高频变压器制作与技术参数
高频变压器制参数说明

高频变压器设计
高频变压器设计与工频变压器不同。
高频变压器的参数有很多。
要详细说明工厂才能做好。
在工厂做样前,开发人员要按设计参数自己绕2只。
同时送工厂。
1、变频变压器原理图:
(1)、图中绕组要分开,多线并绕的要在图上要并明。
(2)、要标明同位端,线经。
(3)、要标明漆包线材料属性。
并说明绝缘层有几层?用什么材料?(4)、要标明磁芯尺寸,结构,最好说明磁通量。
如EI, EE, EER, FQ………。
(5)、附PCB板图(BMP格式)
二、要写明绕制结构图:高频变压器与工频变压器的最大区别是工艺的影响。
所以要说明线圈的结构。
先绕哪一组?第二层绕哪一组?最后绕哪组。
要写明起始端,就是从哪个脚开始绕。
三、要写绕制说明:(1)要写清楚从哪个脚开始绕,哪个脚结束。
是并行同组绕制?还是交叉绕制?(2)、每个组的绕制要写详细。
(3)、说明磁芯的装配方法。
气隙怎么垫?
三、变频变压器参数测试规格:(1)初级电感量。
(2)、最大初级漏感。
(3)、绝缘强度
四、材料说明:(1)、磁芯,骨架。
(2)绝缘胶材料。
(3)、磁芯气隙
罗中秋 2013-09-23。
高频变压器的制作工艺

套管
多芯线时须绞线
飞线 长度
10 ~15mm 吃锡 3mm min 安全间隔
1212
二、包铜箔 铜箔表面有覆盖一层胶带的为背胶,铜箔 在变压器中一般起屏蔽作用,主要是减小漏 感,激磁电流,在绕组所通过的电流过高时 ,取代铜线,起导体的作用。
1313
二、包铜箔
➢ 铜箔制作
方法1:
焊引线
方法2:
焊引线
焊点须 光滑
接引线于 图面规定
脚位
1717
三、包胶带
包胶带的方式一般有以下几种。 1、同组不同层的绝缘方法
2、不同层的绝缘方法
1818
三、包胶带
3、最外层的绝缘方法
4、压线胶带的贴法
出现处 的绝缘
胶带须拉紧包平,不可翻起刺破,不可露铜线。 最外层胶带不宜包得太紧,以免影响产品美观。
1919
四、压脚
线与线间没有空隙。整齐的绕线。
2)均等绕:在绕线范围内以相等的间 隔进行绕线;间隔误差在20%以内。
55
一、绕线
3)多层密绕:在一个绕组一层无法绕完,必须
绕至第二层或二层以上,此绕法分为三种情况:
➢ 任意绕:在一定程度上整齐排列,达到最上层时 ,布线已零乱,呈凹凸不平状况,这是绕线中最 粗略的绕线方法。
2424
六、组装铁芯
1、铁芯确认:不可破损或变形。 2、铁芯固定方式可以铁夹或三层胶布方式固定,且
可在铁芯接合处点环氧胶固定, 3、包铁芯的胶布宽度规定,以实物外观为优先着眼
,次以铁芯宽减胶布宽空隙约0.5mm~2mm为最佳。
a、把铁芯搓合 3~4 回,确认 中间无缝隙
b、在铁芯接合 面上沾上胶
c、把铁芯搓 合3~4 回
如何计算高频变压器参数

如何计算高频变压器参数高频变压器是一种用于转换电能的电子设备,它对输入电压进行调整和转换,以产生所需的输出电压。
了解和计算高频变压器的参数对设计和使用变压器至关重要。
以下是计算高频变压器参数的方法:1.额定功率和电流:首先确定所需的额定输出功率和电流。
额定功率指的是变压器所能提供的最大输出功率,而额定电流指的是变压器能够承受的最大电流。
2.额定电压比:确定输入电压和输出电压之间的额定电压比。
额定电压比是变压器输入和输出电压之间的比值。
根据所需的输出电压和输入电压来计算额定电压比。
3.磁感应强度和磁通密度:磁感应强度是磁场的强度,通过变压器的铁芯。
磁感应强度的大小取决于所需的输出功率和频率,以及变压器的尺寸和材料。
磁通密度是磁通通过单位面积的量度,计算方法为B=Φ/A,其中B为磁通密度,Φ为磁通量,A为磁路截面积。
4.磁路长度和磁路截面积:磁路长度是磁通从变压器的输入端流向输出端所需的路径长度。
磁路截面积是铁芯截面的面积。
根据所需的输出功率和输入电流,以及变压器的尺寸和材料来计算磁路长度和磁路截面积。
5.匝数比:根据额定电压比和磁路截面积来计算变压器的匝数比。
匝数比指的是输入线圈和输出线圈之间的匝数比。
匝数比的大小取决于所需的额定电压比和变压器的磁路截面积。
6.铜线直径和电流密度:铜线直径是变压器线圈所用的铜线的直径。
电流密度是单位截面积内所流经的电流量。
根据所需的额定电流和铜线的电阻来计算铜线直径和电流密度。
7.线圈绕制数和线圈厚度:根据变压器的匝数比和线圈长度来计算输入线圈和输出线圈的绕制数。
线圈厚度是线圈绕制的厚度。
根据所需的输出功率和变压器的尺寸来计算线圈绕制数和线圈厚度。
高频变压器制作标准

高频变压器制作标准高频变压器是一种能够将输入的电压转换为不同电压输出的电器元件。
在现代电子设备中,高频变压器被广泛应用于各种电源和通信设备中。
为了确保高频变压器的性能稳定和安全可靠,制作过程中需要遵循一定的标准和规范。
本文将介绍高频变压器制作的一般标准,以供参考。
首先,高频变压器的制作需要选择合适的材料。
在选材时,需要考虑材料的介电常数、磁导率、损耗等因素,以确保高频变压器具有良好的电磁性能。
常见的高频变压器材料包括硅钢片、铜线、绝缘材料等。
这些材料的选择对于高频变压器的性能有着重要的影响。
其次,高频变压器的制作需要严格控制工艺流程。
在制作过程中,需要确保绕线的匝数、绝缘层的厚度、铁芯的包覆等工艺参数符合设计要求。
特别是在绕线过程中,需要保证匝间绝缘良好,绕线均匀紧密,以减小电磁损耗和焦耳热。
此外,还需要注意绕线的接线方式和焊接工艺,确保接触良好、可靠。
另外,高频变压器的制作还需要进行严格的测试和检验。
在制作完成后,需要进行绝缘电阻测试、匝间电阻测试、耐压测试等,以确保高频变压器在使用过程中不会出现绝缘击穿、匝间短路等故障。
同时,还需要进行磁通泄漏测试、温升测试等,以验证高频变压器的磁性能和热特性。
最后,高频变压器的制作需要符合相关的标准和规范。
在国内,高频变压器的制作需要符合《高频变压器制作通用技术条件》(GB/T 15288-94)等国家标准。
而在国际上,高频变压器的制作需要符合IEC等国际电工委员会的标准。
综上所述,高频变压器的制作需要选择合适的材料,严格控制工艺流程,进行严格的测试和检验,并符合相关的标准和规范。
只有在严格遵循这些标准和规范的前提下,才能制作出性能稳定、安全可靠的高频变压器,满足现代电子设备对于电源和通信的需求。
希望本文能为高频变压器制作提供一些参考和帮助。
高频变压器设计规范

高频变压器设计规范目录1.目的 (2)2.适用范围 (2)3.引用/参考标准或资料 (2)4.术语及其定义 (2)5.规范要求 (2)6.附录 (12)1.目的为了实现高频变压器设计的标准化,为我司工程师在设计变压器过程中提供参考,特制订此规范。
2.适用范围本规范适用于公司所有正激变压器及反激变压器的设计。
3.引用/参考标准或资料无。
4.术语及其定义正激变压器:因其初级线圈被直流电压激励时,次级线圈正好有功率输出而得名。
反激变压器:又称单端反激式变压器或Buck-Boost转换器。
因其输出端在原边绕组断开电源时获得能量故而得名。
5.规范要求5.1高频变压器磁芯材料与几何机构在大多数开关电源的高频变压器中,常用的软磁材料有铁氧体,铁粉芯,恒导合金,非晶态合金及硅钢片。
主要应用软磁材料四个特性:磁导率高、矫顽力小及磁滞回线狭窄、电阻率高、具有较高饱和磁感应强度。
现我司高频变压器通常采用锰锌铁氧体材料。
磁芯厂家都生产了一系列不同材质的磁芯,各厂家有自己的命名规范。
以常用的PC40(TDK命名规范)材质为例,东磁表示为DMR40,天通则表示为TP4,实际性能差异几乎可忽略不计。
通常我们关注的磁芯参数主要有初始磁导率,饱和磁通密度Bs,剩磁Br,矫顽力Hc,功耗Pv,居里温度Tc,在高频变压器的设计以及日后应用过程中,这些参数往往起到非常重要的作用。
图1所示各种磁芯的几何形状有EE型、ETD型、PQ型等多种。
EE型、ETD型、PQ型也是我司高频变压器设计时通常采用的磁芯结构。
每种规格磁芯对应多种尺寸可供选择。
一般每种类型及尺寸的磁芯,其对应的骨架是一定的,变动一般在于pin数和pin针间距的不同,设计者可根据实际应用需求选择,也可以联系骨架厂商进行开模定制。
图5.1 各种几何结构的变压器磁芯图1 磁芯的几何形状5.2高频变压器常用材料介绍上节主要介绍了高频变压器的磁芯特性及结构,除此以外,要构成一个完整的高频变压器,主要材料还有:导线材料,压敏胶带,骨架材料。
高频变压器设计与参数设计

高频变压器设计与参数设计高频变压器设计与参数设计是一项重要的技术,它能够帮助电子设备充分发挥性能。
高频变压器是指使用高频信号来改变交流电压的变压器,它通常用在微波炉、通信设备、打印机和医疗设备等领域,并且也用于高频功率转换、无线电、太阳能应用等等。
高频变压器的设计涉及到许多因素,包括电气特性,例如变压器的电压比、额定电流、变压器的绝缘耐压、损耗和过载能力。
同时,还必须考虑到变压器尺寸大小、重量、成本和可靠性等机械特性。
这些特性都会影响变压器的性能,从而影响其最终的性能表现。
在设计高频变压器时,首先应考虑变压器的工作频率。
一般来说,高频变压器的工作频率范围在1kHz~100MHz 之间,而且高频变压器的工作频率越高,其尺寸越小,耗散越低,性能也越好。
随后,应该考虑高频变压器的结构设计,采用的线圈数目,线圈的绕组方式,芯股的结构,冷却方式和绝缘材料等。
其中,线圈绕制方式和线圈的绕组方式是影响高频变压器的主要要素,它们会影响变压器的额定输出功率、输出纹波、温升和其他电气特性。
此外,还必须考虑到变压器的电压比以及母线电压。
电压比是指输出电压与输入电压之间的比率,它影响变压器的输出功率。
母线电压是指用于变压器的输入电压,它会影响变压器的最大输出功率,而且也会影响变压器的可靠性。
另外,在设计高频变压器时还应考虑变压器的外壳结构,这不仅影响变压器的重量和体积,还会影响变压器的热效应。
外壳结构应考虑到变压器的散热性能,以及变压器内部温度的分布情况等。
最后,需要重点考虑变压器的绝缘系统。
绝缘系统是高频变压器的核心部件,它具有高的绝缘强度和耐温性能,可以有效防止电路受到外界环境的干扰,也可以提高变压器的可靠性和安全性。
总之,高频变压器的设计与参数设计是一项复杂的工作,从上述内容可以看出,在设计高频变压器时,需要考虑变压器的电气特性、机械特性、工作频率、结构设计、电压比和母线电压、外壳结构以及绝缘系统等多个方面。
最终,变压器的设计与参数设计都是为了满足应用需求,并且有效地提高变压器的性能,以及提高变压器的可靠性和安全性。
高频变压器 参数

高频变压器参数高频变压器是一种在电力系统中广泛应用的重要设备,它具有许多关键的参数。
本文将从多个角度介绍高频变压器的参数,以便读者更好地了解它的工作原理和应用。
一、额定功率高频变压器的额定功率是指它能够正常工作的最大功率。
这个参数非常重要,因为它决定了变压器是否能够满足电力系统的需求。
一般来说,额定功率越大,变压器的负载能力就越强,但同时也会增加成本和体积。
二、变比变压器的变比是指输入电压与输出电压之间的比值。
变比决定了变压器的升降压能力,它可以根据电力系统的需求进行设计。
变比可以通过改变变压器的绕组比例来实现,通常用于将高电压转换为低电压或者低电压转换为高电压。
三、频率响应高频变压器的频率响应是指它在不同频率下的工作性能。
由于电力系统中存在不同频率的电源,高频变压器需要能够适应不同的频率变化。
频率响应通常通过变压器的铁心材料和绕组设计来实现,以保证高频变压器在不同频率下的稳定工作。
四、损耗高频变压器的损耗是指在工作过程中产生的能量损失。
损耗包括铜损耗和铁损耗两部分。
铜损耗是指变压器绕组中电流通过导线时产生的热能损失,而铁损耗是指变压器铁心材料在工作过程中产生的磁能损失。
减小损耗是提高高频变压器效率的关键。
五、绝缘等级高频变压器的绝缘等级是指它在工作过程中所能承受的最高电压。
绝缘等级的选择要考虑到电力系统的电压水平和安全要求,以保证变压器的安全可靠运行。
绝缘等级通常通过选用合适的绝缘材料和绝缘结构来实现。
六、温升高频变压器的温升是指在额定负载下,变压器工作时产生的温度升高。
温升对变压器的寿命和可靠性有重要影响,因此必须控制在合理范围内。
温升可以通过优化变压器的散热结构和选择合适的冷却方式来降低。
总结高频变压器的参数对其工作性能和应用范围有着重要影响。
通过对额定功率、变比、频率响应、损耗、绝缘等级和温升等参数的了解,我们可以更好地理解高频变压器的工作原理和特点。
同时,在实际应用中,还需根据具体需求选择合适的高频变压器,以确保电力系统的安全稳定运行。
变压器基本知识介绍

2.1 一层密绕:布线只占一层,紧密的线与线间没有空隙,整 齐不可交叉堆积(如图6.1)
高频变压器制作方法
2.2 均等绕:在绕线范围内以相等的间隔进行绕线;间隔误差在20% 以内算合格(如图6.2)
2.3 多层密绕:在一个绕组一层无法绕完,必须绕至第二层或二层以 上
低频类变压器制作方法介绍
三、 配线
低频有针脚式和引脚式两种,其配线方法也不 相同(详情参见作业指导书)
低频类变压器制作方法介绍
四、 焊 锡
1. 操作步骤 1.1 将Pin 脚沾适量助焊剂。 1.2 焊锡:将脚插入锡槽,深度如下图所示。 1.3 焊锡后不得有漏焊、虚焊现象且焊锡光亮 2. 注意事项 2.1 焊锡时部间约为2-3秒,如果线包接有保险丝,不可焊得太久 2.2 焊温(作业指导书要求) 2.3 锡温需每隔两个小时测试并记录
变压器材料介绍
三、胶带(Tape)
2.高压测试:在测试条件AC4.0KV,50Hz 1mA 1min 下,将3圈胶 带均匀缠绕在导电圆棒上,使胶带与圆棒紧密接触,高压表 笔一支接圆棒,另一支接触胶带表面,胶带不击穿。
变压器材料介绍
四、漆包线(WIRE)
1.漆包线是一条铜线(或导体)经由处理将凡立水被覆在铜线 表面,由于凡立水有绝缘功能,此时铜线经由缠绕变成线圈, 即可用于电磁感应的各种应用 2.我们常用的漆包线:直焊性聚氨酯漆包线(QA)、聚酯漆包 线(QZ)、聚胺基甲酸脂漆(UEW)、聚脂瓷漆包线(PEW)等 3.漆包线耐热等级分为:A级(105°C)、E级(120°C)、B 级(130°C)、F级(155°C)、H级(180°C) 4.漆包线常识:2UEW 耐温120°C,可以直接焊锡;而PEW 耐 温155°C,180°C,焊锡时须脱漆皮
高频变压器的设计方法和分布参数模型介绍

Dianqi Gongcheng yu Zidonghua ♦电气工程与自动化高频变压器的设计方法和分布参数模型介绍陈尊杰1夏书生1钱峰1田煜2金平2(1.国网新源水电有限公司新安江水力发电厂,浙江杭州311608;2•河海大学,江苏南京210000)摘要:随着用户对用电质量和安全可靠性的要求越来越高,加上当前对变压器小型化、轻便化的要求,传统电力变压器已不能满足社会发展的需求。
研究表明,通过电力电子技术和变压器的 ,可 传统 压器质量 大 陷’高频变压器作为电力电子变压器(PET )的核心器件, 传 的作用,在未来有着很大的发展空间’现主要介绍高频变压器的设计方法和型,对高频 压器损耗和有重要作用°关键词:电力 子变压器(PET );高频变压器 型0引C来,可能有高 和可电能质量等优点的电力电子变压器(Power Electronic Trans former , PET ),为能 网的的研究 叭高频压器PET 的核 , 的高频 压器性能的 , 的 高频压器 和效率’因此,高频压器的和型 ,研Z °1电力电子变压器介绍1997年,来自美国德州农工大学的Moonshik Kang 博士设AC /AC的PET , 压器 的能 1示’ 其样机启发,研究人员大都认可这既能降低变压器 的 和重量,还备更高的传能力和 的"2#°中高压交流DCAC低压交流AC/DC ACZAC高频交流高频变压器高频交流直流端口图1基于AC /AC 变换的PET 结构图2高频变压器的设计压器时,既要考虑 能 的难易,也要考虑建造、运行与维修成本,工作性能素’成本素包括压器 的 和量、材料 艺的经济性,工作性能素 压器的输出、最高工作、特温环境应用时可允许的最大温升’常用的 软件自动 、面 AP 、几何系KG 都能满足 压器的要求’软件,只需要 .压器参,便可通过内置算 动进行 ,简单便’但 本文的研究对象不是传统压器,使用材料不软件库中,难使用软件 高频压器’ 相对,AP 有成型的计算过程和 论依据,不 材料限制,也更常用, 本文 选择AP高频压器’2.1磁芯材料选择及其尺寸计算根据额压!N 、流"n 和磁通密度#m ,结合Ansys 仿真来选择磁芯材料。
高频变压器参数计算

铁芯截面积A=1.25*√P(功率)。
铁芯取8500高斯。
每伏匝数取:T=450000/8500*S(截面积)漆包线载流量取2.5A-3.5A/mm2小型变压器的绕制:小型变压器铁心匝数绕制随着电子元件大量应用在电厂控制、监测和自动回路中,小型变压器的应用日益广泛。
因小型变压器损坏,市场上一时又难以买到,引起设备不能正常运行的事故较多。
因此,除加强小型变压器的运行维护外,还应掌握小型变压器的绕制。
1 小型变压器的设计设计小型变压器,主要有以下几个步骤:(1)计算变压器的功率;(2)计算变压器的铁心;(3 )计算变压器线圈匝数;(4)计算变压器绕组导线的截面积;(5)计算变压器铁心窗口容纳绕组的导线及绝缘物。
1.1 功率的计算变压器的功率可根据下式计算,即P=IV (1)式中P——电功率;I——电流;V——电压。
先算出次级功率,然后再算初级功率。
线圈总功率(即变压器功率)的计算方法与硅钢片的种类有关,将次级功率加上消耗功率即得初级功率,一般来说,铁心消耗功率约为15%,即初级功率算式如下P1=1.18 P2 (2)式中P1——初级功率;P2——次级功率。
1.2 铁心的计算变压器的功率求出后,可用下式求出铁心有效截面积,即(3)式中A为铁心有效截面积(cm2),数字1.2是根据铁片的不同种类通过经验公式取得的,一般变压器硅钢片采用磁通密度1~1.2 T,用公式(3);如电动机硅钢片采用磁通密度0.8~1 T,可将公式(3)中的1.2改成1.6;如普通黑铁片采用磁通密度0.6~ 0.7 T,可将公式(3)中的1.2改成2。
以上是已知电功率后选铁心时使用的方法,如有现成的铁心,则可以用下式来求可绕制的功率。
(4)式中铁心有效截面积A=铁心宽(cm)×铁心迭厚(cm)。
1.3 匝数的计算求出了铁心有效截面积就可求出每伏应绕制的匝数,计算公式如下(5)式中T为每伏匝数,B为铁心磁通密度(T),A为铁心有效截面积(c m2)。
《高频变压器的介绍》课件

基于电磁感应原理,通过在变压 器绕组中通入交流电,产生变化 的磁场,进而在另一绕组中感应 出电压。
分类与特点
分类
根据工作频率、用途、结构等特点, 高频变压器可分为多种类型,如电子 变压器、开关电源变压器等。
特点
体积小、重量轻、效率高、性能稳定 等。
应用领域
01
02
03
通信领域
用于信号传输、功率放大 等。
为了控制温升,需要采取有效的散热措施,如自然冷却、强制风冷等,以保持变 压器正常工作温度。
电压与电流容量
电压
高频变压器需要能够承受一定的输入电压和输出电压来自以确 保正常工作。电流容量
高频变压器需要能够承受一定的输入电流和输出电流,以满 足负载的需求。
05
高频变压器的应用实例
通信设备中的高频变压器
通信设备中的高频变压器主要用于信号传输和转换,例如在无线通信基站和卫星 通信设备中,高频变压器作为关键元件,实现信号的变频和功率放大等功能。
高频变压器在通信设备中需要具备高效率、低损耗和高可靠性等特性,以确保信 号传输的质量和稳定性。
电力电子设备中的高频变压器
电力电子设备中的高频变压器主要用于实现高压直流电( HVDC)的转换和传输,例如在高压直流输电(HVDC)系 统和无功补偿装置(SVC)中,高频变压器起到至关重要的 作用。
随着电子设备的小型化,高频变压器 也需要不断缩小体积,提高功率密度 。
集成化
将多个高频变压器集成在一个模块中 ,可以减小占用空间,提高设备的可 靠性和稳定性。
高频变压器在新能源领域的应用
风力发电
高频变压器可以用于风力发电系统的能源转换和 传输。
太阳能发电
高频变压器可以用于太阳能发电系统的能源转换 和传输。
高频变压器及其它感性元器件概述

高频变压器是工作频率超过中频(10kHz)的电源 高频变压器是工作频率超过中频(10kHz)的电源 变压器,主要用于高频开关电源中,是开关电源最主要 的组成部分,不仅对电源效率有较大的影响,而且直接 关系到电源的其它技术指标和电磁兼容性(EMC)。为此, 关系到电源的其它技术指标和电磁兼容性(EMC)。为此, 一个高效率高频变压器应具备直流损耗和交流损耗低、 漏感小、绕组本身的分布电容及各绕组之间的耦合电容 要小等条件。 由铁芯(或磁芯)和线圈组成,线圈有两个或两个 以上的绕组,其中接电源的绕组叫初级线圈,其余的绕 组叫次级线圈。 完成功能有三个:功率传送、电压变换和绝缘隔离。
7.漏感的影响及危害 7.漏感的影响及危害
在设计过程中,应尽可能减小漏感值。因为漏感值大, 储存的能量也大,在电源开关过程中突然释放,会产生尖 峰电压,增加开关器件承受的电压峰值,也对绝缘不利, 产生附加损耗和电磁干扰。 漏感大小与原绕组匝数的平方成正比,即原绕组匝数 越小,漏感越小,这样可以使变压器的体积变小。变压器 初级匝数比较少,损耗会少些,但对开关的冲击比较大, 反压会有些高,纹波稍大。 在设计高频变压器时必须把漏感减至最小。因为漏感 愈大,产生的尖峰电压幅度愈高,漏极钳位电路的损耗就 愈大,这必然导致电源效率降低。对于一个符合绝缘及安 全性标准的高频变压器,其漏感量应为次级开路时初级电 感量的1%~3%。要想达到1%以下的指标,在制造工艺上 感量的1%~3%。要想达到1%以下的指标,在制造工艺上 将难于实现。
3.高频变压器的功率传送方式 3.高频变压器的功率传送方式
两种: 第一种是变压器功率的传送方式,加在原绕组上的电压,在磁芯中产生磁通变化, 使副绕组感应电压,从而使电功率从原边传送到副边。在此情况下,变压器功率传送 方式不直接与磁芯磁导率有关,而直接与磁通密度有关;不需要在铁芯上留有气隙, 并应减小,利于增大磁通密度。 第二种是电感器功率传送方式,原绕组输入的电能,使磁芯激磁,变为磁能储存起 来,然后通过去磁使副绕组感应电压,变成电能释放给负载。传送功率决定于电感磁 芯储能,而储能又决定于原绕组的电感。电感与磁芯磁导率有关,磁导率高,电感量 大,储能多。在此情况下,传送功率不直接与磁通密度有关;在铁芯磁心设计上可以 考虑留有气隙,主要是利用气隙储能,如果不开气隙那么反激的电感就需要做得很大, 考虑留有气隙,主要是利用气隙储能,如果不开气隙那么反激的电感就需要做得很大,开 了气息就可以减少电感, 了气息就可以减少电感,防止变压器饱和。
高频变压器

高频变压器高频变压器是作为开关电源最主要的组成部分。
开关电源一般采用半桥式功率转换电路,工作时两个开关三极管轮流导通来产生100kHz的高频脉冲波,然后通过高频变压器进行降压,输出低电压的交流电,高频变压器各个绕组线圈的匝数比例则决定了输出电压的多少。
典型的半桥式变压电路中最为显眼的是三只高频变压器:主变压器、驱动变压器和辅助变压器(待机变压器),每种变压器在国家规定中都有各自的衡量标准,比如主变压器,只要是200W 以上的电源,其磁芯直径(高度)就不得小于35mm。
而辅助变压器,在电源功率不超过3 00W时其磁芯直径达到16mm就够了。
变压器的工作原理变压器是变换交流电压、电流和阻抗的器件,当初级线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)。
变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。
高频变压器是工作频率超过中频(10kHz)的电源变压器,主要用于高频开关电源中作高频开关电源变压器,也有用于高频逆变电源和高频逆变焊机中作高频逆变电源变压器的。
按工作频率高低,可分为几个档次:10kHz-50kHz、50kHz-100kHz、100kHz~500kHz、5 00kHz~1MHz、1MHz以上。
传送功率比较大的,工作频率比较低;传送功率比较小的,工作频率比较高。
[1]高频变压器悬赏分:0 - 解决时间:2009-1-15 15:35高频变压器中的EC42型和EE42有什么区别,42前面的字母分别代表什么?提问者:hbt0090 - 初学弟子一级最佳答案EC42型和EE42型是用于高频变压器或电感的两种铁氧体磁芯的型号,这种磁芯由两个“E”形磁体组成,这两种型号磁芯的区别(亦即42前面字母的含义)在于:EC型的磁芯中芯柱为圆形,EE型的磁芯中芯柱为方形。
高频变压器用在低频电路会出现什么问题悬赏分:0 - 解决时间:2007-5-25 18:28高频变压器用在低频电路会出现什么问题;低频变压器用在高频电路会出现什么问题?比如50HZ和50KHZ!提问者:余成YW S - 助理四级最佳答案高频变压器用在低频电路中电流增大,可能烧坏变压器。
高频变压器制作工艺、方法

·.高频变压器制作工艺、方法·.绕线变1.材料确认1.1 BOBBIN 规格之确认.1.2 不用的PIN 须剪去时,应在未绕线前先剪掉,以防绕完线后再剪除时会刮伤 WIRE 或剪错脚,而且可以避免绕线时缠错脚位.1.3 确认BOBBIN 完整:不得有破损和裂缝.1.4 将BOBBIN 正确插入治具,一般特殊标记为1脚(斜角为PIN 1),如果图面无注明,则1脚朝机器.1.5 须包醋酸布的先依工程图要求包好,紧靠BOBBIN 两侧,再在指定的PIN 上先缠线(或先钩线)后开始绕线,原则上绕线应在指定的范围内绕线2.绕线方式根据变压器要求不同,绕线的方式大致可分为以下几种2.1 一层密绕:布线只占一层,紧密的线与线间没有空隙.整齐的绕线. (如图6.1)图6.1 图6.22.2 均等绕:在绕线范围内以相等的间隔进行绕线;间隔误差在20%以内可以允收.(如图6.2) 2.3 多层密绕:在一个绕组一层无法绕完,必须绕至第二层或二层以上,此绕法分为三种情况:a.任意绕:在一定程度上整齐排列,达到最上层时,布线已零乱,呈凹凸不平状况,这是绕线中最粗略的绕线方法 .b.整列密绕:几乎所有的布线都整齐排列,但若干布线零乱(约占全体30%,圈数少的约占5%REF).c.完全整列密绕:绕线至最上层也不零乱,绕线很整齐的排列着,这是绕线中最难的绕线方法.2.4 定位绕线:布线指定在固定的位置,一般分五种情况 (如图6.3)a.密绕指定点绕线b.均匀疏绕指定点绕线c.密绕指定侧绕线(出线侧)d.密中绕e.密绕指定侧绕线(相对侧)图6.32.5 并绕:两根以上的WIRE 平行绕同一组线,各自平行绕,不可交叉.此绕法可分为四种情况:(图6.4)a.同组并绕;b.不同组或同组并绕;c.多组并绕d.不同组或同组双并绕;图6.4圖圖3.注意事项:3.1当起绕(START)和结束(FINISH)出入线在BOBBIN 同一侧时,结束端回线前须贴一块横越胶布(CROSSOVER TAPE)作隔离。
5V2A高频变压器设计及参数

5V,2A 反激式電源變壓器設計要求:VinAC = 85V ~ 265V f= 50/60HzVout = 5V + 5%Iout = 2A纹波电压 = 20mvVbias = 22V, 0.1A (偏置線圈電壓取 22V, 100mV)η = 0.8-0.85fs = 60KHz計算過程:1.設工作模式為 DCM 臨界狀態.Pout = 5*2 = 10WPin = Pout/η= 10/0.8 = 12.5WV inDCmin = 85* 2-30(直流紋波電壓)= 90V V inDCmax = 265* 2=375V2.匝數比計算 , 設最大占空比Dmax = 0.45 :13918.12)45.01(*)2.05.05(45.0*90)1(*)d out (*n max max min in ≈=-++=-++=D V V V D V L DC 式中:Vd 為輸出整流二極管導通壓降,取0.5V;VL 為輸出濾波電感壓降, 取0.2V.3.初級峰值電流計算:A D V P I DC 494.045.0*9010*2*out 2p max min in ===4.初級電感量計算:H H I V D L DC u 62110*621494.0*10*13290*45.0p *fs *p 63min in max ====5.變壓器磁芯選擇EFD20, 參數如下:Ae = 28.5mm 2 AL = 1200+30%-20%nH/N 2 Le = 45.49mm Cl =1.59mm -1 Aw = 50.05mm 2 Ap = 1426.425mm 46.初級繞組,次級繞組及偏置繞組匝數計算:)(5482.53285.0*2.010*10*621*494.0e *w 10*p *p p 464匝≈===-A B L I N )(515.41354n p s 匝≈===N N 匝2091.192.05.055*)7.022(s *)(b d out bd b ≈=+++=+++=L V V V N V V N 式中:Lp 為初級電感量, 單位H;Ip 為初級峰值電流, 單位A;Bw 為磁芯工作磁感應強度, 取0.2T,單位為T;Ae 為磁芯截面面積, 單位為cm 2;Vb 為偏置繞組電壓Vbias=22V ;Vbd 為偏置繞組整流二極管壓降,取0.7V.7.氣隙長度計算:0.168mm cm 0168.010*62110*285.0*54*14.3*4.0p 10*e *p 4.0g 68282====---L A N L π 式中:Lg 單位為cm;Lp 單位為H;Ae 單位為cm 2.8.重新核算占空比Dmin,Dmax 及最大磁通密度Bmax:(1).當輸入電壓為最低時:V inDCmin =90V4515.09013*)2.05.05(13*)2.05.05(V n *)(n *)(max inDCmin d out d out =+++++=+++++=L L V V V V V V D (2).當輸入電壓為最高時:V inDCmax =375V1649.037513*)2.05.05(13*)2.05.05(V n *)(n *)(min inDCmax d out d out =+++++=+++++=L L V V V V V V D (3).Bmaxuass 3000uass 1993100*285.0*54494.0*621100*e *p p *p m ax G G A N I L B <=== 式中:Lp 單位為uH; Ip 單位為A; Np 單位為N(匝); Ae 單位為cm 2.9.繞組線徑計算及窗口占有率:肌膚深度:mm 182.010*1321.66fs 1.663===d , 2d = 0.364mm 線徑選取需滿足:導線直徑需大於兩倍的肌膚深度時,需采用多股線.假設電流密度 J=4A/mm 2(1).初級繞組線徑計算:Ip=0.494A,I RMS =Ip*max D =0.494*45.0=0.331A ,22mm 0827.0/mm4.3310w ==A A A ,查表采用Aw = 0.0962mm 2的導線,其裸銅線徑為0.35mm<0.364mm(肌膚深度), 包括皮膜最大直徑為0.402mm.占有窗口面積為Wa=54*0.4022=8.7266mm 2.(2).次級繞組線徑計算:Io=2A, I RMS =Io=2A,Aw=2A/4=0.5mm 2,多股并繞采用Aw=0.1257mm 2的導線, 其裸銅線徑為0.4mm,采用0.5/0.1257=4股并繞, 包括皮膜最大直徑為0.456mm. 占有窗口面積為Wa=5*4*0.4562=4.1587mm 2.(3).偏置繞組線徑計算:Io=0.1A, I RMS =Io=0.1A,Aw=0.1A/4=0.025mm 2,采用Aw=0.0254mm 2的導線,其裸銅線徑為0.18mm<0.364mm(肌膚深度), 包括皮膜最大直徑為0.226mm.占有窗口面積為Wa=20*0.2262=1.0215mm2.全部繞組占有窗口面積為=8.7266+4.1587+1.0215=13.9068mm2.占總窗口面積=(E-D)*F=50.05mm2的27.8%.10.結構設計:EFD20磁芯的骨架,窗口長度13.5mm,寬度10.5mm.如下圖示:初級繞組導線最大直徑為0.402mm,每層可繞13.5/0.402=33.5匝,54匝要用2層,每層分別繞30匝,24匝,每層厚度為0.402mm.次級繞組導線最大直徑為0.456mm,每層可繞13.5/0.456=29.6匝,5匝只要用1層,厚度為0.456mm.偏置繞組導線最大直徑為0.226mm,每層可繞13.5/0.226=59.7匝,20匝只要用1層,厚度為0.226mm.使用順序繞法,繞組排列如下:繞組總厚度=0.6+0.402+0.402+0.226+0.456=2.836mm < 磁芯窗口寬度=(E-D)/2=(15.4-8.9)/2=3.25mm.11.估算損耗及溫升:(1).各繞組之線長:依照平均匝長=2舌寬+2疊厚+4窗寬,得:Np1 = 2*(8.9+3.6)+4*(0.6+0.201)=28.204mmNp2 = 2*(8.9+3.6)+4*(0.6+0.201*2+0.15)=29.608mmNb = 2*(8.9+3.6)+4*(0.6+0.201*2+0.15*2+0.113)=30.66mmNs = 2*(8.9+3.6)+4*(0.6+0.201*2+0.15*4+0.113+0.228)= 31.572mm 即Np 線長L Np =30*28.204+24*29.608= 1556.712 mm= 155.6712 cmNb 線長L Nb =20*30.66= 613.2mm=61.32cmNs 線長L Ns =5* 31.572=157.86mm=15.786cm查線阻表可知: 0.402mm WIRE R DC =0.00259Ω/cm @100℃0.456mm WIRE R DC =0.00198Ω/cm @100℃0.226mm WIRE R DC =0.01001Ω/cm @100℃R @100℃=1.4* R @20℃(2).初級,次級各電流值:求次級各電流值,已知Io=2A.次級平均峰值電流:A D Io Is pa 636.345.012max 1=-=-= 次級直流有效電流:A s I D Is pa rms 69.2636.3*)45.01(*max)1(22=-=-= 次級交流有效電流:A I s I Is rms ac 79.1269.2o 2222=-=-=求初級各電流值:因為Np*Ip=Ns*Is初級平均峰值電流:A n Is Ip papa 279.013636.3=== 初級直流有效電流:A Ip D Ip pa rms 125.045.0*279.0max *=== 初級交流有效電流:A p I D Ip pa ac 186.0279.0*45.0*max 2===(3).求各繞組交,直流電阻:初級:RpDC =(LNp*RDC)/2=(155.6712*0.00259)/2=0.2015ΩRpac =1.6* RpDC=0.321Ω次級:RsDC =(LNs*RDC)/2=(15.786*0.00198)/2=0.0156ΩRsac =1.6* RsDC=0.0249Ω偏置:RbDC=61.32*0.01001=0.6138Ω(4).計算各繞組交直流銅損耗:初級直流損耗:PpDC =I2rms* RpDC=0.125*0.2015=0.02518W。
高频变压器主要技术参数

高频变压器主要技术参数高频变压器是一种广泛应用于电子设备中的电力转换装置,主要用于将高频电能从一种电压转换为另一种电压。
高频变压器的主要技术参数包括额定功率、额定电压、变比、频率响应等。
额定功率是指高频变压器所能承受的最大功率。
它是根据设备所需的电能转换量来确定的。
高频变压器的额定功率决定了它所能适应的负载范围,如果负载过大,可能会导致变压器过载而损坏。
额定电压是指高频变压器所能承受的最大电压。
这个参数决定了变压器能够适应的输入电压范围。
如果输入电压超过额定电压,可能会导致变压器内部元件的损坏。
变比是高频变压器的另一个重要参数。
它表示输入电压与输出电压之间的比值。
变比通常用小数表示,例如2:1表示输入电压是输出电压的两倍。
变比决定了变压器的功率转换效率,一般来说,变比越高,功率转换效率越高。
频率响应是高频变压器的另一个关键参数。
它表示变压器在不同频率下的工作性能。
高频变压器通常用于频率较高的电子设备中,因此其频率响应范围通常在几十千赫兹到几百千赫兹之间。
高频变压器还有一些其他的技术参数需要注意。
例如,绝缘等级是指变压器的绝缘能力,它决定了变压器能否在高电压下安全工作。
温升是指变压器在工作过程中的温度升高,过高的温升可能会导致变压器的损坏。
磁化电流是指变压器在工作过程中所需的激励电流,它与变压器的磁路特性有关。
在设计和选择高频变压器时,需要根据具体的应用需求来确定合适的技术参数。
例如,在功率较小的电子设备中,可以选择额定功率较小的变压器;在输入电压波动较大的环境中,可以选择额定电压较大的变压器;在频率较高的应用中,需要选择频率响应范围宽的变压器。
高频变压器的主要技术参数包括额定功率、额定电压、变比、频率响应等。
合理选择这些参数可以确保变压器在电子设备中的正常工作,提高电能转换效率,保证设备的稳定运行。
高频变压器制作与技术参数

2.1 磁芯材料的选择
从变压器的性能指标要求可知,传统的薄带硅钢已很难满足变压器在频率、使用环境方面的设计要求。磁芯的材料只有从坡莫合 金、铁氧体材料、钴基非晶态合金和超微晶合金几种材料中来考虑。坡莫合金、钴基非晶态价格高,约为铁氧体材料的数倍,而饱和磁
PDF 文h件tt使p:/用/app"sp.hdif.Fbaaicdtuo.croymP/srhoa"re试/de用ta版il/6本36创76建71
3.6 导线线径的选取
PDF 文h件tt使p:/用/app"sp.hdif.Fbaaicdtuo.croymP/srhoa"re试/de用ta版il/6本36创76建71
2011-3-29 6
根据输入输出的估算,初线线圈的平均电流值应该允许达到2A。
U=4.44fN1Φ m可推知在工频时的Φ m值。要求不高时,可根据测算出的Φ m,粗略估算出原线圈的匝数,
。
图2 工作点测试示意图
3 变压器主要参数的计算
本 例中的变换器采用单端反激式工作方式,单端反激变换器在小功率开关电源设计中应用非常广泛,且多路输出较方便。单端反激 电源的工作模式有两种:电流连续模 式和电流断续模式。前者适用于较小功率,副边二极管存在没有反向恢复的问题,但MOS管的峰值 电流相对较大;后者MOS管的峰值电流相对较小,但存在副边 二极管的反向恢复问题,需要给二极管加吸收电路。这两种工作模式可根 据实际需求来选择,本文采用了后者。
(9) 其中,j是电流密度。 详细的变压器设计方法与计算相当复杂,本文参照经验公式,依据下面的步骤设计了本例转换器中的高频变压器。 3.1 确定变压器的变比 根据输出电压U0的关系式
高频变压器制作工艺

2根 2 1.5 1 0.9 0.8 0.75
3根 1.5 1 0.9 0.85 0.75 0.7
贴 多 单 铜 股 股 皮 线 线 焊 点
铜 皮 制 作
三、主要流程
四、基本操作
绕制部分 浸锡部分 组装部分
浸漆部分Leabharlann 测试部分 包装部分1、绕制部分
包隔带 上套管 绕制 绕铜皮绕组 包屏蔽带 贴固定胶带
员工培训系列:
通用工艺之 ——高频变压器
一、基本材料
骨架 磁芯
线材(漆包线、三重绝缘线、丝包线等)
绝缘层(胶带、隔带、聚脂薄膜等) 套管
1、骨架
数脚(槽)方法
相关参数(脚距、排 距、脚长) 各部位名称
附图
底视
按顺时针方向数脚
底视
正确数脚方法
错误数脚方法
脚位及槽位
2、磁芯
规格、型号
材质
应用
二、术语解释及操作示范
绕线
焊锡
接线
铜皮制作
常用名词
线径与圈数
圈数 线径 Φ 0.15-Φ 0.20 Φ 0.21-Φ 0.3 Φ 0.30-Φ 0.5 Φ 0.5-Φ 0.8 Φ 0.8-Φ 0.95 Φ 0.95 以上
1根 3 2 1.5 1 0.9 0.85
2、浸锡部分
助焊剂配比 焊锡温度
焊锡时间
焊锡外观
外 包 调 点 装 观 磁 测 胶 配 芯 胶 带
、 组 装 部 分
3
4、浸漆部分
非真空浸漆 真空浸漆
烘烤
绝 缘 电 阻 测 试
高频变压器的线圈参数与组装结构

1.线圈参数: 一般用的绕组排列方式:原绕组靠近磁芯,副绕组反 馈绕组逐渐向外排列。下面推荐两种绕组排列形式:
1)如果原绕组电压高(例如220V),副绕组电压低,可 以采用副绕组靠近磁芯,接着绕反馈绕组,原绕组在 最外层的绕组排列形式,这样有利于原绕组对磁芯的 绝缘安排;
2)如果要增加原副绕组之间的耦合,可以采用一半原绕 组靠近磁芯,接着绕反馈绕组和副绕组,最外层再绕 一半原绕组的排列形式,这样有利于减小漏感。
2、变压器的构成以及作用: 1)电气隔离 2)储能 3)变压 4)变流
1.线圈参数: 线圈参数包括:匝数,导线截面(直径),导线形式, 绕组排列和绝缘安排。 导线截面(直径)决定于绕组的电流密度。通常取J为
2.5~4A/mm2。导线直径的选择还要考虑趋肤效应。如 必要,还要经过变压器温升校核后进行必要如果 选用平面磁芯、片式磁芯和薄膜磁芯,都采用卧式组 装结构。
变压器基础知识 1、变压器组成: 原边(初级primary side ) 绕组 副边绕组(次级secondary side ) 原边电感(励磁电感)--magnetizing
inductance 漏感---leakage inductance 副边开路或者短路测量原边 电感分别得励磁电感和漏感 匝数比:K=Np/Ns=V1/V2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高频变压器制作与技术参数
脉冲变压器也可称作开关变压器,或简单地称作高频变压器。
在传统的高频变压器设计中,由于磁芯材料的限制,其工作频率较低,一般在20kHz左右。
随着电源技术的不断发展,电源系统的小型化、高频化和大功率化已成为一个永恒的研究方向和发展趋势。
因此,研究使用频率更高的电源变压器是降低电源系统体积、提高电源输出功率比的关键因素。
随着应用技术领域的不断扩展,开关电源的应用愈来愈广泛,但制作开关电源的主要技术和耗费主要精力就是制作开关变压器的部件。
开关变压器与普通变压器的区别大致有以下几点:
(1)电源电压不是正弦波,而是交流方波,初级绕组中电流都是非正弦波。
(2)变压器的工作频率比较高,通常都在几十赫兹,甚至高达几十万赫兹。
在确定铁芯材料及损耗时必须考虑能满足高频工作的需要及铁芯中有高次谐波的影响。
(3)绕组线路比较复杂,多半都有中心抽头。
这不仅增大了初级绕组的尺寸,增大了变压器的体积和重量,而且使绕组在铁芯窗口中的分布关系发生变化。
图1 开关电源原理图
本文介绍了一款如图1所示的DC—DC变换器,输入电压为直流24V,输出电压分别为5V 及12V的多路直流输出。
要求各路输出电流都在lA以上,核心器件是美国Unitrode公司生产的一种高性能单端输出式电流控制型脉宽调制器芯片UC3842,最高工作频率可达200kHz。
根据锌锰铁氧体合金的优异电磁性能,通过具体示例介绍工作频率为100kHz的高频开关电源变压器的设计及注意事项。
2变压器磁芯的选择与工作点的确定
2.1 磁芯材料的选择
从变压器的性能指标要求可知,传统的薄带硅钢已很难满足变压器在频率、使用环境方面的设计要求。
磁芯的材料只有从坡莫合金、铁氧体材料、钴基非晶态合金和超微晶合金几种材料中
来考虑。
坡莫合金、钴基非晶态价格高,约为铁氧体材料的数倍,而饱和磁感应强度Bs也不是很高,且加工工艺复杂。
考虑到我们所要求的电源输出功率并不高,大约为30W,因此,综合几种材料的性能比较,我们还是选择了饱和磁感应强度Bs较高,温度稳定性好,价格低廉,加工方便的性价比较低的锌锰铁氧体材料,并选以此材料作为框架的EI28来绕制本例中的脉冲变压器。
2.2工作点的确定
根据相关资料,EC35输出功率为50W,饱和磁感应强度大约在2000Gs左右。
买来的磁芯,由于厂家提供的磁感应强度月,值并不准确,可用图2所提供的方式粗略测试一下。
将调压器接至原线圈,用示波器观察副线圈输出电压波形。
将原线圈的输入电压由小到大慢慢升高,直到示波器显示的波形发生奇变。
此时,磁芯已饱和,根据公式:
U=4.44fN1Φm可推知在工频时的Φm值。
要求不高时,可根据测算出的Φm,粗略估算
出原线圈的匝数,。
图2 工作点测试示意图
3 变压器主要参数的计算
本例中的变换器采用单端反激式工作方式,单端反激变换器在小功率开关电源设计中应用非常广泛,且多路输出较方便。
单端反激电源的工作模式有两种:电流连续模式和电流断续模式。
前者适用于较小功率,副边二极管存在没有反向恢复的问题,但MOS管的峰值电流相对较大;后者MOS管的峰值电流相对较小,但存在副边二极管的反向恢复问题,需要给二极管加吸收电路。
这两种工作模式可根据实际需求来选择,本文采用了后者。
设计变压器时大多需要考虑下面问题:变换器频率f(H2);初级电压U1(V),次级电压U2(V);次级电流i2(A);绕组线路参数n1、,n2;温升τ(℃);绕组相对电压降u;环境温度τHJ(℃);绝缘材料密度γz(g/cm3)
1)根据变压器的输出功率选取铁芯,所选取的铁芯的户,值应等于或大于给定值。
2)绕组每伏匝数
(1)
S T是铁芯的截面积;k T是窗口的填充系数;
3)初级绕组电势
E1=U1(1-
)
(2)
4)初级绕组匝数
W1=
W0E l
(3)
5)次级绕组电势
E2i=U2i
(1+)
(4)
6)次级绕组匝数
W2i=
W0E2i
(5)
7)初级绕组电流
(6)
8)次级绕组电流
(7)
其中,n1、n2:分别是初级绕组和次级绕组的每层匝数。
9)初级绕组线径
(8)
10)次级绕组线径
(9)
其中,j是电流密度。
详细的变压器设计方法与计算相当复杂,本文参照经验公式,依据下面的步骤设计了本例转换器中的高频变压器。
3.1 确定变压器的变比
根据输出电压U0的关系式
(10)
得变比为
(11)
式中U D为整流器输出的直流电压。
本例中U D=24V,f为100kHz,t ON取0.5;n=2。
3.2 计算初级线圈中的电流
已知输出直流电压U0=±12V、5V,负载电流均为I0=lA,则输出功率
P0=P1+P2+P3=29W
开关电源的效率η一般在60~90%之间,本例取η=0.65,则输入功率为
初级的平均电流为
假定初级线圈的初始电流为零,那么,在开关管的导通期t ON里,初级线圈中的电流心便从零开始线性增长到峰值I1P
3.3 计算初级绕组圈数N1
初级绕组的最小电感L1为
根据输出功率P的大小,选用适当的磁芯,其形状用环形、EI形或罐形均可,本例采用EI28,该类型的铁芯在f=50kHz时,功率可达到60W,在f=100kHz时,输出功率可达到90W。
式中I lp—初级线圈峰值电流,A;
L1—初级电感,H;
S—磁芯截面积,mm2;
B m—磁芯最大磁通密度,T。
3.4 计算次级绕组圈数N2
即±12V分别绕5匝,5V绕3匝。
3.5 反馈绕组N3的估算
反馈绕组匝数的确定,要求既能保证开关元件的饱和导通又不至于造成过大损耗。
根据
UC3842的要求,反馈绕组的输出电压应在13V左右。
因此,
3.6 导线线径的选取
根据输入输出的估算,初线线圈的平均电流值应该允许达到2A。
1)初级绕组
初级绕组的线径可选d=0.80mm,其截面积为0.5027mm2的圆铜线。
2)次级绕组
次级绕组的线径可根据各组输出电流的大小,利用原级相同线径采用多股并绕的办法解决。
为了方便线圈绕制,也可选用线径较粗的导线。
由于工作频率较高,应考虑集肤效应的影响。
3.7 线圈绕制与绝缘
绕制开关变压器最重要的问题是想办法使初、次级线圈紧密地耦合在一起,这样可以减小变压器漏感,因为漏感过大,将会造成较大的尖峰脉冲,从而击穿开关管。
因此,在绕制高频变压器线圈时,应尽量使初、次级线圈之间的距离近些。
具体可采用以下方法:
(1)双线并绕法
将初、次级线圈的漆包线合起来并绕,即所谓双线并绕。
这样初、次级线间距离最小,可使漏感减小到最小值。
但这种绕法不好绕制,同时两线间的耐压值较低。
(2)逐层间绕法
为克服并绕法耐压低、绕制困难的缺点,用初、次级分层间绕法,即1、3、5行奇数层绕初级绕组,2、4、6等偶数层绕次级绕组。
这种绕法仍可保持初、次级间的耦合,又可在初、次级间垫绝缘纸,以提高绝缘程度。
(3)夹层式绕法
把次级绕组绕在初级绕组的中间,初级分两次绕。
这种绕法只在初级绕组中多一个接头,工艺简单,便于批量生产。
本例中,为减小分布参数的影响,初级采用双线并绕连接的结构,次级采用分段绕制,串联相接的方式,即所谓堆叠绕法。
降低绕组间的电压差,提高变压器的可靠性。
在变压器的绝缘方面,线圈绝缘应尽量选用抗电强度高、介质损耗低的复合纤维绝缘纸,提高初、次级之间的绝缘强度和抗电晕能力,本例中,因为不涉及高压,绝缘问题不必特殊考虑。
4 结束语
绕制脉冲变压器是制作开关电源的重要工作,也是设计与制作过程中消耗大量时间和主要精力的工作。
变压器做得好,整个设计与制作工作就完成了70%以上。
做得不好,可能就会出现停振、啸叫或输出电压不稳、负载能力不高等现象。
在变压器的温升<35℃,绕制良好的脉冲变压器的工作效率可达到90%以上,且波形质量优异,电性能参数稳定。
在100kHz的使用条件下,脉冲变压器的体积可以大大减小。
绕制变压器时,要尽最大的努力保证以下几点:
(1)即使输入电压最大,主开关器件导通时间最长,也不至于使变压器的磁芯饱和;
(2)初级线圈与次级线圈的耦合要好,漏电感要小;
(3)高频开关变压器会因集肤效应导致电线的电阻值增大,因而要减小电流密度。
通常,工作时的最大磁通密度取决于次级线圈。
(12)
(4)一般来说,采用铁氧体磁芯E128时,要把B m控制在3kGs以下。