圆锥曲线中点弦问题

合集下载

浅谈圆锥曲线的中点弦问题

浅谈圆锥曲线的中点弦问题

浅谈圆锥曲线的中点弦问题在普通高中课程标准试验教科书数学选修2-1课本上,P62页有一道题,考察圆锥曲线与直线的综合问题。

题目是:已知双曲线x2-=1,过点P(1,1)能否作一条直线L与双曲线交于A、B两点,且点P是线段AB的中点?这道题方法很多,主要的解法有设而不求法、参数法、待定系数法等等。

对于圆锥曲线中的中点问题,学生更多的是尝试用点差法。

下面我们也尝试下:设点A(x1,y1)、B(x2,y2)在双曲线上,则A、B都满足曲线方程,即:x12-=1(1);x22-=1(2)。

这两个表达式相减得到=,由这个式子很容易得到等式的右边是直线,斜率k==2。

另一种解法:设点A(x1,y1)B(x2,y2)在双曲线上,且线段AB的中点为M(x,y),设经过点P的直线L的方程为y-1=k(x=1),即y=kx+1-k,把y=kx+1-k带入双曲线的方程x2-=1,得到(2-k2)x2-2k(1-k)x-(1-k)2=0(2-k2≠0)。

所以,x==。

由题意得=1,解得k=2。

而当k=2时,方程变为2x2-4x+3=0,与双曲线交于A、B二点,且点P是线段AB的中点。

根的判断式△=16-24=-8<0,所以方程没有实数解,所以不能作一条直线。

这两种解法是相反的,显然第二种解法是正确的。

那么我们现在思考:什么时候可以用点差法?这个点P在什么位置或区域时就不能用点差法得到直线的方程?即如图所示,如果点落在在双曲线和渐近线之间的阴影部分,则不能用点差法得到直线方程。

我们先用点差法看能得到什么结论:不妨我们先假设过点P可以做一条直线与双曲线相交,并且此时点P是中点。

点A(x1,y1)、B(x2,y2)在双曲线上,且线段AB的中点为P(x,y),用点差法可以得到什么呢?把点A、点B坐标带入曲线方程,得到-=1,-=1(2),把这两个表达式相减得到=,化简后得到=,整理得到关系式KABKOB=(1)。

为了方便研究,我们先研究点在落在阴影部分的第一象限时。

中点弦问题(基础知识)

中点弦问题(基础知识)

圆锥曲线的中点弦问题一:圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解.①在椭圆中,以为中点的弦所在直线的斜率;②在双曲线中,以为中点的弦所在直线的斜率;③在抛物线中,以为中点的弦所在直线的斜率。

注意:因为Δ>0是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验Δ>0!1、以定点为中点的弦所在直线的方程例1、过椭圆141622=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。

例2、已知双曲线1222=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。

若存在这样的直线l ,求出它的方程,若不存在,说明理由。

策略:这是一道探索性习题,一般方法是假设存在这样的直线 ,然后验证它是否满足题设的条件。

本题属于中点弦问题,应考虑点差法或韦达定理。

2、 过定点的弦和平行弦的中点坐标和中点轨迹例3、已知椭圆1257522=+x y 的一条弦的斜率为3,它与直线21=x 的交点恰为这条弦的中点M ,求点M 的坐标。

例4、已知椭圆1257522=+x y ,求它的斜率为3的弦中点的轨迹方程。

3、 求与中点弦有关的圆锥曲线的方程例5、已知中心在原点,一焦点为)50,0(F 的椭圆被直线23:-=x y l 截得的弦的中点的横坐标为21,求椭圆的方程。

∴所求椭圆的方程是1257522=+x y 4、圆锥曲线上两点关于某直线对称问题例6、已知椭圆13422=+y x ,试确定的m 取值范围,使得对于直线m x y +=4,椭圆上总有不同的两点关于该直线对称。

五、注意的问题(1)双曲线的中点弦存在性问题;(2)弦中点的轨迹应在曲线内。

利用点差法求解圆锥曲线中点弦问题,方法简捷明快,结构精巧,很好地体现了数学美,而且应用特征明显,是训练思维、熏陶数学情感的一个很好的材料,利于培养学生的解题能力和解题兴趣。

解答圆锥曲线中点弦问题的三种途径

解答圆锥曲线中点弦问题的三种途径

丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹与圆锥曲线的弦及其中点有关的问题称之为圆锥曲线中点弦问题.中点弦问题在解析几何试题中比较常见,侧重于考查圆锥曲线与直线的位置关系、弦长公式、中点坐标公式、直线的斜率以及韦达定理.下面谈一谈解答圆锥曲线中点弦问题的三种途径.一、利用韦达定理若一元二次方程ax 2+bx +c =0的两个根分别为x 1、x 2,则x 1+x 2=-b 2a,x 1x 2=c a ,这个定理即是韦达定理.运用韦达定理求解圆锥曲线中点弦问题,需先将圆锥曲线方程与弦所在的直线的方程联立,通过消元,构造一元二次方程;再利用韦达定理,建立关于弦端点的坐标的关系式,最后结合中点坐标公式进行求解.例1.过点A (2,1)的直线与椭圆x 216+y29=1相交于P ,Q 两点,若点A 恰是线段PQ 的中点,求直线PQ 的方程.解:设直线PQ 的斜率为k ,则直线PQ 的方程为y -1=k (x -2),将其与椭圆的方程x 216+y 29=1联立,并消去y 得,(16k 2+9)x 2+(-64k 2+32k )x +(64k 2-64k -128)=0,由韦达定理得x 1+x 2=-(-64k 2+32k )16k 2+9.又A (2,1),所以x 1+x 2=-(-64k 2+32k )16k 2+9=4,可得k =-98,所以直线的方程为y -1=-98(x -2),即9x +8y -26=0.当遇到中点弦问题时,应很快联想到韦达定理,将圆锥曲线的方程和直线的方程联立起来,构造一元二次方程,建立方程两根之间的关系式,这是解题的关键.二、采用点差法点差法是解答中点弦问题的常用方法.运用点差法解题,要先设出或明确圆锥曲线的方程、弦的两个端点的坐标、弦的中点坐标;然后将弦的两个端点的坐标代入圆锥曲线的方程中,并将两式作差;再根据中点坐标公式和直线的斜率公式进行求解.例2.已知椭圆C :x 24+y 23=1,过点P (1,1)的直线l交椭圆C 交于A ,B 两点,求AB 中点M 的轨迹方程.解:设点A (x 1,y 1),B (x 2,y 2),将其分别代入椭圆C :x 24+y 23=1中,可得ìíîïïïïx 124+y 123=1,x 224+y 223=1,将两式相减可得3()x 1-x 2(x 1+x 2)+4()y 1-y 2(y 1+y 2)=0,即3x +4y ∙y 1-y 2x 1-x 2=0.因为AB 所在直线的斜率与MP 的斜率相等,所以3x +4y ∙y -1x -1=0,化简得3x ()x -1+4y ()y -1=0,即为点M 的轨迹方程.运用点差法解题,可以达到设而不求的效果,大大减少计算量.但点差法的适用范围比较窄,只有在已知直线的方程、圆锥曲线的方程、弦中点的坐标三者中的两者时,才可运用此方法求解.三、运用导数法借助导数法来求解圆锥曲线中点弦问题,需要先对圆锥曲线的方程进行求导,得到曲线在某点处的切线的斜率,就能将其看作中点弦的斜率,再根据中点坐标公式求解.例3.过椭圆C :x 216+y 24=1内一点M (2,1)作直线l ,交椭圆于A ,B 两点,使M 点恰好是弦AB 的中点,求该直线的方程.解:对x 216+y 24求导,得2x 16+2y 4y ′,把M (2,1)代入2x 16+2y 4y ′=0,得y ′=-12,所以直线AB 的方程为y =-12x +2.本题运用导数法求解十分简单、便捷,但需明确曲线的切线的斜率与曲线在某点处的导数之间的关系,据此建立关系式,即可快速解题.总之,在求解圆锥曲线中点弦问题时,同学们要注意将中点与韦达定理、中点坐标公式、直线的斜率公式相关联起来,从中寻找到解题的突破口,灵活运用上述三种方法解题,这样才能有效提升解题的效率.(作者单位:江苏省阜宁县实验高级中学)45。

圆锥曲线中点弦典型例题及解析

圆锥曲线中点弦典型例题及解析

01
总结词
这类问题主要考察了圆锥曲线与切线相关的性质和定理,需要利用切线
性质和圆锥曲线的定义来解决。
02
详细描述
在解决与切线相关的问题时,我们需要利用圆锥曲线的切线性质和定义,
结合题目给出的条件,推导出与中点弦相关的方程或不等式,进而求解。
03
示例
已知抛物线C的方程为y^2 = 2px (p > 0),过其焦点F作直线与C交于A、
数形结合
将代数问题与几何图形相结合 ,利用几何意义求解。
THANKS
感谢观看
特殊情况
当点$P$为圆锥曲线的焦点时, 中点弦称为焦点弦。
中点弦的性质
垂直性质
角度性质
中点弦所在的直线与过点$P$的切线 垂直。
中点弦与切线之间的夹角等于该弦所 对的圆周角。
长度性质
中点弦的长度与过点$P$的切线长度 成反比。
中点弦的几何意义
中点弦是连接圆锥曲 线上的两个对称点的 线段。
中点弦的长度等于圆 锥曲线上的两个对称 点到点$P$的距离之 和的一半。
详细描述
在解决椭圆的中点弦问题时,需要注意中点 弦的特殊性质。例如,当直线过椭圆中心时, 中点弦即为椭圆本身;当直线的斜率为0或 无穷大时,中点弦的长度为椭圆的长轴或短 轴的长度。这些特殊性质可以帮助我们快速 判断中点弦的性质和范围。
双曲线的中点弦问题
总结词
双曲线的性质和方程
详细描述
双曲线的中点弦问题主要考察了双曲线的性质和方程。解决这类问题需要利用双曲线的 性质,如对称性、开口方向等,以及双曲线的方程,如标准方程、参数方程等。通过联 立直线和双曲线的方程,消元化简,可以得到关于中点弦的方程,进一步求解得到中点

圆锥曲线中的中点弦问题

圆锥曲线中的中点弦问题

圆锥曲线中的中点弦问题(泌阳第二高级中学河南泌阳463700)直线与圆锥曲线相交所得弦中点问题,是高考的一个热点问题,也是解析几何的主要内容之一。

在近几年的高考试题中时有出现。

以下三个结论在解决相关问题时能有效简化解题过程,节省做题时间。

我们通过练习体会一下。

1. 三个结论结论1:在椭圆x2m+y2n=1(m>0,n>0,m≠n)中,弦AB以点M(x0,y0 )为中点,则弦AB所在直线的斜率与直线OM的斜率之积kAB ·kOM=-nm结论2:在双曲线x2m-y2n=1 (m>0,n>0)中,弦AB以点M(x0,y0)为中点,则弦AB所在直线的斜率与直线OM的斜率之积kAB ·kOM=nm结论3:在抛物线y2=2px(p >0)中,弦AB以点M(x0,y0)为中点,则弦AB所在直线的斜率是kAB =py02. 说明(1)上述结论均只考虑直线斜率存在的情形,做解答题时仍需分类讨论,关注斜率不存在的情形.(2)上述结论均可利用点差法进行证明,(3).利用结论2求弦所在的直线方程时,应注意验证。

3. 结论的应用类型1:求与中点有关的圆锥曲线的标准方程问题例1(2013年高考数学全国新课标卷I理科第10题)已知椭圆C:x2a2+y2b2=1(a>b>0)的右焦点F(3,0),过F的直线交椭圆于A、B两点,若AB的中点坐标是M(1,-1),则椭圆方程是()A.x245+y236=1B.x227+y218=1C.x236+y227=1D.x218+y29=1析:由结论1可知:kAB·kOM=kMF·kOM=12·-11=-12=-b2a2∴a2=2b2,又a2-b2=9,解得b2=9,a2=18故选D练习.1.(2010年高考数学课标全国卷理科第12题)已知双曲线E的中心为原点,F(3,0)是E的焦点,过F的直线l与E相交于A、B两点,且AB的中点为N(-12,-15),则E的方程是()A.x23-y26=1B.x24-y25=1C.x26-y23=1D.x25-y24=1析:由结论2知:kAB·kON=b2a2=3-(-12)0-(-15)·-15-12=54,4b2=5a2又a2+b2=9,解得a2=4,b2=5,故选B2.(2012郑州三模,16)已知双曲线x2-y23=1上存在两点M、N关于直线y=x+m 对称,且线段MN 中点P在抛物线y2=18x上,则实数m的值为_________析:由结论2可知:kOP ·kMN=kOP ·(-1)=b2a2=3,∴kOP=-3,设P(x0,y0),则y0x0=-3推出y0=-3x0,代入y2=18x 得9x02=18x0,解得x0=2y0=-6,x0=0y0=0,再代入方程y=x+m ,得m=-8或m=0类型2:求以某点为中点的弦所在直线方程问题例2.(北师大版选修1——1第48页A组第8题)已知椭圆x216+y24=1 ,求以点P(2,-1)为中点的弦所在的直线方程。

“点差法”解决圆锥曲线的中点弦问题

“点差法”解决圆锥曲线的中点弦问题
实 践 讲 堂
‘ ‘ 点茬法 ” 禳决圆锥曲线韵中 点弦 问题
韩 晓 刚 ( 山十 六 中 , 北 唐 河
摘 要 : 圆 锥 曲 线 的 弦 的 中点 有 关 的 问 题 。 们 称 之 为 与 我 圆锥 曲线 的 中 点 弦 问 题 涉 及 至 解 决 圆锥 曲 线 中 点 弦 的 问 4 题 . 采 用 “ 差 法 ” 求 解 “ 差 法 ” 利 用 直 线 和 圆 锥 曲 常 点 来 点 是 线 的 两个 交 点 。把 交 点 代 入 圆 锥 曲 线 的 方 程 .得 到 两 个 等 式 . 式 相 减 . 以得 到 一 个 与 弦 的 斜 率 及 中 点 相 关 的 式 子 两 可 ( 称 中点 和 斜 率 结 合 公 式 ) 再 结 合 已 知 条 件 , 用 学 过 的 也 。 运 知 识 使 问题 得 到 解 决 。 当 题 目涉 及 弦 的 中 点 、 率 时 . 般 斜 一 都 可 以 用 点 差 法 来 解 与 韦 达 定 理 法 纷 繁 冗 长 的 计 算 相 比 。 点 差 法 可 以 大 大 减 少 运 算 量 . 化 解 题 过 程 . 到 “ 而 不 优 达 设 求 ” 目的 本 文将 从 求 弦 的 斜 率 与 弦 的 中 点 问 题 、 弦 中 的 求 点 轨 迹 、 弦 的 垂 直 平 分 线 问 题 和 求 曲 线 的 方 程 四 个 方 面 举
m则 肿 = 。 ‘弦 中点 轨 迹 在 已 知 椭 圆 内 , x y+ y k 2, 0 . ‘ 所 求 弦 中 点 的轨 迹 方 程 为 ( 已知 椭 圆 内 ) 在 变 式 1 直 线 Z似 一 一 o 5 : 0是 参 数 ) 抛 物 线 y : : (+ ) 0( 与 = (+ ) 的 相 交 弦 是 A 则 弦 A 的 中 点 轨 迹 方 程 是 12 B. B 。 过定 点弦 的中点轨迹 方程 ) 分 析 : 线 Za - 一 n 5 = 方 程 中带 有 参 数 0 即 直 线 直 :x y (+ )0, 。 是 过 定 点 的 直 线 还 要 注 意 弦 中点 轨 迹 在 已知 抛 物 线 内 . 最 后 要 注 明 所 求 弦 中点 的 轨 迹 方 程 为 y 2 27 在 已 知 抛 物 线 = x— ( 内 ) 。 变 式 2 已 知 定 长 为 0 0 ) 线 段 AB 的 两 端 点 在 抛 : ( ≥1 的 物线 y 上 移动 , 动 弦 AB的 中点 Ⅳ 的轨 迹方程 。 ( 长 求 弦 为定 值的 弦的中点轨 迹方 程 ) 解 : 两 端 点 坐 标 为 A( , 曰(。Y) 设 Y ) ,2 , 的 中 点 为 (oy) 则 l 220 因 两 端 点 在 抛 物 线 上 , 以 y 1 Y: X o , = x, 所 l 2 2 ,

有关圆锥曲线的中点弦问题

有关圆锥曲线的中点弦问题

有关圆锥曲线的中点弦问题与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。

中点弦问题是高中解析几何模块中的一类重要题型,也是高考的一个热点问题之一。

身为高中数学教师,研究好其解法及常见类型很有必要。

1.中点弦问题的主要解法解法一:解方程组法例1过点A(2,1)的直线与椭圆x216+y29=1相交于P,Q两点,若点A恰好是线段PQ的中点,求直线PQ的方程。

解:设P(x1,y1 ), Q( x2,y2),设直线PQ的斜率为k,则直线PQ的方程为:y-1 = k(x-2) ,解方程组y=k(x-2)+1x216+y29=1 ,将直线方程代入椭圆方程,消去y并整理得(16k2+9)x2+(-64 k2+32k)x+(64k2-64k-128)=0因为直线与椭圆有两个交点,所以△>0,由根与系数的关系,有x1+x2=64k2-32k16k2+9,∵点A恰好是线段PQ的中点,由中点坐标公式,有x1+x22=2∴64k2-32k16k2+9=4解之得,k=-98,将k=-98代入直线方程y-1 = k(x-2)得所求直线方程为9x+ 8y-26=0解法二:点差法例2过点A(2,1)的直线与椭圆x216+y29=1相交于P,Q两点,若点A恰好是线段PQ的中点,求直线PQ的方程。

解:设P(x1, y1), Q(x2,y2),因为直线PQ与椭圆x216+y29=1相交于P,Q两点,所以P,Q两点在椭圆上,所以有x21 16 + y21 9=1x22 16 + y22 9=1两式相减得:(x1-x2)(x1+x2)16+(y1-y2)(y1+y2)9=0∴(x1-x2)(x1+x2)16=-(y1-y2)(y1+y2)9∴y2-y1x2-x1=-9(x1+x2)16(y1+y2)又∵k =y2-y1x2-x1, x1+x22=2,y1+y22=1∴k=-98由点斜式,得直线PQ的方程为:y-1=-98(x-2)即9x+8y-26=0解法三:中点转移法例3过点A(2,1)的直线与椭圆x216+y29=1相交于P,Q两点,若点A恰好是线段PQ的中点,求直线PQ的方程。

圆锥曲线中的典型问题与方法:圆锥曲线解题技巧和方法综合

圆锥曲线中的典型问题与方法:圆锥曲线解题技巧和方法综合

圆锥曲线的解题技巧一、常规七大题型:(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。

如:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有0220=+k b y a x 。

(2))0,0(12222>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有0220=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线x y 2221-=。

过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。

(2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。

典型例题 设P(x,y)为椭圆x a y b 22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。

(1)求证离心率βαβαsin sin )sin(++=e ;(2)求|||PF PF 1323+的最值。

(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。

典型例题抛物线方程,直线与轴的交点在抛物线准线的右边。

y p x p x y t x 210=+>+=()()(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。

圆锥曲线中点弦问题

圆锥曲线中点弦问题

圆锥曲线中点弦问题
点弦问题在微积分领域中是重要的一项研究,它涉及坐标几何、微积分和数学分析学。


文旨在深入研究圆锥曲线上的点弦问题。

圆锥曲线是二维坐标系中最重要的曲线,它的几何形状是圆锥面截面形式的曲线,其形状
随其参数的变化而变化。

点弦问题可以理解为寻找并定义由固定的一系列点组成的半弦曲线,具体点的位置和形状
受其中的点的影响。

如果在一个圆锥曲线上,这些点按一定的规则排列,半弦曲线的形状
和位置就可以推导出来,这就是所谓的“点弦问题”,也可以称为“半弦曲线构造问题”。

在解决圆锥曲线上点弦问题时,首先讨论的是构成曲线的点的位置,其次是参数的估计和
形状的推算。

采用曲面的本地坐标系,将点坐标改写成相对曲面的相对点,通过微分几何
计算求解曲线等价参数。

在定义曲线形状之前,要求由曲面本身和控制点确定的曲线,该
曲线必须能与控制点重合,同时满足曲线的连续条件。

最后,圆锥曲线上点弦问题的解决可以采用数值解法,有效地计算构成曲线的点,根据不
同的输入参数得到不同的曲线结果。

总之,研究圆锥曲线上的点弦问题是十分重要的,它不仅涉及坐标几何、微积分和数学分
析学,而且还可以有助于深入了解圆锥曲线上的数学知识。

研究者需要运用有关的数学理
论和实践技术来解决这一问题,从而使其在教学和科学研究方面都得到正确地解释和应用。

专题12 圆锥曲线的中点弦问题 -高中数学必备考试技能之二级结论提高速度原创精品(原卷版)

专题12  圆锥曲线的中点弦问题 -高中数学必备考试技能之二级结论提高速度原创精品(原卷版)

1.在椭圆E:x2a2+y2b2=1(a>b>0)中:(1)如图①所示,若直线y=kx(k≠0)与椭圆E交于A,B两点,过A,B两点作椭圆的切线l,l',有l∥l',设其斜率为k0,则k·k=-b2a2.(2)如图②所示,若直线y=kx与椭圆E交于A,B两点,P为椭圆上异于A,B的点,若直线PA,PB的斜率存在,且分别为k1,k2,则k1·k2=-b2a2.(3)如图③所示,若直线y=kx+m(k≠0且m≠0)与椭圆E交于A,B两点,P为弦AB的中点,设直线PO的斜率为k0,则k·k=-b2a2.2.在双曲线E:x2a2-y2b2=1(a>0,b>0)中,类比上述结论有:(1)k0·k=b2a2. (2)k1·k2=b2a2. (3)k·k=b2a2.4.已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为()3,0F ,过点F 的直线交椭圆于,A B 两点,若AB 的中点坐标为()1,1-,则椭圆E 的方程为( )A .2214536x y += B .2213627x y += C .2212718x y += D .221189x y += 5.设椭圆的方程为2222x y a b+=1,直线AB 不经过原点,而且与椭圆相交于A ,B 两点,M 为AB 的中点.若直线AB 的斜率为1,则直线OM 的斜率不可能是( )A .43-B .916-C .14-D .﹣1 6.已知直线l 与圆222x y r +=交于A 、B 两点,P 线段AB 的中点,则1AB OP k k ⋅=-.试用类比思想,对椭圆写出结论:______.8.已知AB 为抛物线24x y =的一条长度为8的弦,当弦AB 的中点离x 轴最近时,直线AB 的斜率为___________.9.已知双曲线()2222:10,0x y C a b a b-=>>的右焦点为F ,虚轴的上端点为B ,点P ,Q 为C 上两点,点()2,1M -为弦PQ 的中点,且//PQ BF ,记双曲线的离心率为e ,则2e =______.。

高中数学教学课例《圆锥曲线的中点弦问题——点差法的应用》课程思政核心素养教学设计及总结反思

高中数学教学课例《圆锥曲线的中点弦问题——点差法的应用》课程思政核心素养教学设计及总结反思

次的安索帕杉树班,平常课堂氛围不是很活跃,因此在
设计导入新课时,多从激发学生的课堂积极性入手。
知识层面:本节课是学生在已经掌握了椭圆中中点
弦所在直线斜率的推导步骤,并且能够“复述”通过类
比推理,将推导方法应用到双曲线中,并用此方法解决
中点弦问题的两种题型。
本节课是在学习椭圆中点弦所在直线斜率公式推
教学策略选 导后的进一步学习,通过类比提出问题,激发学生的学
4、课堂的组织语言上,仍然显得不是那么自然,
在 PPT 与板演方面,没有得到很好的衔接。
5、在课堂改革的潮流下,对课堂“复述”小组合
作没有体现得淋漓精致,对学生活动后没有进行评价打
分,给予鼓励。
反思:
“学最好的别人,做最好的自己”,工作第二年,
自己在课堂讲课方面有一定的进步,但仍然认为自己可
以更好。对教学设计上,在问题引入方面应该多下功夫
择与设计 习兴趣,引导学生类比推理,并以小组合作探究的方式,
对双曲线进行探究。从而得出结论。
探究二:点差法的应用——以定点为中点的弦所在
直线方程
例 1、过椭圆内一点引一条弦,使得弦被点平分,
求这条弦所在直线方程。 教学过程
设计意图:通过例题让学生对知识学以致用,并从”
一题多解“引导学生,一方面让学生感受点差法的简便,
吸引学生。在题组设计方面,不能贪心,应尽量挑选典
型例题,最好结合高考题进行分析。在时间考虑方面,
应尽量让当堂检测时间充裕,给学生考虑消化的时间。
学习一直在路上,课赛遇到很多高手,自己收获很
多,希望再接再厉。
求弦中点的轨迹方程。
情感态度价值观:在整个学生过程中培养学生的合
作能力与坚强的意志品质。

高考数学二级结论快速解题:专题15 圆锥曲线的中点弦问题(原卷版)

高考数学二级结论快速解题:专题15 圆锥曲线的中点弦问题(原卷版)

专题15圆锥曲线的中点弦问题一、结论1.在椭圆C :22221(0)x y a b a b中:(特别提醒此题结论适用x 型椭圆)(1)如图①所示,若直线(0)y kx k 与椭圆C 交于A ,B 两点,过A ,B 两点作椭圆的切线l ,l ,有l l ,设其斜率为0k ,则202bk k a.(2)如图②所示,若直线(0)y kx k 与椭圆C 交于A ,B 两点,P 为椭圆上异于A ,B 的点,若直线PA ,PB 的斜率存在,且分别为1k ,2k ,则2122b k k a.(3)如图③所示,若直线(0,0)y kx b k m 与椭圆C 交于A ,B 两点,P 为弦AB 的中点,设直线PO 的斜率为0k ,则202b k k a.2.在双曲线C :22221(0,0)x y a b a b中,类比上述结论有:(特别提醒此题结论适用x 型双曲线)(1)202b k k a .(2)2122b k k a .(3)202b k k a.3.在抛物线C :22(0)y px p 中类比1(3)的结论有00(0)pk y y.特别提醒:圆锥曲线的中点弦问题常用点差法,但是注意使用点差法后要检验答案是否符合题意;另外也可以通过联立+韦达定理求解.二、典型例题1.(2022·内蒙古·海拉尔第二中学高三期末(文))设椭圆的方程为22124x y ,斜率为k的直线不经过原点O ,而且与椭圆相交于A ,B 两点,M 为线段AB 的中点,下列结论正确的是()A .直线AB 与OM 垂直;B .若直线方程为22y x ,则ABC .若直线方程为1y x ,则点M 坐标为1433,D .若点M 坐标为 1,1,则直线方程为230x y ;【答案】D 【详解】不妨设,A B 坐标为 1122,,,x y x y ,则2211124x y ,2222124x y ,两式作差可得:121212122y y y y x x x x ,设 00,M x y ,则002y k x .对A :02AB OM y k k k x,故直线,AB OM 不垂直,则A 错误;对B :若直线方程为22y x ,联立椭圆方程2224x y ,可得:2680x x ,解得1240,3x x ,故1222,3y y ,则AB,故B 错误;对C :若直线方程为y =x +1,故可得12y x ,即002y x ,又001y x ,解得0012,33x y ,即12,33M,故C 错误;此题对C 另解,直接利用二级结论,由于本题椭圆方程为22124x y ,是y 型椭圆,所以:202422a k k b ,故可得0012y x ,即002y x ,又001y x ,解得0012,33x y ,即12,33M,故C 错误;对D :若点M 坐标为 1,1,则121k ,则2AB k ,又AB 过点 1,1,则直线AB 的方程为 121y x ,即230x y ,故D 正确.故选:D .【反思】本题考察椭圆中弦长的求解,以及中点弦问题的处理方法;解决问题的关键是利用点差法,再使用二级结论时,注意先判断椭圆是x 型还是y 型,再利用结论求解.2.(2021·安徽·淮北师范大学附属实验中学高二期中)已知椭圆 2222:10x y E a b a b的右焦点F 与抛物线212y x 的焦点重合,过点F 的直线交E 于A 、B 两点,若AB 的中点坐标为 1,1 ,则E 的方程为()A .2214536x yB .2213627x yC .2212718x yD .221189x y【答案】D 【详解】解:设 11,A x y 、 22,B x y ,若AB x 轴,则A 、B 关于x 轴对称,不合乎题意,将A 、B 的坐标代入椭圆方程得22112222222211x y a b x y a b ,两式相减得22221212220x x y y a b ,可得12121222120x x y y y y a x x b,因为线段AB 的中点坐标为 1,1 ,所以,122x x ,122y y ,因为抛物线212y x 的焦点为 3,0,所以 3,0F ,又直线AB 过点 3,0F ,因此1212101132AB y y k x x,所以,2221202a b,整理得222a b,又3c 218a ,29b ,因此,椭圆E 的方程为221189x y ,故选:D.另解:设 11,A x y 、 22,B x y ,若AB x 轴,则A 、B 关于x 轴对称,不合乎题意,因为抛物线212y x 的焦点为 3,0,所以 3,0F ,所以3c ,设线段AB 的中点坐标为 1,1M ,利用二级结论2222220(1)131OM ABOM FM b b b k k k k a a a 2212b a ,又因为229a b ,解得218a ,29b ,因此,椭圆E 的方程为221189x y,故选:D.【反思】在圆锥曲线中,涉及到中点弦问题,小题中,常用点差法,也可以直接使用二级结论,但是在解答题中,不建议直接使用二级结论,即使使用点差法,也需检验答案是否符合题意,否则,最后还是需要联立直线与圆锥曲线,再求解.3.(2021·湖北·高二阶段练习)已知斜率为1的直线与双曲线 2222:10,0x y C a b a b相交于A 、B 两点,O 为坐标原点,AB 的中点为P ,若直线OP 的斜率为2,则双曲线C 的离心率为()AB .2CD .3【答案】A 【详解】设 11,A x y 、 22,B x y 、 00,P x y ,则22112222222211x y a b x y a b ,两式相减得2222121222x x y y a b ,所以2121221212y y x x b x x a y y .因为1202x x x ,1202y y y ,所以21202120y y b x x x a y .因为12121ABy y k x x ,002 OP y k x ,所以2212b a ,故222b a ,故ce a.故选:A.另解:直接利用双曲线中的二级结论,2222222202221223b b k k b a c a a e e a a.【反思】注意使用二级结论的公式,一定要先判断,第一判断曲线是椭圆,还是双曲线,还是抛物线,第二判断圆锥曲线是x 型,还是y 型,第三,根据判断选择合适的二级结论,代入计算.4.(四川省蓉城名校联盟2021-2022学年高二上学期期末联考理科数学试题)已知抛物线 220x py p ,过其焦点且斜率为1的直线交抛物线于A ,B 两点,若线段AB 的中点的横坐标为3,则该抛物线的准线方程为()A .3y B .32yC .3x D .32x【答案】B【详解】解:根据题意,设 1122,,,A x y B x y ,所以2112x py ①,2222x py ②,所以,① ②得: 1212122x x x x p y y ,即1212122AB y y x x k x x p,因为直线AB 的斜率为1,线段AB 的中点的横坐标为3,所以121212312AB y y x x k x x p p,即3p ,所以抛物线26x y ,准线方程为32y .故选:B【反思】在抛物线C :22(0)y px p 中类比1(3)的结论有00(0)pk y y,注意到本题的抛物线方程是 220x py p ,此时中点弦二级结论有0x k p,直接代入313p p,小题都可以用二级结论直接求解,但是注意先判断适用条件.5.(2021·江西·南昌市新建区第一中学高二期末(理))已知斜率为(0)k k 的直线l 与抛物线2:4C y x 交于,A B 两点,O 为坐标原点,M 是线段AB 的中点,F 是C 的焦点,OFM 的面积等于3,则k ()A .14B .13C .12D.3【答案】B 【详解】由抛物线2:4C y x 知:焦点 1,0F 设 112200,,,,,,A x yB x y M x y 因为M 是线段AB 的中点,所以01201222x x x y y y将2114y x 和2224y x 两式相减可得: 2212124y y x x ,即121202y y k x x y∵000k y ∴00113,62OFM S y y ,022163k y.故选:B另解:因为抛物线方程2:4C y x ,设AB 的中点00(,)M x y ,由中点弦二级结论,可知:00(0)p k y y代入:02k y ,另焦点 1,0F ,因为面积3OFM S ,可知00113,62OFM S y y ,再代入0213k k y.【反思】中点弦,最典型的方法就是点差法,在判断条件满足二级结论时,可直接使用二级结论.6.(2022·湖北·武汉市第十五中学高二期末)已知椭圆C 的中心在原点,焦点在x 轴上,长轴长为4,且点)2在椭圆上.(1)经过点M (1,12)作一直线1l 交椭圆于AB 两点,若点M 为线段AB 的中点,求直线1l 的斜率;【答案】(1)12;.(1)解:由题设椭圆的方程为222+1,4x y b因为椭圆经过点(1,2,所以213+1,1,44b b 所以椭圆的方程为22+14x y .设1122(,),(,)A x y B x y ,所以22112222+44+44x y x y ,所以12121212()()4()()=0x x x x y y y y ,由题得12x x ,所以12121212()4()=0y y x x y y x x ,所以1212241=0y y x x,所以1241=0,=2AB AB k k ,所以直线1l 的斜率为12 ,经检验1l 的斜率等于12复合题意.【反思】在圆锥曲线中,涉及中点弦常用点差法,注意使用点差法,最后需检验,特别是多个答案时,更应该检验,最后保留下符合题意的答案。

运用点差法解答圆锥曲线中点弦问题的步骤

运用点差法解答圆锥曲线中点弦问题的步骤

思路探寻中点弦问题是指与圆锥曲线的弦的中点有关的问题.这类问题通常要求我们求弦的中点的坐标、弦所在直线的方程、圆锥曲线的方程,侧重于考查一元二次方程的根与系数的关系、线段中点的坐标公式、直线的斜率公式的应用,以及直线与圆锥曲线的位置关系.解答圆锥曲线中点弦问题,通常运用点差法.若直线与椭圆x 2a 2+y 2b2=1(a >b >0)相交于点A (x 1,y 1)、B (x 2,y 2),且AB 的中点M (x 0,y 0),运用点差法解答中点弦问题的步骤为:1.把A 、B 两点的坐标代入椭圆的方程,得:x 12a 2+y 12b 2=1①,x 22a 2+y 22b2=1②;2.将①②两式作差,得x 12-x 22a 2+y 12-y 22b 2=1,即()x1-x 2()x 1+x 2a 2+()y1-y 2()y 1+y 2b 2=1,可得y 1-y 2x 1-x 2=()-b 2a 2(x 1+x 2y 1+y 2)=()-b 2a 2æèççççöø÷÷÷÷x 1+x 22y 1+y 22=()-b 2a2(x 0y 0)③;3.根据线段中点的坐标公式可得x 0=x 1+x 22,y 0=y 1+y 22,将其代入③得y 1-y 2x 1-x 2=()-b 2a 2()x 0y 0,即为直线AB 的斜率.类似地,对于焦点在y 轴上的椭圆y 2a 2+x 2b2=1(a >b >0),运用点差法可得直线AB 的斜率k AB =()-a 2b 2()x 0y 0;对于焦点在x 轴上的双曲线x 2a 2-y 2b2=1(a >0,b >0),由点差法可得直线AB 的斜率k AB =()b 2a 2()x 0y 0;焦点在y 轴上的双曲线y 2a 2-x2b2=1(a >0,b >0),由点差法可得直线AB 的斜率k AB =()a 2b 2()x 0y 0.利用点差法,由弦AB 所在直线的斜率和圆锥曲线的方程,可以得到弦AB 中点的横坐标x 0与纵坐标y 0之间的关系式.例1.在直角坐标系xOy 中,曲线C 的参数方程为ìíîx =2cos θ,y =4sin θ,其中θ为参数,直线l 的参数方程为ìíîx =1+t cos θ,y =2+t sin θ,其中t 为参数.若曲线C 截直线l 所得线段的中点为(1,2),求直线l 的斜率.解:由ìíîïïïïx2=cos θ,y 4=sin θ,可得曲线C 的直角坐标方程是y 216+x 24=1,当直线l 的倾斜角θ≠π2时,由ìíîx -1=t cos θ,y -2=t sin θ,得y -2x -1=tan θ,则直线l 的直角坐标方程是y =x tan θ+2-tan θ.当直线l 的倾斜角θ=π2时,直线l 的斜率不存在,其方程是x =1,设直线l 与曲线C 相交于点A (x 1,y 1)、B (x 2,y 2),因为AB 的中点的坐标为(1,2),所以x 1+x 22=2,y 1+y 22=4,把A 、B 两点的坐标代入椭圆的方程中,得x 1216+y 124=1①,x 2216+y 224=1②,将①②两式作差得x 12-x 2216+y 12-y 224=1,可得直线l 的斜率k AB=()-164()x 1+x 2y 1+y 2=()-164×()12=-2.运用点差法,由弦的中点坐标和曲线的方程,可以直接通过整体代换,快速求得弦所在直线的斜率,这样可以大大减少运算量.例2.已知双曲线x 2-y 22=1,那么过点P (1,1)能否45思路探寻作一条直线l 与双曲线交于A ,B 两点,且点P 是线段AB的中点.解:设直线l 与双曲线相交于点A (x 1,y 1)、B (x 2,y 2),因为AB 的中点的坐标为(1,1),所以x 1+x 22=2,y 1+y 22=2,把A 、B 两点的坐标代入双曲线的方程,得x 12+y 122=1①,x 22+y 222=1②,将①②两式作差得()x 12-x 22+y 12-y 222=1,可得k AB =2()x 1+x 2y 1+y 2=2.得直线l 的方程为y -1=2(x -1),即y =2x -1.联立直线与双曲线的方程,得ìíîïïy =2x -1,x 2-y 22=1,消去y ,得2x 2-4x +3=0,所以△=16-24=-8<0,则方程无解.所以直线l :y =2x -1与双曲线x 2-y 22=1相离,故不存在直线l 与双曲线交于A ,B 两点,且点P 是线段AB 的中点.本题涉及了双曲线的弦、中点,属于中点弦问题,需运用点差法求解.将直线与双曲线的两个交点的坐标分别代入双曲线的方程中,并作差,从而求得弦所在直线的斜率和方程.最后还需构造出一元二次方程,根据方程的判别式来判断直线与双曲线是否有两个交点,检验所求的直线方程是否满足题意.例3.已知椭圆x 22+y 2=1上的两点A 、B 关于直线y =mx +12对称,求实数m 的取值范围.解:设A (x 1,y 1)、B (x 2,y 2),把A 、B 两点的坐标代入椭圆的方程,得x 122+y 12=1①,x 222+y 22=1②,将①②两式作差得()x12-x 222+()y 12-y 22=1,可得-1m =()-12()x 1+x 2y 1+y 2.设弦AB 的中点M (x 0,y 0),则y 0=mx 0+12③,可得-1m =(-12)(x 0y 0)④,由③④可得ìíîïïïïx 0=-1m,y 0=-12,即M (-1m ,-12),因为弦AB 的中点M 必在椭圆内部,所以()-1m22+()-122<1,解得mm <由于A 、B 两点关于直线对称,所以A 、B 两点的中点在直线上.本题实质上是中点弦问题,需运用点差法求解.先将两点的坐标代入椭圆的方程中,并作差,即可求出直线的斜率;然后建立关于AB 中点坐标的方程组,求得中点的坐标;再将其代入椭圆的方程中,根据椭圆与点的位置关系,求得参数m 的取值范围.例4.已知直线AB 与椭圆x 2a 2+y 2b2=1交于A 、B 两点,B 与B '关于原点O 对称,证明:直线AB 与直线AB '的斜率之积为定值.证明:设A (x 1,y 1)、B (x 2,y 2),把A 、B 两点的坐标代入椭圆的方程中,得:x 12a 2+y 12b 2=1①,x 22a 2+y 22b2=1②,将①②两式作差,得x 12-x 22a 2+y 12-y 22b 2=1,即y 1-y 2x 1-x 2=()-b 2a2(x 1+x 2y 1+y 2),变形得y 1-y 2x 1-x 2⋅y 1-(-y 2)x 1-(-x 2)=-b 2a2,而直线AB 的斜率为k AB =y 1-y 2x 1-x 2,直线AB '的斜率为k AB '=y 1-(-y 2)x 1-(-x 2),所以k AB ⋅k AB '=y 1-y 2x 1-x 2⋅y 1-(-y 2)x 1-(-x 2)=-b 2a2.解答本题,需灵活运用点差法和直线的斜率公式,建立关于直线AB 和直线AB '的斜率的关系式,从而证明结论.运用点差法解题,只需通过简单的整体代换,即可求得直线的斜率、弦中点的坐标,这样可以有效地提升解题的效率.但是点差法的适用范围较窄,只适用于求解中点弦问题,且其中的x 1、x 2、y 1、y 2不一定是实数,有可能是虚数,因此在运用点差法解题时,还需检验所得的结果是否满足题意.(作者单位:陕西省宝鸡市岐山县蔡家坡高级中学)46。

利用点差法处理圆锥曲线的“中点弦问题”

利用点差法处理圆锥曲线的“中点弦问题”

专题复习:利用点差法处理圆锥曲线的“中点弦问题”【知识要点】已知直线与圆锥曲线交于,A B 两点,点00(,)P x y 为弦AB 的中点,由点差法可得出以下公式:1. 椭圆:(1)焦点x 在轴上:22221x y a b += 2020AB x b k a y =-⋅(2)焦点y 在轴上:22221y x a b += 2020AB x a k b y =-⋅2. 双曲线:(1)焦点x 在轴上:22221x y a b -= 2020AB x b k a y =⋅(2)焦点y 在轴上:22221y x a b -= 2020AB x a k b y =⋅3. 抛物线: (1)焦点x 在轴上:2y mx = 02AB mk y =(2)焦点y 在轴上:2x my = 02AB m k x =【例题分析】类型1:已知曲线及弦的中点,求直线【例1】 已知直线l 与椭圆22164x y +=交于过点,A B 两点,若线段AB 的中点恰好为点(21)P ,, 则直线l 的方程为 .【实战演练】(2009新课标全国卷)已知抛物线C 的顶点在坐标原点,焦点为(1,0)F ,直线l 与抛物线C 相交于,A B 两点,若AB 的中点为(2,2),则直线l 的方程为 .类型2:已知直线及弦的中点,求曲线【例2】已知双曲线中心在原点且一个焦点为F 0),直线1y x =-与其相交于M 、N 两点,MN 中点的横坐标为23-,则此双曲线的方程为 .【实战演练1】(2014江西高考)过点(1,1)M 作斜率为12-的直线与椭圆22221(0)x y a b a b +=>>交于,A B 两点,若M 是的中点,则椭圆的离心率为 .【实战演练2】(2013新课标全国I 卷)已知椭圆E :22221(0)x y a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交E 于,A B 两点,若AB 的中点为(1,1)-,则E 的方程为 . 类型3:已知曲线及直线,求弦的中点【例3】已知直线3y x =-+与抛物线22y x =交于,A B 两点,则AB 中点坐标为 . 【实战演练】(2013浙江高考)设F 为抛物线2:4C y x =的焦点,过点(1,0)P -的直线l 交抛物线于,A B 两点,点Q 为AB 的中点,若2FQ =,则直线l 的斜率为 .【题型强化训练】1.(1)若椭圆2212x y +=的弦被点)21,21(-平分,则这条弦所在直线方程为 . (2)若直线1y x =+与椭圆22142x y +=相交于,A B 两点,则AB 中点坐标为 . 2. 已知中心在原点,一焦点为)50,0(F 的椭圆被直线23:-=x y l 截得的弦的中点横坐标为21,则该椭圆的方程为 .3.已知直线3y x =-+与椭圆22221(0)x y a b a b+=>>交于,A B 两点,若AB 中点为(2,1),则该椭圆的离心率为 .4. 直线():50l ax y a --+=(a 是参数)与抛物线()2:1f y x =+的相交弦是AB ,则弦AB 的中点轨迹方程是 .5.已知抛物线2:4C y x =,直线l 与抛物线C 交于,A B 两点,若线段AB 的中点坐标为(2,2),则直线l 的方程为 .6. 已知直线l 与抛物线28y x =交于,A B 两点,点(2,2)M 为AB 中点,则AOB S ∆= .7.过抛物线22(0)y px p =>的焦点F ,且倾斜角为4π的直线与抛物线交于,A B 两点,若弦AB 的垂直平分线过点(0,2),则AOB ∆的面积AOB S ∆= .8. 已知椭圆13422=+y x 上总有不同的两点关于直线m x y +=4对称,则实数m 的取值范围为 .9.已知椭圆C: 22221x y a b+= (0a b >>)的右焦点为F(2,0),且过点). 直线l 过点F 且交椭圆C 于A 、B 两点.若线段AB 的垂直平分线与x 轴的交点为M(1,02),则直线l 的方程为 . 11.已知双曲线2222:1(0,0)x y T a b a b-=>>的右焦点为(2,0)F,且经过点(3R ,ABC ∆的三顶点都在双曲线T 上,O 为坐标原点,设ABC ∆三条边,,AB BC AC 的中点分别为,,M N P ,且三条边所在直线的斜率分别为123,,k k k ,若1OM ON OP k k k++=-,则123111k k k ++= . 12. 已知ABC ∆的三个顶点都在抛物线232y x =上,其中()2,8A ,且ABC ∆的重心G 是抛物线的焦点,求直线BC 的方程.13.过点()0,2的直线l 与中心在原点,焦点在x轴上且离心率为2的椭圆C 相交于A 、B 两点,直线12y x =过线段AB 的中点,同时椭圆C 上存在一点与右焦点关于直线l 对称. (1)求直线l 的方程; (2)求椭圆C 的方程.14.已知椭圆221259x y +=上三点()()11229,,4,,,5A x y B C x y ⎛⎫ ⎪⎝⎭与焦点()4,0F 的距离成等差数列.(1)求证:128x x +=;(2)若线段AC 的垂直平分线与x 轴交于点T ,求直线BT 的斜率k .15. 已知椭圆22221(0)x y a b a b+=>>的左右焦点分别为12,F F,离心率为2,短轴长为2。

圆锥曲线的中点弦问题(解析版)

圆锥曲线的中点弦问题(解析版)

第一篇圆锥曲线专题04中点弦问题一、用点差法求斜率及常用公式在圆锥曲线中涉及弦中点问题,如果涉及斜率,则常用点差法求斜率,关于点差法求斜率的方法,证明过程如下:直线y km b =+与椭圆2222:1x y C a b+=交于A,B 两点,00(x ,y )M 是弦AB 的中点,求直线AB 的斜率。

【解析】设1122A(x ,y ),B(x ,y ),点A,B 在椭圆上,所以221122x y 1a b +=…………………………………….①222222x y 1a b+=…………………………………….②①-②得:2222121222x x y y 0a b --+=2121221212(x x )(x x )(y y )(y y )a b-+=--+220220y ..x AB AB OM b b k k k a a=-⇒=-这是一个标准的点差法求斜率的例题,不过需要注意最后的结论,因为方法过程简单但是繁琐,在小题里面可以直接利用结论来求出相关的斜率,常用结论如下:1、斜率为k 的直线l 交椭圆22221x y a b +=于1122A(x ,y ),B(x ,y )两点且AB 的中点为00(x ,y )M ,则22.OM b k k a =-,焦点在y 轴上时有22.OM a k k b=-2、斜率为k 的直线l 交双曲线22221x y a b-=于1122A(x ,y ),B(x ,y )两点且AB 中点为00(x ,y )M ,则22.OM b k k a =,焦点在y 轴上时有22.OM a k k b=3、斜率为k 的直线l 交抛物线22y px =于1122A(x ,y ),B(x ,y )两点且AB 中点为00(x ,y )M ,则.OM pk k x =例1:已知双曲线2213x y -=的右焦点是抛物线22(p 0)y px =>的焦点,直线y km b =+与抛物线相交于A,B 两个不同的点,点(2,2)M 是AB 的中点,则AOB ∆的面积是().43A .313B .14C .23D 例2:如图,椭圆22214x y a +=的焦点为12,F F ,过1F 的直线交椭圆于点M,N ,交y 轴于点H ,若1F ,H 是线段的三等分点,则2F MN ∆的周长为_______.【解析】2F MN ∆的周长等于4a ,直线MN 斜率必定存在,设其为k ,则:y k(x c)MN =+可得H(0,ck),1F H 中点坐标为(,)22c ck P -所以2K 2op ckk c ==--根据中点弦结论可知22K .K MN opb a =-则,(0,)b bc k H a a =,因为H 是1F N 的中点,可得2N(c,bc a将N 点代入椭圆方程中整理可得225a c =,结合b=2解得25a =故2F MN ∆的周长为45二、利用导数法求解中点弦问题探究:在点差法中我们设了两个点,每个点中又有两个量,能不能减少未知量的个数,利用中点坐标公式我们可以将四个未知量变成两个,如下:例:过点(2,1)A 作一条直线l 交椭圆221169x y +=于点12,P P ,若点A 恰好是弦12PP 的中点,求直线l 的方程。

中点弦问题

中点弦问题

圆锥曲线的中点弦问题一:圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解.①在椭圆中,以为中点的弦所在直线的斜率;②在双曲线中,以为中点的弦所在直线的斜率;③在抛物线中,以为中点的弦所在直线的斜率。

注意:因为Δ>0是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验Δ>0!1、以定点为中点的弦所在直线的方程例1、过椭圆141622=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。

例2、已知双曲线1222=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。

若存在这样的直线l ,求出它的方程,若不存在,说明理由。

策略:这是一道探索性习题,一般方法是假设存在这样的直线 ,然后验证它是否满足题设的条件。

本题属于中点弦问题,应考虑点差法或韦达定理。

2、 过定点的弦和平行弦的中点坐标和中点轨迹例3、已知椭圆1257522=+x y 的一条弦的斜率为3,它与直线21=x 的交点恰为这条弦的中点M ,求点M 的坐标。

例4、已知椭圆1257522=+x y ,求它的斜率为3的弦中点的轨迹方程。

3、 求与中点弦有关的圆锥曲线的方程例5、已知中心在原点,一焦点为)50,0(F 的椭圆被直线23:-=x y l 截得的弦的中点的横坐标为21,求椭圆的方程。

∴所求椭圆的方程是1257522=+x y 4、圆锥曲线上两点关于某直线对称问题例6、已知椭圆13422=+y x ,试确定的m 取值范围,使得对于直线m x y +=4,椭圆上总有不同的两点关于该直线对称。

五、注意的问题(1)双曲线的中点弦存在性问题;(2)弦中点的轨迹应在曲线内。

利用点差法求解圆锥曲线中点弦问题,方法简捷明快,结构精巧,很好地体现了数学美,而且应用特征明显,是训练思维、熏陶数学情感的一个很好的材料,利于培养学生的解题能力和解题兴趣。

圆锥曲线中点弦问题结论汇总

圆锥曲线中点弦问题结论汇总

圆锥曲线中点弦结论汇总1.椭圆1)焦点在x 轴上:椭圆C :x 2a 2+y 2b 2=1(a >b >0),设直线l 方程为y =kx +b ,与C 交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),(x 1֠≠x 2)其中A 与B 的中点为M (x 0,y 0)则有中点弦结论为: 推导:分别把A ,B 两点坐标代入C 中:1221221=+by ax ① 1222222=+by ax ②①-②02222122221=-+-by y ax x 即()()()()02212122121=+-++-by y y y ax x x x同时除以()()2121x x x x +-得()()()()0112121212122=++--+x x y y x x y y b a ③ 又因为:()()2121x x y y k --=,21021022y y y x x x +=+=,代入③式得0221122=+x y b ak 移项化简得0022x y k ab -=2)同理可证,若焦点在y 轴上,y 2a 2+x 2b 2=1(a >b >0)设直线l 方程为y =kx +b ,与C 交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),(x 1֠≠x 2)其中A 与B 的中点为M (x 0,y 0)则有中点弦结论为:学习奥数的优点1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。

2、训练学生良好的数学思维习惯和思维品质。

要使经过奥数训练的学生,思维更敏捷,考虑问题比别人更深层次。

3、锻炼学生优良的意志品质。

可以培养持之以恒的耐心和克服困难的信心, 以及战胜难题的勇气。

可以养成坚韧不拔的毅力4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。

022x y k b a = 2、双曲线1)焦点在x 轴上:双曲线C :12222=-by a x (a >0,b >0),设直线l 方程为y =kx +b ,与C 交于A ,B 两点,A (x 1,y 1),B (x 2,y 2)(x 1֠≠x 2),其中A 与B 的中点为M (x 0,y 0)则中点弦结论为: 推导:分别把A ,B 两点坐标代入C 中:1221221=-by ax ① 1222222=-by ax ②①-②02222122221=---by y ax x 即()()()()02212122121=+--+-by y y y ax x x x同时除以()()2121x x x x +-得()()()()0112121212122=++---x x y y x x y y b a ③ 又因为:()()2121x x y y k --=,21021022y y y x x x +=+=,代入③式得0221122=-x y b ak 移项化简得0022x y k a b =同理可证:2)若焦点在y 轴上,双曲线C :12222=-bx a y (a >0,b >0)设直线l 方程为y =kx +b ,与C 交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),(x 1֠≠x 2)其中A 与B 的中点为M (x 0,y 0)则有中点弦结论为:3.抛物线1)若开口向右抛物线C :)(022>=p px y ,设直线l 方程为y =kx +b ,与C 交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),(x 1֠≠x 2)其中A 与B 的中点为M (x 0,y 0)则有中点弦结论推导:分别把A ,B 两点坐标代入C 中:1212px y = ① 2222px y = ②①-② ()2122212x x p y y -=- 即()()()2121212x x p y y y y -=+- 同时除以()21x x -得()()()p y y x x y y 2212121=+-- ③又因为:()()2121x x y y k --=2102y y y +=,代入③式得p y k 220=⋅移项化简得0ky p =2)同理若开口向左,抛物线C :)(022>-=p px y ,设直线l 方程为y =kx +b ,与C 交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),(x 1֠≠x 2)其中A 与B 的中点为M (x 0,y 0)则有中点弦结论3)同理若开口向上,抛物线C :)(022>=p y p x ,设直线l 方程为y =kx +b ,与C 交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),(x 1֠≠x 2)其中A 与B 的中点为M (x 0,y 0)则有中点弦结论4)同理若开口向下,抛物线C :)(022>-=p py x ,设直线l 方程为y =kx +b ,与C 交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),(x 1֠≠x 2)其中A 与B 的中点为M (x 0,y 0)则有中点弦结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于圆锥曲线的中点弦问题直线与圆锥曲线相交所得弦中点问题,是解析几何中的重要内容之一,也是高考的一个热点问题。

这类问题一般有以下三种类型:(1)求中点弦所在直线方程问题; (2)求弦中点的轨迹方程问题;(3)求弦中点的坐标问题。

其解法有代点相减法、设而不求法、参数法、待定系数法及中心对称变换法等。

一、求中点弦所在直线方程问题例1 过椭圆141622=+y x 内一点M (2,1)引一条弦,使弦被点M 平分,求这条弦所在的直线方程。

解法一:设所求直线方程为y-1=k(x-2),代入椭圆方程并整理得:016)12(4)2(8)14(2222=--+--+k x k k x k又设直线与椭圆的交点为A(11,y x ),B (22,y x ),则21,x x 是方程的两个根,于是14)2(82221+-=+k k k x x , 又M 为AB 的中点,所以214)2(422221=+-=+k k k x x , 解得21-=k ,故所求直线方程为042=-+y x 。

解法二:设直线与椭圆的交点为A(11,y x ),B (22,y x ),M (2,1)为AB 的中点, 所以421=+x x ,221=+y y ,又A 、B 两点在椭圆上,则1642121=+y x ,1642222=+y x , 两式相减得0)(4)(22212221=-+-y y x x ,所以21)(421212121-=++-=--y y x x x x y y ,即21-=AB k ,故所求直线方程为042=-+y x 。

解法三:设所求直线与椭圆的一个交点为A(y x ,),由于中点为M (2,1),则另一个交点为B(4-y x -2,),因为A 、B 两点在椭圆上,所以有⎩⎨⎧=-+-=+16)2(4)4(1642222y x y x , 两式相减得042=-+y x ,由于过A 、B 的直线只有一条,故所求直线方程为042=-+y x 。

二、求弦中点的轨迹方程问题例2 过椭圆1366422=+y x 上一点P (-8,0)作直线交椭圆于Q 点,求PQ 中点的轨迹方程。

解法一:设弦PQ 中点M (y x ,),弦端点P (11,y x ),Q (22,y x ),则有⎩⎨⎧=+=+57616957616922222121y x y x ,两式相减得0)(16)(922212221=-+-y y x x , 又因为x x x 221=+,y y y 221=+,所以0)(216)(292121=-⋅+-⋅y y y x x x , 所以y x x x y y 1692121=--,而)8(0---=x y k PQ ,故8169+=x y y x 。

化简可得01672922=++y x x (8-≠x )。

解法二:设弦中点M (y x ,),Q (11,y x ),由281-=x x ,21yy =可得821+=x x ,y y 21=, 又因为Q 在椭圆上,所以136642121=+y x ,即136464)4(422=++y x , 所以PQ 中点M 的轨迹方程为1916)4(22=++y x (8-≠x )。

三、弦中点的坐标问题例3 求直线1-=x y 被抛物线x y 42=截得线段的中点坐标。

解:解法一:设直线1-=x y 与抛物线x y 42=交于),(11y x A , ),(22y x B ,其中点),(00y x P ,由题意得⎩⎨⎧=-=xy x y 412,消去y 得x x 4)1(2=-,即0162=+-x x ,所以32210=+=x x x ,2100=-=x y ,即中点坐标为)2,3(。

解法二:设直线1-=x y 与抛物线x y 42=交于),(11y x A , ),(22y x B ,其中点),(00y x P ,由题意得⎩⎨⎧==22212144x y x y ,两式相减得)(4122122x x y y -=-,所以4))((121212=-+-x x y y y y ,所以421=+y y ,即20=y ,3100=+=y x ,即中点坐标为)2,3(。

上面我们给出了解决直线与圆锥曲线相交所得弦中点问题的一些基本解法。

下面我们看一个结论引理 设A 、B 是二次曲线C :022=++++F Ey Dx Cy Ax 上的两点,P ),(00y x 为弦AB 的中点,则)02(22000≠+++-=E Cy E Cy DAx k AB 。

设A ),(11y x 、B ),(22y x 则0112121=++++F Ey Dx Cy Ax (1)0222222=++++F Ey Dx Cy Ax ……(2) )2()1(-得0)()())(())((212121212121=-+-+-++-+y y E x x D y y y y C x x x x A∴0)()()(2)(22121210210=-+-+-+-y y E x x D y y Cy x x Ax ∴0))(2())(2(210210=-++-+y y E Cy x x D Ax∵020≠+E Cy ∴21x x ≠ ∴E Cy D Ax x x y y ++-=--00212122即E Cy D Ax k AB ++-=0022。

(说明:当B A −→−时,上面的结论就是过二次曲线C 上的点P ),(00y x 的切线斜率公式,即E Cy DAx k ++-=0022)推论1 设圆022=++++F Ey Dx y x 的弦AB 的中点为P ),(00y x ()00≠y ,则E y D x k AB ++-=0022。

(假设点P 在圆上时,则过点P 的切线斜率为)推论2 设椭圆12222=+b y a x 的弦AB 的中点为P ),(00y x ()00≠y ,则0022y x a b k AB •-=。

(注:对a ≤b 也成立。

假设点P 在椭圆上,则过点P 的切线斜率为0022y x a b k •-=) 推论3 设双曲线12222=-b y a x 的弦AB 的中点为P ),(00y x ()00≠y 则0022y x a b k AB •=。

(假设点P 在双曲线上,则过P 点的切线斜率为0022y x a b k •=) 推论4 设抛物线px y 22=的弦AB 的中点为P ),(00y x ()00≠y 则0y p k AB =。

(假设点P在抛物线上,则过点P 的切线斜率为)0y p k =我们可以直接应用上面这些结论解决有关问题,下面举例说明。

例1、求椭圆1162522=+y x 斜率为3的弦的中点轨迹方程。

解:设P (x ,y )是所求轨迹上的任一点,则有y x •-=25163,故所示的轨迹方程为16x+75y=0 )2417524175(<<-x例2、已知椭圆),0(12222>>=+b a b y a x A 、B 是椭圆上两点,线段AB 的垂直平分线l 与x 轴E y Dx k ++-=0022相交于P )0,(0x ,求证:a b a x a b a 22022-<<--。

证明:设AB 的中点为T ),(11y x ,由题设可知AB 与x 轴不垂直,∴01≠y ,∴1122y x a b k AB •-= ∵l ⊥AB ∴1122x y b a k l •= ∴l 的方程为:)(111221x x x y b a y y -•=- 令y=0 得)(01011221x x x y b a y -•=-∴02221x b a a x •-= ∵a x <||1 ∴ax b a a <•-||0222∴a b a x a b a 22022-<<-- 例3、已知抛物线C :x y =2,直线,1)1(:+-=x k y l 要使抛物线C 上存在关于l 对称的两点,k 的取值范围是什么?解:设C 上两点A 、B 两点关于l 对称,AB 的 中点为P),(00y x ()00≠y∴k y y p k AB 12100-=== ∴k y 210-=∵P ∈l ∴,1)1(00+-=x k y ∴,1)1(210+-=-x k k ∴k x 1210-= ∴)21,121(k k P -- ∵P 在抛物线内 ,∴k k 121412-< ∴,04423<+-k k k∴,04)22)(2(2<+-+k k k k ∴.02<<-k与抛物线有关的弦的中点的问题(1)中点弦问题:(上题麻烦了。

是圆不用中点法)例1 由点)0,2(-向抛物线x y 42=引弦,求弦的中点的轨迹方程。

分析:解决问题的关键是找到弦的端点A 、B 在直线上的性质和在抛物线上的性质的内在联系。

解法1:利用点差法。

设端点为A ),(11y x ,B ),(22y x ,则1214x y =,2224x y =, 两式相减得)(4122122x x y y -=-, ① ①式两边同时除以12x x -,得4)(121212=--⋅+x x y y y y , ②设弦的中点坐标为),(y x ,则x x x 221=+,y y y 221=+, ③ 又点),(y x 和点)0,2(-在直线AB 上,所以有12122x x y y x y--=+。

④ 将③、④代入②得422=+⋅x yy , 整理得)2(22+=x y 。

故得中点的轨迹方程是)2(22+=x y 在抛物线x y 42=内部的部分。

解法2:设弦AB 所在直线的方程为)2(+=x k y ,由方程组⎩⎨⎧=+=)2(4)1()2(2xy x k y 消去x 并整理得0842=+-k y ky , (3)设A ),(11y x 、B ),(22y x 、中点),(y x ,对于方程(3),由根与系数的关系,有ky y 421=+, y y 221+2故得所求弦中点的轨迹方程是)2(22+=x y 在抛物线x y 42=内部的部分。

评注:(1)求点的轨迹方程即是求曲线上的点的横、纵坐标所满足的关系式,本题所给出的两种方法,都是找动点),(y x 与已知条件的内在联系,列关于x ,y 的关系式,进而求出轨迹的方程。

(2)弦中点轨迹问题设抛物线px y 22=(0>p )的弦AB ,A ),(11y x ,B ),(22y x ,弦AB 的中点C ),(00y x ,则有⎪⎩⎪⎨⎧==)2(2)1(2222121px y px y ,(1)-(2)得)(2212221x x p y y -=-, ∴2121212y y px x y y +=--,将0212y y y =+,2121x x y y k AB --=,代入上式,并整理得0y pk AB =,这就是弦的斜率与中点的关系,要学会推导,并能运用。

相关文档
最新文档