年级上册数学期中测试题及答案
人教版八年级上册数学期中测试题及答案八年级数学试题一、选择题(每题3分,共24分)1.下列图案中是轴对称图形的有()A.1个B.2个C.3个D.4个2.如果一个有理数的平方根和立方根相同,那么这个数是()A.±1B.1C.0D.无法确定3.下列说法:①用一张底片冲洗出来的2张1寸相片是全等形;②所有的正五边形是全等形;③全等形的周长相等;④面积相等的图形一定是全等形。
其中正确的是()A.①②③B.①③④C.①③D.③4.将一矩形纸片按如图方式折叠,BC、BD为折痕,折叠后AB与EB在同一条直线上,则∠CBD的度数()A.大于90°B.等于90°C.小于90°D.无法确定5.81的平方根是()A.9B.-9C.3D.-36.估计20的算术平方根的大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间7.如图1所示,将矩形纸片先沿虚线AB按箭头方向向右对折,接着将对折后的纸片沿虚线CD向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是()ACBD8.如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是△ABC、△BCD的角平分线,则图中的等腰三角形有()A.5个B.4个C.3个D.2个二、填空题(每题4分,共32分)9.无理数-3的相反数是_______,绝对值是___________.10.在-3,-3,-1,这四个实数中,最大的是________,最小的是___________.11.以下是一个简单的数值运算程序:输入x平方-8开立方输出结果当输入x的值为-4时,则输出的结果为___________.12.已知等腰三角形的一个内角为70°,则另外两个内角的度数是___________.13.如图,△ABD≌△ACE,则AB的对应边是_________,∠BAD的对应角是______.14.如图,AD∥BC,∠ABC的平分线BP与∠BAD的平分线AP相交于点P,作PE⊥AB于点E.若PE=2,则两平行线AD与BC间的距离为___________.15.在图中,点P在角AOB的内部,点M和N是分别关于直线OA和OB对称于点P的点。
【人教版】数学八年级上学期《期中检测试卷》带答案
【答案】D
【解析】
【分析】
运用△ABC≌△ECD求出∠ACB=∠D=62°,再运用三角形内角和定理求出∠B即可.
【详解】∵△ABC≌△ECD,∠A=48°,∠D=62°,∴∠ACB=∠D=62°,∴∠B=180°-∠ACB-∠A=180°-62°-48°=70°.
10.若△ABC≌△A1B1C1,且∠A=100°,∠B=50°,则∠C1=_______.
【答案】30°
【解析】
【分析】
根据三角形的内角和等于180°求出∠C,再根据全等三角形对应角相等解答即可.
【详解】∵∠A=100°,∠B=50°,∴∠C=180°﹣∠A﹣∠B=180°﹣100°﹣50°=30°.
14.Rt△ABC两直角边的长分别为6cm和8cm,则斜边上的中线长为______
15.在△ABC中,若三条边的长度分别为3、4、5,则这个三角形的面积是______
16.如图,将一根长24厘米的筷子,置于底面直径为6厘米,高为8厘米的圆柱形水杯中,则筷子露在杯子外面的长度至少为_____厘米.
17.在等腰三角形中,马虎同学做了如下探究:已知一个角是60°,则另两个角是唯一确定的(60°,60°);已知一个角是90°,则另两个角也是唯一确定的(45°,45°);已知一个角是120°则另两个角也是唯一确定的(30°,30°).由此马虎同学得出结论:在等腰三角形中,已知一个角的度数,则另两个角的度数是唯一确定的,马虎同学的结论是_______的.(填”正确”或”错误”)
A.38°B.48°C.62°D.70°
5.下列轴对称图形中,对称轴条数最多的是()
A.线段B.角C.等腰三角形D.等边三角形
2013八年级(上)期中数学试卷
6CAD23514EDBC′FCD ′AAB D八年级2013-2014(上)期中数学试卷(满分120分,时间120分钟) 出卷:王老兮一、选择题(本大题共10个小题;每小题3分,共30分。
每小题给出的四个选项中,只有一项是符合题目要求的)1、下列运算正确的是-----------------------------------------------( )A 、x 2·x 3=x 6B 、(x 2)3=x 5C 、x 3+x 3=2x 6D 、(-2x)3=-8x 32、如图,已知ND MB =,NDC MBA ∠=∠,下列条件中不能..判定⊿ABM ≌⊿CDN 的是------------( ) A.N M ∠=∠ B.CD AB = AM = D.AM ∥CN3、下面有4个汽车标志图案,其中是轴对称图形的是-------------------( )① ② ③ ④A 、①②③B 、②③④C 、①②④D 、①③④4.下列说法正确的是-----------------------------------------------( ) A 、等边三角形三条中线都是对称轴; B 、全等的等腰三角形一定能重合; C 、等腰三角形三条高线的交点在其内部; D 、等边三角形一定是全等三角形. 5.如图所示,把一个长方形纸片沿EF 折叠后,点D ,C 分别落 在D ′,C ′的位置.若∠EFB =65°,则∠AED ′=( ) A. 25° B. 50° C. 65° D. 70° 6、直角三角形两锐角的角平分线所交成的角的度数是( )A .45°B .135°C .45°或135°D .都不对 7. 如右图,D 、E 是△ABC 中AC 、BC 上的点,△ADB ≌△EDB , △BDE ≌△CDE ,则下列结论:①AD=DE ;②BC=2AB ; ③∠1=∠2=∠3;④∠4=∠5=∠6.其中正确的有--( ) A.1个 B.2个 C.3个 D.4个 8、如图,把长方形纸片ABCD 纸沿对角线折叠,设重叠部分为△EBD ,那么,有下列说法:① △EBD 是等腰三角形,EB=ED ②折叠后∠ABE 和∠CBD 一定相等 ③折叠后得到的图形是轴对称图形④△EBA 和△EDC 一定是全等三角形。
人教版八年级数学上册《期中考试综合测试卷》测试题及参考答案
人教版八年级数学上册期中考试综合测试卷(时间:120 分钟,满分:120 分)一、选择题(本大题共10 小题,每小题3 分,共30 分.每小题给出的四个选项中,只有一项符合题目要求)1.某同学手里拿着长为3 和2 的两根木棍,想要找一根长为整数的木棍,用它们围成一个三角形,则他所找的这根木棍的长可以是( ).A.1,3,5B.1,2,3C.2,3,4D.3,4,52.下列四个图形:其中是轴对称图形,且对称轴的条数为2 的图形的个数是( ).A.1B.2C.3D.43.如图,在△ABC 中,点D 在AB 上,点E 在AC 上,DE∥BC.若∠A=62°,∠AED=54°,则∠B 的大小为( ).A.54°B.62°C.64°D.74°4.在四边形ABCD 中,∠A=∠B=∠C,点E 在边AB 上,∠AED=60°,则一定有( ).A.∠ADE=20°B.∠ADE=30°C.∠ADE=1 ADCD.∠ADE=1ADC∠∠2 35.如图,AC 是线段BD 的垂直平分线,则图中全等三角形的对数是( ).A.1B.2C.3D.46.在平面直角坐标系中,点P(-20,a)与点Q(b,13)关于y 轴对称,则a+b 的值为( ).A.33B.-33C.-7D.77.如图,在△ABC 中,∠BAC=90°,∠C=30°,AD⊥BC 于点D,BE 是∠ABC 的平分线,且交AD 于点P, 交AC 于点E.如果AP=2,那么AC 的长为( ).A.8B.6C.4D.28.如图,已知AE=CF,∠AFD=∠CEB,添加下列一个条件后,仍无法判定△ADF≌△CBE 的是( ).A.∠A=∠CB.AD=CBC.BE=DFD.AD∥BC9.如图,A,B,C 三点在同一条直线上,∠A=52°,BD 是AE 的垂直平分线,垂足为点D,则∠EBC 的度数为( ).A.52°B.76°C.104°D.128°10.如图,过边长为1 的等边三角形ABC 的边AB 上的一点P 作PE⊥AC 于点E,Q 为BC 的延长线上一点.当PA=CQ 时,连接PQ 交AC 边于点D,则DE 的长为( ).A.13 B.12C.23D.不能确定二、填空题(本大题共6 小题,每小题4 分,共24 分)11.如图,在△ABC 中,AB=AC,∠A=36°,BD,CE 分别为∠ABC,∠ACB 的平分线,且相交于点O,则图中等腰三角形共有个.12.边长相等的正五边形与正六边形按如图所示拼接在一起,则∠ABC= 度.13.如图,在Rt△ABC 中,∠BAC=90°,∠B=30°,BC=8,AD⊥BC 于点D,则DC= .14.如图,在4×4 的正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7= .15.已知等腰三角形的两边长a,b 满足|a-b-2|+ 2�-3�-1=0,则此等腰三角形的周长为.16.如图,在△ABC 中,∠B=90°,AC=DC,∠D=15°,AB=18 cm,则CD 的长为cm.三、解答题(本大题共8 小题,共66 分)17.(6 分)如图,已知△ABC.(1)画出BC 边上的高AD 和中线AE;(2)若∠B=30°,∠ACB=130°,求∠BAD 和∠CAD 的度数.18.(6 分)△ABC 在平面直角坐标系中如图所示,其中点A,B,C 的坐标分别为(-2,1),(-4,5),(-5,2).(1)作△ABC 关于直线l:x=-1 对称的△A1B1C1,其中点A,B,C 的对应点分别为A1,B1,C1;(2)写出点A1,B1,C1 的坐标.19.(6 分)如图,点C,F,E,B 在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE.写出CD 与AB 之间的关系, 并证明你的结论.20.(8 分)两个大小不同的等腰直角三角尺按如图①所示放置,图②是由它抽象出的几何图形,点B,C,E 在同一条直线上,连接DC.(1)请找出图②中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)求证:DC⊥BE.21.(8 分)如图,在△ABC 中,AB=AC,点D,E 分别在AC,AB 上,BD=BC,AD=DE=BE,求∠A 的度数.22.(8 分)如图,已知D,E,F 分别是△ABC 三边上的点,BF=CE,且△DBF 和△DCE 的面积相等.求证:AD 平分∠BAC.23.(12 分)如图①,②,③,点E,D 分别是等边三角形ABC,正方形ABCM,正五边形ABCMN 中以点C 为顶点的相邻两边上的点,且BE=CD,DB 交AE 于点P.(1)图①中,∠APD 的度数为;(2)图②中,∠APD 的度数为,图③中,∠APD 的度数为;(3)根据前面的探索,你能否将本题推广到一般的正n 边形的情况?若能,写出推广问题和结论;若不能, 请说明理由.24.(12 分)如图,已知△DCE 的顶点C 在∠AOB 的平分线OP 上,CD 交OA 于点F,CE 交OB 于点G.(1)如图①,若CD⊥OA,CE⊥OB,则图中有哪些相等的线段?请直接写出你的结论: .(2)如图②,若∠AOB=120°,∠DCE=∠AOC,试判断线段CF 与线段CG 的数量关系,并加以证明.答案与解析一、选择题1.C 设他所找的这根木棍的长为x,由题意得3-2<x<3+2,∴1<x<5.∵x 为整数,∴x=2,3,4,故选C.2.C3.C4.D 如图,在△AED 中,∵∠AED=60°,∴∠A=180°-∠AED-∠ADE=120°-∠ADE.在四边形 DEBC 中,∵∠DEB=180°-∠AED=180°-60°=120°,∴∠B=∠C=(360°-∠DEB-∠EDC )÷2=120 -1EDC. ° ∠2∵∠A=∠B=∠C ,∴120°-∠ADE=120 -1 EDC. ° 2∠∴∠ADE=1 EDC. ∠2 ∵∠ADC=∠ADE+∠EDC=1 EDC+∠EDC=3EDC ,∴∠ADE=1 ∠ ∠ 2 2ADC.故选D .∠ 35.C 全等三角形有 3 对,分别为 Rt △ABO ≌Rt △ADO ,Rt △CDO ≌Rt △CBO ,△ADC ≌△ABC.6.A 点(x ,y )关于 y 轴对称的点是(-x ,y ),故 b=20,a=13,则 a+b=33,故选A .7.B8.B ∵AE=CF ,∴AE+EF=CF+EF ,即 AF=CE.∠� = ∠�,选项A,在△ADF 和△CBE 中, A = C ,∠A � = ∠C �,∴△ADF ≌△CBE (ASA);选项B,根据 AD=CB ,AF=CE ,∠AFD=∠CEB 不能推出△ADF ≌△CBE;A = C,选项C,在△ADF 和△CBE 中, ∠A�= ∠C�,A = C,∴△ADF≌△CBE(SAS);选项D,∵AD∥BC,∴∠A=∠C,易知△ADF≌△CBE(ASA).故选B.9.C ∵BD 是AE 的垂直平分线,∴AB=BE.∴∠E=∠A=52°,∴∠EBC=∠E+∠A=104°.故选C.10.B 如图,过点P 作PM∥BC,交AC 于点M.易知△APM 是等边三角形.∵PE⊥AM,∴AE=EM.∵PM∥CQ,∴∠PMD=∠QCD,∠MPD=∠Q.又PM=PA=CQ,∴△PMD≌△QCD.∴CD=DM,∴DE=ME+DM=1(AM+MC)=1AC=1,故选B.2 2 2二、填空题11.8 设CE 与BD 的交点为点O.∵AB=AC,∠A=36°,∴∠ABC=∠ACB=180°-36°=72°.2∵BD 是∠ABC 的平分线,∴∠ABD=∠DBC=1 ABC=36°=∠A,∠2∴AD=BD.同理,∠A=∠ACE=∠BCE=36°,AE=CE.∴∠DBC=∠BCE=36°,∴OB=OC.∵∠DBC=36°,∠ACB=72°,∴∠BDC=180°-72°-36°=72°,∴BD=BC,同理CE=BC.∵∠BOC=180°-36°-36°=108°,∴∠ODC=∠DOC=∠OEB=∠EOB=72°.∴CD=CO,BO=BE.∴△ABC,△ADB,△AEC,△BEO,△COD,△BCE,△BDC,△BOC 都是等腰三角形,共8 个.12.24 13.214.315°由题图可知∠4=1×90°=45°,∠1 和∠7 所在的三角形全等,2∴∠1+∠7=90°.同理,∠2+∠6=90°,∠3+∠5=90°,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=3×90°+45°=315°.15.11 或13 由题意可得a-b-2=0,2a-3b-1=0,解得a=5,b=3,即三角形的三边长为5,5,3 或3,3,5. 所以此等腰三角形的周长为11 或13.16.36 在△ACD 中,∵AC=DC,∠D=15°,∴∠D=∠DAC=15°.∵∠ACB 是△ACD 的一个外角,∴∠ACB=∠D+∠DAC=15°+15°=30°.在Rt△ABC 中,∠ACB=30°,∴AC=2AB=2×18=36(cm),即CD=36 cm.三、解答题17.解(1)如图.(2)∠BAD=90°-30°=60°(直角三角形的两个锐角互余),∠ACD=180°-130°=50°(邻补角的定义),∠CAD=90°-50°=40°(直角三角形的两个锐角互余).18.解(1)如图.(2)A1(0,1),B1(2,5),C1(3,2).19.证明CD 与AB 之间的关系为CD=AB,且CD∥AB.∵CE=BF,∴CF=BE.A = C,在△CDF 和△BAE 中, ∠A�= ∠C�,A = C,∴△CDF≌△BAE.∴CD=AB,∠C=∠B,∴CD∥AB.20.(1)解题图②中△ABE≌△ACD.证明如下:∵△ABC 与△AED 均为等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°.∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD.∴△ABE≌△ACD.(2)证明由(1)知△ABE≌△ACD,∠ACD=∠ABE=45°.又∠ACB=45°,∴∠BCD=∠ACB+∠ACD=90°.∴DC⊥BE.21.解∵AD=DE,∴∠A=∠2.∵DE=BE,∴∠3=∠4.又∠2=∠3+∠4,∴∠4=1 2=1 A.∠∠2 2∵BD=BC,∴∠1=∠C.又∠1=∠4+∠A=1 A+∠A=3 A,∠∠2 2∴∠C=3 A.∠2∵AB=AC,∴∠ABC=∠C=3 A.∠2在△ABC 中,∵∠A+∠ABC+∠C=180°,∴∠A+3 A+3 A=180°,即4∠A=180°,∠∠2 2∴∠A=45°.22.证明如图,作DM⊥AB 于点M,DN⊥AC 于点N.∵△DBF 和△DCE 的面积相等,1BF ·DM=1CE ·DN. 2 2 ∵BF=CE ,∴DM=DN.又 DM ⊥AB ,DN ⊥AC ,∴AD 平分∠BAC.23.解 (1)60° (2)90° 108°(3) 能.如图,点 E ,D 分别是正 n 边形 ABCM …中以点 C 为顶点的相邻两边上的点,且 BE=CD ,BD与 AE 交于点 P ,则∠APD的度数为(�-2)×180°.� 24.解 (1)CF=CG ,OF=OG.(2)CF=CG.证明如下:如图,过点 C 作 CM ⊥OA 于点 M ,CN ⊥OB 于点 N ,则∠CMF=∠CNG=90°.①又 OC 平分∠AOB ,∴CM=CN ,②∠AOC=∠BOC.又∠AOB=120°,∴∠AOC=∠BOC=60°,∴∠MCN=360°-∠AOB-∠CMF-∠CNO=60°. ∴∠DCE=∠AOC=60°.∴∠MCN=∠FCG.∴∠MCN-∠FCN=∠FCG-∠FCN,即∠1=∠2.③由①②③得△CMF≌△CNG,∴CF=CG.。
人教版八年级数学(上)期中测试试题及答案
人教版八年级数学(上)期中测试试题及答案一、选择题(每小题2分,共20分)1.如果一个三角形有两边长分别是3和5,那么第三边长可能是( )A.1 B.2 C.4 D.82.在一些美术字中,有的汉字是轴对称图形,下面4个汉字中,可以看作是轴对称图形的是( ) A.B.C.D.3.等腰三角形的一个底角是50°,则它的顶角是( )A.50°B.50°或65°C.65°D.80°4.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还需要添加一个条件是( )A.AE=DF B.∠A=∠D C.∠B=∠C D.AB=DC5.能将三角形面积平分的是三角形的( )A.角平分线B.高C.中线D.外角平分线6.在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于( )A.45°B.60°C.75°D.90°7.如图,甲、乙、丙三个三角形中和△ABC全等的图形是( )A.甲和乙B.乙和丙C.只有乙D.只有丙8.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是( )A.180°B.220°C.240°D.300°9.已知∠AOB=30°,点P在∠AOB内部,P1与P关于OB对称,P2与P关于OA对称,则P1,O,P2三点所构成的三角形是( )A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形10.AD是△ABC的角平分线且交BC于D,过点D作DE⊥AB于E,DF⊥AC于F,则下列结论不一定正确的是( ) A.DE=DF B.BD=CD C.AE=AF D.∠ADE=∠ADF二、填空题(每小题3分,共18分)11.一个等边三角形的对称轴有__________条.12.如图是一个活动的衣帽架,它应用了四边形的__________性.13.如图,若△ABC≌△ADE,且∠B=60°,∠C=30°,则∠DAE=__________.14.若点M(﹣3,b)与点N(a,2)关于x轴对称,则a+b=__________.15.如图,分别以五边形的各个顶点为圆心,1cm长为半径作圆,则图中阴影部分的面积为__________cm2.16.如图,在△ABC中,AB=AC,BE=CD,BD=CF,则∠α与∠A之间的数量关系为__________.三、解答题(62分)17.完成下列证明过程:如图,∠CAE是△ABC的一个外角,∠1=∠2,AD∥BC,求证:AB=A C.证明:∵AD∥BC(已知)∴∠1=∠__________(两直线平行,同位角相等)∠2=∠__________(__________)又∵∠1=∠2(已知)∴__________=__________(等量代换)∴AB=AC(__________).18.如图,在3×3的正方形网格中,有格点△ABC和△DEF,且△ABC和△DEF关于某条直线成轴对称,请在下面给出的图中,画出3个不同位置的△DEF及其对称轴MN.19.如图,AC=AE,AB=AD,∠1=∠2,求证:∠B=∠D.20.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E,∠B=40°,∠E=30°,求∠BAC的度数.21.一个多边形的内角和比四边形的外角和多540°,并且这个多边形的各内角都相等.这个多边形的每一个内角等于多少度?它是正几边形?22.如图,在△ABC中,AB=AC,D为BC中点,DE、DF分别是∠ADB、∠ADC的平分线,若DE=2,求DF的长.23.如图,△ABC是等边三角形,D为BC边上一个动点(D与B、C均不重合),AD=AE,∠DAE=60°,连接CE.(1)求证:△ABD≌△ACE;(2)求证:CE平分∠ACF;(3)若AB=2,当四边形ADCE的周长取最小值时,求BD的长.24.如图1,在平面直角坐标系xOy中,A(﹣3,0),B(2,0),C为y轴正半轴上一点,且BC=4.(1)求∠OBC的度数;(2)如图2,点P从点A出发,沿射线AB方向运动,同时点Q在边BC上从点B向点C运动,在运动过程中:①若点P的速度为每秒2个单位长度,点Q的速度为每秒1个单位长度,运动时间为t秒,已知△PQB是直角三角形,求t的值;②若点P,Q的运动路程分别是a,b,已知△PQB是等腰三角形时,求a与b满足的数量关系.参考答案一、选择题(每小题2分,共20分)1.如果一个三角形有两边长分别是3和5,那么第三边长可能是( )A.1 B.2 C.4 D.8【考点】三角形三边关系.【分析】根据三角形的三边关系可得5﹣3<x<5+3,解不等式,确定x的取值范围,然后可得答案.【解答】解:设第三边长为x,由题意得:5﹣3<x<5+3,即2<x<8,故选:C.【点评】此题主要考查三角形的三边关系,要注意三角形形成的条件:任意两边之和大于第三边,三角形的两边差小于第三边.2.在一些美术字中,有的汉字是轴对称图形,下面4个汉字中,可以看作是轴对称图形的是( )A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、不是轴对称图形;故选A.【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.等腰三角形的一个底角是50°,则它的顶角是( )A.50°B.50°或65° C.65°D.80°【考点】等腰三角形的性质.【分析】由等腰三角形的性质可知两底角相等,再根据三角形内角和为180°,即可求出顶角的度数.【解答】解:∵等腰三角形的一个底角是50°,∴它的顶角=180°﹣50°﹣50°=80°,故选D.【点评】本题考查了等腰三角形的性质以及三角形内角和定理的运用,解题的关键是熟记等腰三角形的各种性质并且能够灵活运用.4.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还需要添加一个条件是( )A.AE=DF B.∠A=∠D C.∠B=∠C D.AB=DC【考点】直角三角形全等的判定.【分析】根据垂直定义求出∠CFD=∠AEB=90°,再根据全等三角形的判定定理推出即可.【解答】解:条件是AB=CD,理由是:∵AE⊥BC,DF⊥BC,∴∠CFD=∠AEB=90°,在Rt△ABE和Rt△DCF中,,∴Rt△ABE≌Rt△DCF(HL),故选D.【点评】本题考查了全等三角形的判定定理的应用,能灵活运用全等三角形的判定定理进行推理是解此题的关键.5.能将三角形面积平分的是三角形的( )A.角平分线 B.高C.中线 D.外角平分线【考点】三角形的面积.【分析】根据三角形的面积公式,只要两个三角形具有等底等高,则两个三角形的面积相等.根据三角形的中线的概念,故能将三角形面积平分的是三角形的中线.【解答】解:根据等底等高可得,能将三角形面积平分的是三角形的中线.故选C.【点评】注意:三角形的中线能将三角形的面积分成相等的两部分.6.在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于( )A.45°B.60°C.75°D.90°【考点】三角形内角和定理.【分析】首先根据∠A:∠B:∠C=3:4:5,求出∠C的度数占三角形的内角和的几分之几;然后根据分数乘法的意义,用180°乘以∠C的度数占三角形的内角和的分率,求出∠C等于多少度即可.【解答】解:180°×==75°即∠C等于75°.故选:C.【点评】此题主要考查了三角形的内角和定理,要熟练掌握,解答此题的关键是要明确:三角形的内角和是180°.7.如图,甲、乙、丙三个三角形中和△ABC全等的图形是( )A.甲和乙B.乙和丙C.只有乙D.只有丙【考点】全等三角形的判定.【分析】根据全等三角形的判定定理作出判断与选择.【解答】解:在△ABC中,∠B=50°.甲:只有一个对应边与一个对应角相等,故甲不符合条件;乙:由两个对应边与这两个边的夹角相等,符合两个三角形全等的定理SAS;丙:由两个对应角与一条边对应相等,符合两个三角形全等的定理AAS.故选B.【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.8.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是( )A.180°B.220°C.240°D.300°【考点】等边三角形的性质;多边形内角与外角.【专题】探究型.【分析】本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数.【解答】解:∵等边三角形的顶角为60°,∴两底角和=180°﹣60°=120°;∴∠α+∠β=360°﹣120°=240°;故选C.【点评】本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题9.已知∠AOB=30°,点P在∠AOB内部,P1与P关于OB对称,P2与P关于OA对称,则P1,O,P2三点所构成的三角形是( )A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形【考点】等边三角形的判定;轴对称的性质.【专题】应用题.【分析】根据轴对称的性质可知:OP1=OP2=OP,∠P1OP2=60°,即可判断△P1OP2是等边三角形.【解答】解:根据轴对称的性质可知,OP1=OP2=OP,∠P1OP2=60°,∴△P1OP2是等边三角形.故选:D.【点评】主要考查了等边三角形的判定和轴对称的性质.轴对称的性质:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等.10.AD是△ABC的角平分线且交BC于D,过点D作DE⊥AB于E,DF⊥AC于F,则下列结论不一定正确的是( ) A.DE=DF B.BD=CD C.AE=AF D.∠ADE=∠ADF【考点】角平分线的性质.【分析】根据角平分线的性质,可证△AFD≌△AED,找到图中相等的关系即可.【解答】解:∵AD是∠BAC的平分线,∴DE=DF,DE⊥AB,DF⊥AC,∴△AFD≌△AED(HL),∴DE=DF,AE=AF,∠ADE=∠ADF.故选B.【点评】本题主要考查角平分线的性质,由已知能够注意到△AFD≌△AED,是解决的关键.二、填空题(每小题3分,共18分)11.一个等边三角形的对称轴有3条.【考点】轴对称的性质.【分析】根据对称轴:如果沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直线叫做这个图形的对称轴.对称轴绝对是一条点化线,可得答案.【解答】解:如图:一个等边三角形的对称轴有3条,故答案为:3.【点评】本题考查了轴对称的性质,如果沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直线叫做这个图形的对称轴.对称轴绝对是一条点化线.12.如图是一个活动的衣帽架,它应用了四边形的不稳定性.【考点】多边形;三角形的稳定性.【分析】根据四边形具有不稳定性解答.【解答】解:一个活动的衣帽架,它应用了四边形的不稳定性,故答案为:不稳定.【点评】本题考查三角形的稳定性和四边形的不稳定性在实际生活中的应用问题,解决本题的关键是熟记四边形的不稳定性.13.如图,若△ABC≌△ADE,且∠B=60°,∠C=30°,则∠DAE=90°.【考点】全等三角形的性质.【分析】根据三角形内角和定理求出∠BAC,根据全等三角形的性质求出∠DAE=∠BAC,求出即可.【解答】解:∵在△ABC中,∠B=60°,∠C=30°,∴∠BAC=180°﹣∠B﹣∠C=90°,∵△ABC≌△ADE,∴∠DAE=∠BAC=90°,故答案为:90°.【点评】本题考查了全等三角形的性质和三角形内角和定理的应用,注意:全等三角形的对应边相等,对应角相等.14.若点M(﹣3,b)与点N(a,2)关于x轴对称,则a+b=﹣5.【考点】关于x轴、y轴对称的点的坐标.【分析】直接利用关于x轴对称点的性质,得出a,b的值即可.【解答】解:∵点M(﹣3,b)与点N(a,2)关于x轴对称,∴a=﹣3,b=﹣2,则a+b=﹣3﹣2=﹣5.故答案为:﹣5.【点评】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标关系是解题关键.15.如图,分别以五边形的各个顶点为圆心,1cm长为半径作圆,则图中阴影部分的面积为πcm2.【考点】多边形内角与外角.【分析】根据多边形的外角和为360°可得阴影部分的面积为半径为1的圆的面积,再利用圆的面积计算公式可得答案.【解答】解:图中阴影部分的面积为π×12=π.故答案为:π.【点评】此题主要考查了多边形的外角,关键是掌握多边形的外角和为360°.16.如图,在△ABC中,AB=AC,BE=CD,BD=CF,则∠α与∠A之间的数量关系为2∠α+∠A=180°.【考点】全等三角形的判定与性质.【分析】根据SAS证明△BED与△CDF全等,再利用全等三角形的性质解答即可.【解答】解:∵AB=AC,∴∠C=∠B,在△BED与△CDF中,,∴△BED≌△CDF(SAS),∴∠BED=∠FDC,∵∠α+∠FDC=∠B+∠BED,∴∠α=∠B,∵∠A+∠B+∠C=180°,∴2∠α+∠A=180°.故答案为:2∠α+∠A=180°.【点评】本题考查了全等三角形的判定和性质,三角形外角的性质和三角形内角和定理,熟练掌握性质定理是解题的关键.三、解答题(62分)17.完成下列证明过程:如图,∠CAE是△ABC的一个外角,∠1=∠2,AD∥BC,求证:AB=A C.证明:∵AD∥BC(已知)∴∠1=∠B(两直线平行,同位角相等)∠2=∠C(两直线平行,内错角相等)又∵∠1=∠2(已知)∴∠B=∠C(等量代换)∴AB=AC(等角对等边).【考点】平行线的性质.【专题】推理填空题.【分析】根据平行线的性质和等角对等边的性质填空.【解答】证明:∵AD∥BC(已知)∴∠1=∠B(两直线平行,同位角相等)∠2=∠C(两直线平行,内错角相等)又∵∠1=∠2(已知)∴∠B=∠C(等量代换)∴AB=AC(等角对等边).【点评】本题主要利用平行线的性质和等角对等边的性质,书写证明过程是本题练习的重点.18.如图,在3×3的正方形网格中,有格点△ABC和△DEF,且△ABC和△DEF关于某条直线成轴对称,请在下面给出的图中,画出3个不同位置的△DEF及其对称轴MN.【考点】利用轴对称设计图案.【分析】本题要求思维严密,根据对称图形关于某直线对称,找出不同的对称轴,画出不同的图形,对称轴可以随意确定,因为只要根据你确定的对称轴去画另一半对称图形,那这两个图形一定是轴对称图形.【解答】解:如图所示;【点评】本题主要考查的是利用轴对称设计图案,掌握轴对称图形的性质是解题的解题的关键.19.如图,AC=AE,AB=AD,∠1=∠2,求证:∠B=∠D.【考点】全等三角形的判定与性质.【专题】证明题.【分析】由SAS证明△BAC≌△DAE,得出对应角相等即可.【解答】证明:∵∠1=∠2,∴∠CAB=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS),∴∠B=∠D.【点评】本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法,证明三角形全等是解决问题的关键.20.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E,∠B=40°,∠E=30°,求∠BAC的度数.【考点】三角形的外角性质.【分析】根据三角形外角性质求出∠ECD,根据角平分线定义求出∠ACD,根据三角形外角性质求出即可.【解答】解:∵∠B=40°,∠E=30°,∴∠ECD=∠B+∠E=70°,∵CE是△ABC的外角∠ACD的平分线,∴∠ACD=2∠ECD=140°,∴∠BAC=∠ACD﹣∠B=140°﹣40°=100°.【点评】本题考查了三角形外角性质,角平分线定义的应用,能灵活运用定理进行推理是解此题的关键,注意:三角形的一个外角等于和它不相邻的两个内角的和.21.一个多边形的内角和比四边形的外角和多540°,并且这个多边形的各内角都相等.这个多边形的每一个内角等于多少度?它是正几边形?【考点】多边形内角与外角.【分析】本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征,还需要懂得挖掘此题隐含着边数为正整数这个条件.本题可用整式方程求解.【解答】解:设边数为n,根据题意,得(n﹣2)×180°=360°+540°(n﹣2)×180°=900°n﹣2=5∴n=7.900÷7=.答:这个多边形的每一个内角等于度、它是正七边形.【点评】此题较难,考查比较新颖,涉及到整式方程.22.如图,在△ABC中,AB=AC,D为BC中点,DE、DF分别是∠ADB、∠ADC的平分线,若DE=2,求DF的长.【考点】全等三角形的判定与性质;等腰三角形的性质.【分析】证明△ADE≌△ADF即可,然后可得DF=DE=2.【解答】解:如图,∵AB=AC,D为BC中点,∴∠ADB=∠ADC=90°,∠1=∠2,∵DE、DF分别是∠ADB,∠ADC的平分线,∴∠ADE=∠ADB=45°,∠ADF=∠ADC=45°,∴∠ADE=∠ADF,在△ADE和△ADF中,,∴△ADE≌△ADF(ASA),∴DF=DE=2.【点评】本题考查了等腰三角形三线合一的性质、全等三角形的判定与性质,比较基础.对于全等三角形的证明,差什么条件就去寻找什么条件,如果条件不是明显的,则先通过推导得出所需要的条件.23.如图,△ABC是等边三角形,D为BC边上一个动点(D与B、C均不重合),AD=AE,∠DAE=60°,连接CE.(1)求证:△ABD≌△ACE;(2)求证:CE平分∠ACF;(3)若AB=2,当四边形ADCE的周长取最小值时,求BD的长.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)由于AB=AC,AD=AE,所以只需证∠BAD=∠CAE即可得结论;(2)证明∠ACE和∠ECF都等于60°即可;(3)将四边形ADCE的周长用AD表示,AD最小时就是四边形ADCE的周长最小,根据垂线段最短原理,当AD⊥BC 时,AD最小,此时BD就是BC的一半.【解答】(1)证明:∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵∠DAE=60°,∴∠BAD+∠DAC=∠CAE+∠DAC,即∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE.(2)证明:∵△ABC是等边三角形,∴∠B=∠BCA=60°,∵△ABD≌△ACE,∴∠ACE=∠B=60°,∵△ABD≌△ACE,∴∠ACE=∠B=60°,∴∠ECF=180﹣∠ACE﹣∠BCA=60°,∴∠ACE=∠ECF,∴CE平分∠ACF.(3)解:∵△ABD≌△ACE,∴CE=BD,∵△ABC是等边三角形,∴AB=BC=AC=2,∴四边形ADCE的周长=CE+DC+AD+AE=BD+DC+2AD=2+AD,根据垂线段最短,当AD⊥BC时,AD值最小,四边形ADCE的周长取最小值,∵AB=AC,∴BD===1.【点评】此题主要考查了全等三角形的判定和性质定理以及垂线段最短原理,关键是找出能使三角形全等的条件,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等.24.如图1,在平面直角坐标系xOy中,A(﹣3,0),B(2,0),C为y轴正半轴上一点,且BC=4.(1)求∠OBC的度数;(2)如图2,点P从点A出发,沿射线AB方向运动,同时点Q在边BC上从点B向点C运动,在运动过程中:①若点P的速度为每秒2个单位长度,点Q的速度为每秒1个单位长度,运动时间为t秒,已知△PQB是直角三角形,求t的值;②若点P,Q的运动路程分别是a,b,已知△PQB是等腰三角形时,求a与b满足的数量关系.【考点】一次函数综合题.【分析】(1)在OA上取一点D,根据等边三角形的性质进行解答即可;(2)①分∠PQB=90°时和∠QPB=90°时两种情况进行解答即可;②分a<5和a>5两种情况,利用等腰三角形和等边三角形的性质进行解答即可.【解答】解:(1)如图1:在OA上取一点D,使得OD=OB,连接CD,则BD=2OB=4,∵CO⊥BD,∴CD=CB=4,∴CD=CB=BD,∴△DBC是等边三角形,∴∠OBC=60°;(2)①由题意,得AP=2t,BQ=t,∵A(﹣3,0),B(2,0),∴AB=5,∴PB=5﹣2t,∵∠OBC=60°≠90°,∴下面分两种情况进行讨论,Ⅰ)如图2:当∠PQB=90°时,∵∠OBC=60°,∴∠BPQ=30°,∴BQ=,∴,解得:t=;Ⅱ)当∠QPB=90°时,如图3:∵∠OBC=60°,∴∠BQP=30°,∴PB=,∴,解得:t=2;②如图4:当a<5时,∵AP=a,BQ=b,∴BP=5﹣a,∵△PQB是等腰三角形,∠OBC=60°,∴△PQB是等边三角形,∴b=5﹣a,即a+b=5,如图5:当a>5时,∵AP=a,BQ=b,∴BP=a﹣5,∵△PQB是等腰三角形,∠QBP=120°,∴BP=BQ,∴a﹣5=b,即a﹣b=5.【点评】本题是一次函数的综合题,考查了一次函数图象上点的坐标特征,等边三角形的判定和性质,等腰三角形的应用等,根据题意作出图形是解题的关键.。
人教版八年级数学上册期中测试题(含答案)
⼈教版⼋年级数学上册期中测试题(含答案)⼈教版初中⼋年级数学上册期中模拟试题⼀、选择题(每⼩题3分,共30分)1.(2020独家原创试题)2020年的春节,对于所有⼈来说真的不⼀般.为了打好疫情攻坚战,医护⼈员在岗位上同时间赛跑,与病魔较量,⽽我们每个⼈都能为打赢这场仗贡献⼀份⼒量.勤洗⼿,戴⼝罩,少聚会,积极配合防控⼯作,照顾好⾃⼰和家⼈,还有,说出⼀句简单的:中国加油,武汉加油.在“中国加油”这4个汉字中,不可以看作轴对称图形的个数为?()A.1B.2C.3D.42.(2019⼭东济宁邹城期中)如图,将△ABC的三个顶点坐标的横坐标都乘-1,并保持纵坐标不变,则所得图形与原图形的关系是?()A.关于x轴对称B.关于y轴对称C.将原图形沿x轴的负⽅向平移了1个单位D.将原图形沿y轴的负⽅向平移了1个单位3.已知等腰三⾓形的周长为17 cm,⼀边长为4 cm,则它的腰长为?()A.4 cmB.6.5 cmC.6.5 cm或9 cmD.4 cm或6.5 cm4.如图,已知∠1=∠2,下列添加的条件不能使△ADC≌△CBA的是?()?A.AB∥DCB.AB=CDC.AD=BCD.∠B=∠D5.如图,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分线分别交AB,AC于点D,E,则下列结论正确的是?()A.AE=3CEB.AE=2CEC.AE=BDD.BC=2CE6.如图,在△ABC中,AB=AC,D为BC边上⼀点,E点在AC边上,AD=AE,若∠BAD=24°,则∠EDC=?()A.24°B.20°C.15°D.12°7.如图,正五边形ABCDE中,直线l过点B,且l⊥ED,下列说法:①l是线段AC的垂直平分线;②∠BAC=36°;③正五边形ABCDE有五条对称轴.其中说法正确的是?()A.①②B.①③C.②③D.①②③8.如图,等腰△ABC中,AB=AC,∠A=36°.⽤尺规作图作出线段BD,则下列结论错误的是?()A.AD=BDB.∠DBC=36°C.S△ABD=S△BCDD.△BCD的周长=AB+BC9.如图,在四边形ABCD中,BC∥AD,CD⊥AD,P是CD边上的动点,要使PA+PB的值最⼩,则点P应满⾜的条件是?()A.PB=PAB.PC=PDC.∠APB=90°D.∠BPC=∠APD10.如图,已知△ABC和△CDE都是等边三⾓形,且A、C、E三点共线.AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②∠AOB=60°;③AP=BQ;④△PCQ是等边三⾓形;⑤PQ∥AE.其中正确结论的个数是?()A.5B.4C.3D.2⼆、填空题(每⼩题3分,共24分)11.(2019四川资阳中考)若正多边形的⼀个外⾓是60°,则这个正多边形的内⾓和是 .12.图①是⼀张Rt△ABC纸⽚,如果⽤两张相同的这种纸⽚恰好能拼成⼀个正三⾓形,如图9②,那么在Rt△ABC中,BC=6,则AB= .13.如图,∠A=∠D,要使△ABC≌△DBC,还需要补充⼀个条件: (填⼀个即可).14.如图,在直⾓坐标系中,AD是Rt△OAB的⾓平分线,已知点D的坐标是(0,-4),AB的长是12,则△ABD的⾯积为 .15.我们规定:等腰三⾓形的顶⾓与⼀个底⾓度数的⽐值叫做等腰三⾓形的“特征值”,记作k.若k=2,则该等腰三⾓形的顶⾓为度.16.如图,已知△ABC关于直线y=1对称,C到AB的距离为2,AB 的长为6,则点A、点B的坐标分别为 .17.(2019江苏南通中考)如图,△ABC中,AB=BC,∠ABC=90°,F 为AB延长线上⼀点,点E在BC上,且AE=CF,若∠BAE=25°,则∠ACF=度.18.在△ABC中,AH是BC边上的⾼,若CH-BH=AB,∠ABH=70°,则∠BAC= .三、解答题(共66分)19.(6分)如图,学校要在两条⼩路OM和ON之间的S区域修建⼀处“英语⾓”,按照设计要求,英语⾓C到两栋教学楼A、B的距离必须相等,到两条⼩路的距离也必须相等,则英语⾓C 应修建在什么位置?请在图上标出它的位置.(尺规作图,保留痕迹)20.(6分)如图,在平⾯直⾓坐标系中,A(-3,2),B(-4,-3),C(-1,-1).(1)在图中作出△ABC关于y轴对称的△A1B1C1;(2)写出点A1,B1,C1的坐标(直接写答案):A1 ;B1 ;C1 ;(3)△A1B1C1的⾯积为 ;(4)在y轴上画出点P,使PB+PC最⼩.21.(2019四川眉⼭中考)(7分)如图,在四边形ABCD中,AB∥DC,点E是CD的中点,AE=BE.求证:∠D=∠C.22.(7分)如图,在△ABC中,AB=AC,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F,D是BC边上的中点,连接AD.(1)若∠BAD=55°,求∠C的度数;(2)猜想FB与FE的数量关系,并证明你的猜想.23.(8分)如图,在Rt△ABC中,∠ACB=90°,AC=BC,D为BC的中点,CE⊥AD于E,BF∥AC交CE的延长线于F.(1)求证:△ACD≌△CBF;(2)连接DF,求证:AB垂直平分DF.24.(10分)定义:如果⼀个三⾓形的⼀个内⾓等于另⼀个内⾓的两倍,则称这样的三⾓形为“倍⾓三⾓形”.(1)如图①,△ABC中,AB=AC,∠A=36°,求证:△ABC是倍⾓三⾓形;(2)如图②,△ABC的外⾓平分线AD与CB的延长线相交于点D,延长CA到点E,使得AE=AB,若AB+AC=BD,请你找出图中的倍⾓三⾓形,并进⾏证明.25.(10分)数学课上,王⽼师出⽰了下⾯的题⽬:在△ABC中,点E 在AB上,点D在CB的延长线上,且ED=EC,试确定线段AE与DB的⼤⼩关系.⼩明与同桌⼩聪讨论后,进⾏了如下解答. (1)特殊情况,探索结论:在等边三⾓形ABC中,当点E为AB的中点时,点D在CB的延长线上,且ED=EC,如图①,确定线段AE 与DB的⼤⼩关系,请你直接写出结论 ;(2)特例启发,解答题⽬:王⽼师给出的题⽬中,AE与DB的⼤⼩关系是 .理由如下:如图②,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程)26.(12分)如图,已知△ABC中,AB=AC=12厘⽶,BC=9厘⽶,点D 为AB的中点.(1)如果点P在线段BC上以3厘⽶/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,1秒钟时,△BPD 与△CQP是否全等?请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD≌△CPQ?(2)若点Q以②的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC的三边运动,求多长时间点P与点Q 第⼀次在△ABC的哪条边上相遇参考答案1. 答案 C “中国加油”这4个汉字中,不可以看作轴对称图形的汉字有“国”“加”“油”,共三个,故选C.2. 答案 B 将△ABC 的三个顶点坐标的横坐标都乘-1,纵坐标不变,则横坐标互为相反数,纵坐标相等,所得图形与原图形关于y 轴对称,故选B.3. 答案 B 若4 cm 是腰长,则底边长为20-4-4=12(cm),∵4+4<12,不能组成三⾓形,∴舍去;若4 cm 是底边长,则腰长为?=6.5(cm).故它的腰长为6.5 cm.故选B.4. 答案 B A.由AB ∥CD ,可得∠DCA =∠CAB ,⼜因为∠1=∠2,AC =AC ,故能判定△ADC ≌△CBA ,故选项A 不符合题意;B.由AB =CD ,∠1=∠2,AC =AC ,不能判定△ADC ≌△CBA ,故选项B 符合题意;C.由AD =BC ,∠1=∠2,AC =AC ,能判定△ADC≌△CBA ,故选项C 不符合题意;D.由∠D =∠B ,∠1=∠2,AC =AC ,能判定△ADC ≌△CBA ,故选项D 不符合题意.故选B.5. 答案 B 连接BE ,∵DE 垂直平分AB ,∴AE =BE ,∴∠ABE =∠A =30°,∴∠CBE =∠ABC -∠ABE =30°.在Rt △BCE 中,BE =2CE ,∴AE =2CE ,17-42故选B.6.答案 D∵∠ADC是△ABD的外⾓,∴∠ADC=∠B+∠BAD=∠B+24°,∵∠AED是△CDE的外⾓,∴∠AED=∠C+∠EDC,∵AB=AC,AD=AE,∴∠B=∠C,∠ADE=∠AED,∴∠C+∠EDC=∠ADC-∠EDC=∠B+24°-∠EDC,解得∠EDC=12°.故选D7.答案 D∵正五边形ABCDE中,直线l过点B,且l⊥ED,∴l 是线段AC的垂直平分线,∠BAC=36°,∴①②正确;正五边形ABCDE有五条对称轴,③正确.故选D.8.答案 C∵等腰△ABC中,AB=AC,∠A=36°,∴∠ABC=∠ACB=72°,由作图痕迹可知BD平分∠ABC,∴∠A=∠ABD=∠DBC=36°,∴AD=BD,故A,B结论正确;∵AD≠CD,∴S△ABD=S△BCD 错误,故C结论错误;△BCD的周长=BC+CD+BD=BC+AC=BC+AB,故D结论正确.故选C.9.答案 D如图所⽰,作点A关于CD的对称点A',连接A'B,交CD于点P,连接AP,则PA+PB的最⼩值为A'B的长,点P即为所求.∵点A'与点A关于CD对称,∴∠APD=∠A'PD,∵∠BPC=∠A'PD,∴∠BPC=∠APD,故D符合题意.由图可知,选项A和选项B不成⽴,⽽C只有在PC=BC时才成⽴,故选项C不⼀定成⽴.故选D.10.答案 A①∵△ABC和△CDE为等边三⾓形,∴AC=BC,CD=CE,∠BCA=∠DCE=60°,∴∠ACD=∠BCE.在△ACD和△BCE中,AC=BC,∠ACD=∠BCE,CD=CE,∴△ACD≌△BCE(SAS),∴AD=BE,∠ADC=∠BEC,①正确.②∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵△DCE是等边三⾓形,∴∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,②正确.④在△CDP和△CEQ中,∠ADC=∠BEC,CD=CE,∠DCP=∠ECQ,∴△CDP≌△CEQ(ASA).∴CP=CQ,∴∠CPQ=∠CQP=60°,△PCQ是等边三⾓形,④正确.⑤∵∠CPQ=∠CQP=60°,∴∠QPC=∠BCA,∴PQ∥AE,⑤正确.③同④得△ACP≌△BCQ(ASA),∴AP=BQ,③正确.故选A.11.答案720°解析这个正多边形的边数为360°÷60°=6,则这个正多边形的内⾓和为(6-2)×180°=720°.12.答案 12解析由题意得AB=2BC=12.13.答案∠ABC=∠DBC或∠ACB=∠DCB解析∵∠A=∠D,BC=BC,∴当∠ABC=∠DBC或∠ACB=∠DCB时,△ABC≌△DBC(AAS),∴还需要补充⼀个条件为∠ABC=∠DBC或∠ACB=∠DCB. 14.答案24解析如图,作DE⊥AB于E,∵点D的坐标是(0,-4),∴OD=4, ∵AD是Rt△OAB的⾓平分线, 12∴DE=OD=4,∴S△ABD= ×12×4=24.15. 答案 90解析∵k =2,∴设该等腰三⾓形的顶⾓=2α,则底⾓=α,∴α+α+2α=180°,∴α=45°,∴该等腰三⾓形的顶⾓为90°.16. 答案 (2,-2),(2,4)解析由题意可得点A 、B 的连线与直线y =1垂直,且两点到直线y =1的距离相等,∵AB =6,∴A 、B 两点的纵坐标分别为-2和4,⼜∵C 到AB 的距离为2,∴A 、B 两点的横坐标都为2.∴A 、B 两点的坐标分别为(2,-2),(2,4).17. 答案 70解析在Rt △ABE 与Rt △CBF 中,?∴Rt △ABE ≌Rt △CBF (HL).∴∠BAE =∠BCF =25°.∵AB =BC ,∠ABC =90°,∴∠ACB =45°,∴∠ACF =25°+45°=70°. 18. 答案 75°或35°解析当∠ABC 为锐⾓时,过点A 作AD =AB ,交BC 于点D ,如图1所⽰.,,AE CF AB BC =??=?∵AB =AD ,∴∠ADB =∠ABH =70°,BH =DH .∵CH -BH =AB ,∴AB +BH =CH ,⼜∵CH =CD +DH ,∴CD =AB =AD ,∴∠C =?∠ADB =35°,∴∠BAC =180°-∠ABH -∠C =75°.当∠ABC 为钝⾓时,作AH ⊥BC ,交CB 的延长线于H , 如图2所⽰.∵CH -BH =AB ,∴AB +BH =CH ,⼜∵BH +BC =CH ,∴AB =BC ,∴∠BAC =∠ACB = ∠ABH =35°.故∠BAC =75°或35°.图112图219. 解析如图所⽰,点C 即为英语⾓应修建的位置.20. 解析 (1)△A 1B 1C 1如图所⽰.(2)(3,2);(4,-3);(1,-1).(3)△A 1B 1C 1的⾯积=3×5- ×2×3-×1×5-×2×3=6.5.故填6.5.(4)如图所⽰,P 点即为所求.21. 证明∵AE =BE ,∴∠EAB =∠EBA ,∵AB ∥DC ,∴∠DEA =∠EAB ,∠CEB =∠EBA ,∴∠DEA =∠CEB ,∵点E 是CD 的中点,∴DE =CE.121212。
人教版八年级上学期期中考试数学试卷及答案解析(共六套)
人教版八年级上学期期中考试数学试卷(一)一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c4.下列各式中,正确的是()A.B.C. =D.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±26.下列各分式中,最简分式是()A.B.C.D.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣18.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .12.若(x﹣2)0有意义,则x的取值范围是.13.分解因式:x2+x﹣2= .14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 cm.17.若x2+4x+1=0,则x2+= .18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= .三、解答题(本题共54分)19.(5分)请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误:;(2)从B到C是否正确,若不正确,错误的原因是;(3)请你正确解答.20.(2分)尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.21.(6分)分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.22.(7分)计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.23.(5分)先化简,再求值:,其中x=5.24.(5分)解分式方程:.25.(4分)已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.26.(4分)已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.27.(4分)在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.28.(4分)若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.29.(4分)已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A 旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.30.(4分)已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.参考答案与试题解析一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°【考点】KA:全等三角形的性质.【分析】根据全等三角形对应角相等解答即可.【解答】解:∵两个三角形全等,∴α=58°.故选C.【点评】本题考查了全等三角形的性质,熟记性质并准确识图,确定出对应角是解题的关键.2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等【考点】KB:全等三角形的判定.【分析】根据全等三角形的判定定理逐个判断即可.【解答】解:A、符合全等三角形的判定定理SSS,能推出两三角形全等,故本选项不符合题意;B、不符合全等三角形的判定定理,不能推出两三角形全等,故本选项符合题意;C、符合全等三角形的判定定理SAS,能推出两三角形全等,故本选项不符合题意;D、符合全等三角形的判定定理ASA,能推出两三角形全等,故本选项不符合;故选B.【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c【考点】51:因式分解的意义.【分析】根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【解答】解:A、是整式的乘法运算,故选项错误;B、结果不是积的形式,故选项错误;C、x2﹣1=(x+1)(x﹣1),正确;D、结果不是积的形式,故选项错误.故选:C.【点评】熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.4.下列各式中,正确的是()A.B.C. =D.【考点】65:分式的基本性质.【分析】利用分式的基本性质对各式进行化简即可.【解答】解:A、已经是最简分式,故本选项错误;B、,故本选项错误;C、=,故本选项错误;D、利用分式的基本性质在分式的分子与分母上同时乘以x+y即可得到,故本选项正确;故选D.【点评】本题考查了分式的基本性质,解题的关键是在进行分式的运算时要同时乘除.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±2【考点】63:分式的值为零的条件.【分析】根据分式值为0的条件可得x2﹣4=0且x+2≠0,再解出x的值即可.【解答】解:由题意得:x2﹣4=0且x+2≠0,解得:x=2.故选:B.【点评】此题主要考查了分式的值为零的条件,分式值为零的条件是分子等于零且分母不等于零.6.下列各分式中,最简分式是()A.B.C.D.【考点】68:最简分式.【分析】最简分式是指分子和分母没有公因式.【解答】解:(A)原式=,故A不是最简分式;(B)原式==,故B不是最简分式;(C)原式=,故C是最简分式;(D)原式==,故D不是最简分式;故选(C)【点评】本题考查考查最简分式,要注意将分子分母先分解后,约去公因式.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣1【考点】4E:完全平方式.【分析】这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x 和4积的2倍.【解答】解:依题意,得m﹣3=±4,解得m=7或﹣1.故选D.【点评】本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.8.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF【考点】KF:角平分线的性质.【分析】题目的已知条件比较充分,满足了角平分线的性质要求的条件,可直接应用性质得到结论,与各选项进行比对,得出答案.【解答】解:∵P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,∴PE=PF,又有AD=AD∴△APE≌△APF(HL∴AE=AF故选D.【点评】本题主要考查平分线的性质,由已知证明△APE≌△APF是解题的关键.9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定【考点】K6:三角形三边关系;K2:三角形的角平分线、中线和高.【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.倍长中线,构造一个新的三角形.根据三角形的三边关系就可以求解.【解答】解:7﹣3<2x<7+3,即2<x<5.故选A.【点评】本题主要考查了三角形的三边关系,注意此题构造了一条常见的辅助线:倍长中线.10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16【考点】K3:三角形的面积.【分析】利用角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=8:6=4:3,故选:B.【点评】本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键.二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .【考点】6F:负整数指数幂.【分析】根据负整数指数为正整数指数的倒数计算.【解答】解:3﹣2=.故答案为.【点评】本题主要考查了负指数幂的运算,比较简单.12.若(x﹣2)0有意义,则x的取值范围是x≠2 .【考点】6E:零指数幂.【分析】根据非零的零次幂等于1,可得答案.【解答】解:由题意,得x﹣2≠0,解得x≠2,故答案为:x≠2.【点评】本题考查了零指数幂,利用非零的零次幂等于1是解题关键.13.分解因式:x2+x﹣2= (x﹣1)(x+2).【考点】57:因式分解﹣十字相乘法等.【分析】因为(﹣1)×2=﹣2,2﹣1=1,所以利用十字相乘法分解因式即可.【解答】解:∵(﹣1)×2=﹣2,2﹣1=1,∴x2+x﹣2=(x﹣1)(x+2).故答案为:(x﹣1)(x+2).【点评】本题考查的是十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是两角和它们的夹边分别相等的两个三角形全等.【考点】KE:全等三角形的应用.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出即可.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故答案为:两角和它们的夹边分别相等的两个三角形全等.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理:两角及其夹边分别对应相等的两个三角形全等是解题的关键.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是AO=DO或AB=DC或BO=CO .【考点】KB:全等三角形的判定.【分析】本题要判定△AOB≌△DOC,已知∠A=∠D,∠AOB=∠DOC,则可以添加AO=DO或AB=DC或BO=CO从而利用ASA或AAS判定其全等.【解答】解:添加AO=DO或AB=DC或BO=CO后可分别根据ASA、AAS、AAS判定△AOB≌△DOC.故填AO=DO或AB=DC或BO=CO.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 1.5 cm.【考点】KF:角平分线的性质.【分析】作出图形,过点D作DE⊥AB于E,先求出CD的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD解答.【解答】解:如图,过点D作DE⊥AB于E,∵BC=4cm,BD:DC=5:3,∴CD=×4=1.5cm,∵AD是∠BAC的平分线,∴DE=CD=1.5cm.故答案为:1.5.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.17.若x2+4x+1=0,则x2+= 14 .【考点】4C:完全平方公式.【分析】由x2+4x+1=0可得x≠0,两边除以x可得到x+=﹣4,再两边平方,根据完全平方公式展开即可得到x2+的值.【解答】解:∵x2+4x+1=0,∴x+4+=0,即x+=﹣4,∴(x+)2=(﹣4)2,∴x2+2+=16,∴x2+=14.故答案为14.【点评】本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了代数式的变形能力.18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式2n+1﹣2n=2n;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= 2 .【考点】37:规律型:数字的变化类.【分析】(1)根据等式的变化找出变化规律“第n个等式为2n+1﹣2n=2n”,此题得解;(2)根据2n=2n+1﹣2n将算式210﹣29﹣28﹣…﹣22﹣2进行拆项,合并同类项即可得出结论.【解答】解:(1)观察,发现规律:22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23,…,∴第n个等式为2n+1﹣2n=2n.故答案为:2n+1﹣2n=2n.(2)∵2n=2n+1﹣2n,∴210﹣29﹣28﹣…﹣22﹣2=210﹣210+29﹣29+28﹣28+27﹣…﹣23+22﹣2=22﹣2=2.故答案为:2.【点评】本题考查了规律型中数字的变化类,根据等式的变化找出变化规律是解题的关键.三、解答题(本题共54分)19.请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误: A ;(2)从B到C是否正确,若不正确,错误的原因是不能去分母;(3)请你正确解答.【考点】6B:分式的加减法.【分析】异分母分式相加减,先化为同分母分式,再加减.【解答】解:===,(1)故可知从A开始出现错误;(2)不正确,不能去分母;(3)===.【点评】本题考查异分母分式相加减.应先通分,化为同分母分式,再加减.本题需注意应先把能因式分解的分母因式分解,在计算过程中,分母不变,只把分子相加减.20.尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.【考点】N4:作图—应用与设计作图;KF:角平分线的性质.【分析】作出角平分线,进而截取PB=400进而得出答案.【解答】解:如图所示:P点即为所求.【点评】此题主要考查了应用设计与作图,正确掌握角平分线的性质是解题关键.21.分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.【考点】55:提公因式法与公式法的综合运用.【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=(3a+1)(3a﹣1);(2)原式=p(p2﹣16p+64)=p(p﹣8)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22.计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.【考点】6B:分式的加减法;2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】(1)直接利用分式加减运算法则化简求出答案;(2)直接利用负指数幂的性质以及零指数幂的性质以及绝对值的性质分别化简求出答案.【解答】解:(1)原式===;(2)原式=2﹣1+1+3=5.【点评】此题主要考查了分式得加减运算以及实数运算,正确掌握运算法则是解题关键.23.先化简,再求值:,其中x=5.【考点】6D:分式的化简求值.【分析】把原式的第二项被除式分母及除式分母都分解因式,然后利用除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,约分后,再与第一项通分,利用同分母分式的减法运算计算,可化为最简,最后把x的值代入化简的式子中即可求出值.【解答】解:==﹣=﹣===,(4分)当x=5时,原式==.(5分)【点评】此题考查了分式的化简求值,分式的化简求值时,加减的关键是通分,通分的关键是找出各分母的最简公分母,分式的乘除关键是约分,约分的关键是找出公因式,本题属于化简求值题,解答此类题要先将原式化为最简,再代值,同时注意有时计算后还能约分,比如本题倒数第二步约去公因式x+1.24.解分式方程:.【考点】B3:解分式方程;86:解一元一次方程.【分析】方程的两边都乘以5(x+1),把分式方程转化成整式方程,求出方程的解,再代入方程进行检验即可.【解答】解:方程的两边都乘以5(x+1)、去分母得:5x=2x+5x+5,移项、合并同类项得:2x=﹣5,∴系数化成1得:x=﹣,经检验x=﹣是原方程的解,∴原方程的解是x=﹣.【点评】本题考查了分式方程的解法,关键是把分式方程转化成整式方程,注意一定要检验.25.已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.【考点】KB:全等三角形的判定.【分析】首先得出∠EAC=∠BAD,进而利用全等三角形的判定方法(SAS)得出即可.【解答】证明:∵∠1=∠2,∴∠EAC=∠BAD,在△DAB和△EAC中,∴△ABD≌△ACE(SAS)【点评】此题主要考查了全等三角形的判定,正确应用全等三角形的判定方法是解题关键.26.已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.【考点】KD:全等三角形的判定与性质.【分析】(1)易证△ABD≌△CDB,根据全等三角形的对应边相等知AB=DC;(2)因为△ABD≌△CDB,所以全等三角形的对应角∠ADB=∠CBD.然后由平行线的判定定理知AD∥BC.【解答】证明:(1)∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°,∴在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(HL),∴AB=DC(全等三角形的对应边相等);(2)∵Rt△ABD≌Rt△CDB[由(1)知],∴∠ADB=∠CBD(全等三角形的对应角相等),∴AD∥BC(内错角相等,两直线平行).【点评】本题考查了全等三角形的判定与性质.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.以及三角形全等的性质:全等三角形的对应边、对应角相等.27.在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.【考点】KD:全等三角形的判定与性质.【分析】只要以其中三个作为条件,能够得出另一个结论正确即可,下边以(1)、(2)、(4)为条件,(3)为结论为例.【解答】解:以(1)、(2)、(4)为条件,(3)为结论.证明:∵AE=CF,∴AF=CE,∵AD∥BC,∴∠A=∠C,又AD=BC,∴△ADF≌△CBE(SAS),∴∠B=∠D.【点评】本题与命题联系在一起,归根到底主要还是考查了全等三角形的判定及性质问题,应熟练掌握.28.若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.【考点】AE:配方法的应用;1F:非负数的性质:偶次方.【分析】根据x2+y2﹣4x+2y+5=0,可以求得x、y的值,从而可以求得所求式子的值.【解答】解:∵x2+y2﹣4x+2y+5=0,∴x2﹣4x+4+y2+2y+1=0,∴(x﹣2)2+(y+1)2=0,∴x﹣2=0,y+1=0,解得,x=2,y=﹣1,∴()2010+y2010==1+1=2.【点评】本题考查配方法的应用、非负数的性质,解题的关键是明确题意,找出所求问题需要的条件.29.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;R2:旋转的性质.【分析】(1)在MB的延长线上截取BE=DN,连接AE,根据正方形性质得出AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,证△ABE≌△ADN推出AE=AN;∠EAB=∠NAD,求出∠EAM=∠MAN,根据SAS证△AEM≌△ANM,推出ME=MN即可;(2)在DN上截取DE=MB,连接AE,证△ABM≌△ADE,推出AM=AE;∠MAB=∠EAD,求出∠EAN=∠MAN,根据SAS证△AMN≌△AEN,推出MN=EN即可.【解答】解:(1)图1中的结论仍然成立,即BM+DN=MN,理由为:如图2,在MB的延长线上截取BE=DN,连接AE,∵四边形ABCD是正方形,∴AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,∵在△ABE和△ADN中,∴△ABE≌△ADN(SAS).∴AE=AN;∠EAB=∠NAD,∵∠DAB=90°,∠MAN=45°,∴∠DAN+∠BAM=45°,∴∠EAM=∠BAM+∠EAB=45°=∠MAN,∵在△AEM和△ANM中,∴△AEM≌△ANM(SAS),∴ME=MN,∴MN=ME=BE+BM=DN+BM,即DN+BM=MN;(2)猜想:线段BM,DN和MN之间的等量关系为:DN﹣BM=MN.证明:如图3,在DN上截取DE=MB,连接AE,∵由(1)知:AD=AB,∠D=∠ABM=90°,BM=DE,∴△ABM≌△ADE(SAS).∴AM=AE;∠MAB=∠EAD,∵∠MAN=45°=∠MAB+∠BAN,∴∠DAE+∠BAN=45°,∴∠EAN=90°﹣45°=45°=∠MAN,∵在△AMN和△AEN中,∴△AMN≌△AEN(SAS),∴MN=EN,∵DN﹣DE=EN,∴DN﹣BM=MN.【点评】本题考查了正方形性质和全等三角形的性质和判定的应用,题目具有一定的代表性,是一道比较好的题目,证明过程类似,培养了学生的猜想能力和分析归纳能力.30.已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.【考点】KD:全等三角形的判定与性质;KF:角平分线的性质.【分析】分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.利用CE是角平分线,角平分线的性质定理,得EF=EH,再证明∠ABD=∠EBF,同理可证:EF=EG,根据HL证明Rt△EDH≌Rt△EDG,根据全等三角形的性质和角的和差关系可求∠CED.【解答】解:分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.∵CE是角平分线,∴EF=EH.∠ABC=100°,∠DBC=20°,∴∠ABD=80°,又∵∠EBF=80°,∴∠ABD=∠EBF,∴EF=EG,∴EH=EG,在Rt△EDH与Rt△EDG中,,∴Rt△EDH≌Rt△EDG(HL),∴∠EDH=∠EDG,∴∠CED=∠EDH﹣∠ECD=(∠BDH﹣∠BCA)=×20°=10°.【点评】本题考查了全等三角形的判定与性质,角的平分线的性质定理和逆定理,本题的关键是作出辅助线,以及角的平分线性质定理的应用.人教版八年级上学期期中考试数学试卷(二)一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣212.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE5.在下列图案中,不是轴对称图形的是()A.B.C.D.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD7.下列等式成立的是()A.B.C.D.8.如图,△ABC≌△BAD,点A和点B,点C和点D是对应点,如果AB=6cm,BD=5cm,AD=4cm,那么BC的长是()A.4 B.5 C.6 D.无法确定9.如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角形板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是()A.16 B.12 C.8 D.410.如图,将一张正方形纸片经两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是()A.B.C.D.二.细心填一填(每小题2分,共20分)11.一种细菌的半径为0.000407m,用科学记数法表示为m.12.当x= 时,分式没有意义;当x= 时,分式的值为0.13.计算(﹣)3÷(﹣)2的结果是.14.计算+的结果是.15.若x2+mx+16是完全平方式,则m= .16.如图,在△ABC和△DEF 中,AB=DE,AC=DF.请再添加一个条件,使△ABC 和△DFE全等.添加的条件是(填写一个即可):,理由是.17.如图,把△ABC绕C点顺时针旋转30°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=80°,则∠A=°.18.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D 到线段AB的距离是cm.19.如图,△ABC中,AB=AC,AB的垂直平分线交AC于P点.(1)若∠A=35°,则∠BPC=;(2)若AB=5cm,BC=3cm,则△PBC的周长= .20.探究:观察下列各式,,,…请你根据以上式子的规律填写: = ;= .三.精心解一解:(21,22每小题2分,23,24,25每小题2分,共16分)21.因式分解:2mx2﹣4mx+2m= .22.因式分解:x2y﹣9y= .23.化简:﹣+.24.先化简,再求值:(1﹣)÷,其中x=2.25.解分式方程:四.耐心想一想:(本小题4分)26.四川5.12特大地震受灾地区急需大量赈灾帐篷,某帐篷生产企业接到生产任务后,加大生产投入,提高生产效率,实际每天生产帐篷比原计划多200顶,已知现在生产3000顶帐篷所用的时间与原计划生产2000顶的时间相同.现在该企业每天能生产多少顶帐篷?五.精确作一作:作图题(本小题4分)27.某地区要在区域S内(即∠COD内部)建一个超市M,如图所示,按照要求,超市M到两个新建的居民小区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)六.耐心看一看(每小题6分)28.如图,△ABC中A(﹣2,3),B(﹣31),C(﹣1,2).(1)画出△ABC关于x轴对称的△A1B1C1;并写出△A1B1C1三个顶点坐标:,,.(2)画出△ABC关于y轴对称的△A2B2C2;并写出△A2B2C2三个顶点坐标:,,.七.严密推一推(每小题4分,共20分)29.已知:如图,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.30.如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.31.已知:AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)AO=BO.32.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.33.已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F.求证:AB=FC.八.挑战自我(选做本题4分)34.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,试判断AB﹣AD 与CD﹣CB的大小关系,并证明你的结论.解:结论:证明:参考答案与试题解析一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣21【考点】负整数指数幂.【分析】根据负整数指数为正整数指数的倒数进行计算即可.【解答】解:原式=(﹣7)3=﹣343.故选:C.【点评】此题主要考查了负整数指数幂、乘方,关键是掌握负整数指数为正整数指数的倒数.2.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2 C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<【考点】负整数指数幂;有理数的乘方;零指数幂.【分析】分别根据零指数幂,负整数指数幂和平方的运法则进行计算,再比较大小即可.【解答】解:∵=6,(﹣2)0=1,(﹣3)2=9,又∵1<6<9,∴(﹣2)0<<(﹣3)2.故选A.【点评】主要考查了零指数幂,负整数指数幂和平方的运算.负整数指数幂为相应的正整数指数幂的倒数;任何非0数的0次幂等于1.3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、把一个多项式转化成几个整式积的形式,故A正确;B、每把一个多项式转化成几个整式积的形式,故B错误;C、是整式的乘法,故C错误;D、把一个多项式转化成几个整式积的形式,故D正确;故选:D.【点评】本题考查了因式分解的意义,利用了因式分解的意义.4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE【考点】全等三角形的判定.【分析】△ADC和△AEB中,已知的条件有AB=AC,∠A=∠A;要判定两三角形全等只需条件:一组对应角相等,或AD=AE即可.可据此进行判断,两边及一边的对角相等是不能判定两个三角形全等的.【解答】解:A、当∠B=∠C时,符合ASA的判定条件,故A正确;B、当AD=AE时,符合SAS的判定条件,故B正确;C、当∠ADC=∠AEB时,符合AAS的判定条件,故C正确;D、当DC=BE时,给出的条件是SSA,不能判定两个三角形全等,故D错误;故选:D.【点评】本题主要考查的是全等三角形的判定方法,需注意的是SSA和AAA不能作为判定两个三角形全等的依据.5.在下列图案中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、B、C都是轴对称图形,D不是轴对称图形,故选:D.【点评】此题主要考查了轴对称图形,关键是正确找出对称轴的位置.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD【考点】角平分线的性质.。
人教版八年级数学上册期中测试题(含答案)
人教版八年级数学上册期中测试题(含答案)一.选择题1.下列图形中为轴对称图形的是()A。
B。
C。
D。
2.以下各组线段长能组成三角形的是()A。
1,2,4B。
2,4,6C。
4,6,8D。
5,6,123.△ABC中BC边上的高作法正确的是()A。
B。
C。
D。
4.下列条件中,不能判定三角形全等的是()A。
三条边对应相等B。
两边和一角对应相等C。
两角和其中一角的对边对应相等D。
两角和它们的夹边对应相等5.XXX同学在研究了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线。
如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,XXX说:“射线OP就是∠BOA的角平分线。
”他这样做的依据是()A。
角的内部到角的两边的距离相等的点在角的平分线上B。
角平分线上的点到这个角两边的距离相等C。
三角形三条角平分线的交点到三条边的距离相等D。
以上均不正确6.如图,XXX书上的三角形被墨迹污染了一部分,她根据所学的知识很快就画了一个与书上完全一样的三角形,那么红红画图的依据是()A。
SSSB。
SASC。
ASAD。
AAS7.一个多边形的内角和等于它的外角和的3倍,这个多边形是()A。
四边形B。
六边形C。
八边形D。
十边形8.在平面直角坐标系中,点A(1,-2)关于x轴对称的点的坐标为()A。
(1,2)B。
(-1,2)C。
(2,1)D。
(-1,-2)9.如图所示,BE⊥AC,CF⊥AB,垂足分别是E,F,若BE=CF,则图中全等三角形有()A。
1对B。
2对C。
3对D。
4对10.如图,将纸片△XXX沿DE折叠使点A落在点A′处,若∠1=80°,∠2=24°,则∠A为()A。
24°B。
28°C。
32°D。
36°11.如图,已知△ABC与△CDE都是等边三角形,点B、C、D在同一条直线上,AD与BE相交于点G,BE与AC相交于点F,AD与CE相交于点H,则下列结论:①△ACD≌△BCE;②∠AGB=60°;③BF=AH;④△CFH是等边三角形;⑤连CG,则∠XXX∠DGC。
2013年新人教版八年级上数学册期中试题
2013年人教版八年级数学上册期中测试班级:姓名:成绩:一、选择题(每题3分共36分)1.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个2.下面各组线段中,能组成三角形的是()A.5,11,6 B.8,8,16 C.10,5,4 D.6,9,143..下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等.其中真命题的个数有()A.3个B.2个C.1个D.0个4.等腰三角形的一个角是50,则它的底角是()A. 50B. 50或65C、80. D、655.和点P(2,)关于轴对称的点是()A(2,)B(2,)C(2,)D(2,)6.下列各组图形中,是全等形的是()A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形7.如图1,,,下列结论错误的是()A.△ABE≌△ACD B.△ABD≌△ACE C.∠DAE=40°D.∠C=30°图2 ADOCB图1A EC图3BA′E′D9.如图2,从下列四个条件:①BC =B ′C , ②AC =A ′C ,③∠A ′CA =∠B ′CB , ④AB =A ′B ′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是( )A .1个 B .2个C .3个D .4个10将一张长方形纸片按如图3所示的方式折叠,为折痕,则的度数为( )A .60°B .75°C .90°D .95°11.等腰三角形的两边分别为3和6,则这个三角形的周长是 ( ) .A . 12 B. 15 C. 9 D .12或15 12.下列叙述正确的语句是( )A.等腰三角形两腰上的高相等B.等腰三角形的高、中线、角平分线互相重合C.顶角相等的两个等腰三角形全等D.两腰相等的两个等腰三角形全等 二、填空题(每题3分共18分)13. 若点P (m,m-1)在轴上,则点P 关于轴对称的点为___________14. 一个多边形的每一个外角都等于36,则该多边形的内角和等于 .15.如图1,PM =PN ,∠BOC =30°,则∠AOB = .16.如图3,在△ABC 和△FED , A D =FC ,AB =FE ,当添加条件时,就可得到△ABC ≌△FED .(只需填写一个你认为正确的条件)第18题17.如图4, 已知AB =AC , ∠A =40°, AB 的垂直平分线MN 交AC 于点D ,则∠DBC = 度.18. 如图:点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,交OB 于N ,P 1P 2=15,则△PMN 的周长为 .三、解答题19(7分).如图5,在平面直角坐标系中,A (1, 2),B (3, 1),C (-2, -1).P 2P 1N M O P BA图5yxo123123-1-1-2-2-3ABC(1)在图中作出关于轴对称的.(2)写出点的坐标(直接写答案).A 1 ______________B 1 ______________C 1 ______________ (3)的面积为___________20.(6分) 如图,已知AD、BC相交于点O,AB=CD,AD=CB.求证:∠A =∠C21.(7分) 如图18所示,△ADF 和△BCE 中,∠A =∠B ,点D ,E ,F ,C 在同—直线上,有如下三个关系式:①AD =BC ;②DE =CF ;③BE ∥AF .(1)请用其中两个关系式作为条件,另一个作为结论,写出所有你认为正确的结论.(2)选择(1)中你写出的—个正确结论,说明它正确的理由.BOD CAADE FB C22.(8分)如图8,在中,,于,于D. (1)求证:△ADC≌△CEB. (2),求BE的长度.23.(8分)已知:△ABC中,∠B、∠C的角平分线相交于点D,过D作EF//BC交AB于点E,交AC于点F.求证:BE+CF=EF.24、(10分)如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连结AD、AG。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1•下列图形是轴对称图形的有(
)
A.2个
B.3个
2•下面各组线段中,能组成三角形的是(
A . 5, 11, 6
B . 8, 8, 16
3•.下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的 边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等•其中真命题的个数有(
)
4. 等腰三角形的一个角是50,则它的底角是(
5. 和点P (2, -5)关于x 轴对称的点是
6. 下列各组图形中,是全等形的是(
选择题
八年级数学上册
期中测试
班级:
姓名
:
成绩:
C.4个 )
C. 10, 5, 4
D.5个 D. 6, 9, 14
A.3个
B.2个
C.1个
D.0个
A. 50
B. 50 或 65 C 、80 . D 、65
A ( -2, -5)
B (2, -5)
C (2, 5)
D (-2, 5)
A.两个含60°角的直角三角形
B.腰对应相等的两个等腰直角三角形 C 边长为3和4的两个等腰三角形
D.—个钝角相等的两个等腰三角形
7.如图 1 , AD =AE , BD = CE , / ADB=Z AEC ,/ BAE ,下列结论错误的是( A.A ABE^A ACD B.A ABD^A ACE
D. / C=30o
A '
B 图3
9.如图2,从下列四个条件: ①BC = B'C, ②AC = A'C ,③/A'CA =/B'CB,
④AB = A 'B'中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论 的个数是( )A . 1个 B . 2个
C . 3个
D . 4个
10将一张长方形纸片按如图3所示的方式折叠,BC , BD 为折痕,则Z CBD 的度数为(
)
A. 60°
B. 75°
C. 90°
D. 95°
11. 等腰三角形的两边分别为3和6,则这个三角形的周长是() .A . 12 B. 15 C. 9 D .12 或 15
A.等腰三角形两腰上的高相等
C.顶角相等的两个等腰三角形全等
B.等腰三角形的高、中线、角平分线互相重合 D.两腰相等的两个等腰三角形全等
图1
C.Z DAE=40°
A
E
图2
二、填空题
13. 若点P (m,m-1)在x轴上,则点P关于x轴对称的点为 ______________
14. 一个多边形的每一个外角都等于360,则该多边形的内角和等于 _______________
15. _________________________________________ 如图1, PM=PN,/ BOC=30° 贝U/AOB= .
16. ______________________________________________________________ 如图3,在△ABC和AFED
, AD=FC , AB=FE,当添加条件 ___________________________________ 时,就可得到
△ABC^^ FED.(只需填写一个你认为正确的条件)
17.如图4,已知AB=AC, /A=40:AB的垂直平分线MN交AC于点D,则/DBC二__ 度.
18.如图:点P为/ AOB内一点,分别作出P点关于0A 、
P I P2=15,则△ PMN的周长为___________ .
0B的对称点P1, P2,连接RF2交0A于M,交0B于N,
三、解答题
19•如图5,在平面直角坐标系中,A(1,2), B(3, 1),
(1)在图中作出△ ABC关于y轴对称的△ A1B1C1.
(2)写出点A, B1, G的坐标(直接写答案).
A1 _____________
B1 _____________
C1 _____________
(3)△ABQ1的面积为 ___________
C(-2, -1).
图5
21. 如图18所示,△ ADF和厶BCE中,/ A=Z B,点D, E, F, C在同一直线上,有如下三个关系
式: ①AD=BC;② DE=CF;③ BE// AF.
(1)请用其中两个关系式作为条件,另一个作为结论,写出所有你认为正确的结论.
⑵选择(1)中你写出的一个正确结论,说明它正确的理由.
22. 如图8,在ABC 中,ACB =90°, AC 二BC,BE_CE 于E , AD — CE 于D.
20.如图,已知AD、EC相交于点O ,AE = CD,AD = CE .求证:/A=Z C
(1)求证:△ADCCEB. (2) AD = 5cm, DE 二3cm,求BE 的长度.
23. 已知:△ ABC中,/ B、/ C的角平分线相交于点D,过D作EF//BC交AB于点E,交AC于点F.求
证:BE+CF=EF
24、如图:在厶ABC中, BE CF分别是AC AB两边上的高,在BE上截取BD=AC在CF的延长线上截取CG=AB连结AD AG
求证:(1)AD=AG (2) AD与AG的位置关系如何。
B。