第5章 两点边值问题求解方法

合集下载

直接法求两点边值问题

直接法求两点边值问题

课程设计(论文)任务书数学与计算科学学院学院信息与计算科学专业班课程名称科学仿真实验五题目直接法求解两点边值问题(一)任务起止日期:2014 年 6 月23 日~2014年7月 6 日学生姓名学号指导教师教研室主任年月日审查课程设计(论文)任务注:1. 此任务书由指导教师填写。

如不够填写,可另加页。

2. 此任务书最迟必须在课程设计(论文)开始前下达给学生。

学生送交全部材料日期学生(签名)指导教师验收(签名)直接法求解两点边值问题(二)摘要线性方程组的数值解法可以分为直接法和迭代法两类。

所谓直接法,就是不考虑舍入误差,通过有限步骤四则运算即能求得线性方程组准确解的方法。

如克莱姆法则,但通过第一章的分析,我们知道用克莱姆法则来求解线性代数方程组并不实用,因而寻求线性方程组的快速而有效的解法是十分重要的。

本章讨论计算机上常用而有效的直接解法――高斯消去法和矩阵的三角分解等问题。

为方便计,设所讨论的线性方程组的系数行列式不等于零。

高斯消去法是解线性方程组最常用的方法之一,它的基本思想是通过逐步消元,把方程组化为系数矩阵为三角形矩阵的同解方程组,然后用回代法解此三角形方程组得原方程组的解。

关键词:线性方程组;直接解法;高斯消去法DIRECT METHOD SOLVING TWO-POINT BOUNDARY VALUE PROBLEMS(2)ABSTRACTNumerical algorithm of linear equations can be divided into two categories, direct method and iterative method. The so-called direct method, is not considered rounding error, through limited steps arithmetic which can obtain the accurate solution of linear equations method. Such as cramer's rule, but through the analysis of the first chapter, we know that cramer's rule is used to solve the linear algebraic equations is not practical, thus seeking quick and effective solutions of systems of linear equations solution is very important.This chapter discuss computer commonly used and effective direct solution - gaussian elimination and triangle decomposition of matrices. For the convenience of meter, discussed the coefficient determinant of linear equations is not equal to zero.Gauss elimination method is one of the most commonly used method of solving linear equations, the basic idea is to pass a gradual elimination, to coefficient matrix of the triangular matrix equations with solutions of the equations, then by back substitution method solving the triangle equations to the solution of the original equations.Key words:linear equations; Direct method; Gaussian elimination目录1问题的提出 (1)2 理论基础 (1)2.1 高斯消去法 (2)2.2 列主元消去法 (5)2.3 矩阵的三角分解法 (6)2.3.1 算法介绍 (6)2.3.2 定理结论 (7)2.3.3 计算公式 (9)2.4解三对角方程组的追赶法 (10)3 问题的求解 (12)3.1顺序消去法 (12)3.2 列主元消去法 (13)3.3Doolittle分解法 (14)3.4 追赶法 (15)4 计算结果 (16)参考文献 (20)附录 (21)1 问题的提出考虑两点边值问题:()()⎪⎩⎪⎨⎧==<<=+.11,00,10,22y y a a dx dy dx y d ε 容易知道它的精确解为:.1111ax e e a y x +⎪⎪⎭⎫ ⎝⎛---=--εε为了把微分方程离散,把[]1,0区间n 等分,令nh 1=,ih x i =,,1,,2,1-=n i 得到差分方程:,21211a h y y hy y y ii i i i =-++-++-ε简化为:()(),2211ah y y h y h i i i =++-+-+εεε从而离散后得到的线性方程组的系数矩阵为:()()()()⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+-++-++-++-=h h h h h h h A εεεεεεεεεε2222对1=ε,21=a ,100=n ,分别用顺序消去法、列主元消去法、Doolittle 分解法和追赶法求解线性方程组,然后比较与精确解的误差,对结果进行分析。

微分方程的边值问题

微分方程的边值问题

微分方程边值问题的数值方法本部分内容只介绍二阶常微分方程两点边值问题的的打靶法和差分法。

二阶常微分方程为(,,),y f x y y a x b '''=≤≤(1.1)当(,,)f x y y '关于,y y '为线性时,即(,,)()()()f x y y p x y q x y r x ''=++,此时(1.1)变成线性微分方程()()(),y p x y q x y r x a x b '''--=≤≤(1.2)对于方程(1.1)或(1.2),其边界条件有以下3类: 第一类边界条件为(),()y a y b αβ==(1.3)当0α=或者0β=时称为齐次的,否则称为非齐次的。

第二类边界条件为(),()y a y b αβ''==(1.4)当0α=或者0β=时称为齐次的,否则称为非齐次的。

第三类边界条件为0101()(),()()y a y a y b y b ααββ''-=+=(1.5)其中00000,0,0αβαβ≥≥+>,当10α=或者10β=称为齐次的,否则称为非齐次的。

微分方程(1.1)或者(1.2)附加上第一类,第二类,第三类边界条件,分别称为第一,第二,第三边值问题。

1 打靶法介绍下面以非线性方程的第一类边值问题(1.1)、(1.3)为例讨论打靶法,其基本原理是将边值问题转化为相应的初值问题求解。

【原理】假定()y a t '=,这里t 为解()y x 在x a =处的斜率,于是初值问题为(,,)()()y f x y y y a y a t α'''=⎧⎪=⎨⎪'=⎩(1.6)令z y '=,上述二阶方程转化为一阶方程组(,,)()()y zz f x y z y a z a tα'=⎧⎪'=⎪⎨=⎪⎪=⎩ (1.7)原问题转化为求合适的t ,使上述初值问题的解(,)y x t 在x b =的值满足右端边界条件(,)y b t β=(1.8)这样初值问题(1.7)的解(,)y x t 就是边值问题(1.1)、(1.3)的解。

两点边值问题,高斯伪谱法,延拓法

两点边值问题,高斯伪谱法,延拓法

自适应步长设计
i i i 1
i 1 i
1、如果NLE方程在迭代m结束后无解,则减少 步长 2m 2、如果NLE方程得到结果且迭代次数大于 3 , 则步长合适且保持不变 m 3、如果NLE方程交点 小于 3 ,则步长太小而应 增加步长
实例讲解
minJ

求解Ci
延拓法
tf自由时,
1 y f t f , y ,0 1 tf y , y 1, t f 0

方程 组(2)
t /tf
0
求Ci、tf
延拓法
y f t , y

y0, y t f 0
y0, yt f 0
y g t , y

y f t , y 1 g t , y y 0 , y t f 1 y 0 , y t f 0 0 0 1 ... m 1
s.t.
tf
x(t ) f x(t ), u (t ), t ( x(0), x(t f )) 0

0
t
哈密顿方程:
H x, , u g x, u T f x, u
x [H / ]T

正则方程:
[H / x]T
0 [H / u ]T
wi f i , c1 0 i 1
m
NLE方程组
2 m c d f , c i i1 1 i t f i 0 c 0 0 F m 2 ci d im f m , cm t f i 0 c m m t c , c f w f , c 0 0 i m i 2 i 1

电磁场与电磁波课件第5章 静态场的边值问题

电磁场与电磁波课件第5章  静态场的边值问题

1 2 ,
然后进行 证明.同样可得出结论,其解唯一.
设φ1φ2是同一有源区域的边值问题
2 的解。 | f1 ( S )
即在区域V内,φ1和φ2满泊松方程,即
1 2 2
2
在V的边界S上,φ1和φ2满足同样的边界条件, 即
5.3.1 导体平面镜像
设在无限大导体平面(z=0)附近有一点电荷与平面距离为z=h 。 若导体平面接地,则导体平面电位为零,如图所示。求上半 空间中的电场。 分析:上半空间任一点 P处的电位,应等于点 电荷q和无限大导体平 板上感应的负电荷产生 的的电位总和。因此, 上半空间的电位问题可 表示为 :
2
C (常数)

0

1 2
C 0
5.3 镜像法
实质:是以一个或几个等效电荷代替边界的影响,将原来具有边
界的非均匀空间变成无限大的均匀自由空间,从而使计算过程 大为简化。
依据:惟一性定理。等效电荷的引入必须维持原来的边界 条件不变。这些等效电荷通常处于镜像位置,因此称为镜 像电荷,而这种方法称为镜像法。

2 A ( A) A J
人为规定


A 0

这个规定被称为库仑规范
于是有
2 A J
此式即为矢量磁位的泊松方程。
在没有电流的区域有J 0

2 A0
此式即为矢量磁位的拉普拉斯方程。 (2) 磁场的标量位函数 在没有电流分布的区域内,恒定磁场的基本方程变为 H 0 B 0 这样,在无源区域内,磁场也成了无旋场,具有位场的性 质,因此,象静电场一样,我们可以引入一个标量函数, 即标量磁位函数

数学物理方程-第五章格林函数法[整理版]

数学物理方程-第五章格林函数法[整理版]

第五章 格林函数法在第二章中利用分离变量法求出了矩形区域和圆域上位势方程Dirichlet 问题的解.本章利用Green 函数法求解一些平面或空间区域上位势方程Dirichlet 问题. 另外,也简单介绍利用Green 函数法求解一维热传导方程和波动方程半无界问题. 应指出的是:Green 函数法不仅可用于求解一些偏微分方程边值问题或初边值问题,特别重要的是,它在偏微分方程理论研究中起着非常重要的作用.§5⋅1 格林公式在研究Laplace 方程或Poisson 方程边值问题时,要经常利用格林(Green )公式,它是高等数学中高斯(Gauss )公式的直接推广.设Ω为3R 中的区域,∂Ω充分光滑. 设k 为非负整数,以下用()k C Ω表示在Ω上具有k 阶连续偏导的实函数全体,()k C Ω表示在Ω上具有k 阶连续偏导的实函数全体. 如()10()()()()u C C C C ∈Ω⋂ΩΩ=Ω,表示(,,)u x y z 在Ω具有一阶连续偏导数而在Ω上连续. 另外,为书写简单起见,下面有时将函数的变量略去.如将(,,)P x y z 简记为P ,(,,)P x y z x ∂∂简记为Px∂∂或x P 等等.设(,,)P x y z ,(,,)Q x y z 和(,,)R x y z 1()C ∈Ω,则成立如下的Gauss 公式()P Q RdV Pdydz Qdydx Rdxdy x y z Ω∂Ω∂∂∂++=++∂∂∂⎰⎰⎰⎰⎰ (1.1)或者()(cos cos cos )P Q R dV P Q R ds x y z αβγΩ∂Ω∂∂∂++=++∂∂∂⎰⎰⎰⎰⎰ (1.2)如果引入哈米尔顿(Hamilton )算子: (,,)x y z∂∂∂∇=∂∂∂,并记(,,)F P Q R = ,则Gauss 公式具有如下简洁形式⎰⎰⎰⎰⎰∂⋅=⋅∇ΩΩds n F dv F(1.3)其中(cos ,cos ,cos )n αβγ=为∂Ω的单位外法向量.注1 Hamilton 算子是一个向量性算子,它作用于向量函数(,,)F P Q R =时,其运算定义为(,,)(,,),F P Q R x y zP Q Rx y z∂∂∂∇⋅=⋅∂∂∂∂∂∂=++∂∂∂形式上相当于两个向量作点乘运算,此即向量F 的散度div F. 而作用于数量函数(,,)f x y z 时,其运算定义为(,,)(,,)f f ff f x y z x y z∂∂∂∂∂∂∇==∂∂∂∂∂∂,形式上相当于向量的数乘运算,此即数量函数f 的梯度grad f .设(,,)u x y z ,2(,,)()v x y z C ∈Ω,在(1.3)中取F u v =∇得()u v dV u v nds Ω∂Ω∇⋅∇=∇⋅⎰⎰⎰⎰⎰(1.4)直接计算可得v u v u v u ∇∇+=∇⋅∇∆)( (1.5)其中xx yy zz v v v v ∆=++. 将(1.5)代入到(1.4)中并整理得vu vdV uds u vdV n Ω∂ΩΩ∂∆=-∇⋅∇∂⎰⎰⎰⎰⎰⎰⎰⎰ (1.6)(1.6)称为Green 第一公式.在(1.6)中将函数u ,v 的位置互换得uv udV vds v udV n Ω∂ΩΩ∂∆=-∇⋅∇∂⎰⎰⎰⎰⎰⎰⎰⎰ (1.7)自(1.6)减去(1.7)得()()v uu v v u dV uv ds n nΩ∂Ω∂∂∆-∆=-∂∂⎰⎰⎰⎰⎰ (1.8)(1.8)称为Green 第二公式.设点0(,,)P ξηζ∈Ω,点3(,,)P x y z R ∈,||00P P r P P -==引入函数 001(,)4P PP P r πΓ=,注意0(,)P P Γ是关于六个变元(,,)x y z 和(,,)ξης的函数且00(,)(,)P P P P Γ=Γ. 如无特别说明, 对b 求导均指关于变量(,,)x y z 的偏导数. 直接计算可得00(,)0, P P P P ∆Γ=≠即0(,)P P Γ在3R 中除点0P 外处处满足Laplace 方程.设0ε>充分小使得00(,){(,,) ||}B B P P x y z P P εε==-≤⊂Ω. 记\G B =Ω,则G B ∂=∂Ω⋃∂. 在Green 第二公式中取0(,)v P P =Γ,G Ω=. 由于在区域G 内有0∆Γ=,故有()GGuudV uds n n∂∂Γ∂-Γ∆=-Γ∂∂⎰⎰⎰⎰⎰ 或者()()GBu u udV uds u ds n n n n ∂Ω∂∂Γ∂∂Γ∂-Γ∆=-Γ+-Γ∂∂∂∂⎰⎰⎰⎰⎰⎰⎰ (1.9)在球面B ∂上,021()414P P r n rrrππ∂∂Γ∂Γ=-=-=∂∂∂,因此21(,,)4BBuuds ds u x y z n πε∂∂∂Γ==∂⎰⎰⎰⎰ (1.10)其中(,,)P x y z B ∈∂.同理可得14BBu u ds ds n n πε∂∂∂∂Γ=∂∂⎰⎰⎰⎰(,,)ux y z n ε∂'''=∂ (1.11)其中(,,)P x y z B '''∈∂.将(1.10)和 (1.11)代入到(1.9)中并令0ε+→,此时有(,,)(,,)P x y z P ξηζ→,(,,)0u x y z nε∂'''→∂,并且区域G 趋向于区域Ω,因此可得()(,,)uudV uds u n nξηζΩ∂Ω∂Γ∂-Γ∆=-Γ+∂∂⎰⎰⎰⎰⎰,即(,,)()u u u d s u d V n n ξηζ∂ΩΩ∂∂Γ=Γ--Γ∆∂∂⎰⎰⎰⎰⎰ (1.12)(1.12)称为Green 第三公式. 它表明函数u 在Ω内的值可用Ω内的u ∆值与边界∂Ω上u 及nu∂∂的值表示.注2 在二维情形,Green 第一公式和Green 第二公式也成立. 而对于Green第三公式, 需要取011(,)ln 2P P rπΓ=,其中0(,)P ξη∈Ω,2(,)P x y R ∈,r =0P P r=0||P P -=此时Green 第三公式也成立.§5⋅2 Laplace 方程基本解和Green 函数基本解在研究偏微分方程时起着重要的作用. 本节介绍Laplace 方程的基本解,并在一些特殊区域上由基本解生成Green 函数,由此给出相应区域上Laplace 方程或Poisson 方程边值问题解的表达式. 下面以Dirichlet 问题为例介绍Laplace 方程的基本解和Green 函数方法的基本思想.5.2.1 基本解设30(,,)P R ξηζ∈,若在点0P 放置一单位正电荷,则该电荷在空间产生的电位分布为(舍去常数0ε)001(,,)(,)4P Pu x y z P P r π=Γ=(2.1)易证: 0(,)P P Γ在30\{}R P 满足0 .u -∆= 进一步还可以证明[1],在广义函数的意义下0(,)P P Γ满足方程0(,)u P P δ-∆= (2.2)其中0(,)()()()P P x y z δδξδηδζ=---. 0(,)P P Γ称为三维Laplace 方程的基本解.当n =2时,二维Laplace 方程的基本解为0011(,)ln2P PP P r πΓ=(2.3)其中0(,)P ξη,2(,)P x y R ∈,0P Pr =同理可证,0(,)P P Γ在平面上除点0(,)P ξη外满足方程0 u -∆=,而在广义函数意义下0(,)P P Γ满足方程0(,)u P P δ-∆= (2.4)其中0(,)()()P P x y δδξδη=--.注1 根据Laplace 方程的基本解的物理意义可以由方程(2.2)和(2.4)直接求出(2.1)和(2.3),作为练习将这些内容放在本章习题中. 另外,也可以利用Fourier 变换求解方程(2.2)和(2.4)而得到Laplace 方程的基本解.5.2.2 Green 函数考虑如下定解问题(,,), (,,) (2.5)(,,)(,,), (,,) (2.6)u f x y z x y z u x y z x y z x y z ϕ-∆=∈Ω⎧⎨=∈∂Ω⎩设0(,,)P ξηζ∈Ω,21(,,)()()u x y z C C ∈Ω⋂Ω是(2.5)— (2.6)的解,则由Green 第三公式可得(,,)()u u u ds udV n n ξηζ∂ΩΩ∂∂Γ=Γ--Γ∆∂∂⎰⎰⎰⎰⎰ (2.7)在公式(2.7)的右端,其中有两项可由定解问题(2.5)—(2.6)的边值和自由项求出,即有uds ds n n ϕ∂Ω∂Ω∂Γ∂Γ=∂∂⎰⎰⎰⎰u d V f d VΩΩΓ∆=-Γ⎰⎰⎰⎰⎰⎰.而在u ds n ∂Ω∂Γ∂⎰⎰中,un ∂∂在边界∂Ω上的值是未知的. 因此须做进一步处理.注2 若要求解Neumann 问题,即将(2.6)中边界条件换为(,,)ux y z nϕ∂=∂.此时,在方程(2.7)右端第二项uds n∂Ω∂Γ∂⎰⎰中,u 在边界∂Ω上的值是未知的,而其余两项可由相应定解问题的边值和自由项求出.如何由(2.7)得到定解问题(2.5)-(2.6)的解?Green 的想法就是要消去(2.7)右端第一项uds n ∂Ω∂Γ∂⎰⎰. 为此,要用下面的Green 函数取代(2.7)中的基本解.设h 为如下定解问题的解0,(,,)(2.8),(,,)(2.9)h x y z h x y z -∆=∈Ω⎧⎨=-Γ∈∂Ω⎩ 在Green 第二公式中取v h =得()h u h udV uh ds n nΩ∂Ω∂∂-∆=-∂∂⎰⎰⎰⎰⎰ 或者0()u hhu ds h udV n n ∂ΩΩ∂∂=--∆∂∂⎰⎰⎰⎰⎰ (2.10)将(2.7)和(2.10)相加得(,,)()u Gu Gu ds G udV n n ξηζ∂ΩΩ∂∂=--∆∂∂⎰⎰⎰⎰⎰ (2.11)其中0(,)G P P h =Γ+.由(2.2)和(2.8)—(2.9)可得,0(,)G P P 是如下定解问题的解00(,), (,,)(2.12)(,)0, (,,)(2.13)G P P P x y z G P P P x y z δ-∆=∈Ω⎧⎨=∈∂Ω⎩0(,)G P P 称为Laplace 方程在区域Ω的Green 函数.由于G 在∂Ω上恒为零,由(2.11)可得(,,)Gu uds G udV n ξηζ∂ΩΩ∂=--∆∂⎰⎰⎰⎰⎰ Gds GfdV n ϕ∂ΩΩ∂=-+∂⎰⎰⎰⎰⎰. (2.14)因此,若求出了区域Ω的Green 函数0(,)G P P ,则(2.14)便是定解问题(2.5)— (2.6)的解.§5⋅3 半空间及圆域上的Dirichlet 问题由第二节讨论可知,只要求出了给定区域Ω上的Green 函数,就可以得到该区域Poisson 方程Dirichlet 问题的解. 对一般区域,求Green 函数并非易事. 但对于某些特殊区域,Green 函数可借助于基本解的物理意义利用对称法而得出. 下面以半空间和圆域为例介绍此方法.5.3.1 半空间上Dirichlet 问题设{(,,)|0},{(,,)|0}x y z z x y z z Ω=>∂Ω==. 考虑定解问题2(,,),(,,) (3.1)(,,0)(,),(,) (3.2)u f x y z x y z u x y x y x y Rϕ-∆=∈Ω⎧⎨=∈⎩设0(,,),P ξηζ∈Ω则1(,,)P ξηζ-为0P 关于∂Ω的对称点. 若在0P ,1P 两点各放置一个单位正电荷,则由三维Laplace 方程的基本解知,它们在空间产生的电位分别为00111(,)41(,)4P P r P P r ππΓ=Γ=其中0011||,||r P P r P P =-=-. 由于0P 和1P 关于∂Ω对称,且1P ∉Ω,故有01001[(,)(,)](,), (,)(,)0,.P P P P P P P P P P P P δ-∆Γ-Γ=∈Ω⎧⎨Γ-Γ=∈∂Ω⎩即001(,)(,)(,)G P P P P P P =Γ-Γ为上半空间的Green 函数,且有001(,)(,)(,)G P P P P P P =Γ-Γ011114r r π⎛⎫=- ⎪⎝⎭14π⎡⎤= (3.3)直接计算可得3/2222012()()z G Gn zx y ζπξηζ∂Ω=∂∂=-=-∂∂⎡⎤-+-+⎣⎦(3.4)将(3.3)—(3.4)代入到公式(2.14)得(,,)Gu ds Gfd n ξηζϕν∂ΩΩ∂=-+∂⎰⎰⎰⎰⎰ 3/2222001(,)2()() (,)(,,)x y dxdyx y G P P f x y z dxdydzϕζπξηζ∞∞-∞-∞∞∞∞-∞-∞=⎡⎤-+-+⎣⎦+⎰⎰⎰⎰⎰上式便是定解问题(3.1)— (3.2)的解.5.3.2 圆域上Dirichlet 问题设222{(,)|}x y x y R Ω=+<,则222{(,)|}x y x y R ∂Ω=+=. 考虑圆域Ω上的Dirichlet 问题(,), (,) (3.5)(,)(,), (,) (3.6)u f x y x y u x y g x y x y -∆=∈Ω⎧⎨=∈∂Ω⎩ 设0(,)P ξη∈Ω,1(,)P ξη为0(,)P ξη关于圆周∂Ω的对称点,即201,OP OP R =如图3-1所示 . 由于201OP OP R =,因此对任意M ∈∂Ω有01~OP M OMP ∆∆ROP r r MP M P ||010=1P01011||P MPMR r OP r =图3.1因此有0101111ln ln 022||P M PMR r OP r ππ-= (3.7)上式说明函数01001111(,)ln ln22||P P P PR G P P r OP r ππ=- (3.8)在∂Ω上恒为零. 又由于1P ∉Ω,故有000(,)(,),(,)0,.G P P P P P G P P P δ-∆=∈Ω⎧⎨=∈∂Ω⎩即0(;)G P P 是圆域上的Green 函数.引入极坐标(,)P ρθ,设0000(,)(,)P P ξηρθ=,则21100(,)(,)R P P ξηθρ=. 用α表示0OP 与OP 的夹角,则有000cos cos cos sin sin cos()αθθθθθθ=+=-利用余弦定理可得0P P r = (3.9)1P P r =(3.10)将(3.9)和(3.10)代入到(3.8)中并整理得22222000042220002cos()1(,)ln 42cos()R R R G P P R R ρρρρθθπρρρρθθ+--=-+-- (3.11)直接计算可得RG Gn ρρ∂Ω=∂∂=∂∂2222000122cos()R R R R ρπρρθθ-=-+-- . (3.12)记()(cos ,sin )g R R ϕθθθ=,则有00(,)Gu ds Gfd n ρθϕσ∂ΩΩ∂=-+∂⎰⎰⎰ 222022000()()122cos()R d R R πρϕθθπρρθθ-=+--⎰- 22222200042220002cos()1(cos ,sin )ln 42cos()R R R R f d d R R πρρρρθθρθρθρρθπρρρρθθ+--+--⎰⎰(3.13)(3.13)便是定解问题(3.5)—(3.6)的解.注1 当0f =时(3.13)称为圆域上调和函数的Poisson 公式.注2 利用复变函数的保角映射,可以将许多平面区域变换为圆域或半平面.因此,与保角映射结合使用,可以扩大对称法以及Green 函数法的应用范围. 在本章习题中有一些这类题目,Green 函数法更多的应用可查阅参考文献[13].§5⋅4* 一维热传导方程和波动方程半无界问题5.4.1 一维热传导方程半无界问题为简单起见,仅考虑以下齐次方程定解问题20 , 0 , 0 (4.1)(0,)0 , 0 (4.2)(,0)() , 0 t xx u a u x t u t t u x x x ϕ-=<<∞>=≥=<<∞ (4.3)⎧⎪⎨⎪⎩该定解问题称为半无界问题, 这是一个混合问题,边界条件为(4.2). 类似于上节Poisson 方程在半空间和圆域上Dirichlet 问题的求解思想,也要以热方程的基本解为基础,使用对称法求出问题(4.1)—(4.3)的Green 函数,并利用所得到的Green 函数给出该问题的解.一维热传导方程的基本解为224(,)() .x a tx t H t -Γ (,)x t Γ是如下问题的解20, , 0 (4.4)(,0)(), . (4.5)t xx u a u x t u x x x δ⎧-=-∞<<∞>⎨=-∞<<∞⎩相当于在初始时刻0t =,在0x =点处置放一单位点热源所产生的温度分布.若将上面定解问题中的初始条件换为(,0)()u x x δξ=-,只要利用平移变换'x x ξ=-易得此时(4.4)—(4.5)的解为(,)x t ξΓ-.为求解定解问题(4.1)—(4.3),先考虑()()x x ϕδξ=-,其中ξ为x 轴正半轴上的任意一点. 此时,相当于在x ξ=点处置放一单位点热源. 则此单位点热源在x 轴正半轴上产生的温度分布,如果满足边界条件(4.2),它便是(4.1)—(4.3)的解,即为该问题的Green 函数. 为此,设想再在x ξ=-点,此点为x ξ=关于坐标原点的对称点,处置放一单位单位负热源,这时在x ξ=点处置放的单位点热源产生的温度分布(,)x t ξΓ-和在x ξ=-处置放的单位负热源产生的温度分布(,)x t ξ-Γ+在0x =处相互抵消,从而在0x =处的温度恒为零. 因此,问题(4.1)—(4.3)的Green 函数为(,)(,)(,) G x t x t x t ξξξ-=Γ--Γ+ (4.6)利用叠加原理可得原问题的解为(,)() (,)u x t G x t d ϕξξξ∞=-⎰ . (4.7)若将(4.2)中的边界条件换为(0,)()u t g t =或(0,)0x u t =,请同学们考虑如何求解相应的定解问题.5.4.2 一维波动方程半无界问题考虑以下齐次方程定解问题20, 0, 0 (4.8)(0,)0, 0 (4.9)(,0)0, (,0)(), 0 tt xx t u a u x t u t t u x u x x x ψ-=<<∞>=≥==<<∞ (4.10)⎧⎪⎨⎪⎩一维波动方程的基本解(,)x t Γ为1, 2(;) 0, .x ata x t x at ⎧<⎪Γ=⎨⎪≥⎩完全类似于上小节的分析,可得该问题的Green 函数为(,)(,)(,G x t x t x t ξξξ-=Γ--Γ+, (4.11)其中0ξ>. 因此,该定解问题的解便可表示为(,)() (,)u x t G x t d ψξξξ∞=-⎰. (4.12)注意到(,)x t ξΓ-的具体表示式为1, 2(;) 0, x atax t x at ξξξ⎧-<⎪Γ-=⎨⎪-≥⎩类似地有1, 2(;) 0, x ata x t x at ξξξ⎧+<⎪Γ+=⎨⎪+≥⎩将上面两式代入到(4.12)中并整理可得1(), 0 2(,)1(), 0.2x atx atx atat xd x at a u x t d x at a ψξξψξξ+-+-⎧-≥⎪⎪=⎨⎪-<⎪⎩⎰⎰ 若将(4.9)中的边界条件换为(0,)0x u t =,请同学们考虑如何求解相应的定解问题.注1 对一维波动方程半无界问题,除上面使用的Green 函数法以外,也可以用延拓法或特征线法求解[1]. 相比之下,Green 函数法最简单.注2 类似于本章前两节,对一维热传导方程和波动方程初边值问题,也可以建立起解的Green 公式表达式,相当于本章第二节中的(2.14), 并以此为基础而给出上面(4.7)和(4.12)两式的严格证明[2]. 由于本章主要是通过对一些比较简单的偏微分方程定解问题的求解,重点介绍Green 函数法的基本思想和一些特殊区域Green 函数的具体求法,故略去了(4.7)和(4.12)两式的推导过程.习 题 五1.设3R Ω⊂为有界区域,∂Ω充分光滑,21()()u C C ∈Ω⋂Ω. 证明(1)uudV ds n Ω∂Ω∂∆=∂⎰⎰⎰⎰⎰.(2)2u u udV uds u dV n Ω∂ΩΩ∂∆=-∇∂⎰⎰⎰⎰⎰⎰⎰⎰.2. 设3R Ω⊂为有界区域,∂Ω充分光滑,21()()u C C ∈Ω⋂Ω满足下面问题0, (,,)(,,)0, (,,).xx yy zz u u u u x y z u x y z x y z ∆=++=∈Ω⎧⎨=∈∂Ω⎩证明 (,,)0u x y z ≡,并由此推出Poisson 方程Dirichlet 问题解的唯一性.若将定解问题中的边界条件换为0, (,,),ux y z n∂=∈∂Ω∂问(,,)u x y z 在Ω中等于什么?Poisson 方程Neumann 问题的解是否具有唯一性?3*设3R Ω⊂为有界区域,∂Ω充分光滑,21()()u C C ∈Ω⋂Ω满足下面问题(,,)(,,), (,,)(,,)(,,), (,,).u c x y z u f x y z x y z u x y z x y z x y z ϕ-∆+=∈Ω⎧⎨=∈∂Ω⎩其中 (,,)c x y z 在闭域Ω非负有界且不恒为零. 证明或求解以下各题(1) 如果0,(,,), 0,(,,),f x y z x y z ϕ=∈Ω=∈∂Ω证明(,,)0u x y z ≡.(2)如果0,(,,),f x y z =∈Ω而边界条件换为0, (,,),ux y z n∂=∈∂Ω∂问(,,)u x y z 在区域Ω中等于什么?4.(1) 验证0∆Γ=,0P P ≠,其中0(,) 3P P n Γ==01(,)22P P n πΓ==(2)设()u u r =, 22y x r +=, 求0,0xx yy u u r +=≠,并且满足(1)0,u =(0,)1B u n ds δ∂∇⋅=-⎰的解, 其中(0,)B δ是以原点为圆心δ为半径的圆形域,n 为(0,)B δ∂的单位外法向量.(3) 设()u u r =, 222z y x r ++=, 求0=++zz yy xx u u u ,0≠r ,并且满足B(0,)lim ()0, 1r u r u nds δ→∞∂=∇⋅=-⎰⎰的解, 其中(0,)B δ是以原点为球心δ为半径的球形域,n为(0,)B δ∂的单位外法向量.5. 设2R Ω⊂有界区域,∂Ω充分光滑,21()()u C C ∈Ω⋂Ω. 证明(,)()u u u ds ud n n ξησ∂ΩΩ∂∂Γ=Γ--Γ∆∂∂⎰⎰⎰ 其中0(,)P ξη∈Ω,0(,)P P Γ如第4题所示.6. 设2R Ω⊂有界区域,∂Ω充分光滑,0(,)P ξη∈Ω,2(,)P x y R ∈,0(,)P P Γ为二维Laplace 方程的基本解. 考虑定解问题(,), (,)(,)(,), (,)u f x y x y u x y x y x y ϕ-∆=∈Ω⎧⎨=∈∂Ω⎩ 若(,)h x y 是如下定解问题的解00, (,)(,)(,),(,)h x y h x y P P x y ∆=∈Ω⎧⎨=-Γ∈∂Ω⎩证明 若21(,)()()u x y C C ∈Ω⋂Ω,则有(,)Gu ds Gfd n ξηϕσ∂ΩΩ∂=-+∂⎰⎰⎰,其中G h =Γ+.7. 设3R Ω⊂有界区域,∂Ω充分光滑, 考虑定解问题(,,), (,,)(,,), (,,).u f x y z x y z ux y z x y z nϕ-∆=∈Ω⎧⎪∂⎨=∈∂Ω⎪∂⎩ 证明该问题可解的必要条件为0f dV ds ϕΩ∂Ω+=⎰⎰⎰⎰⎰.8*证明上半空间Laplace 方程Dirichlet 问题的Green 函数0(,)G P P 满足020010(,), (,),0, .4P PG P P x y R z P P r π<<∈>≠ 对平面上圆域Laplace 方程Dirichlet 问题的Green 函数0(,)G P P ,给出类似结果.9. 利用对称法求二维Laplace 方程Dirichlet 问题在上半平面的Green 函数, 并由此求解下面定解问题0, (,),0(,0)(), (,).u x y u x x x ϕ-∆=∈-∞∞>⎧⎨=∈-∞∞⎩ 10. 求二维Laplace 方程在下列区域上 Dirichlet 问题的Green 函数.(1) {(,)|}x y x y Ω=>. (2) {(,)|0,0}x y x y Ω=>>.11. 设222{(,)|,0}x y x y R y Ω=+<>. 考虑半圆域Dirichlet 问题0,(,)(,)(,), (,).u x y u x y x y x y ϕ-∆=∈Ω⎧⎨=∈∂Ω⎩ 应用对称法求区域Ω上的Green 函数.12*求解定解问题0,(,,)(,,)(,,),(,,).u x y z u x y z g x y z x y z -∆=∈Ω⎧⎨=∈∂Ω⎩其中32222,(0,){(,,)|}xx yy zz u u u u B R x y z R x y z R ∆=++Ω==∈++<.13.[解对边值的连续依赖性]设Ω为半径等于R 的圆域,考虑如下问题(,), (,)(,)(,),(,) 1,2.k k k u f x y x y u x y g x y x y k -∆=∈Ω⎧⎨=∈∂Ω=⎩ 利用Poisson 公式证明2121(,)(,)max{(,)(,)(,)}u x y u x y g x y g x y x y -≤-∈∂Ω14*证明在广义函数的意义下,11(,0)ln 2P rπΓ=满足 ()()u x y δδ-∆=,其中xx yy r u u u =∆=+.15*设Ω为半径等于R 的圆域,考虑如下问题0, (,)(,)(,),(,) .u x y u x y g x y x y -∆=∈Ω⎧⎨=∈∂Ω⎩ 如果(,)g x y 在∂Ω连续,证明由Poisson 公式给出的解是该问题的古典解(真解).16*设(,)u x y 为平面上区域Ω上的调和函数,000(,)P x y ∈Ω且0(,)B P R ⊂Ω.证明调和函数的平均值公式00002(,)(,)11(,)(,)(,)2B P R B P R u x y u x y ds u x y dxdy R R ππ∂==⎰⎰⎰ 17*[极值原理]设2R Ω⊂有界区域,边界充分光滑,2()()u C C ∈Ω⋂Ω为Ω内的调和函数,并且在某点000(,)P x y ∈Ω达到u 在闭域Ω上的最大(小)值,利用平均值公式证明u 为常数.18*[极值原理]设2R Ω⊂有界区域,边界∂Ω充分光滑, 2()()u C C ∈Ω⋂Ω. 如果u 在区域Ω内调和且不等于常数,则u 在闭域Ω上的最大值和最小值只能在区域的边界∂Ω上达到.19*利用第12题的结果,建立在3R Ω⊂内调和函数的平均值公式,并证明和第16题类似的结果.20*设2R Ω⊂有界区域,2()(), (),1,2,k k u C C g C k ∈Ω⋂Ω∈∂Ω=满足(,), (,)(,)(,),(,) k kk u f x y x y u x y g x y x y -∆=∈Ω⎧⎨=∈∂Ω⎩ 证明 2121(,)(,)max{(,)(,)(,)}u x y u x y g x y g x y x y -≤-∈∂Ω.21.设D 和Ω为平面上的两个区域,()(,)(,)f z x y i x y ϕψ=+在区域D 内解析且不等于常数,()f D =Ω,即f 将区域D 保形映射到区域Ω.证明 如果(,)u x y 在区域Ω内调和,则((,),(,))u x y x y ϕψ在区域D 内调和.22.(1)找一个在上半平面解析的函数()f z ,在边界{(,),0}x y x R y ∈=上满足00(),, (),,f x A x x f x B x x =>=<其中A 和B 为实常数.(2)求下面定解问题的一个解0, 0,0(,0)0,0, (0,)10,0.xx yy u u x y u x x u y y +=>>⎧⎨=>=>⎩ 23*求下面定解问题的一个解22220, 1(,)0,0, (,)1,0, 1.xx yy u u x y u x y y u x y y x y ⎧+=+<⎪⎨=<=>+=⎪⎩ 24. 求下面定解问题的一个解0, 0<(,0)0, (,)1, 0.xx yy u u y xu x u x x x +=<⎧⎨==>⎩ 25. 求下面定解问题的一个解0, , 0<(,)0, (,0)0, 0, (,0)1, 0.xx yy u u x R y u x x Ru x x u x x ππ+=∈<⎧⎪=∈⎨⎪=<=>⎩26. 设(0,)B R Ω=,1(0,)2RB Ω=,(,)u x y 在Ω内调和且在Ω上连续,在边界上非负,证明以下结果(1)(,),x y ∀∈Ω有(0,0)(,)(0,0),R r R ru u x y u R r R r-+≤≤+-其中r =.(2)存在常数0M > 使得 11max (,)min (,).u x y M u x y ΩΩ≤。

第五章 有限元法-1-泛函与变分

第五章 有限元法-1-泛函与变分

设待求变分问题(5-4)的解答(极值函数)为 y=y(x) (5-7)
因y是x的函数,但讨论的是y的变化

设想函数y从极值解(5-7)稍稍变动到y+dy,并把变分dy改记为:eh(x),

e是一个任意给定的微量实参数(实变量);
h(x)是定义于区间[x1,x2],且满足齐次边界条件的任意选定的可微函数,即有: h(x1)=h(x2)=0。

15

与多元函数的极值问题相对应,在几何、力学上的求解泛 函极值的问题。 最速降线问题。


研究当质点从定点A自由下滑到定点B时,为使滑行时间最短,试 求质点应沿着怎样形状的光滑轨道y=y(x)下滑。 取A点为坐标原点,y轴竖直向下(图5-1)。


则沿曲线y=y(x)滑行线段ds所需的时间为
16
18

在最速下降问题,在端点x1和x2给定的无数个函数之中, y ( x) 仅有一个函数 能使式( 5-2a)中的定积分达到极小 y ( x) 值函数,这一函数 被称为极值函数。 所谓变分问题就在于寻求使泛函达到极值的该极值函数, 即分析研究泛函的极值问题。 物理学各分支都存在有相应的变分问题(变分原理),例 如
因此

式中
26

故可得

简写为

将上式与式(5-6)相比较,只相差一个数值因子e。
27

故(5-8)等价于变分方程

也即
(线性主部)

利用分部积分,根据变分与微分顺序可以互换的原理,即 dy’=(dy)’,得
28

在变分问题中,变分dy在端点保持为零

于是,必要条件(5-12)成为

第五章边界层理论解读

第五章边界层理论解读

第三节
以二维绕平面 流动为例来导出边 界层积分方程,如 固5-2所示。 首先对控制体 (单元体)做动量平 衡计算(在计算过程 中取垂直于纸面 z 方 向为单位长度):
边界层内积分方程
1)流体从AB面单位时间流入的动量记为 Mx 。由 图5-2知,从 AB 面单位时间流入的质量为
(5-10) 2)流体从 CD 面单位时间流出的动量记为 Mx+∆x: 从 CD 面单位时间流出的质量为
(3)湍流区:随着进流尺寸的进一步增加,使得Rex > 3×106,这时边界层内流动形态已进入湍流状态,边界 层的厚度随进流长度的增加而迅速增加。
应当注意,无论是对过渡区还是湍流区,边界层 最靠近壁面的一层始终做层流流动,这一层称为层流 底层,这主要是因为在最靠近壁面处壁面的作用使该 层流体所受的粘性力永远大于惯性力所致。这里要特 别说明的是,边界层与层流底层是两个不同的概念。 层流底层是根据有无脉动现象来划分,而边界层则是 根据有无速度梯度来划分的。因此,边界层内的流动 既可以为层流,也可以为湍流。
(5-14)
由动量守恒可得结
本章重点叙述了边界层的概念、特点,建立了边界 层的微分方程、积分方程,并介绍了求解方法。对平板 绕流摩擦阻力的计算也进行了简要介绍。实际上,边界 层理论是在数值模拟技术没有发展起来之前,人们为了 运用流体流动的控制方程去解决工程实际问题的一部分 重要工作。尽管现在数值模拟技术已经能够处理某些真 三维实际流体的运动规律,但是通过边界层理论的学习, 仍然可以领略前人在处理实际流体流动问题上的输妙简 化与抽象思考,这是科学方法最突出的特征,这是精确 的数值模拟所不能替代的。
(1)层流区:流体统流进入平板后,当进流长度不是 很长,x<xc(xc为对应Rex=2×105的进流深度),这时 Rex < 2×105,边界层内部为层流流动,这一个区域称 为层流区。

泰勒公式在二阶两点边值问题求解方法上的应用

泰勒公式在二阶两点边值问题求解方法上的应用

本科毕业设计常熟理工学院本科毕业设计(论文)诚信承诺书本人郑重声明:所呈交的本科毕业设计(论文),是本人在导师的指导下,独立进行研究工作所取得的成果。

除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。

对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。

本人完全意识到本声明的法律结果由本人承担。

本人签名:日期:常熟理工学院本科毕业设计(论文)使用授权说明本人完全了解常熟理工学院有关收集、保留和使用毕业设计(论文)的规定,即:本科生在校期间进行毕业设计(论文)工作的知识产权单位属常熟理工学院。

学校有权保留并向国家有关部门或机构送交论文的复印件和电子版,允许毕业设计(论文)被查阅和借阅;学校可以将毕业设计(论文)的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存、汇编毕业设计(论文),并且本人电子文档和纸质论文的内容相一致。

保密的毕业设计(论文)在解密后遵守此规定。

本人签名:日期:导师签名:日期:泰勒公式在二阶两点边值问题求解方法上的应用摘要本文主要讨论利用泰勒展开公式求解二阶线性常微分方程问题. 首先介绍泰勒公式的相关知识;其次,基于泰勒展开公式,提出一种求解线性二阶线性常微分方程问题初值问题的新方法;然后,通过结合提出的求解线性二阶线性常微分方程问题初值问题的方法和打靶方法, 提出一种求解线性二阶线性常微分方程问题边值问题的数值方法;最后通过数值算例来验证所提数值方法的有效性.关键词:泰勒展开式二阶线性常微分方程两点边值问题近似解Taylor formula in the second order two-point boundary value problemsolving the application of the methodAbstractThis thesis mainly discusses numerical methods for solving second order linear ordinary differential equations by using Taylor's expansion formula. Firstly, some theory of Taylor's expansion formula is introduced. Secondly, a numerical method for solving second order linear initial value problems is proposed. Thirdly, a numerical method for solving second order linear two-point boundary value problems is developed by combining the method for initial value problems and shooting method. Finally, numerical examples are provided to show the validity of the present methods.Key Words: Taylor's expansion; Second order linear ordinary differential equations; Two–point boundary value problems; Approximate solution目录1. 引言 (1)1.1微分方程边值问题的介绍 (1)1.2 二阶两点边值问题的介绍 (2)2. 泰勒公式简介 (4)2.1泰勒公式简介 (4)2.2泰勒公式的应用 (5)3.二阶线性初值问题 (7)3.1求解方法 (7)3.2数值算例 (8)4.二阶线性两点边值问题的求解方法 (10)4.1求解方法 (10)4.2数值算例 (11)结语 (13)参考文献 (14)致谢 (15)1 引言1.1微分方程边值问题的介绍微分方程是现代数学中的一个很重要的分支,从早期的微积分时代起,这个学科就成为了理论研究和实践应用的一个重要领域。

第五章-边值问题

第五章-边值问题

4u0
n1,3,5
1 n
e
n b
x
sin
n
b
y
例 5.5: 将问题分解为两个场的叠加,简化问题的求解。
U0
U0
0
上下板、隔板处的边值保持不变。
0
U0
U0 d
y
U0 y
0
d
0
0
U0
U0 d
y
U0 y
d
0
U0
1
U0 d
y
0
Y ( y) sin(n y)
d
X (x) ek x
n x
贝塞尔函数
贝塞尔函数是数学上的一类特殊函数的总称。通常单说的贝 塞尔函数指第一类贝塞尔函数。一般贝塞尔函数是下列常微
分方程(一般称为贝塞尔方程)的标准解函数y(x):
x2
d2y dx2
x
dy dx
(x2
2)y
0
J 第一类贝塞尔函数
N Y 第二类贝塞尔函数,又写为
I
K 参考资料
虚宗量贝塞尔函数
/wiki/%E8%B4%9D%E5%A1%9E%E5%B0%94%E5%87%
分离变量法的应用
例5.3
1、确定解的形式:由于电位对于y方向来说出现重复零点, 因此用三角函数的形式更方便计算
y 0
Y Asinky Bcosky
b U0 a
0 x

X Cekx Dekx
(x, y) (Cekx Dekx)(Asin ky Bcosky)
代入边界条件
2
(
x,
xx yy 0 0) (x,b) 0
e d
n
n
An sin( d

由两点边值问题谈数值计算方法

由两点边值问题谈数值计算方法
中有 限差分 方 法和有 限元 方法是 最基本 的数值 计算
方法 , 文从 有 限差分 方 法和有 限元方 法讨论 入手 , 本
求u EV, U=auv =fv , v 强解 U一 即 ( ,) ()V EV,
定 是 后面 的弱解。
于是 U auv = uv x 『l【 v = (,) 砧 d =6r , EV f )V d
术创 新 大 门的钥匙 。这就 使得 社会 对其成 员数 学能
弱形式方程{() OU() 0 uO = , O =
t( ) , O =0 v O =0 v( )
力 的要 求不 断提 高 , 期望 涌现 出更 多数学基 础扎 实、
两边对方程进行积分 一o"d= fxV S . vx  ̄v ,v l u d uv x u 3= f x d一[, o  ̄v v ̄ a 于是变为求 u , = (,) 砧 = fx EV U auv = uvd  ̄v x d
Vv V ∈
创新能力较强、 知识 面宽广、 综合 素质佳 的数学人 才。随着计算机技术 的飞速发展, 由于在 生命科 也
学 、 学 、 理 、 学 、 制、 化 物 力 控 经济 等领 域 有 不少 现 象
(( ,) 于 uv双 线 性且 对称 , auv关 , v={EL , v 2o r

40 ・
维普资讯
由 两 点边 值 问题 谈 数 值 计 算 方 法
若w #O则 一定 j一个 区间, x,1 c[ ,] 使 W [oX] 0 1 ,
( ) 0或 w x <0 X> ()
假 设 I N 1 > INI 一 U I U

两 边 问 i0 点 界 题-u u" (

求解常微分二阶方程两点边值

求解常微分二阶方程两点边值

浅谈求解常微分二阶方程的两点边值摘要:本文运用简化解法,不直接求解常微分二阶求导方程的两点边值,而是通过将其转为泛函极值问题,然后构造一个近似函数,其能无限逼近可行函数,通过2点3次埃尔米特插值求解,最后求得常微分二阶求导方程的两点边值问题的近似值。

关键词:常微分二阶求导方程;两点边值问题;泛函极值原理常微分二阶求导方程的两点边值问题有很多解法,比如将常微分二阶求导方程的两点边值的问题转化为非线性算子方程tx=0的求解问题,同时利用newton迭代法给出其近似值等方法,本解法是利用泛函极值原理,将两点边值问题转化为泛函极值问题,利用2点3次埃尔米特插值构造一个近似函数,将两点边值问题转化为一个多元单目标的简化问题,然后再运用微粒群算法来求得常微分二阶求导方程的两点边值问题的近似值。

对于一般的常微分二阶求导方程,等式两边同时乘以待定因子,可以发现,常微分二阶求导方程表现为其自共轭微分方程的形式(r (x)y″)′+s(x)y=f(x),y(a)=ya,y(b)=yb。

根据泛函极值原理,得到:minba(r(x)y′2-s(x)y2+2yf(x))dx,y(a)=ya,y(b)=yb,则对常微分二阶求导方程两边值问题的求解,简化为对泛函极值问题的求解。

观察满足泛函极值问题的边值条件的函数y(x),发现:1.函数的形参个数与该调用的实参个数相同。

2.每个实参的类型与对应形参的类型匹配。

可见,函数y(z)为可行函数。

而可行函数y(z)构成的集合也为可行函数。

所以满足该条件的极小值函数一定为可行函数。

观察上述式子,可知泛函极值问题为:mins(y)=baf(x,y,y′)dx,y(a)=ya,y(b)=yb。

采用2点3次埃尔米特插值来构造可行函数类中的近似可行函数v(x),可以较好解决这类泛函极值问题。

在两个端点所确定的区间内,用2点3次埃尔米特插值,可以使函数值逐渐接近原函数,一阶微分也如此.要想无限接近原函数,就得把区间无限细分为多段,在其中的每一段各个分点,采用2点3次埃尔米特插值多项式来接近可行函数y(x),假设其在各个分点的函数为y(i)(i=0,1,2,…,m-1),在各个分点的一阶导数为y′(i)(i=0,1,2,…,m-1)。

二阶常微分方程边值问题的数值解法

二阶常微分方程边值问题的数值解法

摘要本文主要研究二阶常微分方程边值问题的数值解法。

对线性边值问题,我们总结了两类常用的数值方法,即打靶法和有限差分方法,对每种方法都列出了详细的计算步骤和Matlab程序代码,通过具体的算例对这两类方法的优缺点进行了细致的比较。

关键字:常微分方程边值问题;打靶法;差分法;ABSTRACTThis article mainly discusses the numerical methods for solving Second-Order boundary value problems for Ordinary Differential Equations. On the one hand, we review two types of commonly used numerical methods for linear boundary value problems, i.e. shooting method and finite difference method. For each method, we give both the exact calculating steps , we compare the advantages and disadvantages in detail of these two methods through a specific numerical example.Key words:Boundary-Value Problems for Ordinary Differential Equations;Shooting Method;Finite Difference Method;目录第一章引言................................................................................................................... - 1 -第二章二阶线性常微分方程.................................................................................. - 2 -2.1试射法(“打靶”法) ............................................................................................ - 3 -2.1.1简单的试射法............................................................................................ - 3 -2.1.2 基于叠加原理的试射法........................................................................... - 4 -2.2 有限差分法......................................................................................................... - 10 -2.2.1 有限差分逼近的相关概念...................................................................... - 11 -2.2.2 有限差分方程的建立............................................................................. - 13 -2.2.3 其他边值条件的有限差分方程............................................................. - 14 -2.2.4 有限差分方程的解法............................................................................. - 16 -第三章二阶非线性微分方程........................................................ 错误!未定义书签。

(整理)弹性力学第五章第五章弹性力学的求解方法和一般性原理

(整理)弹性力学第五章第五章弹性力学的求解方法和一般性原理

第五章弹性力学的求解方法和一般性原理知识点弹性力学基本方程边界条件位移表示的平衡微分方程应力解法体力为常量时的变形协调方程物理量的性质逆解法和半逆解法解的迭加原理,弹性力学基本求解方法位移解法位移边界条件变形协调方程混合解法应变能定理解的唯一性原理圣维南原理一、内容介绍通过弹性力学课程学习,我们已经推导和确定了弹性力学的基本方程和常用公式。

本章的任务是对弹性力学所涉及的基本方程作一总结,并且讨论具体地求解弹性力学问题的方法。

弹性力学问题的未知量有位移、应力和应变分量,共计15个,基本方程有平衡微分方程、几何方程和本构方程,也是15个。

面对这样一个庞大的方程组,直接求解显然是困难的,必须讨论问题的求解方法。

根据这一要求,本章的主要任务有三个:一是综合弹性力学的基本方程,并按边界条件的性质将问题分类;二是根据问题性质,确定基本未知量,建立通过基本未知量描述的基本方程,得到基本解法。

弹性力学问题的基本解法主要是位移解法、应力解法和混合解法等。

应该注意的是对于应力解法,基本方程包括变形协调方程。

三是介绍涉及弹性力学求解方法的一些基本原理。

主要包括解的唯一性原理、叠加原理和圣维南原理等,这些原理将为今后的弹性力学问题解建立基础。

如果你在学习本章内容时有困难,请及时查阅和复习前三章相关内容,以保证今后课程的学习。

二、重点1、弹性力学的基本方程与边界条件分类;2、位移解法与位移表示的平衡微分方程;3、应力解法与应力表示的变形协调方程;4、混合解法;5、逆解法和半逆解法;6、解的唯一性原理、叠加原理和圣维南原理§5.1 弹性力学的基本方程及其边值问题学习思路:通过应力状态、应变状态和本构关系的讨论,已经建立了一系列的弹性力学基本方程和边界条件。

本节的主要任务是将基本方程和边界条件作综合总结,并且对求解方法作初步介绍。

弹性力学问题具有15个基本未知量,基本方程也是15个,因此问题求解归结为在给定的边界条件下求解偏微分方程。

求解两点边值问题的一种高精度通用精细积分算法

求解两点边值问题的一种高精度通用精细积分算法
取步长 At 则 得 ( ) =t 一t, + 1 的离 散数值 解
u + 一e p HA ) + J e p[ + 一s] () s 1 x ( tU + x H(々1 ) 厂 sd t k
为书写 方便 , 记
T—e p HA ) M () e p- ( + — s- () x ( t , s一 x [ t l ) f s H ^ I
文 章 编 号 :0 6 0 7 2 1 ) 3 0 1 4 1 0 —1 3 ( 0 2 0 —0 0 —0
d i 1 . 6 / .sn 1 0 o : 0 39 9 jis . 0 6—1 3 . 01 . 8 O 1 0 7 2 2 0 . 0
求解两点边值 问题的一种高精度通 用精细积分算法
法 的有效 性 . 关 键词 : 值 问题 ;打靶 法 ;精细 积分 边 中图分 类号 : 7 . ; 4 . 01 5 8 O2 1 8 文献标 志码 : A
1 问题
常微分 方程边 值 问题是 工程技 术 和科学 应用 中常见 的理 论和 实 际问题 . 值 问题解 的存在 唯 一性 远 边 比初值 问题 复杂 , 因此 求解边 值 问题在 理论 和数值 方法 上 都 比初值 问题 复杂 的 多 , 常 采用 有 限差 分 法 、 通 打
2 * 收 稿 日期 : 01 一 3 1 2O 0
基 金 项 目 : 徽 省 高 校 优 秀 青 年 人 才 基 金 ( 0 2 QRL 0 ) 宿 州 学 院 科 研 开 放 平 台 项 目 ( 0 2 安 21S 21 , 2 1 YKF 2 , 州 学 院 教 学 研 究 项 目 3) 宿 ( Z yy m2 1 3 ) S X J x 0 1 9
第2 卷 第 3 5 期

第5章---两点边值问题求解方式

第5章---两点边值问题求解方式

i 1, 2, , N 1
y0 A, yN B
yi1 yi1 2 yi h2
2
xi
yi1 yi1 2h

2 xi2
yi

sin(ln xi2
xi
)
y0 1, yN 2
xi 1 ih, i 1, 2, , N 1
2019/11/19
2019/11/19
航空航天中的计算方法
Page 5
5.2 打靶法
5.2 打靶法 以二阶系统为例,考虑边值问题:
y(x) f (x, y(x), y(x)), x a,b
y(a) A,
变换:
y1 y
y2 y 考虑初值问题:
y(b) B
y1(x) y2 (x)
微分方程 y(x) f (x, y(x), y(x)), x a,b
y(a) A, y(b) B
离散化,将区间 xa,b 等分为N个子区间:
h ba, N
xi a ih,
i 0,1, 2,
,N
在节点上应用中心差分公式,得到代数方程组:
yi1
yi1 2 yi h2
h ba, N
xi a ih,
i 0,1, 2,
,N
将 y(x)在xi处Taylor展开:
y( x)

y( xi )
y( xi ) x

xi

1 2
y( xi ) x

xi
2

1 3!
y( xi ) x

xi
3

2019/11/19
航空航天中的计算方法

二阶线性常微分方程的两点边值问题的新解法

二阶线性常微分方程的两点边值问题的新解法

摘 要 :基 于 变 分 原 理 ,将 二 阶线 性 常 微 分 方 程 的 两 点 边值 问题 转 化 为 等 价 的变 分 问 题 ( 即泛 函 极 值 问 题 ) ,利 用 两 点 三次 Hemi 插 值 构 造一 个 逼 近可 行 函数 的 近 似 函 数 ,从 而将 问 题 转 化 为一 个 多 元 单 目标 优 化 问 题 ,最后 运 用 r t e
第3 5卷 第 4期
Vo .3 1 5
NO 4.
西 南 师 范 大 学 学 报 ( 自然科 学版 )
J u n l f o twe t hn r lUnvri Nau a S in eE io ) o r a o uh s C iaNoma ies y( trl ce c dt n S t i
单 目标 优化 问题 ,最后运 用粒 子群优 化算 法来求解 该优 化 问题 .
1 两点 边 值 问题 等 价 的 变 分 问题
考 虑二 阶线性 常微分方 程 的两点边 值 问题 :
+ p( y + q x y— f z) x) ; () (、
l a ( )一 Y , ( )一 6 。 6 对于微 分方程 + p x y + qx) ( ) ( y一 - ) 厂 ,以待 定 因子 ( 乘 等式两 边得 : ( )
二 阶线 性 常微 分方 程的 两点边值 问题转 化为 自共轭 的 常微 分 方程的 两点边值 问题 :
f P( ) ) ( 1 + Q( — F( z z) )
1 )一 Y J n (

( ) 一 Y 6 6
收 稿 日期 :2 0 0 9—0 —1 5 1
作 者 简 介 :马

ep ) ,以此 式乘 以 +p( ) q x y一 厂 . 两 端有 J(d xz xy + ( ) () z

两点边值问题的一种高精度差分方法

两点边值问题的一种高精度差分方法

两点边值问题的一种高精度差分方法
刘明会
【期刊名称】《上海理工大学学报》
【年(卷),期】2005(027)001
【摘要】从中心差分公式出发,利用二阶微分的四阶差分公式,对两点边值问题得到了一种四阶精度的差分格式.该方法仅涉及中心点及相邻网格点,具有四阶精度,并且由所提格式得到的线性方程组是三对角线型的,可以直接采用追赶法进行求解.数值算例的结果表明,该格式比以往的格式具有更高的精度,并且计算简便.
【总页数】3页(P68-70)
【作者】刘明会
【作者单位】上海理工大学,动力工程学院,上海,200093
【正文语种】中文
【中图分类】O175.8
【相关文献】
1.二维定常对流扩散方程的一种高精度紧致差分方法 [J], 魏剑英
2.两点边值问题的一种高阶隐式紧致差分方法 [J], 金涛;马廷福;葛永斌
3.求解一维扩散方程的一种高精度紧致差分方法 [J], 杨晓佳;葛永斌
4.两点边值问题的一种高精度差分方法 [J], 田振夫
5.求解对流扩散反应方程的一种高精度紧致差分方法 [J], 杨苗苗;葛永斌
因版权原因,仅展示原文概要,查看原文内容请购买。

两点边值问题的一种高精度差分方法

两点边值问题的一种高精度差分方法

两点边值问题的一种高精度差分方法
田振夫
【期刊名称】《贵州大学学报:自然科学版》
【年(卷),期】1997(014)001
【摘要】基于经典中心差分公式,诉诸差分余项反向修正,本文提出了一种求解两点边值问题的高精度差分方法。

该方法仅涉及相邻网格点,具有四阶段精度。

数值算例表明,本文格式较以往的格式具有更高的精度。

【总页数】5页(P19-23)
【作者】田振夫
【作者单位】宁夏大学应用数学研究所
【正文语种】中文
【中图分类】O241.8
【相关文献】
1.二维定常对流扩散方程的一种高精度紧致差分方法 [J], 魏剑英
2.两点边值问题的一种高阶隐式紧致差分方法 [J], 金涛;马廷福;葛永斌
3.求解一维扩散方程的一种高精度紧致差分方法 [J], 杨晓佳;葛永斌
4.两点边值问题的一种高精度差分方法 [J], 刘明会
5.求解对流扩散反应方程的一种高精度紧致差分方法 [J], 杨苗苗;葛永斌
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y( a ) A, y (b ) B
离散化,将区间 x a, b 等分为N个子区间: ba h , xi a ih, i 0,1, 2, , N N 在节点上应用中心差分公式,得到代数方程组:
yi 1 yi 1 2 y i yi 1 yi 1 f ( xi , yi , ), 2 h 2h y0 A, y N B
航空航天中的计算方法
授课教师:陈琪锋 中南大学航空航天学院
第二部分 边值问题求解方法
第5章 两点边值问题求解方法
内容提要 5.1 5.2 5.3 5.4 常微分方程边值问题的概念 打靶法 有限差分法 有限元法
[1] Part 3: Two-Point Boundary Value Problems. [2] David L. Darmofal, Computational Methods in Aerospace Engineering (Lecture Notes), MIT, 2005. Chap11,12. [3] 清华大学数学系编,现代应用数学手册•计算方法分册( 第十一章,常微分方程边值问题的数值方法),北京出版 社,1990.
线性近似:按割线求根
2016/9/25 航空航天中的计算方法 Page 9
5.2 打靶法 5.1.2 牛顿法 求解非线性方程(组): y1 (b; ) B 在已知初值α0的处Taylor展开: y1 2 y1 (b;1 ) y1 (b; 0 ) (b; 0 ) 1 0 O 1 0 B y1 B y ( b ; ) (b; 0 ) 线性近似: 1 0 1 0
2016/9/25
y2 f y1 f y2 y y , x a , b 1 2 y 2 ( a; ) 1 初值问题,可解!
航空航天中的计算方法 Page 11
5.2 打靶法 每一步迭代求解初值问题
y2 , y1 f ( x, y1 , y2 ), y2 z2 , z1 z2 f f z1 z2 , y1 y 2 y1 ( a ) A y2 ( a ) z1 ( a ) 0 z2 ( a ) 1
y( a ) A, y (b ) B
有限差分近似 将区间 x a, b 等分为N个子区间 ba h , xi a ih, i 0,1, 2, , N N
将 y( x )在xi处Taylor展开: 1 1 2 3 y ( x ) y ( xi ) y ( xi ) x xi y ( x i ) x x i y ( x i ) x x i 2 3!
2 2 sin(ln x) y 2 y , 1 x 2 2 x x x y(1) 1, y(2) 2 y
取离散化区间h=0.1,N=10。
yi 1 yi 1 2 y i yi 1 yi 1 f ( xi , yi , ), i 1, 2, , N 1 2 h 2h y0 A, y N B yi 1 yi 1 2 yi sin(ln xi ) 2 yi 1 yi 1 2 2 yi 2 h xi 2h xi xi2
y0 1,
2016/9/25
yN 2
xi 1 ih,
i 1, 2, , N 1
航空航天中的计算方法 Page 20
5.3 有限差分法
2 2 sin(ln x ) h h h h 线性方程组: 1 i y 2 1 y 1 y i 1 i 1 2 i 2 x x x x i i i i y0 1, y N 2
m 1
结束条件:
2016/9/25
B y1 (b; m 1 ) m 1 m m 1 y1 (b; m ) y1 (b; m 1 )
1 y1 (b;m1 ) B
航空航天中的计算方法 Page 8
5.2 打靶法 割线法的几何解释:
2016/9/25 航空航天中的计算方法
i 1, 2,, N 1
Page 18
5.3 有限差分法 有限差分法解微分方程两点边值问题的几何解释
离散点:微分用有限差分近似
2016/9/25 航空航天中的计算方法 Page 19
5.3 有限差分法 例5.1:用有限差分法求解两点边值问题
y( a ) A, y (b ) B
变换:
( x ) f ( x, y1 , y2 ), x a, b y2 y2 y y1 ( a ) A, y1 (b ) B 考虑初值问题: y2 , y2 f ( x, y1 , y2 ), x a, b y1
2016/9/25 航空航天中的计算方法 Page 4
5.1 常微分方程边值问题的概念 5.1 常微分方程边值问题的概念 对于常微分方程: y( x) f ( x, y( x)) 其中 y dy dx ,x为标量, y和 f 为m维向量。在 x a, b 上求解之需要m个定解条件,若定解条件的形式为: g( y( a), y(b)) 0 其中 g为m维向量。则该问题称为两点边值问题(TPBVP, Two Point Boundary Value Problem)。
1 2 1 3 y( xi 1 ) y( xi ) y( xi )h h y( xi ) h y ( xi ) 2 6
忽略二阶以上部分,得一阶导数的后向差分近似: y ( xi ) y ( x i 1 ) 一阶精度 y ( xi ) h
2016/9/25 航空航天中的计算方法 Page 15
迭代求解公式: m 1 m B y1 (b; m )
结束条件:
2016/9/25
y1 (b; m )
y1 (b; ) ?
Page 10
1 y1 (b;m1 ) B
航空航天中的计算方法
5.2 打靶法 差分法求偏导数
y1 (b;1 ) y1 (b; 0 ) y1 (b; 0 ) 1 0
5.2 打靶法 作业题5:
用牛顿打靶法求解两点边值问题
2 2 sin(ln x) y 2 y , 1 x 2 2 x x x y(1) 1, y(2) 2 y
迭代初始条件取 y(1) 0 。
2016/9/25
航空航天中的计算方法
Page 13
5.3 有限差分法 用差分近似代替微分,将微 5.3 有限差分法 分方程化为代数方程求解 以二阶系统为例,边值问题: y( x ) f ( x, y( x), y( x)), x a, b
二阶精度
四阶导数的中心差分近似: y ( xi 2 ) 4 y ( xi 1 ) 6 y ( x i ) 4 y ( x i 1 ) y ( x i 2 ) (4) y ( xi ) 二阶精度 4 h
2016/9/25 航空航天中的计算方法 Page 17
5.3 有限差分法 有限差分法解微分方程两点边值问题 微分方程 y( x ) f ( x, y( x), y( x)), x a, b
y( xi ) y ( xi 1 ) y ( xi 1 ) 2 y ( x i ) h2
二阶精度
三阶导数的中心差分近似?
2016/9/25
航空航天中的计算方法
Page 16
5.3 有限差分法 xi+1和xi-1在xi处的Taylor展开相减,忽略五阶以上部分: 1 y( xi 1 ) y( xi 1 ) 2 y( xi )h h3 y( xi ) O( h5 ) 3 xi+2和xi-2在xi处的Taylor展开相减,忽略五阶以上部分: 8 y( xi 2 ) y( xi 2 ) 4hy( xi ) h3 y( xi ) O( h5 ) 3 三阶导数的中心差分近似: y ( xi 2 ) 2 y ( xi 1 ) 2 y ( x i 1 ) y ( x i 2 ) y ( xi ) h3
(与割线法等价) 割线代替切线
或采用其它数值微分方法。 f 可微时解偏导数微分方程 y2 , y2 f ( x, y1 , y2 ), x a, b y1
y1 (a) A, y2 (a)
y1 ( x; ), y2 ( x; )
微分方程对α求偏导: y1 y2 , y1 ( a; ) 0,
2016/9/25 航空航天中的计算方法 Page 14
5.3 有限差分法 若取x=xi+1=x+ih:
1 1 y( xi 1 ) y( xi ) y( xi )h h2 y( xi ) h3 y ( xi ) 2 6
忽略二阶以上部分,得一阶导数的前向差分近似: y ( xi 1 ) y ( xi ) y ( x i ) 一阶精度 h 若取x=xi-1=x-ih:
5.3 有限差分法 xi+1和xi-1在xi处的Taylor展开相减,忽略三阶以上部分,得 一阶导数的中心差分近似: y ( xi 1 ) y ( xi 1 ) y ( x i ) 二阶精度 2h xi+1和xi-1在xi处的Taylor展开相加,忽略四阶以上部分,得
二阶导数中心差分近似:
x a, b
y1 y2 z , z 2 其中: 1
解得: y1 ( x; ), y2 ( x; ), z1 ( x; ), z2 ( x; ) 得到的终端值和对α的偏导数: y1 y1 (b; ), (b; )
2016/9/25 航空航天中的计算方法 Page 12
如果边值条件形式可写为: gL ( y(a)) 0, gR ( y(a)) 0
相关文档
最新文档