fluent--流体力学基础
fluent教程
fluent教程Fluent是一款由Ansys开发的计算流体动力学(CFD)软件,广泛应用于工程领域,特别是在流体力学仿真方面。
本教程将介绍一些Fluent的基本操作,帮助初学者快速上手。
1. 启动Fluent首先,双击打开Fluent的图形用户界面(GUI)。
在启动页面上,选择“模拟”(Simulate)选项。
2. 创建几何模型在Fluent中,可以通过导入 CAD 几何模型或使用自带的几何建模工具来创建模型。
选择合适的方法,创建一个几何模型。
3. 定义网格在进入Fluent之前,必须生成一个网格。
选择合适的网格工具,如Ansys Meshing,并生成网格。
确保网格足够精细,以便准确地模拟流体力学现象。
4. 导入网格在Fluent的启动页面上,选择“导入”(Import)选项,并将所生成的网格文件导入到Fluent中。
5. 定义物理模型在Fluent中,需要定义所模拟流体的物理属性以及边界条件。
选择“物理模型”(Physics Models)选项,并根据实际情况设置不同的物理参数。
6. 设置边界条件在模型中,根据实际情况设置边界条件,如入口速度、出口压力等。
选择“边界条件”(Boundary Conditions)选项,并给出相应的数值或设置。
7. 定义求解器选项在Fluent中,可以选择不同的求解器来解决流体力学问题。
根据实际情况,在“求解器控制”(Solver Control)选项中选择一个合适的求解器,并设置相应的参数。
8. 运行仿真设置完所有的模型参数后,点击“计算”(Compute)选项,开始运行仿真。
等待仿真过程完成。
9. 后处理结果完成仿真后,可以进行结果的后处理,如流线图、压力分布图等。
选择“后处理”(Post-processing)选项,并根据需要选择相应的结果显示方式。
10. 分析结果在后处理过程中,可以进行结果的分析。
比较不同参数的变化,探索流体流动的特点等。
以上是使用Fluent进行流体力学仿真的基本流程。
FLUENT知识点
FLUENT知识点FLUENT是一种计算流体力学(CFD)软件,用于模拟和分析流体流动和热传递的现象。
它由美国公司Ansys开发,已经成为工程和科学领域中最常用的CFD模拟工具之一、下面是一些关于FLUENT软件的知识点。
1. FLUENT的基本原理:FLUENT使用Navier-Stokes方程组来描述流动过程,它基于流体力学和热力学原理。
它可以模拟各种流动情况,包括稳态和非稳态流动、气流和液流、可压缩和不可压缩流体等。
2.网格生成:在FLUENT中,首先需要生成一个计算网格。
网格的划分对于计算结果的准确性和计算速度至关重要。
FLUENT提供了多种网格生成方法,包括结构网格和非结构网格,用户可以根据需要选择适当的网格类型。
3.边界条件和初始条件:在进行流动模拟之前,需要定义合适的边界条件和初始条件。
边界条件包括流体速度、压力和温度等。
初始条件是指模拟开始时的流体状态。
FLUENT提供了多种边界条件和初始条件的设置选项。
4.物理模型:FLUENT支持多种物理模型,包括湍流模型、传热模型、化学反应模型等。
这些物理模型可以根据流动问题的特点进行选择和调整,以获得准确的计算结果。
5. 数值方法:FLUENT使用有限体积法来离散化Navier-Stokes方程组。
它将流场划分为小的控制体积,并在每个控制体积上进行数值解算。
FLUENT提供了多种求解算法和网格收敛策略,以提高计算的准确性和稳定性。
6.模拟结果的后处理:FLUENT可以输出各种流动参数和图形结果,以便分析和解释模拟结果。
用户可以获取流体速度、压力、温度分布等信息,并绘制流线图、剖面图、轮廓图等。
7.多物理场耦合:FLUENT可以进行多物理场的耦合模拟,例如流体-固体的传热问题、流体-结构的耦合问题等。
这些问题可以使用FLUENT软件中的多物理模块来进行建模和求解。
8.并行计算:FLUENT可以利用多核计算机或计算集群进行并行计算,以加快计算速度。
fluent以及流体力学相关知识
fluent以及流体⼒学相关知识1234 弟:“上次说到了在进⾏计算结果评估的时候需要做⽆关性评价,这个⽆关性的概念应该怎么去理解呢?”哥:“这⾥的⽆关性验证主要是指⽹格⽆关性,在⼀些特殊在场合中可能包括有时间步长⽆关性检验。
但是稍微有点数值计算常识的⼈都知道,计算结果不可能与⽹格⼤⼩⽆关的。
我们这⾥的⽆关是⼀种近似的概念。
”弟:“求真相。
”哥:“我们先讨论⽹格⽆关的概念,步长⽆关的概念与这个相似。
数值计算中之所以需要⽹格,是由所采取的算法密切相关的。
当前的主流偏微分⽅程数值离散⽅法都是先计算节点上的物理量,然后通过插值在⽅式求得节点间的值。
因此,从理论上讲,⽹格点布置得越密集,所得到的计算结果也越精确。
”哥:“但是⽹格不可能⽆限制的加密。
主要存在的问题有:风格越密,计算量越⼤,计算周期也越长。
⽽我们的计算资源总是有限的。
其次,随着⽹格的加密,计算机浮点运算造成的舍⼊误差也会增⼤。
因此在实际应⽤中,使⽤者总是在计算精度与计算开销间寻求⼀个⽐较合适的点,这个点所处的位置就是达到⽹格⽆关的阈值。
”弟:“你的意思是,⽹格的数量会影响计算精度,也会影响求解开销,这两个东西是相互⽭盾的,使⽤者需要找到⼀个⽐较合适的风格密度,不会损失太多的精度,计算开销上也能过得去,对吧?”弟:“我想我有些明⽩了。
所谓⽹格⽆关性验证,实际上就是验证计算结果对于⽹格密度变化的敏感性。
也就是不断的改变⽹格的疏密,观察计算结果的变化,若其变化幅度在允许的范围之内,我们就可以说计算值已经与风格⽆关了。
但是在实际计算过程中,我们应该怎样去操作呢?”哥:“在实际计算之前,我们就应当对计算过程有⼀个规划,在划分⽹格的时候,常常需要根据计算机配置估计能处理问题的规模,通常是估计计算⽹格的数量,正常情况下,1G的内存⼤概能求解100W⽹格。
⾸先划分相对粗糙的⽹格进⾏初步计算,对于试算的结果进⾏评估,在流场趋势基本正确的情况下逐步加密⽹格,将多次计算结果进⾏对⽐,当然这其中有试验数据作为参考的话效果更好。
fluent理论一—基本流动
1 基本流动本节对ANSYS FLUENT提供的有关流动基本物理模型的数学背景进行了描述。
主要包括以下内容:●ANSYS FLUENT中的物理模型概述●连续方程及动力方程●用户定义标量(UDS)传输方程●周期流动●漩涡及旋转流动●可压缩流动●无粘流动1.1ANSYS中物理模型概述ANSYS FLUENT提供了广泛的对可压缩流动、不可压缩流动、层流及湍流流动问题的模拟能力。
能进行稳态及瞬态流动分析。
在ANSYS FLUENT中,广泛的数学模型,能用于复杂几何结构的传输现象(如热传递及化学反应)中。
例如使用ANSYS FLUENT模拟过程装备中的层流非牛顿流体流动;旋转机械及汽车引擎中的共轭热传递问题;锅炉中的煤粉燃烧;压缩机、泵及风扇中的流动;泡罩塔及流化床中的多相流动等。
为了对工业设备及过程中的流动与传递现象进行模拟,FLUENT提供了大量的有用特性。
包括多孔介质,集总参数(风扇及换热器),周期流动及热传递,旋转及移动参考系模型。
移动参考系模型包括模拟单参考系及多参考系能力。
时间精确的滑移网格方法,对于模拟多级旋转机械问题特别有用。
另外ANSYS FLUENT提供的特别有用的模型为自由表面及多相流动模型,这对于气液、气固、液固及气-液-固流动非常有用。
在这些类型的问题中,除离散相模型(DPM)外,FLUENT还提供了VOF,mixtrue,及欧拉模型。
离散相模拟利用拉格朗日对分散相(如粒子,液滴,气泡等)轨迹进行计算,包括与连续相的耦合计算。
多相流动的例子如明渠流动、喷雾、沉降、分离及气穴等。
健壮及精确的湍流模型是ANSYS FLUENT 模拟的一个至关重要的部分。
湍流模型的提供具有广泛的应用。
同时其还包括对其他物理现象的模拟,例如浮力及可压缩性。
通过使用扩展的壁面函数及区域模拟,对于近壁区域进行精确模拟。
能够模拟大量热传递模式,例如包括或不包括共轭热传递的自然、强制及混合对流模拟。
辐射模型及相关的子模型能够用于燃烧模拟。
FLUENT基础知识总结
FLUENT基础知识总结Fluent是一种专业的计算流体动力学软件,广泛应用于工程领域,用于模拟流体动力学问题。
下面是关于Fluent软件的基础知识总结。
1. Fluent软件概述:Fluent是一种基于有限体积法的流体动力学软件,可用于模拟和分析包括流体流动、传热、化学反应等在内的多种物理现象。
它提供了强大的求解器和网格生成工具,可处理各种复杂的流体问题。
2.求解器类型:Fluent软件提供了多种类型的求解器,用于求解不同类型的流体动力学问题。
其中包括压力-速度耦合求解器、压力-速度分离求解器、多相流求解器等。
用户可以根据具体的问题选择合适的求解器进行模拟计算。
3.网格生成:网格生成是流体模拟中的重要一步,它将复杂的物理几何体离散化成小的几何单元,用于计算流体动力学的变量。
Fluent提供了丰富的网格生成工具,包括结构化网格和非结构化网格。
用户可以通过手动创建网格或使用自动网格生成工具来生成合适的网格。
4.区域设置:在使用Fluent进行模拟计算之前,需要对模拟区域进行设置。
区域设置包括定义物理边界条件、初始化流场参数、设定物理模型参数等。
这些设置将直接影响到最终的模拟结果,因此需要仔细调整和验证。
5.模拟计算过程:模拟计算的过程主要包括输入网格、设置求解器和边界条件、迭代求解控制以及输出结果。
在模拟过程中,用户可以根据需要对物理模型参数、网格精度等进行调整,以获得准确的计算结果。
6.模型与边界条件:Fluent提供了多种物理模型和边界条件设置,包括连续介质模型、湍流模型、辐射模型、化学反应模型等。
用户可以根据具体问题选择合适的模型和边界条件,并根据需要进行参数调整。
7.结果分析:模拟计算结束后,用户可以对计算结果进行分析和后处理。
Fluent提供了丰富的后处理工具,可以对流动场、温度场、压力场等进行可视化展示、数据提取和统计分析。
这有助于用户深入理解流体动力学问题并作出合理的决策。
8.并发计算:Fluent支持并发计算,即使用多台计算机进行模拟计算,以提高计算速度和效率。
介绍计算流体力学通用软件——Fluent
介绍计算流体力学通用软件——Fluent介绍计算流体力学通用软件——Fluent计算流体力学(Computational Fluid Dynamics,简称CFD)是一门综合了流体力学、计算数学和计算机科学等多学科知识的交叉学科。
CFD软件被广泛应用于工程领域,可用于模拟和分析各种流体现象。
其中,Fluent是一款被广泛使用的计算流体力学通用软件,本文将对其进行详细介绍。
一、Fluent软件的简介Fluent是美国ANSYS公司推出的一款流体力学仿真软件,已经成为了全球工程仿真界最为流行的工具之一。
该软件内置了丰富的求解器和算法库,可用于模拟包括传热、流动、多相流、反应等在内的各种物理现象。
Fluent具有综合性、灵活性和高精度的特点,能够支持各类工程问题的模拟与分析。
二、Fluent软件的功能特点1. 多物理场耦合模拟能力:Fluent支持多物理场的耦合模拟,如流体力学、传热、化学反应等。
用户可以方便地将多个模拟场景进行耦合,实现真实物理现象的模拟和分析。
2. 多尺度模拟能力:Fluent可实现多尺度模拟和跨尺度传递分析,从宏观到微观的全过程仿真。
这使得用户可以更全面地了解系统的行为和特性。
3. 自由表面流模拟:Fluent具备出色的自由表面流模拟能力,可以模拟液体与气体之间的界面行为。
在船舶、液相冷却器等领域得到了广泛应用。
4. 求解器丰富:Fluent内置了多种求解器和前处理器,可适应不同问题的求解和分析需求。
用户可根据具体问题选择合适的求解器,提高仿真效率和精度。
5. 高精度的算法库:Fluent拥有精确可靠的数值方法和算法库,可以满足不同工程问题的精度要求。
其算法被广泛验证和应用,可保证结果的准确性。
三、Fluent软件的应用领域Fluent软件广泛应用于航空航天、汽车工程、能源领域、化工等众多工程领域。
以下是其中的几个典型应用领域:1. 汽车空气动力学:Fluent可以在设计阶段对汽车的空气动力学性能进行仿真,优化车身外形,提升汽车的空气动力学效果。
使用AnsysFluent进行流体力学仿真教程
使用AnsysFluent进行流体力学仿真教程Chapter 1: Introduction to ANSYS FluentIn this chapter, we will provide an overview of ANSYS Fluent and explain its importance in the field of fluid dynamics simulation. ANSYS Fluent is a powerful computational fluid dynamics (CFD) software used for simulating and analyzing fluid flows. It enables engineers and scientists to study the behavior of fluids, predict their performance in various scenarios, and optimize the design of systems involving fluid flow.Chapter 2: Pre-ProcessingThe pre-processing stage involves preparing the geometry of the system and defining the desired fluid flow conditions. ANSYS Fluent provides a variety of tools to import and manipulate geometry files, such as creating boundaries, defining initial conditions, and specifying material properties. Additionally, it allows users to create a mesh grid that discretizes the computational domain into smaller elements for accurate simulations.Chapter 3: Boundary ConditionsBoundary conditions play a crucial role in defining the behavior of the fluid flow simulation. In this chapter, we will explain the different types of boundary conditions available in ANSYS Fluent, including velocity inlet, pressure outlet, wall, and symmetry. Each boundarycondition has specific input parameters that need to be defined, such as velocity magnitude, pressure, and temperature.Chapter 4: Solver SettingsThe solver settings determine the numerical methods used to solve the fluid flow equations in ANSYS Fluent. This chapter will introduce the various solver options available, including pressure-based and density-based solvers. It will also discuss the importance of convergence criteria and the influence of physical properties, such as turbulence models and turbulence intensity.Chapter 5: Post-ProcessingOnce the simulation is complete, post-processing is performed to analyze and visualize the results. In ANSYS Fluent, users have access to a range of post-processing tools, such as contour plots, vector plots, velocity profiles, and pressure distribution. This chapter will explain how to interpret these results to gain insights into the fluid flow behavior and make informed design decisions.Chapter 6: Advanced FeaturesIn this chapter, we will explore some of the advanced features of ANSYS Fluent that can enhance the accuracy and efficiency of fluid flow simulations. These include multiphase flow simulations, combustion modeling, heat transfer analysis, and turbulence modeling. We will provide step-by-step instructions on how to set up and run simulations using these advanced features.Chapter 7: Case StudiesTo further illustrate the capabilities of ANSYS Fluent, this chapter will present a series of case studies involving different fluid flow scenarios. These case studies will cover a range of applications, such as fluid flow in pipes, aerodynamics of a car, and natural convection in a room. Each case study will include the problem statement, simulation setup, and analysis of the results.Chapter 8: Troubleshooting and TipsANYS Fluent, like any software, can sometimes encounter issues or produce unexpected results. In this chapter, we will discuss common troubleshooting techniques and provide tips for optimizing simulation setup and improving simulation accuracy. This will include techniques for mesh refinement, convergence improvement, and understanding error messages.Conclusion:ANSYS Fluent is a powerful tool for conducting fluid dynamics simulations. In this tutorial, we have covered the fundamental aspectsof using ANSYS Fluent, including pre-processing, boundary conditions, solver settings, post-processing, advanced features, and troubleshooting. By following this tutorial, users can gain a solid foundation in conducting fluid flow simulations using ANSYS Fluent and leverageits capabilities to analyze and optimize fluid flow systems in various applications.。
学习fluent (流体常识及软件计算参数设置)
luent中一些问题----(目录)1 如何入门2 CFD计算中涉及到的流体及流动的基本概念和术语理想流体(Ideal Fluid)和粘性流体(Viscous Fluid)牛顿流体(Newtonian Fluid)和非牛顿流体(non-Newtonian Fluid)可压缩流体(Compressible Fluid)和不可压缩流体(Incompressible Fluid)层流(Laminar Flow)和湍流(Turbulent Flow)定常流动(Steady Flow)和非定常流动(Unsteady Flow)亚音速流动(Subsonic)与超音速流动(Supersonic)热传导(Heat Transfer)及扩散(Diffusion)3 在数值模拟过程中,离散化的目的是什么如何对计算区域进行离散化离散化时通常使用哪些网格如何对控制方程进行离散离散化常用的方法有哪些它们有什么不同离散化的目的计算区域的离散及通常使用的网格控制方程的离散及其方法各种离散化方法的区别4 常见离散格式的性能的对比(稳定性、精度和经济性)5 流场数值计算的目的是什么主要方法有哪些其基本思路是什么各自的适用范围是什么6 可压缩流动和不可压缩流动,在数值解法上各有何特点为何不可压缩流动在求解时反而比可压缩流动有更多的困难可压缩Euler及Navier-Stokes方程数值解不可压缩Navier-Stokes方程求解7 什么叫边界条件有何物理意义它与初始条件有什么关系8 在数值计算中,偏微分方程的双曲型方程、椭圆型方程、抛物型方程有什么区别9 在网格生成技术中,什么叫贴体坐标系什么叫网格独立解10 在GAMBIT中显示的“check”主要通过哪几种来判断其网格的质量及其在做网格时大致注意到哪些细节11 在两个面的交界线上如果出现网格间距不同的情况时,即两块网格不连续时,怎么样克服这种情况呢12 在设置GAMBIT边界层类型时需要注意的几个问题:a、没有定义的边界线如何处理b、计算域内的内部边界如何处理(2D)13 为何在划分网格后,还要指定边界类型和区域类型常用的边界类型和区域类型有哪些14 20 何为流体区域(fluid zone)和固体区域(solid zone)为什么要使用区域的概念FLUENT是怎样使用区域的15 21 如何监视FLUENT的计算结果如何判断计算是否收敛在FLUENT中收敛准则是如何定义的分析计算收敛性的各控制参数,并说明如何选择和设置这些参数解决不收敛问题通常的几个解决方法是什么16 22 什么叫松弛因子松弛因子对计算结果有什么样的影响它对计算的收敛情况又有什么样的影响17 23 在FLUENT运行过程中,经常会出现“turbulence viscous rate”超过了极限值,此时如何解决而这里的极限值指的是什么值修正后它对计算结果有何影响18 24 在FLUENT运行计算时,为什么有时候总是出现“reversed flow”其具体意义是什么有没有办法避免如果一直这样显示,它对最终的计算结果有什么样的影响26 什么叫问题的初始化在FLUENT中初始化的方法对计算结果有什么样的影响初始化中的“patch”怎么理解27 什么叫PDF方法FLUENT中模拟煤粉燃烧的方法有哪些30 FLUENT运行过程中,出现残差曲线震荡是怎么回事如何解决残差震荡的问题残差震荡对计算收敛性和计算结果有什么影响31数值模拟过程中,什么情况下出现伪扩散的情况以及对于伪扩散在数值模拟过程中如何避免32 FLUENT轮廓(contour)显示过程中,有时候标准轮廓线显示通常不能精确地显示其细节,特别是对于封闭的3D物体(如柱体),其原因是什么如何解决33 如果采用非稳态计算完毕后,如何才能更形象地显示出动态的效果图34 在FLUENT的学习过程中,通常会涉及几个压力的概念,比如压力是相对值还是绝对值参考压力有何作用如何设置和利用它35 在FLUENT结果的后处理过程中,如何将美观漂亮的定性分析的效果图和定量分析示意图插入到论文中来说明问题36 在DPM模型中,粒子轨迹能表示粒子在计算域内的行程,如何显示单一粒径粒子的轨道(如20微米的粒子)37 在FLUENT定义速度入口时,速度入口的适用范围是什么湍流参数的定义方法有哪些各自有什么不同38 在计算完成后,如何显示某一断面上的温度值如何得到速度矢量图如何得到流线39 分离式求解器和耦合式求解器的适用场合是什么分析两种求解器在计算效率与精度方面的区别43 FLUENT中常用的文件格式类型:dbs,msh,cas,dat,trn,jou,profile等有什么用处44 在计算区域内的某一个面(2D)或一个体(3D)内定义体积热源或组分质量源。
Fluent培训资料:1-2流体力学与CFD基础
1、流体力学基础
流体运动守衡方程 • 质量守衡方程 • 动量守衡方程-牛顿运动定律 • 能量守衡方程-热力学第一定律
dA
例: 均布, 1D, 稳态流动
Fx P1A1 P2A2 (m V) 2 (m V) 1 m = AV
1、流体力学基础
动量守衡
N-S方程(广义动量方程):
vx vxvx vyvx
t
x
y
vzvx
z
g x
P x
Rx
x
e
vx x
y
e
vx y
z
e
vx z
Tx
vy vxvy
t x
y
z
任何流体问题都必须满足质量守恒定律。该定律可表达为: 单位时间内流体微元体中质量的增加,等于同一时间间隔内 流入该微元的净质量。
1、流体力学基础
动量守衡
动量流入
动量 总量
动量流出
净力
表述
净力 = 动量增加率 + 流出的动量 - 流入的动量
积分方程
F
d (mv)
dt
t
cv
vd
vv cs
2、CFD基础
2.1 CFD模型的数值求解方法概述
(1) 有限差分法 有限差分法是历史上采用最早的数值方法,对简单几何形
状中的流动与换热问题也是一种最容易实施的数值方法。其基 本点是:将求解区域用与坐标轴平行的一系列网格线的交点所 组成的点的集合来代替,在每个节点上,将控制方程中每一个 导数用相应的差分表达式来代替,从而在每个节点上形成一个 代数方程,每个方程中包括了本节点及其附近一些节点上的未 知值,求解这些代数方程就获得了所需的数值解。由于各阶导 数的差分表达式可以从Taylor(泰勒)展开式来导出,这种方法又 称建立离散方程的Taylor展开法。
fluent--流体力学基础
hj=ξ u2/(2g) 流体在流动过程中的总损失等于各个管路系统所产生 的所有沿程损失和局部损失之和,即来自h=∑hl+∑hj
前页
返回
后页
主题
1. 3 能量损失与总流的能量方程
• 2 总流的伯努利方程
返回
前页
后页
主题
1. 3 能量损失与总流的能量方程
• 3 入口段与充分发展段
返回
前页
后页
主题
1. 4 流体运动的描述
返回
前页
后页
主题
1.1 概述
• 1 流体的密度、重度和比重
均质流体: m (kg/m3) ;
V
G
V
( N/m3 )
非均质流体:
lim
V 0
m V
(kg/m3) ; lim G
V 0 V
( N/m3 )
显然 g
牢记 水 1000 kg/m3 ;
• 以绝对真空为基准测得的压力称为绝对压力,它是流体的 真实压力;以大气压为基准测得的压力称为表压或真空度 、相对压力,它是在把大气压强视为零压强的基础上得出 来的。
• 绝对压强是以绝对真空状态下的压强(绝对零压强)为基 准计量的压强;表压强简称表压,是指以当时当地大气压 为起点计算的压强。两者的关系为:
返回
前页
后页
主题
1. 4 流体运动的描述
• 4 层流与湍流
层流 流体运动规则,各部分分层流动 互不掺混,质点的轨线是光滑 的,而且流动 稳定。
湍流 (紊流) 流体运动极不规则,各部分激 烈掺混,质点的轨线杂乱无章 ,而且流场极不稳定。
返回
前页
后页
主题
fluent计算流体力学
fluent计算流体力学(原创版)目录1.Fluent 软件介绍2.Fluent 计算流体力学的原理3.Fluent 在计算流体力学中的应用实例4.Fluent 计算流体力学的优势和局限性5.结论正文一、Fluent 软件介绍Fluent 是一款由美国 CFD 公司(Computational Fluid Dynamics)开发的计算流体力学(Computational Fluid Dynamics,简称 CFD)软件。
该软件广泛应用于工程领域,如航空航天、汽车制造、能源生产等,以模拟和分析流体流动现象。
Fluent 通过计算机模拟流体的运动,可以预测流体在不同条件下的行为,为用户提供优化设计的依据。
二、Fluent 计算流体力学的原理Fluent 基于计算流体力学的原理,采用有限体积法(Finite Volume Method,简称 FVM)对流体进行离散化处理。
在 Fluent 中,流体被划分为无数个小的体积单元,通过对每个体积单元内的流体物理量(如速度、压力、密度等)进行积分,可以得到整个流体的运动状态。
这样的计算方法可以克服传统计算流体力学中的复杂数学方程,使问题变得易于求解。
三、Fluent 在计算流体力学中的应用实例Fluent 在计算流体力学中有广泛的应用,以下是几个具体的实例:1.飞机翼型优化:Fluent 可以用于分析飞机翼型在不同速度下的气流分布,为飞机设计师提供优化设计的依据。
2.汽车尾气排放:Fluent 可以模拟汽车尾气的流动过程,帮助汽车制造商优化排气系统,降低尾气排放。
3.热交换器设计:Fluent 可以分析热交换器内流体的流动状态,为工程师提供优化热交换器性能的建议。
四、Fluent 计算流体力学的优势和局限性1.优势:Fluent 具有强大的计算能力,可以模拟复杂的流体流动现象;计算速度快,效率高;用户界面友好,操作简便。
2.局限性:Fluent 作为一种计算流体力学软件,无法完全替代实验研究;模拟结果受输入参数和模型的限制,可能与实际结果存在一定误差;对计算机硬件要求较高。
《fluent讲义》课件
Fluent的模拟应用和优化技术
1
热传导模拟
模拟热传导过程,包括传热、热辐射和相变,以优化能量传递和系统效率。
2
多物理场模拟
将不同物理场耦合进行模拟,如流体-固体、流体-电磁和流体-热传导,以研究多 场耦合效应。
3
物流耦合模拟
模拟流体和结构耦合,研究流体对结构的影响,以及结构变化对流体行为的反馈。
流体力学概念与模拟
1 流体力学基础
介绍流体力学的基本概念,包括质量守恒、 动量守恒和能量守恒。
2 多相流模拟
探索多相流模型,如气固流、气液流和固液 流,并学习如何模拟这些复杂的流体行为。
3 湍流模拟
了解湍流的产生机制和模型,并学习如何进 行湍流模拟以预测和优化流体行为。
4 化学反应模拟
研究流体中的化学反应过程,包括燃烧、化 学反应和质量转移,并模拟这些过程的影响。
Fluent的动网格技术和并行计算
动网格技术
介绍Fluent中的动网格技术,包括网格自适应和网 格重构。动态调整网格以捕捉流动细节和提高模拟 精度。
并行计算
探索Fluent中的并行计算技术,利用多核处理器和 集群系统提高模拟速度和处理大规模模拟任务。
Fluent的后处理工具和工程应用案例
后处理工具
Fluent的操作和界面介绍包括模型创建、网 格导入、参数设置等。
物理模型选择
深入了解Fluent所提供的多种物理模型选项,并 选择适合你的应用的模型。
用户界面
探索Fluent友好的用户界面,包括工具栏、菜单 栏、视图控制和后处理选项。
求解器设置
学习如何选择和设置合适的求解器以提高模拟效 率和准确性。
使用Fluent的后处理工具进行数据可视化、图表分析 和结果解释,以实现全面的模拟分析。
学习fluent(流体常识及软件计算全参数设置)
luent中一些问题----(目录)1 如何入门2 CFD计算中涉及到的流体及流动的基本概念和术语2.1 理想流体(Ideal Fluid)和粘性流体(Viscous Fluid)2.2 牛顿流体(Newtonian Fluid)和非牛顿流体(non-Newtonian Fluid)2.3 可压缩流体(Compressible Fluid)和不可压缩流体(Incompressible Fluid)2.4 层流(Laminar Flow)和湍流(Turbulent Flow)2.5 定常流动(Steady Flow)和非定常流动(Unsteady Flow)2.6 亚音速流动(Subsonic)与超音速流动(Supersonic)2.7 热传导(Heat Transfer)及扩散(Diffusion)3 在数值模拟过程中,离散化的目的是什么?如何对计算区域进行离散化?离散化时通常使用哪些网格?如何对控制方程进行离散?离散化常用的方法有哪些?它们有什么不同?3.1 离散化的目的3.2 计算区域的离散及通常使用的网格3.3 控制方程的离散及其方法3.4 各种离散化方法的区别4 常见离散格式的性能的对比(稳定性、精度和经济性)5 流场数值计算的目的是什么?主要方法有哪些?其基本思路是什么?各自的适用范围是什么?6 可压缩流动和不可压缩流动,在数值解法上各有何特点?为何不可压缩流动在求解时反而比可压缩流动有更多的困难?6.1 可压缩Euler及Navier-Stokes方程数值解6.2 不可压缩Navier-Stokes方程求解7 什么叫边界条件?有何物理意义?它与初始条件有什么关系?8 在数值计算中,偏微分方程的双曲型方程、椭圆型方程、抛物型方程有什么区别?9 在网格生成技术中,什么叫贴体坐标系?什么叫网格独立解?10 在GAMBIT中显示的“check”主要通过哪几种来判断其网格的质量?及其在做网格时大致注意到哪些细节?11 在两个面的交界线上如果出现网格间距不同的情况时,即两块网格不连续时,怎么样克服这种情况呢?12 在设置GAMBIT边界层类型时需要注意的几个问题:a、没有定义的边界线如何处理?b、计算域内的内部边界如何处理(2D)?13 为何在划分网格后,还要指定边界类型和区域类型?常用的边界类型和区域类型有哪些?14 20 何为流体区域(fluid zone)和固体区域(solid zone)?为什么要使用区域的概念?FLUENT是怎样使用区域的?15 21 如何监视FLUENT的计算结果?如何判断计算是否收敛?在FLUENT中收敛准则是如何定义的?分析计算收敛性的各控制参数,并说明如何选择和设置这些参数?解决不收敛问题通常的几个解决方法是什么?16 22 什么叫松弛因子?松弛因子对计算结果有什么样的影响?它对计算的收敛情况又有什么样的影响?17 23 在FLUENT运行过程中,经常会出现“turbulence viscous rate”超过了极限值,此时如何解决?而这里的极限值指的是什么值?修正后它对计算结果有何影响18 24 在FLUENT运行计算时,为什么有时候总是出现“reversed flow”?其具体意义是什么?有没有办法避免?如果一直这样显示,它对最终的计算结果有什么样的影响26 什么叫问题的初始化?在FLUENT中初始化的方法对计算结果有什么样的影响?初始化中的“patch”怎么理解?27 什么叫PDF方法?FLUENT中模拟煤粉燃烧的方法有哪些?30 FLUENT运行过程中,出现残差曲线震荡是怎么回事?如何解决残差震荡的问题?残差震荡对计算收敛性和计算结果有什么影响?31数值模拟过程中,什么情况下出现伪扩散的情况?以及对于伪扩散在数值模拟过程中如何避免?32 FLUENT轮廓(contour)显示过程中,有时候标准轮廓线显示通常不能精确地显示其细节,特别是对于封闭的3D物体(如柱体),其原因是什么?如何解决?33 如果采用非稳态计算完毕后,如何才能更形象地显示出动态的效果图?34 在FLUENT的学习过程中,通常会涉及几个压力的概念,比如压力是相对值还是绝对值?参考压力有何作用?如何设置和利用它?35 在FLUENT结果的后处理过程中,如何将美观漂亮的定性分析的效果图和定量分析示意图插入到论文中来说明问题?36 在DPM模型中,粒子轨迹能表示粒子在计算域内的行程,如何显示单一粒径粒子的轨道(如20微米的粒子)?37 在FLUENT定义速度入口时,速度入口的适用范围是什么?湍流参数的定义方法有哪些?各自有什么不同?38 在计算完成后,如何显示某一断面上的温度值?如何得到速度矢量图?如何得到流线?39 分离式求解器和耦合式求解器的适用场合是什么?分析两种求解器在计算效率与精度方面的区别43 FLUENT中常用的文件格式类型:dbs,msh,cas,dat,trn,jou,profile等有什么用处? 44 在计算区域内的某一个面(2D)或一个体(3D)内定义体积热源或组分质量源。
学会使用ANSYSFluent进行流体力学模拟和分析
学会使用ANSYSFluent进行流体力学模拟和分析流体力学是研究流体运动和相互作用的科学。
在工程学领域,流体力学广泛应用于模拟和分析各种工程问题,如气体和液体流动、热传递、质量传递等。
而ANSYSFluent是一种常用的流体力学模拟和分析软件,可以帮助工程师和科研人员进行流体力学模型的建立、仿真和结果分析。
本文将介绍如何学会使用ANSYSFluent进行流体力学模拟和分析。
第一章:ANSYSFluent简介ANSYSFluent是面向工程领域的一款强大的计算流体力学软件。
它提供了广泛的模型和分析工具,可以模拟和分析各种流体力学问题。
ANSYSFluent具有友好的界面,简单易用,同时也具备高级的功能和定制性。
该软件在汽车、航空、化工等领域得到了广泛的应用。
第二章:流体力学模拟流程在使用ANSYSFluent进行流体力学模拟和分析之前,我们需要先了解整个模拟流程。
首先,我们需要定义几何模型,可以通过导入CAD模型或手动构建几何体。
然后,对几何模型进行网格划分,将其离散成小的单元。
接下来,设置流体材料的物性参数,如密度、粘度和热传导系数。
然后,定义流体动力学模型,如流动方程和边界条件。
最后,进行求解和后处理,通过数值方法求解流体力学方程,并分析结果。
第三章:几何建模在ANSYSFluent中,我们可以使用多种方法进行几何建模。
一种常用的方法是通过导入CAD模型,可以直接打开各种常见格式的CAD文件。
另一种方法是使用Fluent的几何建模工具,可以手动构建几何体。
该工具提供了创建基本几何体(如圆柱、球体等)、布尔操作(如并集、交集等)和边界设置等功能,可以方便地生成复杂的几何体。
第四章:网格划分网格划分是流体力学模拟中的重要环节。
好的网格划分可以提高计算精度和计算效率。
在ANSYSFluent中,我们可以使用多种方法进行网格划分。
一种常用的方法是结构化网格划分,它将几何体划分成规则的网格单元。
另一种方法是非结构化网格划分,它允许在几何体中创建任意形状的网格单元。
fluent计算流体力学
fluent计算流体力学摘要:一、引言1.计算流体力学的发展背景2.Fluent软件在流体力学领域的应用二、Fluent软件介绍1.Fluent的发展历程2.Fluent的主要功能3.Fluent的特点和优势三、计算流体力学的基本原理1.流体力学的基本概念2.计算流体力学的方法和步骤四、Fluent在工程中的应用实例1.流体流动分析2.热传导分析3.传质分析4.多相流分析5.组分传输分析五、Fluent软件在我国的研究和应用1.Fluent在我国的研究现状2.Fluent在我国工程领域的应用案例六、Fluent软件的发展前景与挑战1.计算流体力学的发展趋势2.Fluent未来的发展方向3.Fluent面临的挑战正文:计算流体力学(Computational Fluid Dynamics,简称CFD)是研究流体在静止和运动状态下的力学性质及其相互作用的学科。
随着计算机技术的飞速发展,计算流体力学已经成为现代科学领域的重要研究方向。
其中,Fluent 软件作为一款功能强大的计算流体力学模拟工具,广泛应用于航空航天、汽车制造、能源工程、环境科学等领域。
Fluent软件由美国ANSYS公司开发,自1984年首次发布以来,已经经历了多个版本的升级,成为全球流体力学工程师和科研人员的重要工具。
Fluent的主要功能包括:稳态和瞬态流体流动模拟、热传导模拟、传质模拟、多相流模拟、组分传输模拟等。
通过这些功能,用户可以对流体流动、热传导、传质等过程进行详细的数值分析,为工程设计和优化提供理论依据。
计算流体力学的基本原理是通过求解流体力学的基本方程(如Navier-Stokes方程、能量方程和物质传输方程等),来模拟流体在给定条件下的运动和变化。
计算流体力学的方法和步骤包括:建立数学模型、离散化、求解数值方程、设置边界条件、迭代求解、后处理分析等。
Fluent软件在我国得到了广泛的研究和应用。
近年来,我国学者在Fluent 软件的研究方面取得了一系列成果,包括对Fluent软件的改进、优化和应用拓展。
fluent计算流体力学
fluent计算流体力学计算流体力学(Computational Fluid Dynamics,简称CFD)是一种数学建模和数值解算方法,用于研究流体运动和传热过程。
Fluent是一款广泛使用的CFD软件,它具有强大的求解器和用户友好的界面,被广泛应用于航空航天、汽车、能源等领域的工程设计和优化。
本文将探讨Fluent计算流体力学的基本原理、应用领域和优势。
一、基本原理Fluent计算流体力学的基本原理是根据流体运动的基本方程(连续性方程、动量方程和能量方程),结合适当的边界条件和材料参数,利用数值离散和迭代求解方法,计算流动场、温度场和压力场等物理量的分布。
通过在计算机上进行模拟实验,可以有效预测和分析各种复杂流动现象,如湍流、多相流和传热等。
二、应用领域Fluent计算流体力学在各个工程领域都有广泛的应用。
航空航天领域中,可以用于飞机机翼气动性能的优化设计、发动机内部流场的模拟和燃烧过程的研究等。
汽车行业中,可以应用于汽车外形优化、发动机冷却系统的设计和车内流场的模拟等。
能源领域中,可以用于核能反应堆的热工水力分析、风力发电机组的性能评估和燃料电池的流动场模拟等。
此外,Fluent还可以应用于化工、生物医学、建筑等领域的流体力学问题研究。
三、优势Fluent计算流体力学具有以下几个显著的优势:1. 精确性:Fluent采用高精度的数值算法和网格生成技术,能够精确地模拟和计算各种复杂的流动现象。
它可以提供准确的预测和分析结果,从而帮助工程师做出正确的决策。
2. 高效性:Fluent具有强大的求解器和并行计算能力,能够快速而高效地进行数值计算。
它可以在较短的时间内得到结果,大大提高了工程分析的效率。
3. 可视化:Fluent提供丰富的后处理功能,可以将计算结果以直观的方式呈现出来。
用户可以通过动画、图表、剖面分布等方式来观察和分析流动现象,更好地理解流体力学问题。
4. 用户友好性:Fluent具有直观的用户界面和完善的操作指引,使得用户能够轻松上手,快速完成模型建立、网格划分和求解过程。
fluent 船舶流体力学仿真计算工程应用基础
fluent 船舶流体力学仿真计算工程应用基础Fluent 船舶流体力学仿真计算工程应用基础1. 引言Fluent 是一种流体力学仿真软件,广泛应用于船舶工程中。
本文将从基础概念开始,深入探讨 Fluent 在船舶流体力学仿真计算工程应用中的重要性,以及其在工程设计与优化中的作用。
2. Fluent 的基本原理2.1 Navier-Stokes 方程Navier-Stokes 方程描述了流体的运动规律,是 Fluent 软件的核心基础。
在船舶流体力学仿真中,通过求解 Navier-Stokes 方程,可以得到船舶在各种工况下的流场分布。
2.2 边界条件边界条件是 Fluent 中非常重要的概念,它决定了仿真计算的精度和可靠性。
在船舶流体力学仿真中,正确设定船体、液面和进出口的边界条件是非常关键的。
3. Fluent 在船舶工程中的应用3.1 流场分析利用 Fluent 可以对船舶的流场进行分析,包括速度分布、压力分布等。
这对于理解船舶的运动性能以及船舶在水中的受力情况非常重要。
3.2 阻力和推进力计算通过对船舶周围流场的仿真计算,可以准确地计算船舶的阻力和推进力,从而优化船体设计,提高船舶的性能和燃油经济性。
3.3 耦合仿真Fluent 可以与其他工程仿真软件耦合,如结构分析软件、传热分析软件等,实现多物理场耦合仿真。
在船舶工程中,这种方法可以综合考虑船体、船载设备和流场的相互影响。
4. 个人理解与观点通过对 Fluent 在船舶流体力学仿真计算工程应用中的基础概念和具体应用进行深入探讨,我对其重要性有了更深刻的认识。
在船舶工程设计与优化中,流体力学仿真计算已经成为不可或缺的一部分,而Fluent 作为行业标准软件,具有非常重要的地位。
我对于船舶流体力学仿真计算工程应用的理解也随之加深,相信在未来的工作中能够更好地应用这一技术,为船舶工程的发展贡献自己的力量。
5. 总结本文从 Fluent 的基本原理出发,深入探讨了其在船舶流体力学仿真计算工程应用中的重要性,以及具体的应用方法。
fluent流体仿真软件原理
fluent流体仿真软件原理
Fluent流体仿真软件是由美国Ansys公司开发的一款流体动力
学仿真软件,它基于有限体积法和数值求解方法,用于模拟和分析
流体力学现象。
其原理涉及以下几个方面:
1. 有限体积法,Fluent使用有限体积法对流场进行离散化处理。
它将流场分割成有限体积的控制体,并在每个控制体内求解流
体的守恒方程,如质量守恒、动量守恒和能量守恒等。
这种方法能
够准确描述流体在空间和时间上的变化,是流体动力学仿真的基础。
2. 数值求解方法,Fluent采用数值求解方法对离散化后的守
恒方程进行求解。
这包括对流方程、扩散方程和源项的离散化处理,以及时间推进和迭代求解等过程。
通过数值求解方法,可以得到流
场的速度、压力、温度等物理量的分布和变化规律。
3. 物理模型,Fluent软件内置了多种物理模型,包括湍流模型、传热模型、化学反应模型等,用于描述不同流体现象的特性。
用户可以根据具体问题选择合适的物理模型,对流场进行更精确的
仿真和分析。
4. 网格生成,在进行流体仿真前,需要对计算区域进行网格划分。
Fluent能够生成结构化或非结构化网格,以适应不同流场的复杂几何形状和流动特性。
良好的网格质量对于准确求解流场至关重要。
总的来说,Fluent流体仿真软件的原理包括有限体积法的离散化处理、数值求解方法的应用、物理模型的选择和网格生成等多个方面。
通过这些原理的综合运用,Fluent能够对流体力学现象进行准确、高效的模拟和分析,为工程和科研领域提供重要的支持和帮助。
计算流体力学与FLUENT软件简介
流固耦合
通过ANSYS Fluent和 ANSYS 结构力学的耦合可以模拟固体运动 对流动的影响。ANSYS Fluent中流体域的网格变形算法既稳健又 灵活,能允许甚至很大的边界位移。对更极端的边界运动,单个网 格拓扑不足以模拟整个变形,ANSYS Fluent提供模拟中按需自动 重新划分网格的选项。
➢ 适用范围广。FLUENT含有多种传热燃烧模型 及多相流模型,可应用于从可压到不可压、从 低速到高超音速、从单相流到多相流、化学反 应、燃烧、气固混合等几乎所有与流体相关的 领域;
➢ 精度提高,可达二阶精度。
Fluent 软件结构
FLUENT包应该包括以下几个部分: 1. FLUENT解法器 2. prePDF,用于模拟PDF燃烧过程 3. GAMBIT,网格生成 4. TGrid,额外的处理器,用于从现有的边界网格生成体
多相流
许多CFD应用所包含的流体是多相而不仅是一相。ANSYS Fluent 是多相流模型技术的领导者。其各类功能让工程师能洞察那些常常 难以测量的设备内部。对不同类型的多相流 ANSYS Fluent软件提 供不同的模型。
反应流
ANSYS Fluent都提供了丰富的架构来模拟伴随化学反应和燃烧的 流动。ANSYS Fluent中的反应流模型能处理大量的气体、煤和液 体燃料燃烧模拟。同时也包括预测SOx 生成、NOx 生成和分解的 特殊模型。该技术的表面反应功能可以预测气体和表面组分的反应 ,也能预测不同组分间的反应,因此,能严格预测沉积和蚀刻。
湍流模型
ANSYS Fluent软件一直重点关注开发领先的湍流模型,精确有 效地捕捉湍流效应。尤其关注的是经广泛测试的剪切应力湍流模型 (SST),因其对非平衡湍流边界层流动和传热的预测有明显的优 势。 Fluent也提供了创新的模型来求解层流到湍流的转捩。此外 ,ANSYS Fluent提供了大量的尺度解析湍流模型。
学习fluent-(流体常识及软件计算参数设置)
学习fluent-(流体常识及软件计算参数设置)luent中一些问题----(目录)1 如何入门2 CFD计算中涉及到的流体及流动的基本概念和术语2.1 理想流体(Ideal Fluid)和粘性流体(Viscous Fluid)2.2 牛顿流体(Newtonian Fluid)和非牛顿流体(non-Newtonian Fluid)2.3 可压缩流体(Compressible Fluid)和不可压缩流体(Incompressible Fluid)2.4 层流(Laminar Flow)和湍流(Turbulent Flow)2.5 定常流动(Steady Flow)和非定常流动(Unsteady Flow)2.6 亚音速流动(Subsonic)与超音速流动(Supersonic)2.7 热传导(Heat Transfer)及扩散(Diffusion)3 在数值模拟过程中,离散化的目的是什么?如何对计算区域进行离散化?离散化时通常使用哪些网格?如何对控制方程进行离散?离散化常用的方法有哪些?它们有什么不同?3.1 离散化的目的3.2 计算区域的离散及通常使用的网格3.3 控制方程的离散及其方法3.4 各种离散化方法的区别4 常见离散格式的性能的对比(稳定性、精度和经济性)5 流场数值计算的目的是什么?主要方法有哪些?其基本思路是什么?各自的适用范围是什么?6 可压缩流动和不可压缩流动,在数值解法上各有何特点?为何不可压缩流动在求解时反而比可压缩流动有更多的困难?6.1 可压缩Euler及Navier-Stokes方程数值解6.2 不可压缩Navier-Stokes方程求解7 什么叫边界条件?有何物理意义?它与初始条件有什么关系?8 在数值计算中,偏微分方程的双曲型方程、椭圆型方程、抛物型方程有什么区别?9 在网格生成技术中,什么叫贴体坐标系?什么叫网格独立解?10 在GAMBIT中显示的“check”主要通过哪几种来判断其网格的质量?及其在做网格时大致注意到哪些细节?11 在两个面的交界线上如果出现网格间距不同的情况时,即两块网格不连续时,怎么样克服这种情况呢?12 在设置GAMBIT边界层类型时需要注意的几个问题:a、没有定义的边界线如何处理?b、计算域内的内部边界如何处理(2D)?13 为何在划分网格后,还要指定边界类型和区域类型?常用的边界类型和区域类型有哪些?14 20 何为流体区域(fluid zone)和固体区域(solid zone)?为什么要使用区域的概念?FLUENT是怎样使用区域的?15 21 如何监视FLUENT的计算结果?如何判断计算是否收敛?在FLUENT中收敛准则是如何定义的?分析计算收敛性的各控制参数,并说明如何选择和设置这些参数?解决不收敛问题通常的几个解决方法是什么?16 22 什么叫松弛因子?松弛因子对计算结果有什么样的影响?它对计算的收敛情况又有什么样的影响?17 23 在FLUENT运行过程中,经常会出现“turbulence viscous rate”超过了极限值,此时如何解决?而这里的极限值指的是什么值?修正后它对计算结果有何影响18 24 在FLUENT运行计算时,为什么有时候总是出现“reversed flow”?其具体意义是什么?有没有办法避免?如果一直这样显示,它对最终的计算结果有什么样的影响26 什么叫问题的初始化?在FLUENT中初始化的方法对计算结果有什么样的影响?初始化中的“patch”怎么理解?27 什么叫PDF方法?FLUENT中模拟煤粉燃烧的方法有哪些?30 FLUENT运行过程中,出现残差曲线震荡是怎么回事?如何解决残差震荡的问题?残差震荡对计算收敛性和计算结果有什么影响?31数值模拟过程中,什么情况下出现伪扩散的情况?以及对于伪扩散在数值模拟过程中如何避免?32 FLUENT轮廓(contour)显示过程中,有时候标准轮廓线显示通常不能精确地显示其细节,特别是对于封闭的3D物体(如柱体),其原因是什么?如何解决?33 如果采用非稳态计算完毕后,如何才能更形象地显示出动态的效果图?34 在FLUENT的学习过程中,通常会涉及几个压力的概念,比如压力是相对值还是绝对值?参考压力有何作用?如何设置和利用它?35 在FLUENT结果的后处理过程中,如何将美观漂亮的定性分析的效果图和定量分析示意图插入到论文中来说明问题?36 在DPM模型中,粒子轨迹能表示粒子在计算域内的行程,如何显示单一粒径粒子的轨道(如20微米的粒子)?37 在FLUENT定义速度入口时,速度入口的适用范围是什么?湍流参数的定义方法有哪些?各自有什么不同?38 在计算完成后,如何显示某一断面上的温度值?如何得到速度矢量图?如何得到流线?39 分离式求解器和耦合式求解器的适用场合是什么?分析两种求解器在计算效率与精度方面的区别43 FLUENT中常用的文件格式类型:dbs,msh,cas,dat,trn,jou,profile等有什么用处?44 在计算区域内的某一个面(2D)或一个体(3D)内定义体积热源或组分质量源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
m V 0 V
(kg/m3 ) ; lim
(N/m3 )
显然
牢记
g
水 1000 kg/m 3 ; 汞 13590 kg/m 3 ;
前页
水 9.8 kN/m 3 汞 133kN/m 3
后页
返回 主题
1.1 概述
• 1 流体的密度、重度和比重
流体的比重 流体的比重为与零上4℃时水的密度之比。
xx xy M yz zy zz xz zx
o y x
图 1-2
任一点所受到的应力
前页
后页
返回 主题
1.2 流体力学中的力与压强
• 静止流体所受的外力有质量力和压应力两种,流体垂直 作用于单位面积上的力,称为流体的静压强,习惯上 又称为压力。 (1)压力单位 在国际单位制(SI制)中,压力的单位为N/m2,称 为帕斯卡(Pa),帕斯卡与其它压力单位之间的换算 关系为: 1atm(标准大气压)=1.033at(工程大气压) =1.013105Pa =760mmHg =10.33mH2O
前页
后页
1.1 概述
• 5 流体的压缩性
可压缩流体 流体的压缩性是指在外界条件发生变化时,其密度和体 积发生了变化。 研究流体流动的过程中,若考虑流体的压缩性,则称其 为可压缩流动,相应流体称为可压缩流体。(水中的 爆炸、高速气流) 不可压缩流体 若不考虑流体的压缩性,则称其为不可压缩流动,相应 流体称为不可压缩流体。(水和油的流动)
• 1 定常流动与非定常流动
定常流动
流体流动的物理量(如速度、压力、温度等)不随时间变化, 称为定常流动。
☆工程中绝大部分稳定运行的设备可采用定常流动来描述。 如:锅炉燃烧、风机运行、化工过程。
非定常流动 流体流动的物理量(如速度、压力、温度等)随时间变化, 称为非定常流动 。
☆许多流体机械在起动或关机时的流体流动一般是非定常流动, 如水泵、风机的启动阶段。 返回
前页 后页
返回 主题
1.1 概述
• 4 牛顿流体与非牛顿流体
牛顿流体 符合牛顿切应力公式,且动力粘度为常数实际流体称 为牛顿流体。(水、空气、润滑油等为牛顿流体)。 非牛顿流体 符合牛顿切应力公式,且动力粘度不为常数实际流体 称为非牛顿流体。(油脂、油漆、牛奶等为非牛顿流 体)。
返回 主题
前页 后页
主题
车头前端外流场速度图
前页
后页
返回 主题
车尾端外流场速度图
前页
后页
返回 主题
前页 后页
主题
1. 4 流体运动的描述
• 2 迹线与流线
流线是指同一时刻不同质点所组成的运动的方向 线。 迹线是指同一个流体质点在连续时间内在空间运 动中所形成的轨迹线,它给出了同一质点在不同 时间的速度的方向。
前页
后页
返回 主题
1. 4 流体运动的描述
• 3 流量与净通量
流量:
流体流动时,单位时间内通过过流断面的流体体积 称为流体的体积流量,一般用Q表示,单位为L/s。 单位时间内流经管道任意截面的流体质量,称为质 量流量,以ms表示,单位为kg/s或kg/h。 体积流量与质量流量的关系为: ms=Qρ 体积流量、过流断面面积A与流速u之间的关系为:
前页
后页
返回 主题
1.1 概述
• 2 流体的黏性
流体内部质点间或流层间因相对运动而产生内摩擦力 以反抗相对运动的性质。
粘性是流体阻止发生剪切变形和角变形的一种特性。
当流体处于静止或各部分之间相对速度为零时,流体
的粘性就表象不出来,其内摩擦力也就等于零。
前页 后页
返回 主题
1.1 概述
• 2 流体的黏性
牛顿内摩擦定律
d c a b
y B U T
A
现象:a.速度分布不均匀; b.变形-有相对运动; c.作用力。
前页 后页
x
返回 主题
1.1 概述
实验证明内摩擦力 T 的大小: ① 与流层的接触面积A成正比; ② 与速度梯度 du / dy 成正比; ③ 与流体的种类有关; ④ 与压力大小无关。
即
du TA dy
流体在流动过程中的总损失等于各个管路系统所产生 的所有沿程损失和局部损失之和,即
h=∑hl+∑hj
前页 后页
返回 主题
1. 3 能量损失与总流的能量方程
• 2 总流的伯努利方程
前页
后页
返回 主题
1. 3 能量损失与总流的能量方程
• 3 入口段与充分发展段
前页
后页
返回 主题
1. 4 流体运动的描述
返回 主题
前页
后页
1.2 流体静力学基本概念
• 2 绝对压强、相对压强与真空度
图1 绝对压力、表压与真空度的关系
前页 后页
返回 主题
1. 2 流体力学中的力与压强
• 3 液体的气化压强
前页
后页
返回 主题
1. 2 流体力学中的力与压强
或
du T A dy
N
T du A dy
N/m
2
或 Pa
后页
前页
返回 主题
1.1 概述
动力粘滞系数
du / dy
Pa s
表征单位速度梯度作用力下的切应力,反映了粘滞
性的动力性质。
运动粘性系数
m
2
/s
衡量流体的流动性。常用单位为cm2 /s ,称为斯 托克斯(St)。
后页
/ kg/m3
856 1258 998 1.205
返回 主题
1.1 概述
• 3 理想流体与粘性流体
理想流体 流体所具备的这种抵抗两层流体相对滑动速度,或普 遍说来抵抗变形的性质称为粘性 。 当流体的粘性较小 ,甚至可以忽略不计时,这样的流 体称为理想流体 。 粘性流体 当流体的粘性较大,不能忽略时,这样的流体称为粘 性流体。 ☆真正的理想流体在客观实际中是不存在的,它只是实 际流体在某些条件下的一种近似模型。
什么是流体(Fluid)
固体
– 在静止状态下,能够抵抗一定的 压力、拉力和剪切力。
流体
– 在静止状态下,能够抵抗一定的 压力。 – 静止时,不能抵抗任何剪切力, 在剪切力的作用下,会一直发生 变形,直到剪切力消失。
前页 后页
剪切力示意图
返回 主题
什么是流体(Fluid)
空气、水、油等易于流动的物质被称为流体。 利用流体进行力传递、进行功和能量转换的 机械称为流体机械。(如水泵、风机、水力 发电机等) 研究流体运动的方法: ① 实验方法; ② 以近年发展起来的计算流体力学为基础进行 数值模拟计算。
前页 后页
返回 主题
1.2 流体静力学基本概念 • 2 绝对压强、相对压强与真空度
• 以绝对真空为基准测得的压力称为绝对压力,它是流体的 真实压力;以大气压为基准测得的压力称为表压或真空度 、相对压力,它是在把大气压强视为零压强的基础上得出 来的。 • 绝对压强是以绝对真空状态下的压强(绝对零压强)为基 准计量的压强;表压强简称表压,是指以当时当地大气压 为起点计算的压强。两者的关系为: 绝对压=大气压+表压
τz zxi zyj zz k
前页 后页
返回 主题
1. 2 流体力学中的力与压强
• 1 作用在流体上的力
类似地,与x轴、y轴相垂直的面(参见图1-2)上受到 的应力分别为:
τ xxi xyj xzk x
z yx yy
τy yxi yy j yz k
前页
后页
返回 主题
1. 4 流体运动的描述
• 4 层流与湍流
层流 流体运动规则,各部分分层流动 互不掺混,质点的轨线是光滑 的,而且流动 稳定。 湍流 (紊流) 流体运动极不规则,各部分激 烈掺混,质点的轨线杂乱无章 ,而且流场极不稳定。
前页
后页
返回 主题
1. 4 流体运动的描述
• 5 有旋流动与有势流动
前页 后页
返回பைடு நூலகம்主题
第一章 流体力学基础
1.1 概述 1.2 流体力学中的力与压强 1.3 能量损失与总流的能量方程 1.4 流体运动的描述
前页
后页
返回 主题
1.1 概述
• 1 流体的密度、重度和比重
均质流体:
m V (kg/m ) ;
3
G V
(N/m3 )
G V 0 V
非均质流体: lim
Lu h1 d 2g
前页 后页
2
返回 主题
1. 3 能量损失与总流的能量方程
• 1 沿程损失与局部损失
局部损失
流体运动过程中通过断面变化处、转向处、分支或其 他使流体流动情况发生改变时,都会有阻碍运动的局部阻
力产生,为克服局部阻力所引起的能量损失称为局部损失。 计算公式为: hj=ξ u2/(2g)
前页 后页
返回 主题
1.1 概述
• 6 液体的表面张力
液面上的分子受液体内部分子吸引而使液面趋于收缩 ,表现为液面任何两部分之间具有拉应力,称为表面 张力。 ☆其方向和液面相切,并与两部分的分界线相垂直
前页
后页
返回 主题
1.2 流体力学中的力与压强
• 1 作用在流体上的力
作用在流体上的所有外力F可以分为两类:质量力 和表面力,分别用FB、FS表示,于是:
流体质点的运动可分解为:
1、随其他质点平动;2、自身旋转运动;3、自身变形运动。
流动过程中,若流体质点自身作无旋运动,则称其为有势流动。 流动过程中,若流体质点自身作旋运动,则称其为有旋流动。