平抛运动专题(一)答案与分析

合集下载

专题一 10 平抛运动(知识点完整归纳)

专题一 10 平抛运动(知识点完整归纳)

10 平抛运动1.基本方法:运动的合成与分解水平方向上:匀速直线运动;竖直方向上:自由落体运动. 2.基本规律(1)位移关系:⎩⎪⎨⎪⎧x =v 0t y =12gt 2 合位移的大小s =x 2+y 2位移方向偏转角tan θ=y x =gt2v 0.(2)速度关系:⎩⎪⎨⎪⎧v x =v 0v y =gt 合速度的大小v =v x 2+v y 2速度方向偏转角tan α=v y v x =gtv 0=2tan θ.3.三个重要推论(1)若速度方向与水平方向的夹角为α和位移方向与水平方向的夹角为θ,则 tan α=2tan θ. (2)平抛运动到任一位置A ,过A 点作其速度方向的反向延长线交Ox 轴于C 点,有OC =x A2(如图1所示).图1(3)任何一段时间内,速度变化量为Δv =g Δt ,方向恒为竖直向下;连续相等的时间间隔Δt 内,竖直方向的位移差不变为Δy =g (Δt )2,在平抛运动轨迹上找几个点,使x 1=x 2=…,利用y 2-y 1=g (Δt )2可求重力加速度.1.和斜面相关的平抛运动解题技巧 (1)在斜面上平抛又落到斜面上(如图2):图2①合位移与水平位移的夹角等于斜面倾角,常用位移关系tan θ=y x =12gt 2v 0t =gt2v 0.②不同落点的速度方向与斜面的夹角相等.③离斜面最远时速度方向与斜面平行(如图3中P 点),若求离斜面最远距离,常沿斜面、垂直斜面将速度和加速度分解.图3(2)平抛运动的物体垂直打在斜面上(如图4):图4合速度与竖直速度的夹角等于斜面倾角θ,常用速度关系tan θ=v x v y =v 0gt .(3)从斜面外恰好与斜面平行的方向落到斜面(如图5):图5合速度与水平速度的夹角等于斜面倾角,常用速度关系tan θ=v y v x =gtv 0.2.类比法处理类平抛运动(1)沿斜面类平抛(如图6):重力沿斜面的分力产生的加速度g sin θ类比重力加速度g .图6(2)电场中类平抛:电场力产生的加速度a =qEm类比重力加速度g .(3)某星球表面平抛:星球表面的重力加速度g ′类比地球表面重力加速度g .示例1 (平抛运动的规律)(2020·全国卷Ⅱ·16)如图7,在摩托车越野赛途中的水平路段前方有一个坑,该坑沿摩托车前进方向的水平宽度为3h ,其左边缘a 点比右边缘b 点高0.5h .若摩托车经过a 点时的动能为E 1,它会落到坑内c 点.c 与a 的水平距离和高度差均为h ;若经过a 点时的动能为E 2,该摩托车恰能越过坑到达b 点.E 2E 1等于( )图7A .20B .18C .9.0D .3.0 答案 B解析 摩托车从a 点做平抛运动到c 点,水平方向:h =v 1t 1,竖直方向:h =12gt 12,可解得v 1=gh 2,动能E 1=12m v 12=mgh 4;摩托车从a 点做平抛运动到b 点,水平方向:3h =v 2t 2,竖直方向:0.5h =12gt 22,解得v 2=3gh ,动能E 2=12m v 22=92mgh ,故E 2E 1=18,B 正确.示例2 (和斜面有关的平抛运动)(2018·全国卷Ⅲ·17)在一斜面顶端,将甲、乙两个小球分别以v 和v2的速度沿同一方向水平抛出,两球都落在该斜面上.甲球落至斜面时的速率是乙球落至斜面时速率的( )A .2倍B .4倍C .6倍D .8倍 答案 A解析 如图所示,可知:x =v t ,x ·tan θ=12gt 2,则v y =gt =2tan θ·v ,则落至斜面的速率v 落=v 2+v y 2=v1+4tan 2θ,即v 落∝v ,甲、乙两球抛出速度为v 和v2,则可得落至斜面时速率之比为2∶1,故A 正确.示例3 (与斜面有关的平抛运动)(2016·上海卷·23改编)如图8,圆弧形凹槽固定在水平地面上,其中ABC 是位于竖直平面内以O 为圆心的一段圆弧,OA 与竖直方向的夹角为α.一小球以速度v 0从桌面边缘P 水平抛出,恰好从A 点沿圆弧的切线方向进入凹槽.小球从P 到A 的运动时间为______________;直线P A 与竖直方向的夹角正切值tan β=______________.(重力加速度为g )图8答案v 0tan αg 2tan α解析 据题意,小球从P 点抛出后做平抛运动,小球运动到A 点时将速度分解,有tan α=v yv x =gt v 0, 则小球运动到A 点的时间为:t =v 0tan αg ;从P 点到A 点的位移关系有: tan β=v 0t 12gt 2=2v 0gt =2tan α.示例4 (平抛运动的临界问题)(2015·全国卷Ⅰ·18)一带有乒乓球发射机的乒乓球台如图9所示.水平台面的长和宽分别为L 1和L 2,中间球网高度为h .发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h .不计空气的作用,重力加速度大小为g .若乒乓球的发射速率v 在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v 的最大取值范围是( )图9A.L 12g6h <v <L 1g6hB.L 14gh <v <(4L 12+L 22)g6hC.L 12g 6h <v <12(4L 12+L 22)g6hD.L 14g h <v <12(4L 12+L 22)g6h答案 D解析 发射机无论向哪个方向水平发射,乒乓球都做平抛运动.当速度v 最小时,球沿中线恰好过网,有: 3h -h =gt 122①L 12=v 1t 1② 联立①②得v 1=L 14g h当速度最大时,球斜向右侧台面两个角发射,有 (L 22)2+L 12=v 2t 2③ 3h =12gt 22④联立③④得v 2=12(4L 12+L 22)g6h所以使乒乓球落到球网右侧台面上,v 的最大取值范围为L 14g h <v <12(4L 12+L 22)g6h,选项D 正确.。

高二物理平抛运动试题答案及解析

高二物理平抛运动试题答案及解析

高二物理平抛运动试题答案及解析1.一水平抛出的小球落到一倾角为θ的斜面上时,其速度方向与斜面垂直,运动轨迹如图中虚线所示.则此时小球水平速度与竖直速度之比、小球水平方向通过的距离与在竖直方向下落的距离之比分别为()A.水平速度与竖直速度之比为tanθB.水平速度与竖直速度之比为C.水平位移与竖直位移之比为2tanθD.水平位移与竖直位移之比为【答案】AC【解析】小球撞在斜面上,速度方向与斜面垂直,则速度方向与竖直方向的夹角为θ,则水平速度与竖直速度之比为,故A正确,B错误.水平位移与竖直位移之比,故C正确,D错误。

【考点】考查了平抛运动2.某人向放在水平地面的正前方小桶中水平抛球,结果球划着一条弧线飞到小桶的前方(如图所示)。

不计空气阻力,为了能把小球抛进小桶中,则下次再水平抛时,他可能作出的调整为()A.增大初速度,抛出点高度变大B.增大初速度,抛出点高度不变C.初速度大小不变,降低抛出点高度D.初速度大小不变,提高抛出点高度【答案】 C,抛出点离桶的高度为h,水平位移为,则平抛【解析】试题分析: 设小球平抛运动的初速度为v运动的时间,水平位移,由上式分析可知,提高抛出点高度h,增大初速度v0.将会增大,不可以把小球抛进小桶中,故A、B错误;速度不变,减小h,水平位移将减小,可以把小球抛进小桶中,故C正确;初速度大小不变,提高抛出点高度,水平位移将增大,不可以把小球抛进小桶中,故D错误。

【考点】平抛运动时,小球3.如图所示,水平面上固定有一个斜面,从斜面顶端向右平抛一只小球,当初速度为v。

现用不同的初速度v从该斜面顶端向右平抛这只小球,恰好落到斜面底端,小球的飞行时间为t以下哪个图象能正确表示小球的飞行时间t随v变化的函数关系【答案】C【解析】据题意,设斜面倾角为,小球做平抛运动,运动过程中水平位移为:,竖直位移为:,由于斜面倾角不变,则有:,整理得:,当增加速度,时间与平抛速度成正比;小球落地后,由于高度不变,则小球的平抛运动时间不变;故选项C正确。

平抛运动经典题型(含答案)

平抛运动经典题型(含答案)
A.运动员先后落在雪坡上的速度方向不相同
B.运动员先后在空中飞行的时间之比为
C.运动员先后落到雪坡上的速度之比为
D.运动员先后下落的高度之比为
【答案】C
【解析】A.设运动员的速度和水平方向的夹角为 ,则 ,而位移和水平方向的夹角 ,因此可得 ;运动员先后落在雪坡上时位移的偏向角相同,根据平抛运动速度的偏向角的正切等于位移的偏向角的正切的2倍可知,速度的偏向角相同,即运动员落到雪坡上的速度方向相同,选项A错误;
A.20B.18C.9.0D.3.0
【答案】B
【解析】有题意可知当在a点动能为E1时,有
根据平抛运动规律有
当在a点时动能为E2时,有
根据平抛运动规律有
联立以上各式可解得
故选B。
【练习1】如图所示,以水平初速度v0抛出的物体,飞行一段时间后,垂直地撞在倾角为θ的斜面上,则AB之间的水平位移与竖直位移之比为()
A. B.
C. D.
【答案】BC
【解析】AB.做平抛运动的物体两次都落在斜面上,因此
整理得 ①
B正确,A错误;
CD.由于 ②

由①②③联立得
C正确,D错误。
故选BC。
平抛结论应用
【方法】
①速度反向延长线过水平位移中点
②tanα=2tanβ
【典例】(2020全国II卷)如图,在摩托车越野赛途中的水平路段前方有一个坑,该坑沿摩托车前进方向的水平宽度为3h,其左边缘a点比右边缘b点高0.5h。若摩托车经过a点时的动能为E1,它会落到坑内c点。c与a的水平距离和高度差均为h;若经过a点时的动能为E2,该摩托车恰能越过坑到达b点。 等于()
平抛运动
【模型】平抛运动是指物体以一定的初速度水平方向抛出,如果物体仅受重力作用,这样的运动叫做平抛运动。

平抛运动与斜抛运动典例分析讲义(含有答案解析)

平抛运动与斜抛运动典例分析讲义(含有答案解析)

第二讲平抛运动及斜抛运动专题训练知识重点:1、知道什么是平抛运动与斜抛运动2、理解平抛运动与斜抛运动是两个直线运动的合成3、掌握平抛运动与斜抛运动的规律,并能用来解决简单的问题知识难点:1、理解平抛运动与斜抛运动是匀变速运动2、理解平抛运动与斜抛运动在水平方向和竖直方向的运动互相独立3、会用平抛运动与斜抛运动的规律解答有关问题(一)平抛运动沿水平方向抛出的物体只在重力(不考虑空气阻力)作用下的运动叫做平抛运动1、平抛运动的分解:(1)水平方向是匀速直线运动,水平位移随时间变化的规律是:x=vt ①(2)竖直方向是自由落体运动,竖直方向的位移随时间变化的规律是:y=gt2 ②由上面①②两式就确定了平抛物体在任意时刻的位置。

2、平抛物体的运动轨迹:由方程x=vt得t=,代入方程y=gt2,得到:y=x2这就是平抛物体的轨迹方程。

可见,平抛物体的运动轨迹是一条抛物线。

3、平抛运动的速度:如果用v x和v y分别表示物体在时刻t的水平分速度和竖直分速度,在这两个方向上分别应用运动学的规律,可知v x=vv y=gt根据v x和v y的值,按照勾股定理可以求得物体在这个时刻的速度(即合速度)大小和方向:v合=v合与水平方向夹角为θ,tanθ=如图所示:4、平抛物体的位移s=位移与水平方向的夹角α,tanα==如图所示5、运动时间:平抛运动在空中运动的时间t=由高度h决定,与初速度无关。

6、平抛运动水平位移:水平位移大小为x=v0t=v0,与水平初速度及高度h都有关系。

【典型例题】例1、在一次“飞车过黄河”的表演中,汽车在空中飞经最高点后在对岸着地.已知汽车从最高点至着地点经历的时间约0.8 s,两点间的水平距离约为30 m,忽略空气阻力,则汽车在最高点时速度约为m/s.最高点与着地点的高度差为m.(取g=10 m/s2)例2、飞机在离地面720m的高度,以70m/s的速度水平飞行,为了使从飞机上投下的炸弹落在指定的轰炸目标上,应该在离轰炸目标水平距离多远的地方投弹?(不计空气阻力g取10m/s2)可以参考媒体展示飞机轰炸目标的整个过程以及分析,帮助理解.例3、如图所示,以9.8m/s的水平初速度v0抛出的物体,飞行一段时间后,垂直地撞在倾角为θ=30°的斜面上,则物体完成这段飞行的时间为多少?【模拟试题】1、在水平匀速飞行的飞机上,相隔1s落下物体A和B,在落地前,A物体将[]A. 在B物体之前B. 在B物体之后C. 在B物体正下方D. 在B物体前下方2、做平抛运动的物体,在水平方向通过的最大距离取决于[]A. 物体的高度和受到的重力B. 物体受到的重力和初速度C. 物体的高度和初速度D. 物体受到的重力、高度和初速度3、g取10m/s2,做平抛运动的物体在任何1s内[]A. 速度大小增加10m/sB. 动量增量相同C. 动能增量相同D. 速度增量相同4、一物体从某高度以初速度v0水平抛出,落地时速度大小为v t,则它的运动时间为[]5、如图,从倾角为θ的足够长的斜面顶端A点,先后将相同的小球以大小不同的水平速度v1和v2向右抛出,落在斜面上。

高考试题平抛运动实验专题含答案

高考试题平抛运动实验专题含答案
(3)某同学建立的直角坐标系如图所示,设他在安装实验装置和其余操作时准确无误,只有一处失误,即是______________________________________。
(4)该同学在轨迹上任取一点M,测得坐标为(x,y),则初速度的测量值为______ _____,测量值比真实值要_________(填“偏大”、“偏小”或“不变”)。
21.某同学使小球沿桌面水平飞出,用数码相机拍摄小球做平抛运动的录像(每秒15帧照片),并将小球运动的照片打印出来。
(1)他大约可以得到几帧小球在空中运动的照片( )
A.5帧B.15帧
C.25帧D.无法估计
(2)若已知照片和实物的尺寸比例为1:10,从照片中测得小球相邻两个照片的水平距离约为5mm,则小球水平飞出的速度约为 m/s
3.在探究平抛运动的规律时,可以选用下列各种装置图,以下操作不合理的是 ( )
A.选用装置图1研究平抛物体竖直分运动,应该观察A、B两球是否同时落地
B.选用装置图2要获得稳定细水柱所显示的平抛轨迹,竖直管上端A一定要低于水面
C.选用装置图3要获得钢球平抛轨迹,每次不一定要从斜槽上同一位置静止释放钢球
14.如图是某个做平抛运动物体轨迹的一部分。A、B、C是轨迹上顺次的三个点,A与B、B与C的水平距离均为0.4m,A与B竖直距离为0.25m,B与C竖直距离为0.35m,则此物体的初速度为_______m/s,物体经过B点的瞬时速度大小为_________ m/s,B点距抛出点的水平距离为_______m。(g =10m/s2)
A.小球释放的初始位置越高越好
B.每次小球要从同一高度由静止释放
C.实验前要用重垂线检查坐标纸上的竖线是否竖直
D.小球的平抛运动要靠近木板但不接触

应用分析:平抛运动常见题型及应用

应用分析:平抛运动常见题型及应用

平抛运动常见题型及应用专题(一)平抛运动的基础知识1定义:水平抛出的物体只在重力作用下的运动。

2特点:(1)平抛运动是一个同时经历水平方向的匀速直线运动和竖直方向的自由落体运动的合运动。

(2)平抛运动的轨迹是一条抛物线,其一般表达式为c bx ax y ++=2。

(3)平抛运动在竖直方向上是自由落体运动,加速度g a =恒定,所以竖直方向上在相等的时间内相邻的位移的高度之比为5:3:1::321=s s s …竖直方向上在相等的时间内相邻的位移之差是一个恒量2gT s s s s I II II III =-=-。

(4)在同一时刻,平抛运动的速度(与水平方向之间的夹角为ϕ)方向和位移方向(与水平方向之间的夹角是θ)是不相同的,其关系式θϕtan 2tan =(即任意一点的速度延长线必交于此时物体位移的水平分量的中点)。

3平抛运动的规律描绘平抛运动的物理量有0v 、y v 、v 、x 、y 、s 、ϕ、t ,已知这八个物理量中的任意两个,可以求出其它六个。

(二)平抛运动的常见问题及求解思路关于平抛运动的问题,有直接运用平抛运动的特点、规律的问题,有平抛运动与圆周运动组合的问题、有平抛运动与天体运动组合的问题、有平抛运动与电场(包括一些复合场)组合的问题等。

本文主要讨论直接运用平抛运动的特点和规律来求解的问题,即有关平抛运动的常见问题。

1从同时经历两个运动的角度求平抛运动的水平速度求解一个平抛运动的水平速度的时候,我们首先想到的方法,就应该是从竖直方向上的自由落体运动中求出时间,然后,根据水平方向做匀速直线运动,求出速度。

[例1]如图1所示,某人骑摩托车在水平道路上行驶,要在速度至少为s m s m t x v /10/5.050===2从分解速度的角度进行解题对于一个做平抛运动的物体来说,如果知道了某一时刻的速度方向,则我们常常是“从分解速度”的角度来研究问题。

[例2]如图2甲所示,以9.8m/s 的初速度水平抛出的物体,飞行一段时间后,垂直地撞在倾角θ为︒30的斜面上。

平抛运动典型例题(含答案)

平抛运动典型例题(含答案)

[例1] 在倾角为的斜面上的P点, 以水平速度向斜面下方抛出一个物体, 落在斜面上的Q 点, 证明落在Q点物体速度。

解析:设物体由抛出点P运动到斜面上的Q点的位移是, 所用时间为, 则由“分解位移法”可得, 竖直方向上的位移为;水平方向上的位移为。

又根据运动学的规律可得竖直方向上,水平方向上,所以Q点的速度[例2] 如图3所示, 在坡度一定的斜面顶点以大小相同的速度同时水平向左与水平向右抛出两个小球A和B, 两侧斜坡的倾角分别为和, 小球均落在坡面上, 若不计空气阻力, 则A和B两小球的运动时间之比为多少?图3解析: 和都是物体落在斜面上后, 位移与水平方向的夹角, 则运用分解位移的方法可以得到所以有同理则[例3] 如图6所示, 在倾角为的斜面上以速度水平抛出一小球, 该斜面足够长, 则从抛出开始计时, 经过多长时间小球离开斜面的距离的达到最大, 最大距离为多少?图6解析: 将平抛运动分解为沿斜面向下和垂直斜面向上的分运动, 虽然分运动比较复杂一些, 但易将物体离斜面距离达到最大的物理本质凸显出来。

取沿斜面向下为 轴的正方向, 垂直斜面向上为 轴的正方向, 如图6所示, 在 轴上, 小球做初速度为 、加速度为 的匀变速直线运动, 所以有①②当 时, 小球在 轴上运动到最高点, 即小球离开斜面的距离达到最大。

由①式可得小球离开斜面的最大距离当 时, 小球在 轴上运动到最高点, 它所用的时间就是小球从抛出运动到离开斜面最大距离的时间。

由②式可得小球运动的时间为例4: 在平直轨道上以 的加速度匀加速行驶的火车上, 相继下落两个物体下落的高度都是2.45m. 间隔时间为1s. 两物体落地点的间隔是2.6m, 则当第一个物体下落时火车的速度是多大? (g 取 )分析: 如图所示. 第一个物体下落以 的速度作平抛运动, 水平位移 , 火车加速到下落第二个物体时, 已行驶距离 . 第二个物体以 的速度作平抛运动水平位移 . 两物体落地点的间隔是2.6m.解: 由位置关系得物体平抛运动的时间 20.7ht s g'=00021002000.710.252()(0.5)0.7s v t v s v t at v s v at t v '===+=+'=+⋅=+⨯由以上三式可得201sin 22sin 2/L gt L t gv m sαα===例5: 光滑斜面倾角为 , 长为L, 上端一小球沿斜面水平方向以速度 抛出(如图所示), 小球滑到底端时, 水平方向位移多大?解:小球运动是合运动, 小球在水平方向作匀速直线运动, 有0s v t = ①沿斜面向下是做初速度为零的匀加速直线运动, 有212L at =② 根据牛顿第二定律列方程sin mg ma θ= ③由①, ②, ③式解得例6: 某一物体以一定的初速度水平抛出, 在某 内其速度方向与水平方向成 变成 , 则此物体初速度大小是________ , 此物体在 内下落的高度是________ ( 取 )选题目的: 考查平抛物体的运动知识的灵活运用.解析:作出速度矢量图如图所示, 其中 . 分别是 及 时刻的瞬时速度.在这两个时刻, 物体在竖直方向的速度大小分别为 及 , 由矢量图可知:037gt v tg =︒ 0(1)53g t v tg +=︒由以上两式解得017.1/v m s = 97t s =物体在这1s 内下落的高度2211(1)22y g t gt ∆=+- 221919(1)()2727g g =+-17.9m =(1) 例7如图, 跳台滑雪运动员经过一段加速滑行后从O 点水平飞出, 经过3.0s 落到斜坡上的A 点. 已知O 点是斜坡的起点, 斜坡与水平面的夹角θ=37°, 运动员的质量m=50kg. 不计空气阻力. (取sin37°=0.60, cos37°=0.80;g 取10m/s2)求: (1)A 点与O 点的距离L ;(2)运动员离开O 点时的速度大小;从O 点水平飞出后, 人做平抛运动, 根据水平方向上的匀速直线运动, 竖直方向上的自由落体运动可以求得A 点与O 点的距离L ; (2)运动员离开O 点时的速度就是平抛初速度的大小, 根据水平方向上匀速直线运动可以求得;设A 点与O 点的距离为L, 运动员在竖直方向做自由落体运动, 则有: Lsin37°=0.5gt2L=gt22sin37°=75m(2)设运动员离开O点的速度为v0, 运动员在水平方向做匀速直线运动,即: Lcos37°=v0t解得: v0=20m/s答: (1)A点与O点的距离是75m;(2)运动员离开O点时的速度大小是20m/s.1: 在倾角为的斜面上的P点, 以水平速度向斜面下方抛出一个物体, 落在斜面上的Q点, 证明落在Q点物体速度。

抛体运动规律与例题分析(附答案)

抛体运动规律与例题分析(附答案)

时,y 有最大值 ym=
tan 2 v 2 sin 2 。 g g 4 (2v cos ) 2
对于炮弹的运动而言,此即弹道曲线最高点的位置坐标,也常称作射高。 (2)设斜抛运动轨迹方程中的 y=0,则有 x1=0, x2=
4v 2 sin cos 2v 2 sin 2 g g
y O v B(x′,0) x ф θ
x
θs
A(x,y)
θ
vx
y
vy
图 4-2
vt
1 2 gt gt y gt 2 tan θ= ,tanф= = = vx v x 2v vt
vy
所以,tanθ=2tanф (6)平抛物体速度反向延长线的特点:如图 6-43 所示,设平抛运动物体 的初速度为 v,从坐标原点 O 到 A 点的时间为 t,A 点的坐标为(x,y) ,B 点的 1 坐标为(x′,0) ,则由平抛运动的规律可得 x=vt,y=2 gt2,vy=gt 又 tan θ=
2 2 vt= v x vy 100 2 200 2 m/s=100 5 m vx

200 =2 100
故着地速度与水平方向的夹角为 θ=arctan2。 【例 3】一水平放置的水管,距地面高 h=1.8m,管内横截面积 S=2.0cm2,有水 从管口处以不变的速度 v=2.0m/s 源源不断地沿水平方向射出。设出口处横截面 积上各处水的速度都相同,并假设水流在空中不散开,g 取 10m/s2,不计空气阻 力,求水流稳定后在空中有多少立方米的水? 【解析】水由出口处射出到落地所用的时间为 t= 单位时间内喷出的水量为 Q=Sv 空中水的总量为 V=Qt 由以上三式联立可得 V=Sv
式中 x2 的物理意义是斜上抛运动的水平射程(如炮弹发射后在同一水平面 上的弹着点与发射位置的距离) 。由此式可以知道,要增大射程,一是要增大发 射速度,二是适当调节抛射方向,由水平射程表达式可知,在 v 一定时,当 θ= 45° (θ 常称作投射角)时,水平射程有最大值 xm= 6、斜抛物体的速度随时间变化的规律 我们已经知道, 斜抛运动可以看成是水平方向速度为 v cos θ 和竖直方向初速 度为 v sin θ 的竖直上抛运动或竖直下抛运动的合运动, 以斜上抛运动为例, 从抛 出开始计时,经过时间 t 后,物体水平方向的速度 vxt=vcosθ 竖直方向的速度 vyt=v sin θ-gt。 根据运动的合成规律可知物体在这个时刻的速度(即合速度)大小 v = v v

高考物理命题分析专题(含解析):平抛运动

高考物理命题分析专题(含解析):平抛运动

高频考点:平抛运动动态发布:2011海南物理第15题、2010全国理综1第18题、2009广东物理第17(1)题、2008全国理综卷1第14题、2011广东理综卷第17题命题规律:平抛运动是曲线运动的重要特例,是高中物理的重要模型之一,平抛运动平抛运动可分解为水平方向的匀速直线运动和竖直方向的自由落体运动。

平抛运动是高考考查的重点,高考命题常以新情境来考查,而且经常与其他知识综合出题。

单独考查的题型一般为选择题,综合其它知识考查的一般为计算题,难度中等。

命题分析考查方式一 半圆上的平抛运动【命题分析】平抛运动的特点是初速度沿水平方向且只受竖直方向的重力作用。

平抛运动分解为水平方向的匀速直线运动(s =v 0t )和竖直方向的自由落体运动(h =12gt 2 )。

平抛运动物体的速度改变量Δv =g Δt 的方向总是竖直向下,且相等时间内速度改变量总是相等的。

平抛物体的初速度v 0、瞬时速度v 和竖直分速度v ⊥(v ⊥=gt =gh 2)任意时刻都构成矢量三角形。

高考对半圆上的平抛运动的考查难度中等。

例1. (2011海南物理第15题)如图,水平地面上有一个坑,其竖直截面为半圆。

ab 为沿水平方向的直径。

若在a 点以初速度v 0沿ab 方向抛出一小球, 小球会击中坑壁上的c 点。

已知c 点与水平地面的距离为圆半径的一半,求圆的半径。

【解析】:设半圆半径为R ,由平抛运动规律可得,R+R cos30°=v 0t ,12R=12gt 2,联立解得【点评】此题考查平抛运动规律及其相关知识点。

考查方式二 正对斜面的平抛运动【命题分析】小球正对斜面的平抛运动,可根据小球落到斜面时的速度方向作出速度分解图。

高考对小球正对斜面的平抛运动的考查难度中等。

例2.(2010全国理综1第18题)一水平抛出的小球落到一倾角为θ 的斜面上时,其速度方向与斜面垂直,运动轨迹如图中虚线所示。

小球在竖直方向下落的距离与在水平方向通过的距离之比为【命题分析】飞机投弹不计空气阻力时炸弹的运动可视为平抛运动,炸弹的初速度为投弹时飞机的速度。

平抛运动的性质与基本规律(公式)(含答案)

平抛运动的性质与基本规律(公式)(含答案)

平抛运动的性质与基本规律(公式)一、基础知识 (一)平抛运动1、定义:将物体以一定的初速度沿水平方向抛出,不考虑空气阻力,物体只在重力作用下所做的运动.2、性质:加速度为重力加速度g 的匀变速曲线运动,运动轨迹是抛物线.3、基本规律:以抛出点为原点,水平方向(初速度v 0方向)为x 轴,竖直向下方向为y 轴,建立平面直角坐标系,则:(1)水平方向:做匀速直线运动,速度v x =v 0,位移x =v 0t . (2)竖直方向:做自由落体运动,速度v y =gt ,位移y =12gt 2.(3)合速度:v =v 2x +v 2y,方向与水平方向的夹角为θ,则tan θ=v y v x =gt v 0. (4)合位移:s =x 2+y 2,方向与水平方向的夹角为α,tan α=y x =gt2v 0.(二)平抛运动基本规律的理解 1、飞行时间:由t = 2hg知,时间取决于下落高度h ,与初速度v 0无关. 2、水平射程:x =v 0t =v 0 2hg,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关. 3、落地速度:v t =v 2x +v 2y =v 20+2gh ,以θ表示落地速度与x 轴正方向的夹角,有tan θ=v y v x =2gh v 0,所以落地速度也只与初速度v 0和下落高度h 有关. 4、速度改变量:因为平抛运动的加速度为恒定的重力加速度g ,所以 做平抛运动的物体在任意相等时间间隔Δt 内的速度改变量Δv =g Δt 相同,方向恒为竖直向下,如图所示. 5、两个重要推论(1)做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图中A 点和B 点所示.(2)做平抛(或类平抛)运动的物体在任意时刻任一位置处,设其末速度方向与水平方向的夹角为α,位移与水平方向的夹角为θ,则tan α=2tan θ.二、练习1、关于平抛运动,下列说法不正确的是( )A .平抛运动是一种在恒力作用下的曲线运动B .平抛运动的速度方向与恒力方向的夹角保持不变C .平抛运动的速度大小是时刻变化的D .平抛运动的速度方向与加速度方向的夹角一定越来越小 答案 B解析 平抛运动物体只受重力作用,故A 正确;平抛运动是曲线运动,速度时刻变化,由v =v 20+(gt )2知合速度v 在增大,故C 正确;对平抛物体的速度方向与加速度方向的夹角,有tan θ=v 0v y =v 0gt ,因t 一直增大,所以tan θ变小,θ变小.故D 正确,B 错误.本题应选B.2、对平抛运动,下列说法正确的是( )A .平抛运动是加速度大小、方向不变的曲线运动B .做平抛运动的物体,在任何相等的时间内位移的增量都是相等的C .平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动D .落地时间和落地时的速度只与抛出点的高度有关 答案 AC解析 平抛运动的物体只受重力作用,其加速度为重力加速度,故A 项正确;做平抛运动的物体,在任何相等的时间内,其竖直方向位移增量Δy =gt 2,水平方向位移不变,故B 项错误.平抛运动可分解为水平方向的匀速直线运动和竖直方向的自由落体运动,且落地时间t =2hg,落地速度为v =v 2x +v 2y =v 20+2gh ,所以C 项正确,D 项错误.3、质点从同一高度水平抛出,不计空气阻力,下列说法正确的是 ( )A .质量越大,水平位移越大B .初速度越大,落地时竖直方向速度越大C .初速度越大,空中运动时间越长D .初速度越大,落地速度越大 答案 D解析 物体做平抛运动时,h =12gt 2,x =v 0t ,则t =2hg,所以x =v 0 2hg,故A 、C 错误.由v y =gt =2gh ,故B 错误. 由v =v 20+v 2y =v 20+2gh ,则v 0越大,落地速度越大,故D 正确. 4、关于做平抛运动的物体,说法正确的是( )A .速度始终不变B .加速度始终不变C .受力始终与运动方向垂直D .受力始终与运动方向平行 答案 B解析 物体做平抛运动的条件是物体只受重力作用,且初速度沿水平方向,故物体的加速度始终不变,大小为g ,B 正确;物体的平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动,其合运动是曲线运动,速度的大小和方向时刻变化,A 错误;运动过程中,物体所受的力与运动方向既不垂直也不平行,C 、D 错误. 5、某人用细线系一个小球在竖直面内做圆周运动,不计空气阻力,若在小球运动到最高点时刻,细线突然断了,则小球随后将做( )A .自由落体运动B .竖直下抛运动C .竖直上抛运动D .平抛运动答案 D6、(2012·课标全国·15)如图,x 轴在水平地面内,y 轴沿竖直方向. 图中画出了从y 轴上沿x 轴正向抛出的三个小球a 、b 和c 的运动 轨迹,其中b 和c 是从同一点抛出的.不计空气阻力,则( ) A .a 的飞行时间比b 的长 B .b 和c 的飞行时间相同C .a 的水平初速度比b 的小D .b 的水平初速度比c 的大 答案 BD解析 根据平抛运动的规律h =12gt 2,得t =2hg,因此平抛运动的时间只由高度决定,因为h b =h c >h a ,所以b 与c 的飞行时间相同,大于a 的飞行时间,因此选项A 错误,选项B 正确;又因为x a >x b ,而t a <t b ,所以a 的水平初速度比b 的大,选项C 错误;做平抛运动的物体在水平方向上做匀速直线运动,b 的水平位移大于c ,而t b =t c ,所以v b >v c ,即b 的水平初速度比c的大,选项D正确7、如图所示,一战斗机由东向西沿水平方向匀速飞行,发现地面目标P后开始瞄准并投掷炸弹,若炸弹恰好击中目标P,则(假设投弹后,飞机仍以原速度水平匀速飞行且不计空气阻力) ()A.此时飞机正在P点正上方B.此时飞机是否处在P点正上方取决于飞机飞行速度的大小C.飞行员听到爆炸声时,飞机正处在P点正上方D.飞行员听到爆炸声时,飞机正处在P点偏西一些的位置答案AD8、为了探究影响平抛运动水平射程的因素,某同学通过改变抛出点的高度及初速度的方法做了6次实验,实验数据记录如下表所示.以下探究方案符合控制变量法的是() 序号抛出点的高度(m)水平初速度(m/s)水平射程(m)10.20 2.00.4020.20 3.00.6030.45 2.00.6040.45 4.0 1.2050.80 2.00.8060.80 6.0 2.40A.若探究水平射程与初速度的关系,可用表中序号为1、3、5的实验数据B.若探究水平射程与高度的关系,可用表中序号为1、3、5的实验数据C.若探究水平射程与高度的关系,可用表中序号为2、4、6的实验数据D.若探究水平射程与初速度的关系,可用表中序号为2、4、6的实验数据答案 B解析本题采用控制变量法分析,选B.9、将一小球从高处水平抛出,最初2 s内小球动能E k随时间t变化的图象如图21所示,不计空气阻力,取g=10 m/s2.根据图象信息,不能确定的物理量是()A.小球的质量薄B.小球的初速度C.最初2 s内重力对小球做功的平均功率D .小球抛出时的高度 答案 D解析 小球水平抛出,最初2 s 内下落的高度为h =12gt 2=20 m .由题图知在0时刻(开始抛时)的动能为5 J ,即12m v 20=5 J .2 s 内由动能定理得:mgh =E k2-E k0=(30-5) J =25 J ,求得m =18 kg ,进而求出v 0.因为P =W t =mght ,可求出P ;只有D 项不能求解,故选D.10、如图所示,P 是水平地面上的一点,A 、B 、C 、D 在一条竖直线上, 且AB =BC =CD .从A 、B 、C 三点分别水平抛出一个物体,这三个物 体都落在水平地面上的P 点.则三个物体抛出时速度大小之比v A ∶v B ∶v C 为( )A.2∶3∶ 6 B .1∶2∶ 3 C .1∶2∶3D .1∶1∶1答案 A解析 由题意及题图可知DP =v A t A =v B t B =v C t C ,所以v ∝1t ;又由h =12gt 2,得t ∝h ,因此有v ∝1h,由此得v A ∶v B ∶v C =2∶3∶ 6. 11、将一只苹果(可看成质点)水平抛出,苹果在空中依次飞过三个完全相同的窗户1、2、3,图中曲线为苹果在空中运行的轨迹.若不计空气阻力的影响,则( )A .苹果通过第1个窗户的竖直方向上的平均速度最大B .苹果通过第1个窗户克服重力做功的平均功率最小C .苹果通过第3个窗户所用的时间最短D .苹果通过第3个窗户重力所做的功最多 答案 BC解析 苹果在空中做平抛运动,在竖直方向经过相同的位移,用时越来越少,重力做功相同,由v =h t 及P =mgh t 知A 、D 错,B 、C 对12、(2011·广东·17)如图所示,在网球的网前截击练习中,若练习者在 球网正上方距地面H 处,将球以速度v 沿垂直球网的方向击出,球 刚好落在底线上.已知底线到网的距离为L ,重力加速度为g ,将 球的运动视作平抛运动,下列叙述正确的是( )A .球被击出时的速度v 等于L g2H B .球从击出至落地所用时间为2H gC .球从击球点至落地点的位移等于LD .球从击球点至落地点的位移与球的质量有关 答案 AB解析 由平抛运动规律知,H =12gt 2得,t =2Hg,B 正确.球在水平方向做匀速直线运动,由s =v t 得,v =st=L2H g=L g2H,A 正确.击球点到落地点的位移大于L ,且与球的质量无关,C 、D 错误.13、在水平路面上做匀速直线运动的小车上有一固定的竖直杆,其上的三个水平支架上有三个完全相同的小球A 、B 、C ,它们离地面的高度分别为3h 、2h 和h ,当小车遇到障碍物P 时,立即停下来,三个小球同时从支架上水平抛出,先后落到水平路面上,如图所示.则下列说法正确的是( )A .三个小球落地时间差与车速有关B .三个小球落地点的间隔距离L 1=L 2C .三个小球落地点的间隔距离L 1<L 2D .三个小球落地点的间隔距离L 1>L 2 答案 C解析 车停下后,A 、B 、C 均以初速度v 0做平抛运动,且运动时间t 1= 2hg,t 2= 2×2hg=2t 1,t 3= 2×3hg=3t 1 水平方向上有:L 1=v 0t 3-v 0t 2=(3-2)v 0t 1L2=v0t2-v0t1=(2-1)v0t1可知L1<L2,选项C正确.14、(2012·江苏·6)如图所示,相距l的两小球A、B位于同一高度h(l、h均为定值).将A向B水平抛出的同时,B自由下落.A、B与地面碰撞前后,水平分速度不变,竖直分速度大小不变、方向相反.不计空气阻力及小球与地面碰撞的时间,则()A.A、B在第一次落地前能否相碰,取决于A的初速度B.A、B在第一次落地前若不碰,此后就不会相碰C.A、B不可能运动到最高处相碰D.A、B一定能相碰答案AD解析由题意知A做平抛运动,即水平方向做匀速直线运动,竖直方向为自由落体运动;B为自由落体运动,A、B竖直方向的运动相同,二者与地面碰撞前运动时间t1相同,且t1=2hg,若第一次落地前相碰,只要满足A运动时间t=l v<t1,即v>lt1,所以选项A正确;因为A、B在竖直方向的运动同步,始终处于同一高度,且A与地面相碰后水平速度不变,所以A一定会经过B所在的竖直线与B相碰.碰撞位置由A的初速度决定,故选项B、C错误,选项D正确.。

(完整版)平抛运动练习题(含答案)

(完整版)平抛运动练习题(含答案)

平抛运动练习题(一) 对平抛运动的理解及规律的应用1. 下列关于平抛运动的说法正确的是: A.平抛运动是匀速运动 B.平抛运动是匀变速曲线运动 C.平抛运动是非匀变速运动 D.平抛运动在水平方向是匀速直线运动2. 关于平抛运动,下列说法中正确的是 A.落地时间仅由抛出点高度决定 B.抛出点高度一定时,落地时间与初速度大小有关 C. 初速度一定的情况下,水平飞出的距离与抛出点高度有关 D. 抛出点高度一定时,水平飞出距离与初速度大小成正比3. 甲、乙两球位于同一竖直线上的不同位置,甲比乙高 h ,如图所示,将甲、乙两! - ■ 球分别以V I 、V 2的速度沿同一方向抛出,不计空气阻力,下列条件中有可能使乙球 击中甲球的是A.同时抛出,且V 1 < V 2B.甲比乙后抛出,且 V 1 > V 2C.甲比乙早抛出,且V 1 > V 2D.甲比乙早抛出,且V 1 < V 24. 有一物体在高为h 处以初速度V 0水平抛出,落地时速度为v t ,竖直分速度为V y ,水平位移为s ,则 能用来计算该物体在空中运动的时间的公式有5.在地面上方某一高处,以初速度 V 0水平抛出一石子,当它的速度由水平方向变化到与水平方向成 9角时,石子的水平位移的大小是(不计空气阻力)7. 以速度V 0水平抛出一球,某时刻其竖直分位移与水平位移相等,以下判断错误的是 A.竖直分速度等于水平分速度 B.此时球的速度大小为、5 V 0 C.运动的时间为纽D.运动的位移是2空gg8. 如右图所示,一小球以v o = 10 m/s 的速度水平抛出,在落地之前经过空中A 、B 两点.在 A 点小球速度方向与水平方向的夹角为 45°,在B 点小球速度方向与水平方向的夹角为 60° (空气阻力忽略不计,g 取10 m/s 2),以下判断中正确的是( ) A .小球经过A 、B 两点间的时间t = 1 s B .小球经过A 、B 两点间的时间t = .3s 9.飞机在水平地面上空的某一高度水平匀速飞行,每隔相等时间投放一个物体.如果以第一个物体 a的落地点为坐标原点、飞机飞行方向为横坐标的正方向2 2A. JVt V 0V y B JgD.2hV yA.V 0 sin gC.Vo tanD.V o cot g6•做平抛运动的物体,它的速度方向与水平方向夹角的正切值tan 随时间t 的变化图象,正确的是C . A 、B 两点间的高度差h = 10 mD . A 、B 两点间的高度差h = 15 mC.B.在竖直平面内建立直角坐标系.如图所示是第5个物体e 离开飞机时,抛出的5个物体(a、b、c、d、e)在空间位置的示意图,其中不可能的是()n -r- r r * i-rr4 ■・L|R p ■呻+■d aha ik b A 7LL i 241 ・ 1 h ai I ■ i■i-.-rr严彳予平卜亡!1 -r r r \pr- i pr■严i三亠±T・1・16. 如图所示,在斜面上O 点先后以V 0和2V 0的速度水平抛出A B 两小球, 则从抛出至第一次着地,两小球的水平位移大小之比可能为 ①1 :2 ②1 :3 ③1 :4 ④1 : 5其中正确的是( ) A.①②③ B.①②④ C.①③④D.②③④ 17. _________________________ 如图,小球从倾角为45°的斜坡顶端A 被水平抛出,抛出时速度 为V 0,则AB 之间的距离为18.如图,在倾角为B的斜面上以速度v 水平抛出一球,当球与斜面的距离最大时()(A )速度为d (B )飞行时间为-tgcosg10.将小球从如图4 — 2- 10所示的阶梯状平台上以4 m/s 的速度水平抛出,所有台 阶的高度和宽度均为1.0 m ,取g = 10 m/s 2,小球抛出后首先落到的台阶是 A •第一级台阶 B .第二级台阶 C •第三级台阶 D •第四级台阶 (二)平抛与斜面综合 11.如图2甲所示,以9.8m/s 的初速度水平抛出的物体,飞行一段时间后,垂直地 撞在倾角B为30°的斜面上。

平抛运动实验题答案

平抛运动实验题答案

典例1答案 (1)A BD (2)C (3)B典例2:解析 本实验把小球通过的水平相等位移(即槽间距离d ),巧妙转化为题图中x 轴上通过相同的位移(即向纸内侧平移距离d ),而竖直方向确定的落点为竖直位置,因而可画出平抛运动的轨迹.(1)根据实验设计方案,实验前应对实验装置进行调节,使斜轨道末端切线水平,以保证小球飞出时的速度沿水平方向,小球做平抛运动.每次让小球从同一位置由静止释放的目的是使小球每次做平抛运动的初速度相同,轨迹相同.(2)每次将B 板向内侧平移距离d 是为了保持记录纸上每两点之间的水平距离相同.(3)如图所示(注意要用平滑的曲线连接).课后练习1.答案 B解析 要根据自由落体运动比较平抛运动竖直方向上的运动性质,与水平方向上的运动无关,而击打力度只影响水平方向上的速度,所以不需要控制每次的击打力度,A 错误;A 管内与大气相通,为外界大气压强,A 管在水面下保证A 管上出口处的压强为大气压强,因而另一出水管的上端口处压强与A 管上出口处的压强有恒定的压强差,保证另一出水管出水压强恒定,从而出水速度恒定,B 正确;选用装置图丙要获得钢球的平抛轨迹,每次一定要从斜槽上同一位置由静止释放钢球,这样才能保证初速度相同,故C 错误;建立坐标系时,以斜槽末端端口上方小球球心在木板上的投影点为坐标原点,D 错误.2.答案 0.70(0.66~0.74均可)解析 方法一 水平方向做匀速直线运动,相邻两点间水平位移3.5l =v 0T竖直方向Δy =y 2-y 1=2l =gT 2将l =0.8×10-2 m 代入可得:v 0=0.70 m/s方法二 四个位置间的竖直分位移之比为1∶3∶5,故可知第一个球的位置为抛出点.由l =12gt 2 , 3.5l =v 0t ,将l =0.8×10-2 m 代入可得:v 0=0.70 m/s.3.,答案 (1)同一位置静止 斜槽末端切线水平(2)BAC (3)2Lg 0.7 m/s (4)52Lg 解析 (1)这种方法,需让小球重复同一个平抛运动多次,才能记录出小球的一系列位置,故必须让小球每次由同一位置静止释放.斜槽末端切线水平,小球才会做平抛运动.(3)由Δy =gT 2得相邻两点之间的时间间隔T =L g ,所以小球的初速度v 0=2L T=2Lg ,代入数据得v 0=0.7 m/s.(4)v by =3L 2T =3Lg 2,由v b =v by 2+v 0 2 得v b =9Lg 4+4Lg =52Lg . 【考点】研究平抛运动的基础性实验【题点】实验操作及用未知抛出点的轨迹求初速度4,答案 B解析 要使小球做平抛运动,斜槽轨道末端必须水平,A 正确.要使小球每次抛出的初速度相等,释放小球时必须在斜槽上同一位置由静止释放,B 错误,C 正确.小球离开轨道后,仅受重力作用,不能有摩擦,D 正确.【考点】研究平抛运动的基础性实验【题点】实验操作、注意事项和误差分析5答案 C解析 由平抛运动规律,竖直方向y =12gt 2,水平方向x =v 0t ,因此v 0=x g 2y,可见只要测得轨迹上某点P 的水平坐标x 和竖直坐标y ,就可求出初速度v 0,故C 项正确.【考点】研究平抛运动的基础性实验【题点】实验操作、注意事项和误差分析6,答案 B解析 钢球沿桌面飞出后做平抛运动,根据平抛运动规律得y =12gt 2,x =v 0t ,联立解得v 0=x g 2y,故要求出钢球离开水平桌面时的速度,需测量水平桌面的高度y 、钢球落地点与桌边的水平距离x ,B 项正确.【考点】研究平抛运动的基础性实验【题点】实验原理7,答案 (1)做平抛运动的物体在竖直方向上做自由落体运动 (2)P 球击中Q 球 做平抛运动的物体在水平方向上做匀速直线运动解析 (1)通过对照实验,说明两球具有等时性,由此说明做平抛运动的物体在竖直方向上做自由落体运动.(2)两球在水平轨道上相遇,水平方向运动情况相同,说明平抛运动的水平分运动是匀速直线运动.8答案 (1)见解析(2)轨道末端切线沿水平方向(3)使小球每次都从同一位置无初速度滚下(4)x g 2y1.6 解析 (1)如图所示,斜槽末端小球球心在白纸上的投影为O 点,从O 点开始作平行于铅垂线向下的直线为Oy 轴,再垂直于Oy 作Ox 轴.(2)为了保证小球离开斜槽时的速度沿水平方向,应调整斜槽使轨道末端切线沿水平方向.(3)为了保证小球每次做平抛运动的轨迹一致,要求它的初速度相同,故每次都让小球从斜槽的同一位置无初速度滚下.(4)由于x =v 0t ,y =12gt 2,故初速度v 0=x g 2y ,根据题图乙给出的数据,可计算出v 0=1.6 m/s. 【考点】研究平抛运动的基础性实验【题点】实验操作及用已知抛出点的轨迹求初速度9,答案 10 2解析 因为x AB =x BC ,所以t AB =t BC ,在竖直方向上,由Δy =gT 2得(7×0.05-5×0.05) m =10 m/s 2·T 2,解得T =0.1 s ,故频闪频率为10 Hz.水平速度v 0=x T =4×0.050.1m /s =2 m/s. 【考点】研究平抛运动的基础性实验 【题点】实验操作及用未知抛出点的轨迹求初速度。

高考物理平抛运动专题

高考物理平抛运动专题

高考物理平抛运动专题连城一中林裕光当物体初速度水平且仅受重力作用时的运动,被称为平抛运动。

其轨迹为抛物线,性质为匀变速运动。

平抛运动可分解为水平方向的匀速运动和竖直方向的自由落体运动这两个分运动。

广义地说,当物体所受的合外力恒定且与初速度垂直时,做类平抛运动。

1、平抛运动差不多规律 ① 速度:0v v x =,gt v y =合速度 22y x v v v +=方向 :tan θ=oxy v gt v v =②位移x =v o t y =221gt 合位移大小:s =22y x + 方向:tan α=t v g x y o ⋅=2 ③时刻由y =221gt 得t =x y 2(由下落的高度y 决定) ④竖直方向自由落体运动,匀变速直线运动的一切规律在竖直方向上都成立。

应用举例(1)方格问题【例1】平抛小球的闪光照片如图。

已知方格边长a 和闪光照相的频闪间隔T ,求:v 0、g 、v c(2)临界问题典型例题是在排球运动中,为了使从某一位置和某一高度水平扣出的球既不触网、又不出界,扣球速度的取值范畴应是多少?【例2】 已知网高H ,半场长L ,扣球点高h ,扣球点离网水平距离s 、求:水平扣ABCDE球速度v 的取值范畴。

【例3】如图所示,长斜面OA 的倾角为θ,放在水平地面上,现从顶点O 以速度v 0平抛一小球,不计空气阻力,重力加速度为g ,求小球在飞行过程中离斜面的最大距离s 是多少?(3)一个有用的推论平抛物体任意时刻瞬时时速度方向的反向延长线与初速度延长线的交点到抛出点的距离都等于水平位移的一半。

证明:设时刻t 内物体的水平位移为s ,竖直位移为h ,则末速度的水平重量v x =v 0=s/t ,而竖直重量v y =2h/t , sh v v 2tan xy ==α, 因此有2tan s h s =='α【例4】 从倾角为θ=30°的斜面顶端以初动能E =6J 向下坡方向平抛出一个小球,则小球落到斜面上时的动能E /为______J 。

高三物理专题复习平抛运动 (1)

高三物理专题复习平抛运动 (1)

平抛运动【学习目标】1.理解平抛运动的分解2.掌握平抛运动两个重要推论应用3.提高利用平抛运动规律解决实际问题能力1.物体做竖直上抛运动:v表示物体的瞬时速度,a表示物体的加速度,t表示物体运动的时间,h代表其离抛出点的高度,E k代表动能,E p代表势能,以抛出点为零势能面.下列所示图象中,能正确反映各物理量之间关系的是()A.B.C.D.2.在水平地面上的O点同时将质量相等的甲、乙两块小石头斜向上抛出,甲、乙在同一竖直面内运动,其轨迹如图所示,已知抛出时的初速度v甲、v乙与水平方向的夹角分别为θ甲、θ乙,它们从抛出到落地的是间分别为t甲、t乙,它们在空中运动的最大高度相等,不计空气阻力,下列判断正确的是()A.抛出时,人对甲做的功比对乙做的功多B.抛出后,乙先到达最大高度处C.t甲>t乙D.θ甲>θ乙3.如图所示,A、B两小球从相同高度同时水平抛出,经过时间t在空中相遇,若两球的抛出速度都变为原来的2倍,则两球从抛出到相遇经过的时间为()A.t B.t C.D.4.一水平抛出的小球落到一倾角为θ的斜面上时,其速度方向与斜面垂直,运动轨迹如图中虚线所示.小球在竖直方向下落的距离与在水平方向通过的距离之比为()A .tanθB .2tanθC .D .第一部分 平抛运动规律学习目标:掌握平抛运动的分解及解析方程1.定义:将物体以一定的初速度沿水平方向抛出,不考虑空气阻力,物体只在重力作用下所做的运动. 2.性质:加速度为重力加速度g 的匀变速曲线运动,运动轨迹是抛物线.3.基本规律:以抛出点为原点,水平方向(初速度v 0方向)为x 轴,竖直向下方向为y 轴,建立平面直角坐标系,则:(1)水平方向:做匀速直线运动,速度v x =v 0,位移x =v 0t .(2)竖直方向:做自由落体运动,速度v y =gt ,位移y =12gt 2.(3)合速度:v =v 2x +v 2y,方向与水平方向的夹角为θ,则tan θ=v y v x =gt v 0. (4)合位移:s =x 2+y 2,方向与水平方向的夹角为α,tan α=y x =gt2v 0.第二部分 平抛运动的推论(1)做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图中A 点和B 点所示.(2)做平抛(或类平抛)运动的物体在任意时刻任一位置处,设其末速度方向与水平方向的夹角为α,位移与水平方向的夹角为θ,则tan α=2tan θ.第三部分 斜抛运动 1.斜抛运动的定义将物体以速度v 0斜向上方或斜向下方抛出,物体只在重力作用下的运动. 2.运动性质加速度为g 的匀变速曲线运动,轨迹为抛物线. 3.基本规律(以斜向上抛为例说明,如图1所示)(1)水平方向:v 0x =v 0cos_θ,F 合x =0. (2)竖直方向:v 0y =v 0sin_θ,F 合y =mg .一.选择题(共11小题)1.两体积相同的小石块和小纸团,在同一位置以相同的速度竖直向上抛出.在没有空气阻力的条件下,两物体从抛出到上升到最高点(速度为0)所用的时间分别为t1、t2.可以猜测()A.t1=t2B.t1>t2C.t1<t2D.无法判断2.某物体以30m/s的初速度竖直上抛,不计空气阻力,g取10m/s2,5s内物体的()A.位移大小为25 m,方向向下B.路程为65 mC.速度改变量的大小为10 m/sD.平均速度大小为6 m/s,方向向上3.在诸多领域的研究中,需要精确的重力加速度g值,近年来有一种测g值的方法很好,它是将测g 值归于测长度和时间,以稳定的氦氖激光的波长为长度标准,用光学干涉的方法测距离,以铷原子钟或其他手段测时间,能将g值测的很准,具体做法是:将真空长直管沿竖直方向放置,自其中O点竖直向上抛出小球,小球又落至原处O点的时间为T,在小球运动过程中经过比O点高H的P点,小球离开P点重又回到P点所用的时间为T,测得T和H,可求得g等于()A.B. C.D.4.如图所示,两个小球从水平地面上方同一点O分别以初速度v1、v2水平抛出,落在地面上的位置分别是A、B,O′是O在地面上的竖直投影,且O′A:AB=1:3.若不计空气阻力,则两小球()A.抛出的初速度大小之比为1:4B.落地速度大小之比为1:3C.落地速度与水平地面夹角的正切值之比为1:3D.通过的位移大小之比为1:5.如图所示,质量不同的P、Q两球均处于静止状态,现用小锤打击弹性金属片,使P球沿水平方向抛出,Q球同时被松开而自由下落.则下列说法中正确的是()A.P球先落地B.Q球先落地C.两球落地时的动能可能相等D.两球下落过程中重力势能变化相等6.某同学玩飞镖游戏,先后将两只飞镖a、b由同一位置水平投出,已知飞镖投出的初速度v a>v b,不计空气阻力,则两支飞镖插在竖直靶上的状态(侧视图)可能是()A.B.C.D.7.在地面上方1m高度处将小球以2m/s的初速度水平抛出,若不计空气阻力,则它在落地前瞬间的速度大小为(g=10m/s2)()A.2m/s B.2m/s C.10m/s D.4m/s8.如图所示,下面关于物体做平抛运动时,它的速度方向与水平方向的夹角θ的正切tanθ随时间t的变化图象正确的是()A.B.C.D.9.以9.8m/s的水平初速度v0抛出的物体,飞行一段时间后,垂直地撞在倾角θ为30°的斜面上,可知物体完成这段飞行的时间是()(g取9.8m/s2)A.s B.s C.s D.2 s10.芬兰小将拉林托以两跳240.9分的成绩在跳台滑雪世界杯芬兰站中获得冠军.如图所示是简化后的跳台滑雪的雪道示意图,拉林托从助滑雪道AB上由静止开始滑下,到达C点后水平飞出,落到滑道上的D点,E是运动轨迹上的某一点,在该点拉林托的速度方向与轨道CD平行,设拉林托从C到E与从E到D的运动时间分别为t1、t2,EF垂直CD,则()A.t1=t2,CF=FD B.t1=t2,CF<FD C.t1>t2,CF=FD D.t1>t2,CF<FD11.在同一水平直线上的两位置分别沿同水平方向抛出两小球A和B,两球相遇于空中的P点,它们的运动轨迹如图所示.不计空气阻力,下列说法中正确的是()A.在P点,A球的速度大小大于B球的速度大小B.在P点,A球的速度大小小于B球的速度大小C.抛出时,先抛出A球后抛出B球D.抛出时,先抛出B球后抛出A球二.多选题(共2小题)12.如图,x轴在水平地面内,y轴沿竖直方向.图中画出了从y轴上沿x轴正向抛出的三个小球a、b 和c的运动轨迹,其中b和c是从同一点抛出的,不计空气阻力,则()A.a的飞行时间比b的长B.b和c的飞行时间相同C.a的水平速度比b的小D.b的初速度比c的大13.如图所示,在网球的网前截击练习中,若练习者在球网正上方距地面H处,将球以速度v沿垂直球网的方向击出,球刚好落在底线上,已知底线到网的距离为L,重力加速度取g,将球的运动视作平抛运动,下列表述正确的是()A.球的速度v等于LB.球从击出至落地所用时间为C.球从击球点至落地点的位移等于LD.球从击球点至落地点的位移与球的质量有关【高考题选】1.距地面高5m的水平直轨道上A、B两点相距2m,在B点用细线悬挂一小球,离地高度为h,如图.小车始终以4m/s的速度沿轨道匀速运动,经过A点时将随车携带的小球由轨道高度自由卸下,小车运动至B点时细线被轧断,最后两球同时落地.不计空气阻力,取重力加速度的大小g=10m/s2.可求得h等于()A.1.25m B.2.25m C.3.75m D.4.75m2.在同一位置以相同的速率把三个小球分别沿水平、斜向上、斜向下方向抛出,不计空气阻力,则落在同一水平地面时的速度大小()A.一样大B.水平抛的最大C.斜向上抛的最大D.斜向下抛的最大3.取水平地面为重力势能零点,一物块从某一高度水平抛出,在抛出点其动能与重力势能恰好相等.不计空气阻力,该物块落地时的速度方向与水平方向的夹角为()A.B.C.D.4.发球机从同一高度向正前方依次水平射出两个速度不同的乒乓球(忽略空气的影响).速度较大的球越过球网,速度较小的球没有越过球网;其原因是()A.速度较小的球下降相同距离所用的时间较多B.速度较小的球在下降相同距离时在竖直方向上的速度较大C.速度较大的球通过同一水平距离所用的时间较少D.速度较大的球在相同时间间隔内下降的距离较大5.一带有乒乓球发射机的乒乓球台如图所示,水平台面的长和宽分别为L1和L2,中间球网高度为h,发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h,不计空气的作用,重力加速度大小为g,若乒乓球的发射率v在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,到v的最大取值范围是()A.<v<L1B.<v<C.<v<D.<v<一.选择题(共2小题)1.如图所示,P是水平面上的圆弧凹槽.从高台边B点以速度v0水平飞出的小球,恰能从固定在某位置的凹槽的圆弧轨道的左端A沿圆弧切线方向进入轨道.O是圆弧的圆心,θ1是OA与竖直方向的夹角,θ2是BA与竖直方向的夹角.则()A.cotθ1tanθ2=2 B.tanθ1tanθ2=2 C.cotθ1cotθ2=2 D.tanθ1cotθ2=22.如图,可视为质点的小球,位于半径为m半圆柱体左端点A的正上方某处,以一定的初速度水平抛出小球,其运动轨迹恰好能与半圆柱体相切于B点.过B点的半圆柱体半径与水平方向的夹角为60°,则初速度为:(不计空气阻力,重力加速度为g=10m/s2)()A.m/s B.4m/s C.3m/s D.m/s二.多选题(共2小题)3.如图所示,一小球从半径为R的固定半圆轨道左端A点正上方某处开始做平抛运动(小球可视为质点),飞行过程中恰好与半圆轨道相切于B点.O为半圆轨道圆心,OB与水平方向夹角为60°,重力加速度为g,关于小球的运动,以下说法正确的是()A.小球自抛出至B点的水平射程为RB.抛出点与B点的距离为2RC.小球抛出时的初速度为D.小球自抛出至B点的过程中速度变化量为4.如图所示,某人从高出水平地面h的坡上水平击出一个质量为m的高尔夫球,由于恒定的水平风力的作用,高尔夫球竖直地落入距击球点水平距离为L的A穴,则()A.该球从被击出到落入A穴所用时间为B.该球从被击出到落入A穴所用时间为C.球被击出时的初速度大小为LD.球被击出时的初速度大小为L三.计算题(共1小题)5.如图所示,挡板OM与竖直方向所夹的锐角为θ,一小球(视为质点)从O点正下方和A点以速度v0水平抛出,小球运动过程中恰好不和挡板碰撞(小球轨迹所在平面与挡板垂直).不计空气阻力,重力加速度大小为g,求:(1)小球恰好不和挡板碰撞时的竖直速度大小;(2)O、A间的距离.一.选择题(共5小题)1.如图所示,将一篮球从地面上方B点斜向上抛出,刚好垂直击中篮板上A点,不计空气阻力.若抛射点B向篮板方向移动一小段距离,仍使抛出的篮球垂直击中A点,则可行的是()A.增大抛射速度v0,同时减小抛射角θB.减小抛射速度v0,同时减小抛射角θC.增大抛射角θ,同时减小抛出速度v0D.增大抛射角θ,同时增大抛出速度v02.如图所示,水平地面上不同位置的三个小球斜上抛,沿三条不同的路径运动最终落在同一点,三条路径的最高点是等高的,若忽略空气阻力的影响,下列说法正确的是()A.三个小球落地时的速率相等B.沿路径3抛出的小球在空中运动时间最长C.三个小球抛出的初速度竖直分量相等D.三个小球抛出的初速度水平分量相等3.如图,半圆形凹槽的半径为R,O点为其圆心.在与O点等高的边缘A、B两点分别以速度v1、v2水平相向抛出两个小球,已知v1:v2=1:3,两小球恰落在弧面上的P点.则以下说法中正确的是()A.∠AOP为45°B.若要使两小球落在P点右侧的弧面上同一点,则应使v1、v2都增大C.改变v1、v2,只要两小球落在弧面上的同一点,v1与v2之和就不变D.若只增大v1,两小球可在空中相遇4.如图所示,斜面固定在水平面上,两个小球分别从斜面底端O点正上方A、B两点向右水平抛出,B 为AO连线的中点,最后两球都垂直落在斜面上,A、B两球击中斜面位置到O点的距离之比为()A.:1 B.2:1 C.4:D.4:15.如图所示,a、b两小球分别从半圆轨道顶端和斜面顶端以大小相等的初速度v0同时水平抛出,已知半圆轨道的半径与斜面竖直高度相等且在同一竖直面内,斜面底边长是其竖直高度的2倍.若小球b能落到斜面上,下列说法正确的是()A.a、b不可能同时分别落在半圆轨道和斜面上B.a球一定先落在半圆轨道上C.b球一定先落在斜面上D.a球可能先落在半圆轨道上二.多选题(共1小题)6.横截面为直角三角形的两个相同斜面如图紧靠在一起,固定在水平面上,它们的竖直边长都是底边长的一半.小球从左边斜面的顶点以不同的初速度向右平抛,最后落在斜面上.其中三个小球的落点分别是a、b、c.图中三小球比较,下列判断正确的是()A.落在c点的小球飞行时间最短B.落在a点的小球飞行过程速度的变化量最大C.落在c点的小球飞行过程速度变化最快D.无论小球抛出时初速度多大,落到两个斜面上的瞬时速度都不可能与斜面垂直三.计算题(共1小题)7.如图所示,在质量m=60kg的运动员(含设备)在滑雪场做滑雪表演,他从平台上A点开始加速滑行s=10m后从B点水平飞下高h=15m的平台,测得落地时速度v=20m/s,(g=10m/s2),他在平台上滑行时所受阻力为自身重力的0.2倍,试求:①从平台B点飞出的速度v0的大小(不计B到C的空气阻力)②加速滑行时运动员对自己的水平平均推力大小.。

平抛运动实验练习及答案(含三份专题练习)

平抛运动实验练习及答案(含三份专题练习)

平抛运动实验练习及答案(含三份专题练习)(1)如图所示,用小锤打击弹性金属片,金属片把A球沿水平向抛出,同时B球松开,自由下落,A、B两球同时开始运动。

观察到两球同时落地,多次改变小球距地面的高度和打击力度,重复实验,观察到两球落地,这说明了小球A在竖直向上的运动为自由落体运动。

(2)如图,将两个质量相等的小钢球从斜面的同一高度处由静止同时释放,滑道2与光滑水平板吻接,则将观察到的现象是A、B两个小球在水平面上相遇,改变释放点的高度和上面滑道对地的高度,重复实验,A、B两球仍会在水平面上相遇,这说明平抛运动在水平向上的分运动是匀速直线运动。

21.[2014·卷] (18分)Ⅰ.图1是“研究平抛物体运动”的实验装置图,通过描点画出平抛小球的运动轨迹.(1)以下是实验过程中的一些做法,其中合理的有________.a.安装斜槽轨道,使其末端保持水平b.每次小球释放的初始位置可以任意选择c.每次小球应从同一高度由静止释放d.为描出小球的运动轨迹,描绘的点可以用折线连接(2)实验得到平抛小球的运动轨迹,在轨迹上取一些点,以平抛起点O为坐标原点,测量它们的水平坐标x和竖直坐标y,图2中yx2图像能说明平抛小球运动轨迹为抛物线的是________.a bc d图2图3(3)图3是某同学根据实验画出的平抛小球的运动轨迹,O 为平抛的起点,在轨迹上任取三点A 、B 、C ,测得A 、B 两点竖直坐标y 1为5.0 cm ,y 2为45.0 cm ,A 、B 两点水平间距Δx 为40.0 cm.则平抛小球的初速度v 0为________m/s ,若C 点的竖直坐标y 3为60.0 cm ,则小球在C 点的速度v C 为________m/s(结果保留两位有效数字,g 取10 m/s 2).21.Ⅰ.D3(1)ac (2)c (3)2.0 4.0[解析] Ⅰ.本题考查“研究平抛物体的运动”实验原理、理解能力与推理计算能力.(1)要保证初速度水平而且大小相等,必须从同一位置释放,因此选项a 、c 正确.(2)根据平抛位移公式x =v 0t 与y =12gt 2,可得y =gx 22v 20,因此选项c 正确.(3)将公式y =gx 22v 20变形可得x =2ygv 0,AB 水平距离Δx =⎝⎛⎭⎪⎫2y 2g-2y 1g v 0,可得v 0=2.0 m/s,C点竖直速度v y=2gy3,根据速度合成可得v c=2gy3+v20=4.0 m/s.平抛运动训练1一.不定项选择题1.平抛物体的运动规律可以概括为两点:①水平向做匀速运动;②竖直向做自由落体运动.为了研究平抛物体的运动,可做下面的实验,如图所示,用小锤打击弹性金属片,A球就水平飞出,同时B球被松开,做自由落体运动,两球同时落到地面.这个实验()A.只能说明上述规律中的第①条 B.只能说明上述规律中的第②条C.不能说明上述规律中的任一条D.能同时说明上述两条规律2.平抛运动可以分解为水平向的匀速直线运动和竖直向的自由落体运动,在同一坐标系中作出两分运动的v-t图线,如图所示.则以下说确的是() A.图线1表示水平分运动的v-t图线B.图线2表示竖直分运动的v-t图线C.t1时刻物体的速度向与初速度向夹角为45°D.若图线2倾角为θ,当地重力加速度为g,则一定有tanθ=g3.在研究平抛物体的运动的实验中,为了求平抛物体的初速度,需直接测的数据有()A.小球开始滚下的高度B.小球在空中飞行的时间C.运动轨迹上某点P的水平坐标D.运动轨迹上某点P的竖直坐标4.如图所示,在研究平抛运动时,小球A沿轨道滑下,离开轨道末端(末端水平)时撞开轻质接触式开关S,被电磁铁吸住的小球B同时自由下落.改变整个装置的高度H做同样的实验,发现位于同一高度的A、B两球总是同时落地.该实验现象说明了A球在离开轨道后()A.水平向的分运动是匀速直线运动B.水平向的分运动是匀加速直线运动C.竖直向的分运动是自由落体运动D.竖直向的分运动是匀速直线运动5.下列哪些因素会使“研究物体平抛运动”实验的误差增大()A.小球与斜槽之间有摩擦B.安装斜槽时其末端不水平C.建立坐标系时,以斜槽末端端口位置为坐标原点D.根据曲线计算平抛运动的初速度时,在曲线上取作计算的点离点O较远6.如右图所示是物体做平抛运动的x-y图象,物体从O点抛出,A、B、C分别为其轨迹上的三点,A、B、C三点的水平距离相等,则A、B、C三点的竖直距离之比为()A.1:1:1 B.1:3:5C.1:4:9 D.不能确定7.一同学做“研究平抛物体的运动”的实验,只在纸上记下重锤线y向,忘记在纸上记下斜槽末端位置,并只在坐标纸上描出如图所示曲线。

2024届高考物理平抛运动实验专题分析(真题)

2024届高考物理平抛运动实验专题分析(真题)

2024届高考物理平抛运动实验专题分析(真题)第I卷(选择题)一、单选题1.(2023·辽宁·统考高考真题)某同学在练习投篮,篮球在空中的运动轨迹如图中虚线所示,篮球所受合力F的示意图可能正确的是()A.B.B.C.D.2.(2023·江苏·统考高考真题)达·芬奇的手稿中描述了这样一个实验:一个罐子在空中沿水平直线向右做匀加速运动,沿途连续漏出沙子。

若不计空气阻力,则下列图中能反映空中沙子排列的几何图形是()A.B.C.D.3.(2022·广东·高考真题)如图所示,在竖直平面内,截面为三角形的小积木悬挂在离地足够高处,一玩具枪的枪口与小积木上P点等高且相距为L。

当玩具子弹以水平速度v从枪口向P点射出时,小积木恰好由静止释放,子弹从射出至击中积木所用时间为t。

不计空气阻力。

下列关于子弹的说法正确的是()L L4.(2023·浙江·高考真题)如图所示,在考虑空气阻力的情况下,一小石子从O点抛出沿轨迹OPQ运动,其中P是最高点。

若空气阻力大小与瞬时速度大小成正比,则小石子竖直方向分运动的加速度大小()A.O点最大B.P点最大C.Q点最大D.整个运动过程保持不变5.(2023·湖南·统考高考真题)如图(a),我国某些农村地区人们用手抛撒谷粒进行水稻播种。

某次抛出的谷粒中有两颗的运动轨迹如图(b)所示,其轨迹在同一竖直平面内,抛出点均为O,且轨迹交于P点,抛出时谷粒1和谷粒2的初速度分别为1v和2v,其中1v方向水平,2v方向斜向上。

忽略空气阻力,关于两谷粒在空中的运动,下列说法正确的是()A.谷粒1的加速度小于谷粒2的加速度B.谷粒2在最高点的速度小于1vC.两谷粒从O到P的运动时间相等D.两谷粒从O到P的平均速度相等v的水平速度飞出,经过时间t落在斜靠的挡6.(2020·浙江·高考真题)如图所示,钢球从斜槽轨道末端以2v的速度水平飞出,则()板AB中点。

平抛运动复习题,难度由低到高,内附答案

平抛运动复习题,难度由低到高,内附答案

第一讲平抛运动知识点梳理习题训练一、选择题1、关于平抛运动,下列说法正确的是()A.是匀速运动B.是匀变速运动C.是非匀变速运动D.合力恒定2、对平抛运动,下列说法不正确的是()A.平抛运动是匀变速曲线运动B.做平抛运动的物体,在任何相等的时间内速度的增量都是相等的C.平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动D.落地时间和落地时的速度只与抛出点的高度有关3、关于平抛运动和圆周运动,下列说法正确的是()A.匀速圆周运动是速度不变的运动B.匀速圆周运动是匀变速曲线运动C.平抛运动是匀变速曲线运动D.做平抛运动的物体落地时的速度可能是竖直向下的4、(2017宝鸡模拟)一个物体以初速度v0水平抛出,经过一段时间t后其速度方向与水平方向夹角为45°,若重力加速度为g,则t为A.B.C.D.5、在同一点O抛出的三个物体,做平抛运动的轨迹如图2所示,则三个物体做平抛运动的初速度v A、v B、v C的关系和三个物体做平抛运动的时间t A、t B、t C的关系分别是()A.v A>v B>v C t A>t B>t CB.v A=v B=v C t A=t B=t CC.v A<v B<v C t A>t B>t CD.v A>v B>v C t A<t B<t C6、如图1所示,在同一竖直面内,小球a、b从高度不同的两点,分别以初速度v a和v b沿水平方向抛出,经过时间t a和t b后落到与两出发点水平距离相等的P点.若不计空气阻力,则下列关系式正确的是()A.t a>t b,v a<v bB.t a>t b,v a>v bC.t a<t b,v a<v bD.t a<t b,v a>v b7、(2017陕西黄陵中学质检)如图所示,某同学为了找出平抛运动物体的初速度之间的关系,用一个小球在O点对准前方的一块竖直放置的挡板,O与A在同一高度,小球的水平初速度分别是v1、v2、v3,打在挡板上的位置分别是B、C、D,AB:BC:CD=1:3:5.则v1、v2、v3之间的正确关系是()A.v1:v2:v3=3:2:1B.v1:v2:v3=5:3:1C.v1:v2:v3=6:3:2D.v1:v2:v3=9:4:18、(2016福建质检)如图,将a、b两小球以不同的初速度同时水平抛出,它们均落在水平地面上的P 点,a球抛出时的高度较b球的高,P点到两球起抛点的水平距离相等,不计空气阻力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一物理曲线运动专题训练(一)答案与分析
一、选择题(每题4分,共40分) 1.下列说法正确的有
( CD )
A .速度大小不变的曲线运动是匀速运动,是没有加速度的
B .变速运动一定是曲线运动
C .曲线运动的速度一定是要改变的
D .曲线运动也可能是匀变速运动
2.如图1所示,小钢球m 以初速v 0在光滑水平面上运动,后受到磁极的侧向作
用力而作图示的曲线运动到达D 点,从图可知磁极的位置及极性可能是
A .磁极在A 位置,极性一定是N 极
B .磁极在B 位置,极性一定是S 极 ( D )
C .磁极在C 位置,极性一定是N 极
D .磁极在B 位置,极性无法确定
3.物体受几个外力作用下恰作匀速直线运动,如果突然撤去其中的一个力F 2,则它可能做 ( BCD ) A .匀速直线运动 B .匀加速直线运动 C .匀减速直线运动 D .匀变速曲线运动
4.民族运动会上有一个骑射项目,运动员骑在奔驰的马背上,弯弓放箭射击侧向的固定目标。

运动员
要射中目标,他放箭时应
( C )
A .直接瞄准目标
B .瞄准目标应有适当提前量
C .瞄准目标应有适当滞后量
D .无法确定
5.人站在商场中作匀速运动的自动扶梯上从一楼到二楼需30s 时间,某人走上扶梯后继续匀速往上走,结果从一楼到二楼只用20s 时间,则当扶梯不动时,该人以同样的行走速度从一楼到二楼需要的时间为 ( D ) A .10s B .50s C . 25s D . 60s
图1
磁铁无论是N 极或者是S 极对于小钢球来说都是表现为吸引,所以在B 处的磁铁对小钢球有吸引力使它向下弯曲,却不能判断是何极性。

这里所说的匀速直线运动,并没有指出速度的方向指向那里,那么我们可以有如下的假设:
(1) 速度指向恰好与F 2同向,那么当撤去F 2是物体肯定作匀减速直线运动; (2) 速度指向恰好与F 2反向,那么当撤去F 2是物体肯定作匀加速直线运动; (3) 速度指向与F 2不在一直线上,那么当撤去F 2时物体肯定作曲线运动; B V 1
V 2 马的奔跑速度为V 2, V 1为马未奔跑时的箭的速度,V 为箭在两个分运动同时进行时的合运动的合速度,由图看出,在马上的射手应瞄着B 点,箭头最终到达A 点,所以射手应把握恰当的滞后量。

V 1
2
v u
L
设电梯的速度为V, 人行走的速度为u,且方向相同。

第一句话的含义是人不走,电梯把人带到2楼,可 求出电梯的速度为: 30L v =
第二句话的含义是人在电梯上以u 行走,两个分运
动同方向其合速度为: 20L
v u =+
人行走的速度u : L L L u =-=
第三句话的含义是人在电梯上以u 行走,电梯不动,其到2楼的时间为:t
L
u =
L
L = s t 60=
6.小船在水速较小的河中横渡,并使船头始终垂直河岸航行,到达河中间时,突然上游来水使水流速 度加快,则对此小船渡河的说法正确的是 ( B )
A .小船要用更长的时间才能到达对岸
B .小船到达对岸的位移将变大,但所用时间仍不变
C .因小船船头始终垂直河岸航行,故所用时间及位移都不会变化
D .因船速与水速关系未知,故无法确定渡河时间及位移的变化
7.—架飞机水平匀速飞行,从飞机上每隔1s 释放一个铁球,先后共释放4个,若不计空气阻力,则 4个铁球
( C )
A .在空中任意时刻总是排列成抛物线,它们的落地点是等间距的
B .在空中任意时刻总是排列成抛物线,它们的落地点不是等间距的
C .在空中任意时刻总是在飞机的正下方,排列成竖直直线,它们的落地点是等间距的
D .在空中任意时刻总是在飞机的正下方,排列成竖直直线,它们的落地点不是等间距的
o 的水平位移的大小是
( C )
A .v o 2sin θ/g
B . v o 2cos θ/g
C . v o 2tan θ/g
D . v o 2ctan θ/g
10.物体在高处以初速度v
o 水平抛出,落地时速度大小为v ,那么该物体在空中运动的时间( C )
A .(v —v o )/g
B .(v 十v o )/g
C .
g v v o /2
2— D .
g V V o /2
2十
y
二、填空题(每题5分,共25分)
11.如图2所示,质量为m 的物体受到4个共点力的作用下正在作匀速直线运动,
速度方向与F 1、F 3方向恰在一直线上,则
(1)若只撤去F 1,则物体将作 匀加速直线 运动,加速度大小为 F 1/m m/s 2,方
向为 F 1相反方向(V 方向) 。

(2)若只撤去F 2,它将作 曲线运动 运动,加速度大小为 F 2/m m/s 2,
方向为 F 2相反方向 。

(3)若只撤去F 3,它将作 匀减速直线 运动,加速度大小为 F 3/m m/s 2,
方向为 F 3相反方向(V 反方向) 。

12.如图3所示,一个物体从直角坐标的原点O 做匀速运动,经过时间t=10s 到达p 点,则该物体在x 方向的分速度为 0.6m/s ,y 方向的分速度为 0.8m/s , 物体在10s 内的平均速度为 1m/s 。

13.以初速度v o 水平抛出一个物体,当它的水平位移等于竖直位移时,物体运动的时间为 2V 0/g_ .
14.海面上空490m 高处,以240m/s 的速度水平飞行的轰炸机正在追击一艘鱼雷快
艇,该艇正以25m/s 的速度与飞机同方向行驶,则飞机应在鱼雷艇后面__2150__m 处投下炸弹,才能击中该艇。

图2
特别注意: F 1不等于F 3 F 2和F 4的合力F 应该和F 3同向且一定满足: 31F F F +=
F
根据平均速度定义:s m t S V /110
682
2=+=
= 图3
S
v 0
v y v
θ
h t
x 再一次画出平抛图: 本题条件为: h = x 2
2
1gt h =
t V X 0=
t V gt 02
2
1= g V t 02=
注意: X 、Y 方向的分运动的等时性。

X
X 0
S
看左图:提前量为x 0
X 为平抛水平距离,S 为舰艇在炸弹飞行过程中行驶的距离,它们有如下的关系: X = x 0 + S
2
21gt h =
s g h t 108
.9490
22=⨯== m t V X 24000== m S 250=
所以: m X 215025024000=-=
h
15.摩托车障碍赛中,运动员在水平路面上遇到一个壕沟,壕沟的尺寸如图 4所示,要安全的越过这壕沟,摩托车的速度v o 至少为_20__m/s 。

(空气阻力不计,g=10m/s 2

三、计算题(共35分) 16.(8分)直升飞机空投物资时,可以停留在空中不动,设投出
的物资离开飞机即由于降落伞的作用在空中能匀速下落,无风时落地速度为5m/s 。

若空投时飞机停留在离地面100m 高处空投物资,由于风的作用,使降落伞和物资以1m/s 速度匀速水平向北运动,求 (1)物资在空中运动的时间 (2)物资落地时速度的大小
(3)物资在下落过程中水平方向移动的距离
17.(9分)船以4m/s`的速度垂直河岸渡河,水流的速度为5m/s 。

若河宽为120m ,试分析计算: (1)船能否垂直到达对岸? (2)船需要多少时间才能到达对岸? (3)船登陆的地点离出发点的距离是多少?
18.(9分)图5是用频闪照相研究平抛运动时拍下的照片,背景方格纸的边长为2.5cm ,A 、B 、C 是同一小球在频闪照相中拍下的三个连续的不同位置时的照
片,试求:(g =10m/s 2

(1)频闪照相相邻闪光的时间间隔 (2)小球水平抛出的初速度
图4
图5
5m/s 解: 本题在竖直方向为匀速直线运动速度大小为5m/s.(不同于平抛) 在水平方向为匀速直线运动速度大小为1m/s. (1)高度决定时间: s t 205100== (2)落地的速度为合速度V : s m V /1.5265122==+= (3) m X 20201=⨯= 解: (1)船头直指对岸,船被水冲向下游,故不能垂直到达对岸。

即使船头向上游方向偏个角度也无法垂直到达对岸(水船<V V )
(2) 渡河时间: s t 304120
==
(3) 冲向下游的距离m X 150305=⨯= 船登陆地点到出发点的直线距离: m S 1.19212015022=+=
解: 设小方格的边长为L ;观察水平方向AB 、BC 、CD 间隔均为3L ,说明它们在时间上等间隔,观察竖直方向每隔一个时间间隔,在该时间间隔里通过的位移就递增一个L; 根据竖直方向的匀变速规律: 2aT S =∆ 本题为:2gT L = s L T 5.0105.22
=⨯==- s m L V /15.0105.23320=⨯⨯==
-
19.(9分)光滑水平面上,一个质量为0.5Kg的物体从静止开始受水平力而运动。

在前5s 内受到一个正东方向、大小为1.0N的水平恒力作用,第5s末该力撤去,改为受一个
正北方向、大小为0.5N的水平恒力,作用10s时间。

问:
(1)该物体在前5s和后10s各作什么运动?
(2)笫15s末的速度大小及方向?(g=10m/s2)
x
1。

相关文档
最新文档