高等数学竞赛数学专业类

合集下载

2010年浙江省高等数学竞赛试题与答案(共4份)

2010年浙江省高等数学竞赛试题与答案(共4份)

试题共四套:数学类、工科类、经管类、文专类2010浙江省大学生高等数学(微积分)竞赛试题(数学类)一、计算题(每小题14分,满分70分)1.求极限1lim 2n →+∞+⎦2.计算()22222exp 21R x xy y dxdy ρρ⎡⎤-+⎢⎥--⎢⎥⎣⎦⎰⎰. 其中01ρ≤< 3.请用,a b 描述圆 222x y y +≤ 落在椭圆 22221x y a b+= 内的充分必要条件,并求此时椭圆的最小面积。

4.已知分段光滑的简单闭曲线Γ(约当曲线)落在平面π:10ax by cz +++=上,设Γ在π上围成的面积为A ,求()()()bz cy dx cx az dy ay bx dz ax by czΓ-+-+-++⎰其中n Γ与的方向成右手系。

5.设f 连续,满足()()() 22 02exp xf x x x t f t dt =--⎰且()11/f e =,求()()1n f 的值。

二、(满分20)定义数列{}n a 如下:{},,max ,211011dx x a a a n n ⎰-==,4,3,2=n ,求n n a ∞→lim 。

三、(满分20分)设函数)(2R C f ∈,且0)(lim =∞→x f x ,1)(≤''x f ,证明:0)(lim ='∞→x f x 。

四、(满分20分)设非负函数f 在[0,1]上满足)()()(,,y f x f y x f y x +≥+∀且1)1(=f ,证明:(1)]1,0[,2)(∈≤x x x f (2)21)(1≤⎰dx x f 五、(满分20分)设全体正整数集合为+N ,若集合+⊂N G 对加法封闭(即G y x G y x ∈+⇒∈∀,),且G 内所有元素的最大公约数为1,证明:存在正整数N ,当正整数n >N 时,G n ∈(工科类)一、计算题(每小题14分,满分70分)1.求极限1lim 2n →+∞+⎦2.计算()() +22 122dxx x x ∞-∞+-+⎰3.设ABC ∆为锐角三角形,求sin sin sin cos cos cos A B C A B C ++---的最大值和最小值。

历届全国大学生数学竞赛数学类试卷及解析

历届全国大学生数学竞赛数学类试卷及解析

x −1= y +1= z .
圆柱面的半径即为平行直线 x = y = z 和 x −1 = y +1 = z 之间的距离. P0 (1, −1, 0)
第 1 页( 共 6 页)
姓名:
为 L0 上的点. ………………………………………………………………. (12 分)
G JJJG G JJJG
对圆柱面上任意一点 S(x, y, z) , 有 | n ×GP0S | = | n ×GP0O | , 即
分)
专业:
年级: 线

所在院校:
得分 评阅人
∫ ∑ 五、(10 分)设 an =
π
2t
sin nt
3
dt ,
0 sin t

证明
1发
a n=1 n
散.
∫ ∫ ∫ 解:
π
2t
sin nt
3
dt
=
0 sin t
π
nt
sin nt
3
dt
+
0 sin t
π
2 π
t
n
sin nt sin t
3
dt
=
I1
+ I2
0,且 f , g 有公共特征向量.
证 明 : 假 设 λ0 是 f 的 特 征 值 , W 是 相 应 的 特 征 子 空 间 , 即
W = {η ∈V | f (η) = λ0η} .于是,W 在 f 下是不变的. …………………………(1 分)
下面先证明, λ0 =0.任取非零η ∈W ,记 m 为使得η, g(η), g 2 (η),", g m (η) 线性相关的 最小的非负整数,于是,当 0 ≤ i ≤ m −1 时,η, g(η), g 2 (η),", gi (η) 线性无关…..(2 分)

全国大学生数学竞赛分组方案

全国大学生数学竞赛分组方案

全国大学生数学竞赛分组方案为发现和选拔数学创新人才,促进高校数学课程改革和建设,增加大学生学习数学的兴趣,培养分析和解决问题的能力,为青年学生提供展示基础知识和思维能力的舞台,经中国数学学会批准,由XXXX大学承办第十届全国大学生数学竞赛。

根据《关于举办X届全国大学生数学竞赛的通知》精神,经XX省数学学会常务理事会讨论,拟定了20XX届全国大学生数学竞赛XX赛区竞赛分组方案。

现将大赛具体事宜通知如下:一、竞赛组织全国大学生数学竞赛XX赛区的主办单位是XX省数学协会,由XX大学和XX大学的X所高校联合举办。

二、参赛对象及名额分配(1)参赛对象大学本科二年级及以上在校大学生。

竞赛分为非数学专业组和数学专业组(含数学与应用数学、信息与计算科学专业学生),数学专业学生不得参加非数学专业组的竞赛。

(2)名额分配参赛人数不限,由各参赛学校自行确定。

三、初赛时间本届比赛初赛在20___年__月__日(星期六)上午9:00—11:30分别在XX大学、XX大学X个考点进行,参赛学校可自行选择,就近参加考试。

四、竞赛知识范围(1)非数学专业初赛内容:高等数学。

决赛考试内容:高等数学、线性代数(占总成绩的比例分别为80%和20%左右)。

(2)数学专业初赛考试内容:数学分析、高等代数、解析几何(所占比重分别为50%、35%及15%左右)。

决赛试卷分为两类:大二学生:在预赛内容的基础上,增加常微分方程(考试成绩约占总成绩的15%)。

大三及以以上学生:在大二学生考试内容的基础上,增加实变函数、复变函数、抽象代数、数值分析、微分几何、概率论等内容,由考生选择其中三门课程的试题,新增内容占总成绩的比例不超过50%。

以上试题涉及的各科内容不超过数学本科或理工科本科相应教学大纲规定的教学内容。

五、收费标准每位考生需缴纳报名费X元,其中X元用于分赛区,X元交由全国大学生数学竞赛组委会;用于赛区初赛和决赛阶段竞赛工作的组织、命题、评奖,以及召开竞赛工作领导小组会议等竞赛相关工作的费用。

大连市第3-6届高等数学竞赛试题

大连市第3-6届高等数学竞赛试题

大连市第三届大学生高等数学竞赛试题1.(10分)求2.(10分)设函数f(x)在闭区间[0,1]上可微,且满足f(1)-2,求证在(0,1)内至少存在一点,使得f'()= —。

3.(10分)设函数f(x)具有一阶、二阶导数,f(0)=f(1)=0,且证明:4.(10分)求函f(x)= 在[0,2]上的最大值与最小值。

5.(10分)设函数f(x)在区间(0,1)上可微,且0<f'(x)≤1,f(0)=0证明6.(10分)已知f(t)=(tg(tg(tg,求f'(1)。

7.(10分)试求的和函数,并计算8.(10分)一均质链条挂在一个无摩擦的钉子上,运动开始时,链条的一边垂下8米,另一边垂下10米,试问整个链条滑过钉子需要多少时间?9.(10分)设f(x)=a1sin(x)+a2sin2x+…+a n sinnx,且|f(x)|≤|sinx|求证:| a1+a2+…+a n|≤110.(10分)设半径为R的球的球心在半径为a的定球面上,问R为何值时,夹在定球内部的表面积最大,并求出最大的表面积的值。

大连市第四届大学生高等数学竞赛试题1、设x=g(y)为y=f(x)的反函数,求。

2、设f(x)在(+)上有连续导函数,求其中L是从点A(3,)到点B(1,2)的直线段。

3、设f(x)在[a,b]上具有二阶连续导数,求证在(a,b)内存在,使得=(b-a)f()+(b-a) 。

4、设f(x)= 定义A(x)=令A= A(1)+ A()+…+ A()+…,试证:<A<15、设f(x)在(+)上有三阶连续导数,且等式f(x+h)=f(x)+hf’(x+)(0<<1)中,与h无关,则f(x)必为一个一次函数或二次函数。

6、函数f(x)具有二阶连续导数,且f(0)=0,试证由g(x)=所定义的g(x)有一阶连续导数。

7、若函数f(x)在[0,1]上二次可微,且f(0)=f(1), ||≤1,试证:||≤在[0,1]上成立。

2013年浙江省高等数学竞赛(数学类)参考答案

2013年浙江省高等数学竞赛(数学类)参考答案
2013 浙江省高等数学(微积分)竞赛试题 数学类参考答案
一、计算题(每小题 14 分,满分 70 分)
k - sin 2 k é 1.求极限 lim å ln ( n + k - sin 2 k ) - ln n ù 2 ë û。 n ®+¥ n k =1
n
k - 1 1 解:记 f ( x ) = x ln(1 + x ) , xk = , Dx k = n n
1 ( n ) 1 f n ( ) n n !
ln x + x n -1
( n -1)
( f n ( x ))( ) = ( nx n -1 ln x + x n -1 )
= n( f n -1 ( x ))(
n -1 )
+ ( n - 1) !
第 2 页 共 4 页
第 3 页 共 4 页
h ( t1 ) < h ( t2 )
所以 f ( x ) 严格单调增。
五、 (满分 20 分)
设 x1 = 1 , sin xn = xn cos xn +1
+¥ຫໍສະໝຸດ xn +1 Î ( 0, p / 2 ) ,证明:
n 收敛
1) lim xn = 0 。2)级数
0
1
1 1 1 x 2 1 ln 2 - ò dx = 2 2 0 x + 1 4
2.求异面面直线 L1 : 的方程。
x - 5 y - 1 z + 1 x + 2 y - 2 z - 4 = = 与 L2 : = = 的公垂线 L 4 -3 1 -2 9 2
解: l1 ´ l2 = -5{3, 2, -6} ,公垂线 L 法矢量为 l = {3, 2, -6}

《高等数学竞赛讲座》课件

《高等数学竞赛讲座》课件

V. 总结
总结竞赛内容和要点: 总结竞赛中涉及的各个数学领域的知识点和解题技巧。
鼓励学生参加竞赛的积极性和热情: 引导学生重视高等数学竞赛,激发他们的 兴趣和热情。
提高学生数学素养和竞赛水平的建议和指导: 给出一些建议和指导,Байду номын сангаас助学生 提高数学素养和竞赛水平。
III. 解题技巧
常用方法和技巧: 学习解题技巧,如逆向思维、数学归纳法和构造法等,以提 高解题效率。
常见易错点: 分析竞赛中出现的典型错误,帮助同学们避免常见的陷阱。
优秀解题方法分享: 分享一些优秀同学的解题思路和方法,启发大家寻找更多 解题思路。
IV. 答疑解惑
对于难题的解释和讲解: 解释高难度题目的解题思路和方法,帮助同学们理解和掌握。 对于同学提出的问题进行回答和解决: 回答同学们在竞赛准备中遇到的疑惑和困惑,帮助他们解决问题。
例题1:极限计算: 分析极限的定义、运用不同的极限性质,解答复杂的极限计算题目。 例题2:方程求解: 利用数学方法解决各类方程,包括多项式方程、三角方程和指数方程。 例题3:向量运算: 讨论向量的性质和运算法则,解决与向量相关的几何和代数问题。 例题4:微分方程: 掌握微分方程的基本概念和解题方法,分析各种类型的微分方程。 例题5:不等式证明: 运用数学推理和逻辑推断,证明各类数学不等式。
《高等数学竞赛讲座》 PPT课件
I. 竞赛内容
概述: 高等数学竞赛是一个充满挑战和乐趣的比赛,涉及各个数学领域的题目。
题型:题目覆盖了极限计算、方程求解、向量运算、微分方程以及不等式证明 等多个方面。 评分方法:通过对答案的正确性、解题过程的完整性以及解题思路的独特性进 行评分。
II. 案例分析

全国大学生数学竞赛数学类比赛大纲

全国大学生数学竞赛数学类比赛大纲

数学分析占50%,高等代数占35%,解析几何占15%,具体内容如下:Ⅰ、数学分析部分一、集合与函数1. 实数集、有理数与无理数的稠密性,实数集的界与确界、确界存在性定理、闭区间套定理、聚点定理、有限覆盖定理.2. 上的距离、邻域、聚点、界点、边界、开集、闭集、有界(无界)集、上的闭矩形套定理、聚点定理、有限复盖定理、基本点列,以及上述概念和定理在上的推广.3. 函数、映射、变换概念及其几何意义,隐函数概念,反函数与逆变换,反函数存在性定理,初等函数以及与之相关的性质.二、极限与连续1. 数列极限、收敛数列的基本性质(极限唯一性、有界性、保号性、不等式性质).2. 数列收敛的条件(Cauchy准则、迫敛性、单调有界原理、数列收敛与其子列收敛的关系),极限及其应用.3.一元函数极限的定义、函数极限的基本性质(唯一性、局部有界性、保号性、不等式性质、迫敛性),归结原则和Cauchy收敛准则,两个重要极限及其应用,计算一元函数极限的各种方法,无穷小量与无穷大量、阶的比较,记号O与o的意义,多元函数重极限与累次极限概念、基本性质,二元函数的二重极限与累次极限的关系.4. 函数连续与间断、一致连续性、连续函数的局部性质(局部有界性、保号性),有界闭集上连续函数的性质(有界性、最大值最小值定理、介值定理、一致连续性).三、一元函数微分学1.导数及其几何意义、可导与连续的关系、导数的各种计算方法,微分及其几何意义、可微与可导的关系、一阶微分形式不变性.2.微分学基本定理:Fermat定理,Rolle定理,Lagrange定理,Cauchy定理,Taylor公式(Peano 余项与Lagrange余项).3.一元微分学的应用:函数单调性的判别、极值、最大值和最小值、凸函数及其应用、曲线的凹凸性、拐点、渐近线、函数图象的讨论、洛必达(L'Hospital)法则、近似计算.四、多元函数微分学1. 偏导数、全微分及其几何意义,可微与偏导存在、连续之间的关系,复合函数的偏导数与全微分,一阶微分形式不变性,方向导数与梯度,高阶偏导数,混合偏导数与顺序无关性,二元函数中值定理与Taylor公式.2.隐函数存在定理、隐函数组存在定理、隐函数(组)求导方法、反函数组与坐标变换.3.几何应用(平面曲线的切线与法线、空间曲线的切线与法平面、曲面的切平面与法线).4.极值问题(必要条件与充分条件),条件极值与Lagrange乘数法.五、一元函数积分学1. 原函数与不定积分、不定积分的基本计算方法(直接积分法、换元法、分部积分法)、有理函数积分:型,型.2. 定积分及其几何意义、可积条件(必要条件、充要条件:)、可积函数类.3. 定积分的性质(关于区间可加性、不等式性质、绝对可积性、定积分第一中值定理)、变上限积分函数、微积分基本定理、N-L公式及定积分计算、定积分第二中值定理.4.无限区间上的广义积分、Canchy收敛准则、绝对收敛与条件收敛、非负时的收敛性判别法(比较原则、柯西判别法)、Abel判别法、Dirichlet判别法、无界函数广义积分概念及其收敛性判别法.5. 微元法、几何应用(平面图形面积、已知截面面积函数的体积、曲线弧长与弧微分、旋转体体积),其他应用.六、多元函数积分学1.二重积分及其几何意义、二重积分的计算(化为累次积分、极坐标变换、一般坐标变换).2.三重积分、三重积分计算(化为累次积分、柱坐标、球坐标变换).3.重积分的应用(体积、曲面面积、重心、转动惯量等).4.含参量正常积分及其连续性、可微性、可积性,运算顺序的可交换性.含参量广义积分的一致收敛性及其判别法,含参量广义积分的连续性、可微性、可积性,运算顺序的可交换性.5.第一型曲线积分、曲面积分的概念、基本性质、计算.6.第二型曲线积分概念、性质、计算;Green公式,平面曲线积分与路径无关的条件.7.曲面的侧、第二型曲面积分的概念、性质、计算,奥高公式、Stoke公式,两类线积分、两类面积分之间的关系.七、无穷级数1. 数项级数级数及其敛散性,级数的和,Cauchy准则,收敛的必要条件,收敛级数基本性质;正项级数收敛的充分必要条件,比较原则、比式判别法、根式判别法以及它们的极限形式;交错级数的Leibniz 判别法;一般项级数的绝对收敛、条件收敛性、Abel判别法、Dirichlet判别法.2. 函数项级数函数列与函数项级数的一致收敛性、Cauchy准则、一致收敛性判别法(M-判别法、Abel判别法、Dirichlet判别法)、一致收敛函数列、函数项级数的性质及其应用.3.幂级数幂级数概念、Abel定理、收敛半径与区间,幂级数的一致收敛性,幂级数的逐项可积性、可微性及其应用,幂级数各项系数与其和函数的关系、函数的幂级数展开、Taylor级数、Maclaurin级数.4.Fourier级数三角级数、三角函数系的正交性、2及2周期函数的Fourier级数展开、Beseel不等式、Riemanm-Lebesgue定理、按段光滑函数的Fourier级数的收敛性定理.Ⅱ、高等代数部分一、多项式1. 数域与一元多项式的概念2. 多项式整除、带余除法、最大公因式、辗转相除法3. 互素、不可约多项式、重因式与重根.4. 多项式函数、余数定理、多项式的根及性质.5. 代数基本定理、复系数与实系数多项式的因式分解.6. 本原多项式、Gauss引理、有理系数多项式的因式分解、Eisenstein判别法、有理数域上多项式的有理根.7. 多元多项式及对称多项式、韦达(Vieta)定理.二、行列式1. n级行列式的定义.2. n级行列式的性质.3. 行列式的计算.4. 行列式按一行(列)展开.5. 拉普拉斯(Laplace)展开定理.6. 克拉默(Cramer)法则.三、线性方程组1. 高斯(Gauss)消元法、线性方程组的初等变换、线性方程组的一般解.2. n维向量的运算与向量组.3. 向量的线性组合、线性相关与线性无关、两个向量组的等价.4. 向量组的极大无关组、向量组的秩.5. 矩阵的行秩、列秩、秩、矩阵的秩与其子式的关系.6. 线性方程组有解判别定理、线性方程组解的结构.7. 齐次线性方程组的基础解系、解空间及其维数四、矩阵1. 矩阵的概念、矩阵的运算(加法、数乘、乘法、转置等运算)及其运算律.2. 矩阵乘积的行列式、矩阵乘积的秩与其因子的秩的关系.3. 矩阵的逆、伴随矩阵、矩阵可逆的条件.4. 分块矩阵及其运算与性质.5. 初等矩阵、初等变换、矩阵的等价标准形.6. 分块初等矩阵、分块初等变换.五、双线性函数与二次型1. 双线性函数、对偶空间2. 二次型及其矩阵表示.3. 二次型的标准形、化二次型为标准形的配方法、初等变换法、正交变换法.4. 复数域和实数域上二次型的规范形的唯一性、惯性定理.5. 正定、半正定、负定二次型及正定、半正定矩阵六、线性空间1. 线性空间的定义与简单性质.2. 维数,基与坐标.3. 基变换与坐标变换.4. 线性子空间.5. 子空间的交与和、维数公式、子空间的直和.七、线性变换1. 线性变换的定义、线性变换的运算、线性变换的矩阵.2. 特征值与特征向量、可对角化的线性变换.3. 相似矩阵、相似不变量、哈密尔顿-凯莱定理.4. 线性变换的值域与核、不变子空间.八、若当标准形1.矩阵.2. 行列式因子、不变因子、初等因子、矩阵相似的条件.3. 若当标准形.九、欧氏空间1. 内积和欧氏空间、向量的长度、夹角与正交、度量矩阵.2. 标准正交基、正交矩阵、施密特(Schmidt)正交化方法.3. 欧氏空间的同构.4. 正交变换、子空间的正交补.5. 对称变换、实对称矩阵的标准形.6. 主轴定理、用正交变换化实二次型或实对称矩阵为标准形.7. 酉空间.Ⅲ、解析几何部分一、向量与坐标1. 向量的定义、表示、向量的线性运算、向量的分解、几何运算.2. 坐标系的概念、向量与点的坐标及向量的代数运算.3. 向量在轴上的射影及其性质、方向余弦、向量的夹角.4. 向量的数量积、向量积和混合积的定义、几何意义、运算性质、计算方法及应用.5. 应用向量求解一些几何、三角问题.二、轨迹与方程1.曲面方程的定义:普通方程、参数方程(向量式与坐标式之间的互化)及其关系.2.空间曲线方程的普通形式和参数方程形式及其关系.3.建立空间曲面和曲线方程的一般方法、应用向量建立简单曲面、曲线的方程.4.球面的标准方程和一般方程、母线平行于坐标轴的柱面方程.三、平面与空间直线1.平面方程、直线方程的各种形式,方程中各有关字母的意义.2.从决定平面和直线的几何条件出发,选用适当方法建立平面、直线方程.3.根据平面和直线的方程,判定平面与平面、直线与直线、平面与直线间的位置关系.4. 根据平面和直线的方程及点的坐标判定有关点、平面、直线之间的位置关系、计算他们之间的距离与交角等;求两异面直线的公垂线方程.四、二次曲面1.柱面、锥面、旋转曲面的定义,求柱面、锥面、旋转曲面的方程.2.椭球面、双曲面与抛物面的标准方程和主要性质,根据不同条件建立二次曲面的标准方程.3.单叶双曲面、双曲抛物面的直纹性及求单叶双曲面、双曲抛物面的直母线的方法.4.根据给定直线族求出它表示的直纹面方程,求动直线和动曲线的轨迹问题.五、二次曲线的一般理论1.二次曲线的渐进方向、中心、渐近线.2.二次曲线的切线、二次曲线的正常点与奇异点.3.二次曲线的直径、共轭方向与共轭直径.4.二次曲线的主轴、主方向,特征方程、特征根.5.化简二次曲线方程并画出曲线在坐标系的位置草图.。

全国大学生数学竞赛范围

全国大学生数学竞赛范围

中国大学生数学竞赛(非数学专业类)竞赛内容为大学本科理工科专业高等数学课程的教学内容,具体内容如下:一、函数、极限、连续1. 函数的概念及表示法、简单应用问题的函数关系的建立.2. 函数的性质:有界性、单调性、周期性和奇偶性.3. 复合函数、反函数、分段函数和隐函数、基本初等函数的性质及其图形、初等函数.4. 数列极限与函数极限的定义及其性质、函数的左极限与右极限.5. 无穷小和无穷大的概念及其关系、无穷小的性质及无穷小的比较.6. 极限的四则运算、极限存在的单调有界准则和夹逼准则、两个重要极限.7. 函数的连续性(含左连续与右连续)、函数间断点的类型.8. 连续函数的性质和初等函数的连续性.9. 闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理).二、一元函数微分学1. 导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线.2. 基本初等函数的导数、导数和微分的四则运算、一阶微分形式的不变性.3. 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法.4. 高阶导数的概念、分段函数的二阶导数、某些简单函数的n 阶导数.5. 微分中值定理,包括罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理.6. 洛必达(L ’Hospital )法则与求未定式极限.7. 函数的极值、函数单调性、函数图形的凹凸性、拐点及渐近线(水平、铅直和斜渐近线)、函数图形的描绘.8. 函数最大值和最小值及其简单应用.9. 弧微分、曲率、曲率半径.三、一元函数积分学1. 原函数和不定积分的概念.2. 不定积分的基本性质、基本积分公式.3. 定积分的概念和基本性质、定积分中值定理、变上限定积分确定的函数及其导数、牛顿-莱布尼茨(Newton-Leibniz )公式.4. 不定积分和定积分的换元积分法与分部积分法.5. 有理函数、三角函数的有理式和简单无理函数的积分.6. 广义积分.7. 定积分的应用:平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力及函数的平均值.四.常微分方程1. 常微分方程的基本概念:微分方程及其解、阶、通解、初始条件和特解等.2. 变量可分离的微分方程、齐次微分方程、一阶线性微分方程、伯努利(Bernoulli )方程、全微分方程.3. 可用简单的变量代换求解的某些微分方程、可降阶的高阶微分方程:),()n (x f y =),,(y x f y '='' ),(y y f y '=''.4. 线性微分方程解的性质及解的结构定理.5.二阶常系数齐次线性微分方程、高于二阶的某些常系数齐次线性微分方程.6.简单的二阶常系数非齐次线性微分方程:自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积7.欧拉(Euler)方程.8.微分方程的简单应用五、向量代数和空间解析几何1.向量的概念、向量的线性运算、向量的数量积和向量积、向量的混合积.2.两向量垂直、平行的条件、两向量的夹角.3.向量的坐标表达式及其运算、单位向量、方向数与方向余弦.4.曲面方程和空间曲线方程的概念、平面方程、直线方程.5.平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件、点到平面和点到直线的距离.6.球面、母线平行于坐标轴的柱面、旋转轴为坐标轴的旋转曲面的方程、常用的二次曲面方程及其图形.7.空间曲线的参数方程和一般方程、空间曲线在坐标面上的投影曲线方程.六、多元函数微分学1.多元函数的概念、二元函数的几何意义.2.二元函数的极限和连续的概念、有界闭区域上多元连续函数的性质.3.多元函数偏导数和全微分、全微分存在的必要条件和充分条件.4.多元复合函数、隐函数的求导法.5.二阶偏导数、方向导数和梯度.6.空间曲线的切线和法平面、曲面的切平面和法线.7.二元函数的二阶泰勒公式.8.多元函数极值和条件极值、拉格朗日乘数法、多元函数的最大值、最小值及其简单应用.七、多元函数积分学1.二重积分和三重积分的概念及性质、二重积分的计算(直角坐标、极坐标)、三重积分的计算(直角坐标、柱面坐标、球面坐标).2.两类曲线积分的概念、性质及计算、两类曲线积分的关系.3.格林(Green)公式、平面曲线积分与路径无关的条件、已知二元函数全微分求原函数.4.两类曲面积分的概念、性质及计算、两类曲面积分的关系.5.高斯(Gauss)公式、斯托克斯(Stokes)公式、散度和旋度的概念及计算.6.重积分、曲线积分和曲面积分的应用(平面图形的面积、立体图形的体积、曲面面积、弧长、质量、质心、转动惯量、引力、功及流量等)八、无穷级数1.常数项级数的收敛与发散、收敛级数的和、级数的基本性质与收敛的必要条件.2.几何级数与p级数及其收敛性、正项级数收敛性的判别法、交错级数与莱布尼茨(Leibniz)判别法.3.任意项级数的绝对收敛与条件收敛.4.函数项级数的收敛域与和函数的概念.5.幂级数及其收敛半径、收敛区间(指开区间)、收敛域与和函数.6.幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分)、简单幂级数的和函数的求法.7.初等函数的幂级数展开式.8.函数的傅里叶(Fourier)系数与傅里叶级数、狄利克雷(Dirichlei)定理、函数在[-l,l]上的傅里叶级数、函数在[0,l]上的正弦级数和余弦级数。

高等数学竞赛试题(一)

高等数学竞赛试题(一)

高等数学竞赛试题(一)一、填空:1.若()⎪⎩⎪⎨⎧≤->-=,x ,a x ,x f x xx01e 0,arctan e 12sin 是()+∞∞-,上的连续函数,则a = -1 。

2.函数x x y 2sin +=在区间⎥⎦⎤⎢⎣⎡ππ,2上的最大值为332+π 。

3.()=+⎰--22d ex x x x26e 2-- 。

4.由曲线⎩⎨⎧==+0122322z y x 绕y 轴旋转一周得到的旋转面在点()230,,处的指向外侧的单位法向量为{}32051,, 。

5.设函数()x,y z z =由方程2e =+----x y z x x y z 所确定,则=z d ()y x x x xy z xy z d d e 1e 1-1+++---- 。

二、选择题:1. 设函数f (x )可导,并且()50='x f ,则当0→∆x 时,该函数在点0x 处微分d y 是y ∆的( A ) (A )等价无穷小; (B )同阶但不等价的无穷小; (C )高阶无穷小; (D )低阶无穷小。

2. 设函数f (x )在点x = a 处可导,则()x f 在点x = a 处不可导的充要条件是( C ) (A )f (a ) = 0,且()0='a f ; (B )f (a )≠0,但()0='a f ; (C )f (a ) = 0,且()0≠'a f ; (D )f (a )≠0,且()0≠'a f 。

3. 曲线12+-+=x x x y ( B )(A )没有渐近线; (B )有一条水平渐近线和一条斜渐近线; (C )有一条铅直渐近线; (D )有两条水平渐近线。

4.设()()x,y x,y f ϕ与均为可微函数,且()0≠'x,y y ϕ。

已知()00,y x 是()x,y f 在约束条件()0=x,y ϕ下的一个极值点,下列选项中的正确者为( D )(A )若()000=',y x f x ,则()000=',y x f y ; (B )若()000=',y x f x ,则()000≠',y x f y ; (C )若()000≠',y x f x ,则()000=',y x f y ; (D )若()000≠',y x f x ,则()000≠',y x f y 。

全国高等院校数学能力挑战赛

全国高等院校数学能力挑战赛

全国高等院校数学能力挑战赛本文旨在介绍全国高等院校数学能力挑战赛的背景和目的。

本次全国高等院校数学能力挑战赛将考察以下题目类型、数学领域和难度级别:选择题:考察学生对数学基础知识的掌握程度,包括代数、几何、概率与统计等方面的题目。

解答题:要求学生通过分析、推理和解决实际问题的能力来回答问题,其中包括数学建模和证明等方面的题目。

计算题:要求学生运用数学计算方法来解决问题,包括数值计算、函数计算、积分和微分等方面的题目。

考试内容将涵盖高等数学、线性代数、概率论与数理统计等数学领域,难度级别将覆盖从基础知识应用到较为复杂的问题解决的各个层次。

在本次比赛中,我们将以简化的策略进行设计,避免引入法律复杂性的问题,确保以公正、公平和公开的原则进行比赛评判和结果确认。

请各位参赛选手提前做好充分准备,熟悉以上题目类型和数学领域,以应对本次全国高等院校数学能力挑战赛的考验。

了解比赛信息:参赛者需要先了解比赛的相关信息,包括时间、地点、报名截止日期等。

填写报名表格:参赛者需要下载并填写比赛的报名表格,准确填写个人信息和联系方式。

提交报名表格:参赛者需要按照指定的方式将填写好的报名表格提交给组委会。

考试形式:比赛采用笔试方式进行,参赛者需要准时到达考试地点,按照指定座位进行考试。

题目类型:比赛包括一系列数学能力挑战题目,涵盖多个数学领域,包括代数、几何、概率等。

考试时间:每道题目有指定的答题时间限制,参赛者需要根据题目要求合理安排时间,高效完成答题。

答题方式:参赛者需要使用提供的答题卡,按照题目要求在答题卡上作答,包括填空、解答等。

答题准确性:参赛者的答案需要准确无误,按照标准答案进行评判。

解题思路:除了答案准确性外,参赛者的解题思路也会得到评判,创新和合理的解题思路将获得额外加分。

时间管理:参赛者需要合理安排时间,高效完成答题,时间使用得当也会得到一定的评分加分。

以上是《全国高等院校数学能力挑战赛》的比赛流程,包括报名流程、答题方式和评分标准。

浙江省高等数学竞赛试题与答案工科类

浙江省高等数学竞赛试题与答案工科类

2012浙江省高等数学(微积分)竞赛试题工科类一计算题:(每小题14分,满分70分)1.求极限lim log ()abx x x x →+∞+。

2.设函数:f →R R 可导,且,x y ∀∈R ,满足()()f x y f x y xy +≥++,求()f x 的表达式。

3.计算 0sin d n x x x π⎰(n 为正整数)。

4.计算{}min ,2d d Dx y x y x y -⎰⎰,D 为2y x =与2y x =围成的平面有界闭区域。

5.求曲线33cos sin x a y a θθ⎧=⎪⎨=⎪⎩,(0)θπ≤≤的形心,其中0a >为常数。

二、(满分20分)证明:111ln 1lnn i n n n i =+<<+∑,n ¢+∈。

三、(满分20分)设2:u →R R 所有二阶偏导连续,证明u 可表示为(,)()()u x y f x g y =的充分必要条件为2u u u u x y x y∂∂∂=∂∂∂∂。

四、(满分20)在草地中间有一个底面半径为3米的圆柱形的房子。

外墙脚拴一只山羊,已知拴山羊的绳子长为π米,外墙底面半径为3米,求山羊能吃到草的草地面积。

五、(满分20分)证明11111(1)nnk k nk k C k k -==-=∑∑。

装订线工科类答案一、计算题1、若a b ≥ lim log ()abx x x x →+∞+lim log (1)lim log (1)ab ab a x x x x x xa x a --→+∞→+∞=+=++=同理,当a b <时,lim log ()abx x x x →+∞+b =, 所以lim log ()abx x x x →+∞+max(,)a b =2、解:由假设,0y ∀>,有()()1f x y f x x y+-≥+ f Q 可导()1f x x +'⇒≥+同理()1()1f x x f x x -''≤+⇒=+ 2()/2f x x x c =++ 3、解:sin d n x x x π⎰()011sin sin nnj j j j x x dx x j xdx ππππππ-====+-∑∑⎰⎰()()201sin d 21212nj n x x x j n n n n n n πππππ==+-=++-=+∑⎰4、解:(){}(){}12,1,,/2,01/2D x y x y x D x y x y x x =≤≤≤≤=≤≤≤≤(){}(){}2234,,1/21,,/2,01/2D x y xy x x D x y xy x x =≤≤≤≤=≤≤≤≤原积分12()d d ()d d D D y x x x y x y x x y =-+-⎰⎰⎰⎰34()d d ()d d D D x y x x y x y y x y +-+-⎰⎰⎰⎰211102d )d d ()d xxxx y x x y x x y x y =-+-⎰⎰⎰21112221002d ()d d ()2d xx xx x y x x y x x y y y +-+-⎰⎰⎰⎰11341456142210021211111()678851232x x x x x x x =-++-++146720112()24621x x x +-+111124724532245=++⨯⨯⨯⨯112533216642117920++=⨯⨯ 5、解:/0c LLx xds ds ==⎰⎰,d /d c LLy y s s =⎰⎰而d 3sin cos d s a θθθθ== 2d 3sin cos d sin cos 3Ls a ba d a ππθθθθθθ/===⎰⎰⎰/2324206d sin 3sin cos d 6sin cos d 5Ly s a x a aa ππθθθθθθθ===⎰⎰⎰0c x ∴= 25c y a =二、证明:显然11111d d j j jj x x x jx +-<<⎰⎰ 2j ≥1 1122111111d 1d 1ln nn n j n j j j j x x n j j x x -===∴=+<+=+=+∑∑∑⎰⎰另一方面111111111111d ln nn n j j j j j x n j jn x n n --+====+>+=+∑∑∑⎰三、证明:()()u f x g y =时,显然有xy x y uu u u =反之,若xy x y uu u u =成立,即有2()/()0xxy x y y u uu u u u u-== 1/()x u u f x ⇒= 也即1121ln ()d ()()()u f x x g y f x g y =+=+⎰ ()()u f x g y ∴=四、解:(方法一)以圆柱形旁子的圆心为原点,拴羊点在x 轴上3x =点,则羊跑最远的曲线在3x <的区域内是渐开线 即 3(cos (/3)sin )x t t t π=-- 3(sin (/3)cos )y t t t π=+- 记在3x <山羊能吃到草的草地面积为1S3/3213/2/32d 29sin d 2(3sin (3)cos )(3)cos d S y x t t t t t t t t ππππ=-=+--⎰⎰⎰/32029sin d t t π-⎰/32223(3)sin cos (3)cos d t t t t t t πππ⎡⎤=-+-⎣⎦⎰/32029sin d t t π-⎰/32213(3)sin (3)(sin 2)2t t t t t πππ⎡⎤=-+-+⎢⎥⎣⎦/32016(3)(sin 2)9sin d 2t t t t t ππ⎡⎤+-+-⎢⎥⎣⎦⎰ ()/3/3/322000191133cos 2sin 29cos 2d 2222t t t t t t t t ππππ⎛⎫⎛⎫⎛⎫=----+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰33/319sin 28349t t ππ⎛⎫=+-=⎪⎝⎭所以山羊能吃到草的草地面积333119218S πππ=+= (方法二) 山羊能吃到草的草地面积S 可表示为一半圆与绳子绕向房子所能到达的面积1S 和 绳子绕向房子时转过θ∆ 其扫过的面积可近似为扇形22r θ∆()2/33103/9S d ππθθπ=-=⎰所以311/18S π=五、证明:111110011111(1)(1)d (1)d nn n k k k k k k k knn n k k k C C t t C t t k t ---===--=-=-∑∑∑⎰⎰ 1100(1)11(1)d d n n t t t t t t ----==⎰⎰101d 1nx x x -=-⎰ 而11100111d d 1nnn k k k t t t t k t -==1-==-∑∑⎰⎰ ∴等式成立。

大学生高等数学竞赛试题汇总及答案

大学生高等数学竞赛试题汇总及答案

前三届高数竞赛预赛试题非数学类参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题;2009-2010年 第一届全国大学生数学竞赛预赛试卷一、填空题每小题5分1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(16/15,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=,⎰-=102d 1u uu 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,2.设)(x f 是连续函数,且满足⎰--=222d )(3)(x x f x x f , 则=)(x f ____________.解: 令⎰=2d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A ;因此3103)(2-=x x f ; 3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________.解: 因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由xz x =,yz y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x ;4.设函数)(x y y =由方程29ln )(y y f e xe =确定,其中f 具有二阶导数,且1≠'f ,则=22d d x y________________. 解: 方程29ln )(y y f e xe =的两边对x 求导,得 因)(29ln y f y xe e =,故y y y f x '=''+)(1,即))(1(1y f x y '-=',因此二、5分求极限xenx x x x ne e e )(lim 20+++→ ,其中n 是给定的正整数. 解 :因 故 因此三、15分设函数)(x f 连续,⎰=10d )()(t xt f x g ,且A xx f x =→)(lim,A 为常数,求)(x g '并讨论)(x g '在0=x 处的连续性.解 : 由A x x f x =→)(lim和函数)(x f 连续知,0)(lim lim )(lim )0(000===→→→xx f x x f f x x x因⎰=10d )()(t xt f x g ,故0)0(d )0()0(10===⎰f t f g , 因此,当0≠x 时,⎰=xu u f xx g 0d )(1)(,故 当0≠x 时,xx f u u f x x g x )(d )(1)(02+-='⎰, 这表明)(x g '在0=x 处连续.四、15分已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证:1⎰⎰-=---Lx y Lx y x ye y xe x ye y xe d d d d sin sin sin sin ;22sin sin 25d d π⎰≥--Ly y x ye y xe .证 :因被积函数的偏导数连续在D 上连续,故由格林公式知 1y x ye y xe x x ye y xe Dx y Lx y d d )()(d d sin sin sin sin ⎰⎰⎰⎥⎦⎤⎢⎣⎡-∂∂-∂∂=---而D 关于x 和y 是对称的,即知 因此 2因 故 由知即 2sin sin 25d d π⎰≥--Ly y x ye y xe五、10分已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.解 设x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是二阶常系数线性非齐次微分方程的三个解,则x x e e y y 212-=--和x e y y -=-13都是二阶常系数线性齐次微分方程 的解,因此0=+'+''cy y b y 的特征多项式是0)1)(2(=+-λλ,而0=+'+''cy y b y 的特征多项式是因此二阶常系数线性齐次微分方程为02=-'-''y y y ,由)(2111x f y y y =-'-''和 x x x e xe e y 212++=',x x x e xe e y 2142++='' 知,1112)(y y y x f -'-''=)(2)2(42222x x x x x x x x e xe e e xe e e xe +-++-++= 二阶常系数线性非齐次微分方程为六、10分设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形的面积为31.试确定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积最小.解 因抛物线c bx ax y ln 22++=过原点,故1=c ,于是 即而此图形绕x 轴旋转一周而成的旋转体的体积 即 令0)1(278)21(3152)(=---+='a a a a V πππ, 得 即 因此45-=a ,23=b ,1=c .七、15分已知)(x u n 满足),2,1()()(1 =+='-n e x x u x u x n n n, 且neu n =)1(, 求函数项级数∑∞=1)(n n x u 之和.解x n n ne x x u x u 1)()(-+=', 即由一阶线性非齐次微分方程公式知 即 因此由)1()1(nC e u n e n +==知,0=C , 于是下面求级数的和:令 则 即由一阶线性非齐次微分方程公式知令0=x ,得C S ==)0(0,因此级数∑∞=1)(n n x u 的和八、10分求-→1x 时, 与∑∞=02n n x 等价的无穷大量.解 令2)(t x t f =,则因当10<<x ,(0,)t ∈+∞时,2()2ln 0t f t tx x '=<,故xt t ex t f 1ln22)(-==在(0,)+∞上严格单调减;因此即()d ()1()d n f t t f n f t t ∞+∞+∞=≤≤+∑⎰⎰,又2()n n n f n x ∞∞===∑∑,21ln 1d 1ln1d d d )(01ln222πxt e xt et x t t f t xt t====⎰⎰⎰⎰∞+-∞+-∞+∞+,所以,当-→1x 时, 与∑∞=02n n x 等价的无穷大量是x-121π;2010-2012年 第二届全国大学生数学竞赛预赛试卷参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题; 一、25分,每小题5分1设22(1)(1)(1),nn x a a a =+++其中||1,a <求lim .n n x →∞2求21lim 1x x x e x-→∞⎛⎫+ ⎪⎝⎭;3设0s >,求0(1,2,)sx n I e x dx n ∞-==⎰;4设函数()f t 有二阶连续导数,1(,)r g x y f r ⎛⎫== ⎪⎝⎭,求2222g g x y ∂∂+∂∂;5求直线10:0x y l z -=⎧⎨=⎩与直线2213:421x y z l ---==--的距离; 解:122(1)(1)(1)n n x a a a =+++=22(1)(1)(1)(1)/(1)nn x a a a a a =-+++- =222(1)(1)(1)/(1)na a a a -++-==12(1)/(1)n a a +--2 22211ln (1)ln(1)1lim 1lim lim x x x e x x xx xx x x e e e x -++--→∞→∞→∞⎛⎫+== ⎪⎝⎭令x=1/t,则原式=21(ln(1))1/(1)112(1)22lim lim lim t t t t ttt t t eeee +-+---+→→→===30000112021011()()[|](1)!!sx n n sx n sx sx n n sx n n n n n I e x dx x de x e e dx s s n n n n n n e x dx I I I s s s s s ∞∞∞---∞-∞----+==-=--=-=====⎰⎰⎰⎰二、15分设函数()f x 在(,)-∞+∞上具有二阶导数,并且()0,lim ()0,lim ()0,x x f x f x f x αβ→+∞→-∞''''>=>=<且存在一点0x ,使得0()0f x <;证明:方程()0f x =在(,)-∞+∞恰有两个实根;解: 二阶导数为正,则一阶导数单增,fx 先减后增,因为fx 有小于0的值,所以只需在两边找两大于0的值;将fx 二阶泰勒展开: 因为二阶倒数大于0,所以lim ()x f x →+∞=+∞,lim ()x f x →-∞=-∞证明完成;三、15分设函数()y f x =由参数方程22(1)()x t t t y t ψ⎧=+>-⎨=⎩所确定,其中()t ψ具有二阶导数,曲线()y t ψ=与22132t u y e du e-=+⎰在1t =出相切,求函数()t ψ; 解:这儿少了一个条件22d ydx=由()y t ψ=与22132t u y e du e-=+⎰在1t =出相切得 3(1)2e ψ=,'2(1)eψ= 22d y dx ='3''()(2(/)(/)//(22)2)2()d dy dx d dy dx dt dx dx d t t t t t ψψ==++-=;;; 上式可以得到一个微分方程,求解即可; 四、15分设10,,nn n k k a S a =>=∑证明:1当1α>时,级数1nn na S α+∞=∑收敛; 2当1α≤且()n s n →∞→∞时,级数1nn na S α+∞=∑发散; 解:1n a >0, n s 单调递增 当1n n a ∞=∑收敛时,1n n n a a s s αα<,而1n a s α收敛,所以nna s α收敛; 当1n n a ∞=∑发散时,lim n n s →∞=∞所以,11111211n n n s s n s s n n na a a dx dx s s x s x ααααα-∞∞==<+=+∑∑⎰⎰而1111111111lim 11ns n s n s s a a s dx k x s s αααααααα---→∞-=+=+=--⎰,收敛于k; 所以,1nn na s α∞=∑收敛; 2lim n n s →∞=∞所以1n n a ∞=∑发散,所以存在1k ,使得112k n n a a =≥∑于是,111122212k k k n n n n nk a a a s s s α≥≥≥∑∑∑依此类推,可得存在121...k k <<<使得112i i k n k n a s α+≥∑成立,所以112Nk n na N s α≥⋅∑ 当n →∞时,N →∞,所以1nn na s α∞=∑发散 五、15分设l 是过原点、方向为(,,)αβγ,其中2221)αβγ++=的直线,均匀椭球2222221x y z a b c ++≤,其中0,c b a <<<密度为1绕l 旋转; 1求其转动惯量;2求其转动惯量关于方向(,,)αβγ的最大值和最小值; 解:1椭球上一点Px,y,z 到直线的距离 由轮换对称性, 2a b c >>∴当1γ=时,22max 4()15I abc a b π=+ 当1α=时,22min 4()15I abc b c π=+六、15分设函数()x ϕ具有连续的导数,在围绕原点的任意光滑的简单闭曲线C 上,曲线积分422()cxydx x dyx yϕ++⎰的值为常数; 1设L 为正向闭曲线22(2)1,x y -+=证明422()0;cxydx x dyx y ϕ+=+⎰2求函数()x ϕ;3设C 是围绕原点的光滑简单正向闭曲线,求422()cxydx x dyx y ϕ++⎰;解:(1) L 不绕原点,在L 上取两点A,B,将L 分为两段1L ,2L ,再从A,B 作一曲线3L ,使之包围原点; 则有 (2) 令42422(),xy x P Q x y x yϕ==++ 由1知0Q P x y∂∂-=∂∂,代入可得 上式将两边看做y 的多项式,整理得 由此可得 解得:2()x x ϕ=-(3) 取'L 为424x y ξ+=,方向为顺时针2011-2012年 第三届全国大学生数学竞赛预赛试卷参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题;一. 计算下列各题本题共3小题,每小题各5分,共15分1.求11cos 0sin lim xx x x -→⎛⎫⎪⎝⎭;解:用两个重要极限:2.求111lim ...12n n n n n →∞⎛⎫+++⎪+++⎝⎭; 解:用欧拉公式令111...12n x n n n n=++++++ 其中,()1o 表示n →∞时的无穷小量,3已知()2ln 1arctan tt x e y t e ⎧=+⎪⎨=-⎪⎩,求22d y dx ; 解:222222221211,121121tt t t t t t t t tte dx e dy e dy e e e e dt e dt e dx e e --++==-∴==+++ 二.本题10分求方程()()2410x y dx x y dy +-++-=的通解;解:设24,1P x y Q x y =+-=+-,则0Pdx Qdy +=1,P Q y x ∂∂==∴∂∂0Pdx Qdy +=是一个全微分方程,设dz Pdx Qdy =+ ,P Q y x∂∂=∴∂∂该曲线积分与路径无关 三.本题15分设函数fx 在x=0的某邻域内具有二阶连续导数,且()()()'"0,0,0f f f 均不为0,证明:存在唯一一组实数123,,k k k ,使得()()()()1232230lim0h k f h k f h k f h f h→++-=;证明:由极限的存在性:()()()()1230lim 2300h k fh k f h k f h f →++-=⎡⎤⎣⎦即[]()123100k k k f ++-=,又()00f ≠,1231k k k ∴++=①由洛比达法则得由极限的存在性得()()()'''1230lim 22330h k fh k f h k f h →⎡⎤++=⎣⎦即()()'1232300k k k f ++=,又()'00f ≠,123230k k k ∴++=②再次使用洛比达法则得123490k k k ∴++=③由①②③得123,,k k k 是齐次线性方程组1231231231230490k k k k k k k k k ++=⎧⎪++=⎨⎪++=⎩的解设1231111123,,01490k A x k b k ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则Ax b =, 增广矩阵*111110031230010314900011A ⎛⎫⎛⎫⎪ ⎪=- ⎪⎪⎪ ⎪⎝⎭⎝⎭,则()(),3R A b R A ==所以,方程Ax b =有唯一解,即存在唯一一组实数123,,k k k 满足题意, 且1233,3,1k k k ==-=;四.本题17分设2221222:1x y z a b c∑++=,其中0a b c >>>,2222:z x y ∑=+,Γ为1∑与2∑的交线,求椭球面1∑在Γ上各点的切平面到原点距离的最大值和最小值;解:设Γ上任一点(),,M x y z ,令()222222,,1x y z F x y z a b c=++-,则'''222222,,,x y z x y z F F F a b c ===∴椭球面1∑在Γ上点M 处的法向量为:222,,,x y z t a b c ⎛⎫=∴ ⎪⎝⎭1∑在点M 处的切平面为∏:原点到平面∏的距离为d =,令()222444,,,x y z G x y z a b c =++则1d =现在求()222444,,,x y z G x y z a b c =++在条件2222221x y z a b c++=,222z x y =+下的条件极值,令()()22222222212444222,,1x y z x y z H x y z x y z a b c a b c λλ⎛⎫=+++++-++- ⎪⎝⎭则由拉格朗日乘数法得:'1242'1242'1242222222222222022202220100x y z xx H x a a y y H y b b z z H z c c x y z ab c x y z λλλλλλ⎧=++=⎪⎪⎪=++=⎪⎪⎪=+-=⎨⎪⎪++-=⎪⎪⎪+-=⎪⎩, 解得2222220x b c y z b c =⎧⎪⎨==⎪+⎩或2222220a c x z a c y ⎧==⎪+⎨⎪=⎩, 对应此时的()()442222,,b c G x y z b c b c +=+或()()442222,,a c G x y z a c a c +=+此时的1d =2d =又因为0ab c >>>,则12d d <所以,椭球面1∑在Γ上各点的切平面到原点距离的最大值和最小值分别为:2d =1d =五.本题16分已知S 是空间曲线2231x y z ⎧+=⎨=⎩绕y 轴旋转形成的椭球面的上半部分0z≥取上侧,∏是S 在(),,P x y z 点处的切平面,(),,x y z ρ是原点到切平面∏的距离,,,λμν表示S 的正法向的方向余弦;计算:1(),,SzdS x y z ρ⎰⎰;2()3S z x y z dS λμν++⎰⎰解:1由题意得:椭球面S 的方程为()222310x y z z ++=≥令22231,Fx y z =++-则'''2,6,2x y z F x F y F z ===,切平面∏的法向量为(),3,n x y z =,∏的方程为()()()30x X x y Y y z Z z -+-+-=,原点到切平面∏的距离()222,,x y z ρ==将一型曲面积分转化为二重积分得:记22:1,0,0xz D x z x z +≤≥≥2方法一:λμν===六.本题12分设fx 是在(),-∞+∞内的可微函数,且()()f x mf x <、,其中01m <<,任取实数0a ,定义()1ln ,1,2,...,n n a f a n -==证明:()11n n n a a ∞-=-∑绝对收敛; 证明:()()112ln ln nn n n a a f a f a ----=-由拉格朗日中值定理得:ξ∃介于12,n n a a --之间,使得()()()'112n n n n f a a a a f ξξ---∴-=-,又()()f mf ξξ<、得()()'f m f ξξ<∴级数1101n n m a a ∞-=-∑收敛,∴级数11nn n aa ∞-=-∑收敛,即()11n n n a a ∞-=-∑绝对收敛;七.本题15分是否存在区间[]0,2上的连续可微函数fx,满足()()021f f ==,()()201,1fx f x dx ≤≤⎰、请说明理由;解:假设存在,当[]0,1x ∈时,由拉格朗日中值定理得: 1ξ∃介于0,x 之间,使得()()()'10,f x f f x ξ=+, 同理,当[]1,2x ∈时,由拉格朗日中值定理得:2ξ∃介于x,2之间,使得()()()()'222f x f f x ξ=+-即()()[]()()()[]''121,0,1;12,1,2f x f x x f x f x x ξξ=+∈=+-∈ ()11f x -≤≤、,显然,()()200,0f x f x dx ≥≥⎰()()()()()1221211111133x dx x dx f x dx x dx x dx ≤-+-≤≤++-=⎰⎰⎰⎰⎰()21f x dx ∴≥⎰,又由题意得()()221,1f x dx f x dx ≤∴=⎰⎰即()21f x dx =⎰,()[][]1,0,11,1,2x x f x x x ⎧-∈⎪∴=⎨-∈⎪⎩ ()'1f ∴不存在,又因为fx 是在区间[]0,2上的连续可微函数,即()'1f 存在,矛盾,故,原假设不成立,所以,不存在满足题意的函数fx;。

全国大学生数学竞赛介绍

全国大学生数学竞赛介绍

简介:全国大学生数学竞赛旨在培养学生们对高等数学的热爱,增加高等院校教师和学生对高等数学的重视程度。

由于是由原北京市数学竞赛发展而来,2009年举办的全国首届大学生数学竞赛也是第二十届北京市数学竞赛。

编辑本段|回到顶部具体介绍:竞赛组委会由各大高校教职员工和致力于高等数学教学的教研员组成,主要吸收了在北京市举办了二十届的数学竞赛经验,希望能够办成与全国大学生数学建模竞赛,相同规模影响的比赛。

2008年,12月27日—28日,全国高校大学生数学竞赛筹备会议在北京航空航天大学新主楼会议中心第四会议室举行。

中国数学会副理事长巩馥洲,中国数学会秘书长、北京数学会理事长王长平以及来自北京大学、复旦大学、北京航空航天大学、国防科技大学等国内十余所著名大学的数学学院院长(系主任)参加会议。

我校郑志明副校长、教务处陈强处长出席了会议。

会议开幕式由中国数学会普及委员会常务副主任高宗升主持。

会议上中国数学会秘书长王长平发表讲话,指出举办全国数学竞赛意义重大,有利于发现和选拔优秀人才。

办好竞赛不应以赢利为目的,可以借鉴北京市高校大学数学竞赛的成功经验。

各与会人员集思广益对全国高校大学生数学竞赛的组织工作、参赛对象、竞赛内容、报名方法、奖励办法等方面对工作进行了详细研究,制定了具体办法。

希望通过此竞赛促进高校数学课的教学改革和建设,激发在校大学生学习数学的热情,促进大学对创新人才的选拔和培养。

会议最终决定:全国高校第一届大学生数学竞赛将于2009年11月在全国高校同时举行。

之后各大高校都积极准备,组织相关学生进行暑假培训。

更有甚者还开了动员大会进行誓师。

下图为桂林电子科技大学数计学院的动员大会图:编辑本段|回到顶部参赛对象:在校大学生。

竞赛分为三个组别:甲组:数学专业组,含数学与应用数学、信息与计算科学专业的学生。

乙组:非数学专业组。

丙组:经济类(北京赛区特有组别)。

数学专业学生不得参加非数学专业组的竞赛。

编辑本段|回到顶部竞赛内容:甲组:《数学分析》(50%)、《高等代数》(35%)、《解析几何》(15%)。

竞赛指导手册

竞赛指导手册

目录一、基础学科类......................................................................... - 4 -1、数学类............................................................................... - 1 -1.1 大学生数学建模竞赛................................................ - 1 -1.1.1 国际数学建模大赛 ....................................... - 1 -1.1.2 “高教社杯”全国大学生数学建模竞赛 ... - 2 -1.1.3 “工大出版社杯”数学建模竞赛 ............... - 3 -1.2 全国高等数学竞赛.................................................... - 3 -2、英语类............................................................................... - 4 -2.1 模拟联合国大会.......................................................... - 4 -2.1.1 国际大学生模拟联合国大会 ....................... - 5 -2.1.2 全国大学生模拟联合国大会 ....................... - 5 -2.1.3西工大模拟联合国校大会 ............................ - 6 -2.2 全国大学生英语竞赛.................................................. - 6 -2.3 “21世纪杯”全国大学生英语演讲比赛 .................... - 7 -二、机械电子类......................................................................... - 8 -1、智能汽车........................................................................... - 8 -1.1 全国大学生智能汽车竞赛........................................ - 9 -1.2 西部赛区大学生智能汽车竞赛................................ - 9 -1.3 西工大大学生智能汽车校内选拔赛......................- 10 -2、机器人类.........................................................................- 10 -2.1 亚太大学生机器人大赛..........................................- 11 -2.2 RoBoCup中国公开赛..............................................- 12 -2.3 中国水中机器人大赛..............................................- 13 -3、三航类.............................................................................- 13 -3.1 国际无人飞行器创新大奖赛..................................- 13 -3.2 全国航空航天模型锦标赛......................................- 14 -3.3 “新概念海洋航行器”设计大赛..........................- 14 -3.4 “飞豹杯”航空知识竞赛......................................- 15 -3.5 “611杯”未来飞行器设计大赛 .............................- 15 -3.6飞向未来——太空探索创新竞赛 .............................- 15 -4、电子控制类.....................................................................- 16 -4.1 全国大学生电子设计大赛......................................- 16 -4.2 MEMS传感器应用大赛 ..........................................- 17 -4.3 “空空导弹杯”控制系统设计大赛......................- 17 -三、程序设计类.......................................................................- 18 -1、ACM程序设计大赛........................................................- 18 -1.1 ACM国际大学生程序设计竞赛................................- 18 -1.2 ACM大学生程序设计竞赛全国赛.........................- 19 -1.3西北工业大学程序设计大赛.....................................- 19 -2、全国大学生软件创新大赛.............................................- 20 -四、能源环境类.......................................................................- 20 -1、全国大学生节能减排与社会实践科技竞赛.................- 20 -2、“新奥杯”低碳能源集成解决方案竞赛.....................- 21 -3、节能汽车竞赛.................................................................- 22 -五、综合创新类.......................................................................- 23 -1、“挑战杯”大学生课外学术实践竞赛.........................- 23 -2、全国大学生电子商务三创竞赛.....................................- 24 -3、全国大学生创新性实验计划.........................................- 25 -4、教育部大学生创新创业训练计划项目.........................- 25 -5、大学生职业生涯规划大赛.............................................- 26 -六、其他竞赛...........................................................................- 26 -1、西工大实验技能竞赛.....................................................- 26 -2、大学生等级证书考试.....................................................- 27 -2.1 大学英语四六级考试..............................................- 27 -2.2 全国计算机等级考试..............................................- 27 -3、大学生竞赛相关网站.....................................................- 28 -4、学校认定并组织开展的学科竞赛项目一览表.............- 29 -注:本册内容仅供参考,具体竞赛事宜请关注本年度竞赛通知一、基础学科类1、数学类1.1 大学生数学建模竞赛数学模型(Mathematical Model)是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻画。

数学专业高等数学竞赛课程

数学专业高等数学竞赛课程

数学专业高等数学竞赛课程数学专业的高等数学竞赛课程是数学专业学生在大学期间必修的一门课程。

该课程主要旨在培养学生的数学思维能力和数学解决问题的能力,同时也为学生参与数学竞赛提供了重要的理论基础和实践经验。

本文将从课程设置、教学目标及方法、学生参与竞赛的实践意义等方面进行论述。

一、课程设置高等数学竞赛课程通常设置在数学专业的大三或大四学期。

根据不同高校的课程体系,该课程可能按照不同的学分和学时来规划和安排。

一般情况下,该课程会涵盖高等数学的各个分支,如微积分、线性代数、概率论与数理统计等。

二、教学目标高等数学竞赛课程旨在通过系统的教学,帮助学生深入理解数学的基本概念和原理,提高数学建模和解决实际问题的能力。

具体的教学目标如下:1. 培养数学思维能力:通过数学竞赛课程的学习和实践,学生能够培养抽象思维、逻辑思维和创造性思维,提高解决数学问题的能力。

2. 增强数学建模能力:通过数学竞赛课程的讲解和案例分析,学生能够全面掌握不同数学模型的构建与求解方法,培养解决实际问题的能力。

3. 提高数学应用能力:通过数学竞赛课程的习题和实验,学生能够将数学知识应用于实际问题中,提高数学的实际运用能力。

三、教学方法高等数学竞赛课程的教学方法应该多样化,既重视授课讲解,也注重讨论和实践环节。

以下是几种常用的教学方法:1. 授课讲解:教师通过讲解数学的基本概念、定理和推导过程,帮助学生建立起扎实的理论基础。

2. 课堂讨论:教师引导学生参与课堂讨论,共同解决一些有难度的数学问题,培养学生的合作精神和团队合作能力。

3. 实例分析:通过对一些典型的数学竞赛题目进行详细的解析和分析,帮助学生理解问题的本质和解题的思路。

4. 练习习题:教师提供大量的竞赛题目,并组织学生进行练习和讨论,帮助学生熟悉解题的技巧和方法。

四、学生参与竞赛的实践意义高等数学竞赛课程的实践环节是提高学生数学竞赛能力的重要环节。

通过参与数学竞赛,学生可以获得以下实践意义:1. 提高解题能力:通过参与数学竞赛,学生能够接触到各种难度水平的数学问题,锻炼解题的能力和技巧。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学分析竞赛(2003、2004级解答)
一、判断题(每题5分,共25分)
1、不正确。

例:{}{}1,0,1,0,0,1,0,0,0,1,0,0,0,0,1n x =L ,
{}{}11,0,0,k
n x =L ,{}{}2
1,0,0,k
n x =L ,{}{}31,0,0,k
n x =L ,…。

2、不正确。

例:()2,0,x x f x x ⎧=⎨⎩是有理数
是无理数。

3、不正确。

例:(
)f x =
4、正确。

0x I ∈,,αβ∃,使[]0,x I αβ∈⊂,()n f x 在[],αβ上一致收敛。

5、正确。

两边进行积分计算可得相等。

二、证明题(12分)
证明:由12lim
0n n n n x x x →∞
++=+⇒,N n N ∃∀≥,有121
4
n n n x x x ++<+。

()4'
特别地有, ()121
4
N N N x x x ++<
+ 整理得, (){}112121
2max ,2
N N N N N n x x x x x x ∆++++<+≤= (1) ()9'
注意到1n N >,故有
{}
1112122max ,n n n n x x x x ∆
++<= (2) 由(1)和(2)可得
21222n n N x x x >>
以此类推,可得{}k
n x 且2k
k n N x x >,所以{}n x 无界。

()12'
三、证明题(13分)
证明:(i )只须证:0ε∀>,0δ∃>,1212,:x x a x x δ∀>-<,有
()()12f x f x ε-<。

事实上,任取0ε>,
()()121122
1111
sin sin f x f x x x x x -=
-
11212122
11111111
sin sin sin sin
x x x x x x x x =-+- 121212
111111
sin sin sin
x x x x x x ≤
-+- ()3' 121212121111
1111
sin 2sin cos 22
x x x x x x x x --≤-+
12122122122121111111111x x x x x x x x x x x x a a
-⎛⎫⎛⎫≤
-+-≤+<+- ⎪ ⎪⎝⎭⎝⎭ε<。

即 3121a x x a ε-<+,因此可取31
a a δε=+。

()7' (ii )只须证:00ε∃>,0δ∀>,()1212,0,:x x a x x δ∃∈-<,有
()()120f x f x ε->。

事实上,取112
n x n π
π=
-
,2
12
n x n π
π=
+
, ()11'
n 充分大时,()12,0,n n x x a ∈,()12
0n n x x n -→→∞,
而()()120n n f x f x -→。

证毕。

()13' 四、证明题(12分)
证明:因为[]
()0,1
max
2x f x ∈=,()()010f f ==,故有()00,1x ∈,使得()[]
()00,1max 2x f x f x ∈==,于是()00f x '=。

()2'
另外,
()()()()()()2
00001!2!
f x f f x f x x x x x ξ'''=+-+-,
ξ在0,x x 之间。

()7' 将0,1x =分别代入上式,得
()120
4
f x ξ-''=
, ()100,x ξ∈ ()()
22
04
1f x ξ-''=
-, ()20,1x ξ∈, ()9'
当010,2x ⎛⎫∈ ⎪⎝⎭
时,()116f ξ''≤-;
当01
,12x ⎡⎫∈⎪⎢⎣
⎭时,()216f ξ''≤-。

所以ξ∃(取1ξξ=或2ξ),有()16f ξ''≤-。

()12' 五、证明题(7分)
证明:令()()0
x x x f s ds ϕ=⎰,()()0
y
y y g t dt ϕ=⎰
()(),,Z F x x y y F x y ∆=+∆+∆-
()()()()x x y y x y ϕϕϕϕ=+∆+∆- ()()(
)()()(
)
()()x x
y y
x y
x f s ds y g t dt x y ϕϕϕϕ+∆+∆=++-⎰⎰
()()()()y y
x x y
x
x g t dt f s ds y y ϕϕ+∆+∆=++∆⎰⎰
()()()()1212,0,1x g y y y y y f x x ϕθϕθθθ=+∆∆++∆+∆≤≤ ()2' 另外,
()()()1,00g y y g y y θγγ+∆=+→∆→ ()()()2,00f x x f x x θββ+∆=+→∆→
()()(),00y y y y ϕϕαα+∆=+→∆→ ()5'
()(),,Z F x x y y F x y ∆=+∆+∆-
()()()()()()()x g y y y f x x ϕγϕαβ=+∆+++∆
()()()()()()()x g y y x y y f x x y x f x x x ϕϕγϕϕβααβ=∆+∆+∆+∆+∆+∆ ()7' 六、证明题(7分)
证明:①当0ξ<时,矩形不包含原点,由格林公式,积分为0。

()3' ②当0ξ>时,矩形包含原点,作圆Γ:222x y ρ+=,使之含于C 内,在以C +Γ为边界的连通域内使用格林公式知
22202C xdy ydx d x y πθπ-==+⎰⎰Ñ。

()7'
七、证明题(24分)
证明:(i )设()nx n u x ne -=。

()()()()111111
lim lim
lim
n x
n nx x x
n n n n
u x n e n u x ne n e e
-++-→∞→∞→∞
++=== 当0x >时,
1
1x e
<,此级数绝对收敛; 当0x =时,11x
e =,此级数发散;
当0x <时,
1
1x e
>,此级数发散。

()3' (ii )对n N ∀∈,[),x δ∀∈+∞,有nx
n ne
ne
δ
--≤,而1
n n ne δ∞
-=∑收敛。

由M 判别法,知级数1
n n ne δ∞
-=∑在[)(),0δδ+∞>一致收敛。

()7'
(iii )()()()111n x nx n R x ne n e -+--=+++L
()()11n x
x n e R x ne
---=+L
()()()1111nx n x
x
n x
e e
R x ne
e ------=+- ()()()()()11111nx
n n x
x x x n e R x e e e e
----=+--- ()00,1n e e ε⎛⎫
∃∈ ⎪ ⎪-⎝⎭
,n ∀,011x n ∃=+,使()()001n R x e e ε>≥-。

()12' (iv )设()0,x ∈+∞,0δ∃>,使x δ≤<+∞。

由(ii )知,()nx ne S x -=∑在[),δ+∞连续,由x 的任意性,得证。

()15' (v )验证nx ne -∑可逐项积分。

()()
ln 3ln 3
ln 3
ln 2
ln 2
ln 2
nx nx S x dx ne dx e --==-∑∑⎰

11
1
232
n
n ⎛⎫=-=
⎪⎝⎭∑。

()19' (vi )()2nx nx ne n e --'=-∑∑。

()0,x ∈+∞,0δ∃>,x δ≤<+∞,22nx n n e n e δ---≤
而2n n e δ
-∑收敛,(因为2
11lim lim 1n n n n
u n e e u n δ
δ--+→∞→∞+⎛⎫==< ⎪⎝⎭)。

由M 判别法,2nx n e --∑在[),δ+∞一致收敛,故在[),δ+∞可逐项微分,所以()2nx S x n e -'=-∑。

()24'。

相关文档
最新文档