初一数学(下册)不等式知识点归纳
初中数学不等式知识点大全
一元一次不等式知识点1.不等式不等式的概念:用不等号),,,,(≠≤<≥>表示不等关系的式子叫做不等式。
常用的表示不等关系的语言及符号:(1)大于、比……大、超过:>; (2)小于、比……小、低于:<;(3)不大于、不超过、至多:≥; (4)不小于、不低于、至少:≤;(5)正数:0>; (6)负数:0<;(7)非负数:0≥;(8)非正数:0≤【例1】下列式子中:① 21>-;② 13-≥x ;③ 3-x ;④ vt s =;⑤ y x 243<- ⑥ 2253+=-x x ;⑦ 022≥+a ;⑧ 222c b a ≠+.是不等式的有_________________.【例2】下列语句不能用不等式表示的是( )A. 1+m 是负数B. 2a 是正数C.n m +等于xD. 1-m 是非负数【练习1】下列式子:①05>;②043>+b a ;③2=x ;④1-x ;⑤53≠+x ;⑥732≤+a ;⑦812≥+x ,其中,不等式有______________.【练习2】符号“≥”的含义是“大于或等于”,即“不小于”;符号“≤”的含义是“小于或等于”,即“不大于”.请用文字语言翻译下列不等式:(1)02≥x :____________.(2)0≤-x :_____________.知识点2.不等式的基本性质不等式性质1 不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变. 即如果b a >,那么c b c a c b c a ->-+>+,不等式的性质2 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.即 如果0,>>c b a ,那么cb c a bc ac >>,.不等式的性质3 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.即 如果0,<>c b a ,那么cb c a bc ac <<,. 不等式的性质4 如果b a >,那么a b <.不等式的性质5 如果c b b a >>,,那么c a >.【例1】由13+<-b a ,可得到的结论( )A. b a <B. 13-<+b aC. 31+<-b aD. 31-<+b a【例2】如果b a >,那么下列变形错误的是( )A. b a 33->-B. b b a 2>+C.b a 2222-<-D.b a +->+-11【例3】下列判断中,正确的是( )A. 若b a <,则c b c a <B. 若b a <,则22bm am <C. 若22bm am <,则b a <D. 若b a <,则22b a <【例4】 若0<<b a ,则下列式子:① 21+<+b a ;② 1>ba ;③ ab b a <+;④ba 11<. 其中正确的有_______________. 【例5】已知关于x 的不等式()21>-x a 可化为ax -<12,试化简:21++-a a .【练习1】若b a >,则下列不等式成立的是( )A . b a 22-<-B .b m a m 22<C .21-<-b aD .21+<+b a 【练习2】已知y x >,则下列不等式不成立的是( )A .66->-y xB .y x 33>C .y x 22-<-D .6363+->+-y x【练习3】下列叙述正确的是( )A .若b a =,则b a =B .若b a >,则b a >C .若b a <,则b a <D .若b a =,则b a ±= 【练习4】有理数n m ,在数轴上的位置如图示,则下列关系式中正确的个数( )0<+n m ;0>-m n ;n m 11>;02>-n m ;0>--m n A .1个 B .2个 C .3个 D .4个【练习5】如果0>+b a ,且0>b ,那么b a b a --,,,的大小关系为( )A .b a b a -<-<<B .b a a b <-<<-C .b a b a <-<-<D .a b b a -<<-<知识点3.不等式的解集1.使不等式成立的未知数的值,叫做这个不等式的解。
人教版七年级下册数学 第九章 不等式与不等式组 不等式 不等式的性质(第一课时)
探究新知
知识点 2 不等式的性质2 用不等号填空: (1)5 > 3 ;
5×2 > 3×2 ; 5÷2 > 3÷2 . (2)2 < 4 ;
2×3 < 4×3 ;2÷4 < 4÷4 . 自己再写一个不等式,分别在它的两边都乘(或除以)同一 个正数,看看有怎样的结果?与同桌互相交流,你们发现了 什么规律?
解:(1)为了使不等式x-7>26中不等号的一边变为x,根 据不等式的性质1,不等式两边都加7,不等号的方向不 变,得 x-7+7 > 26+7,
x > 33.
这个不等式的解集在数轴上的表示如图所示:
0
33
探究新知
(2)为了使不等式3x<2x+1中不等号的一边变为x,根据
__不__等__式__性__质__1_,不等式两边都减去_2_x__,不等号的方向
探究新知
(3)已知 a<b,则 -a3
由不等式基本性质3,得
-a 3
>
-b 3
,
因为
-a 3
>
-b 3
,两边都加上2,
由不等式基本性质1,得
-a 3
+2
>
-b3+2
.
巩固练习
若 a>b, 用“>”或“<”填空: a-5 > b-5(根据不等式的性质 1 )
探究新知
如果_a_>_b_且__c_>_0_, 那么_a_c_>_b_c__
(或 a b ) cc
探究新知
不等式基本性质2
不等式的两边都乘(或除以)同一个正数, 不等号的方向不变.
初中数学知识点:不等式
初中数学知识点:不等式(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、合同协议、策划方案、规章制度、演讲致辞、应急预案、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as workplace documents, contract agreements, planning plans, rules and regulations, speeches, emergency plans, experiences, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!初中数学知识点:不等式初中数学知识点必备:不等式在我们平凡的学生生涯里,不管我们学什么,都需要掌握一些知识点,知识点也不一定都是文字,数学的知识点除了定义,同样重要的公式也可以理解为知识点。
人教版七年级数学下册 第九章 不等式与不等式组 一元一次不等式 第2课时 实际问题与一元一次不等式
5.(2021·焦作期末)一种苹果的进价是每千克1.9元,销售中估计有5%的苹果 正常损耗,商家把售价至少定为__2__元,才能避免亏本.
解:因为1.5×10=15<25,所以小明家这个月的用水量超过10立方米.设小明 家这个月的用水量至少为x立方米,根据题意有15+2(x-10)≥25,解得x≥15,答: 他家这个月的用水量至少是15立方米
11.(2021·河北)已知训练场球筐中有A,B两种品牌的乒乓球共101个,设A品 牌乒乓球有x个.
(1)淇淇说:“筐里B品牌球是A品牌球的两倍.”嘉嘉根据她的说法列出了方 程:101-x=2x.请用嘉嘉所列方程分析淇淇的说法是否正确;
(2)据工作人员透露:B品牌球比A品牌球至少多28个,试通过列不等式的方法 说明A品牌球最多有几个.
解:(1)嘉嘉所列方程为 101-x=2x,解得 x=3323 ,又∵x 为整数,∴x=3323 不合题意,∴淇淇的说法不正确 (2)设A品牌乒乓球有x个,则B品牌乒乓球有(101-x)个,依题意,得101-x- x≥28,解得x≤36.5,又∵x为整数,∴x可取的最大值为36.答:A品牌球最多有36 个
8.红旗中学组织本校师生参加红色研学实践活动,现租用11辆甲、乙两种型 号的大客车(每种型号至少一辆)送549名学生和11名教师参加此次实践活动.
甲、乙两种型号的大客车的载客量如表所示:
则最多可以租用多少辆甲种型号大客车?有几种租车方案?
解:设租用x辆甲种型号大客车,则租用(11-x)辆乙种型号大客车,依题意得: 40x+55(11-x)≥549+11,解得x≤3,∴x可以取的最大值为3.∵x为正整数,∴x= 1或2或3,∴有3种租车方案.答:最多可以租用3辆甲种型号大客车.有3种租车 方案,方案1:租用1辆甲种型号大客车,10辆乙种型号大客车;方案2:租用2辆 甲种型号大客车,9辆乙种型号大客车;方案3:租用3辆甲种型号大客车,8辆乙 种型号大客车
人教版七年级数学下册第9章。一元一次不等式组 知识点专题复习讲义
人教版七年级数学下册第9章。
一元一次不等式组知识点专题复习讲义一元一次不等式组知识点专题复讲义一、知识梳理1.知识结构图概念基本性质不等式的解法不等式的定义不等式的解集一元一次不等式的解法实际应用一元一次不等式组的解法二、知识点回顾1.不等式不等式是由不等号连接起来的式子。
常见的不等号有五种:“≠”、“>”、“<”、“≥”、“≤”。
2.不等式的解与解集不等式的解是使不等式成立的未知数的值。
不等式的解集是一个含有未知数的不等式的解的全体。
解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。
解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。
3.不等式的基本性质1) 不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
4.一元一次不等式一元一次不等式只含有一个未知数,且未知数的次数是1.系数不等于的不等式叫做一元一次不等式。
其标准形式为:ax+b<或ax+b≤,ax+b>或ax+b≥0(a≠0)。
5.解一元一次不等式的一般步骤1) 去分母;2) 去括号;3) 移项;4) 合并同类项;5) 化系数为1.删除格式错误的段落。
对于每段话,进行小幅度的改写,使其更加通顺易懂。
解一元一次不等式和解一元一次方程类似。
不同的是,一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变。
这是解不等式时最容易出错的地方。
例如,解不等式:-2/3x-1≤1/3解:去分母,得(3x-1)-2(3x-1)≤2(不要漏乘!每一项都得乘)去括号,得3x-3-6x+2≤2(注意符号,不要漏乘!)移项,得3x-6x≤2+3-1(移项要变号)合并同类项,得-3x≤4(计算要正确)系数化为1,得x≥-4/3(同除负,不等号方向要改变,分子分母别颠倒了)一元一次不等式组是含有相同未知数的几个一元一次不等式所组成的不等式组。
七年级数学下册第九章不等式与不等式组知识点归纳
第九章 不等式与不等式组一、知识结构图 二、知识要点 (一、)不等式的概念 1、不等式:一般地,用不等符号(“<”“>"“≤”“≥”)表示大小关系的式子,叫做不等式,用“≠”表示不等关系的式子也是不等式。
不等号主要包括: > 、 < 、 ≥ 、 ≤ 、 ≠ 。
2、不等式的解:使不等式左右两边成立的未知数的值,叫做不等式的解。
3、不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集(即未知数的取值范围).4、解不等式:求不等式的解集的过程,叫做解不等式.5、不等式的解集可以在数轴上表示,分三步进行:①画数轴②定界点③定方向。
规律:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,等于用实心圆点,不等于用空心圆圈。
(二、)不等式的基本性质⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧与实际问题组一元一次不等式法一元一次不等式组的解不等式组一元一次不等式组性质性质性质不等式的性质一元一次不等式不等式的解集不等式的解不等式不等式相关概念不等式与不等式组)(321不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向 不变 。
用字母表示为:如果b a >,那么c b c a ±>±;如果b a <,那么c b c a ±<± ; 不等式的性质2:不等式的两边同时乘以(或除以)同一个 正数 ,不等号的方向 不变 。
用字母表示为: 如果0,>>c b a ,那么bc ac >(或cb c a >);如果0,><c b a ,不等号那么bc ac <(或cb c a <); 不等式的性质3:不等式的两边同时乘以(或除以)同一个 负数 ,的方向 改变 .用字母表示为: 如果0,<>c b a ,那么bc ac <(或cb c a <);如果0,<<c b a ,那么bc ac >(或cb c a >); 解不等式思想——就是要将不等式逐步转化为x a 或x <a 的形式.(注:①传递性:若a >b ,b >c ,则a >c 。
初中数学知识点归纳不等式
初中数学知识点归纳不等式初中数学中的不等式是一个非常重要的知识点,它存在于各个章节中,如函数、代数方程组、数列等。
不等式是用不等号连接的含有未知数的数学式,在数学问题中经常用来表示一些量的大小关系。
下面将对初中数学中常见的不等式进行归纳。
一、基本性质:1.不等式变形:对不等式两边同时加上或减去一个相同的数,不等号的方向不变。
2. 相乘型:若a > b,c > 0,则ac > bc;若a < b,c < 0,则ac > bc。
3.相除型:若a>b,c>0,则a/c>b/c;若a<b,c<0,则a/c>b/c。
二、一元一次不等式:1.加减法解不等式:对不等式两边同时加上或减去一个相同的数,不等号的方向不变。
2.乘除法解不等式:对不等式两边同时乘以或除以一个正数,不等号的方向不变;对不等式两边同时乘以或除以一个负数,不等号的方向改变。
3.绝对值不等式:当,x-a,>b时,有x<a-b或x>a+b。
4.复合不等式:可以将不等式分解为两个简单的不等式,再求解。
三、一元二次不等式:1.求解一元二次不等式,可以先将其转化成一元二次方程,求出解的区间。
2.解一元二次不等式的关键是求出与解有关的a值,即把不等式转化为方程,得到轮廓图,再确定解的范围。
3.解一元二次不等式时,当a>0时,不等式的解集为开口向上的抛物线所在的区间;当a<0时,不等式的解集为开口向下的抛物线所在的区间。
四、绝对值不等式:1.解绝对值不等式时可以根据绝对值的定义,将不等式划分成正数和负数的情况进行求解。
2.若,x-a,<b,则-a<x-a<b,从而x-a<b,a-x<b。
3.若,x-a,>b,则x-a>b或x-a<-b。
五、函数与不等式:1.根据函数的性质,可以求解函数不等式。
2.若f(x)>g(x),则将f(x)-g(x)>0,根据函数图像的上下关系求解。
初中数学不等式的性质与解法知识点总结
初中数学不等式的性质与解法知识点总结在初中数学中,不等式是一个重要的概念,它涉及到比较大小的关系。
本文将对初中数学不等式的性质和解法进行总结和归纳,帮助读者更好地理解和掌握这一知识点。
一、不等式的基本性质不等式的基本性质是我们研究不等式的基础,以下为不等式的基本性质总结:1. 加减性质:若a>b,则a+c>b+c,a-c>b-c。
即不等式两边同时加(减)一个数,不等号方向不变。
2. 正数性质:若a>b且c>0,则ac>bc。
即不等式两边同时乘以一个正数,不等号方向不变。
3. 负数性质:若a>b且c<0,则ac<bc。
即不等式两边同时乘以一个负数,不等号方向改变。
4. 乘法性质:若a>b且c>d,则ac>bd。
即不等式两边同时乘以不等的两个数,不等号方向可能改变。
以上是不等式的一些基本性质,掌握这些性质对于后续解不等式问题非常重要。
二、一次不等式的解法一次不等式是指不等式中只含有一次幂的变量,下面将介绍一次不等式的解法。
1. 消去绝对值:若|x-a|<b,则-a<x<a。
若|x-a|>b,则x<-a或x>a。
2. 倍增倍减法:若ax+b>c,则x>(c-b)/a。
若ax+b<c,则x<(c-b)/a。
3. 区间法:对于一次不等式ax+b≥0或ax+b≤0,首先找到使ax+b=0的x值,分割数轴,解出x属于哪个区间。
对于不等号方向相反的情况,解法类似。
以上是一次不等式的解法,掌握这些方法可以帮助我们快速解决一次不等式的问题。
三、二次不等式的解法二次不等式是指不等式中含有二次项的变量,下面将介绍二次不等式的解法。
1. 因式分解法:将二次不等式转化为因式相乘的形式,然后求出各个因子的符号条件,最后得出解的范围。
2. 图像法:将二次不等式转化为对应的二次函数的图像,通过观察图像得出解的范围。
七年级数学下册第五章知识点整理
七年级数学下册第五章知识点整理在平凡的学习生活中,大家都背过各种知识点吧?知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。
还在为没有系统的知识点而发愁吗?以下是店铺收集整理的七年级数学人教版下册第五章知识点整理,欢迎大家借鉴与参考,希望对大家有所帮助。
七年级数学下册第五章知识点整理 1第五章相交线与平行线知识要点1、在同一平面内,两条直线的位置关系有两种:相交和平行,垂直是相交的一种特殊情况。
2、在同一平面内,不相交的两条直线叫平行线。
如果两条直线只有一个公共点,称这两条直线相交;如果两条直线没有公共点,称这两条直线平行。
3、两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
邻补角的性质:邻补角互补。
如图1所示,与互为邻补角,与互为邻补角。
+ = 180°; + = 180°; + = 180°;+ = 180°。
4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。
对顶角的性质:对顶角相等。
如图1所示,与互为对顶角。
= ;= 。
5、两条直线相交所成的角中,如果有一个是直角或90°时,称这两条直线互相垂直,其中一条叫做另一条的垂线。
如图2所示,当= 90°时,⊥ 。
垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
性质3:如图2所示,当a ⊥ b 时,= = = = 90°。
点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。
6、同位角、内错角、同旁内角基本特征:①在两条直线(被截线)的同一方,都在第三条直线(截线)的同一侧,这样的两个角叫同位角。
图3中,共有对同位角:与是同位角;与是同位角; 与是同位角; 与是同位角。
②在两条直线(被截线) 之间,并且在第三条直线(截线)的两侧,这样的两个角叫内错角。
人教版七年级下册数学不等式与不等式组知识点
不等式与不等式组知识点归纳上大附中 何小龙一、不等式的概念1.不等式:用不等号表示不等关系的式子,叫做不等式。
2.不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。
3.不等式的解集:对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。
4.解不等式:求不等式的解集的过程,叫做解不等式。
5.用数轴表示不等式的解集。
二、不等式的基本性质1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2.不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
3.不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。
②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立。
例:1.已知不等式3x-a ≤0的正整数解恰是1,2,3,则a 的取值范围是 。
2.已知关于x 的不等式组⎩⎨⎧-≥->-1250x a x 无解,则a 的取值范围是 。
3.不等式组⎪⎩⎪⎨⎧>+≤+0221042x x 的整数解为 。
4.如果关于x 的不等式(a-1)x<a+5和2x<4的解集相同,则a 的值为 。
5.已知关于x 的不等式组⎪⎩⎪⎨⎧<++>+01234a x x x 的解集为2<x ,那么a 的取值范围是 。
6.当x 时,代数式52+x 的值不大于零7.若x <1,则22+-x 0(用“>”“=”或“”号填空)8.不等式x 27->1,的正整数解是9. 不等式x ->10-a 的解集为错误!未找到引用源。
<3,则a10.若a >b >c ,则不等式组⎪⎩⎪⎨⎧c x b x ax 的解集是 11.若不等式组⎩⎨⎧--3212 b x a x 的解集是-1<x <1,则错误!未找到引用源。
人教版初一数学下册:不等式及其性质(基础)知识讲解
附录资料:不等式及其性质(基础)知识讲解【学习目标】1.了解不等式的意义,认识不等式和等式都可以用来刻画现实世界中的数量关系.2. 知道不等式解集的概念并会在数轴上表示解集.3. 理解不等式的三条基本性质,并会简单应用.【要点梳理】要点一、不等式的概念一般地,用“<”、“>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.要点诠释:(1)不等号“<”或“>”表示不等关系,它们具有方向性,不等号的开口所对的数较大.(2)(3)x表示未知数,对于含有未知数的不等式,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立,否则,不等式不成立.要点二、不等式的解及解集1.不等式的解:能使不等式成立的未知数的值,叫做不等式的解.2.不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.3.不等式的解集的表示方法(1)用最简的不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x≤8.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式的无限个解.如图所示:要点诠释:借助数轴可以将不等式的解集直观地表示出来,在应用数轴表示不等式的解集时,要注意两个“确定”:一是确定“边界点”,二是确定方向.(1)确定“边界点”:若边界点是不等式的解,则用实心圆点,若边界点不是不等式的解,则用空心圆圈;(2)确定“方向”:对边界点a 而言,x >a 或x ≥a 向右画;对边界点a 而言,x <a 或x ≤a 向左画. 注意:在表示a 的点上画空心圆圈,表示不包括这一点.【高清课堂:一元一次不等式370042 不等式的基本性质】 要点三、不等式的基本性质不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a >b ,那么a ±c >b ±c .不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a >b ,c >0,那么ac >bc (或a b c c >). 不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a >b ,c <0,那么ac <bc (或a b c c<). 要点诠释:不等式的基本性质的掌握注意以下几点:(1)不等式的基本性质是对不等式变形的重要依据,是学习不等式的基础,它与等式的两条性质既有联系,又有区别,注意总结、比较、体会. (2)运用不等式的性质对不等式进行变形时,要特别注意性质2和性质3的区别,在乘(或除以)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,不等号的方向要改变. 【典型例题】类型一、不等式的概念1.用不等式表示: (1)x 与-3的和是负数;(2)x 与5的和的28%不大于-6; (3)m 除以4的商加上3至多为5. 【思路点拨】列不等式时,应抓住“大于”、“不大于”、“不是”、“至多”、“非负数”等表示不等关系的关键性词语,进而根据这些关键词的内涵列出不等式. 【答案与解析】解:(1)x -3<0;(2)28%(x+5)≤-6;(3)34m+≤5. 【总结升华】在不等式及其应用的题目中,经常会出现一些表示不等关系的词语.正确理解这些关键词很重要.如:若x 是非负数,则x ≥0;若x 是非正数,则x ≤0;若x 大于y ,则有x -y >0;若x 小于y ,则有x -y <0等.举一反三: 【变式】(2015春•陕西校级期末)下列式子:①﹣2<0;②2x+3y <0;③x=3;④x+y 中,是不等式的个数有( ) A .1个 B .2个 C .3个 D .4个【答案】B.类型二、不等式的解及解集2.对于不等式4x+7(x-2)>8不是它的解的是()A.5 B.4 C.3 D.2【思路点拨】根据不等式解的定义作答.【答案】D【解析】解:当x=5时,4x+7(x-2)=41>8,当x=4时,4x+7(x-2)=30>8,当x=3时,4x+7(x-2)=19>8,当x=2时,4x+7(x-2)=8.故知x=2不是原不等式的解.【总结升华】不等式的解的定义与方程的解的定义是类似的,其判定方法是相同的.3.不等式x>1在数轴上表示正确的是()【思路点拨】根据不等式的解集在数轴上表示出来的方法画数轴即可.【答案】C【解析】解:∵不等式x>1∴在数轴上表示为:故选C.【总结升华】用数轴表示解集时,应注意两点:一是“边界点”,如果边界点包含于解集,则用实心圆点;二是“方向”,相对于边界而言,大于向右,小于向左,同时还应善于逆向思维,通过读数轴写出对应不等式的解集.【高清课堂:一元一次不等式370042练习2】举一反三:【变式】如图,在数轴上表示的解集对应的是( ).A.-2<x<4 B.-2<x≤4 C.-2≤x<4 D.-2≤x≤4【答案】B类型三、不等式的性质4.(2015•浙江模拟)若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.x+3>y+3 C.﹣3x>﹣3y D.>【思路点拨】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.可得答案. 【答案】C . 【解析】解:A 、不等式的两边都减3,不等号的方向不变,故A 正确; B 、不等式的两边都加3,不等号方向不变,故B 正确; C 、不等式的两边都乘﹣3,不等号的方向改变,故C 错误; D 、不等式的两边都除以3,不等号的方向改变,故D 正确; 故选:C .【总结升华】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变. 举一反三:【变式】三角形中任意两边之差与第三边有怎样的关系? 【答案】解:如图,设c ,b ,a 为任意一个三角形的三条边,则:b ac ,a c b ,c b a >+>+>+移项可得:a b c ,c a b ,b c a ->->-> 即:三角形两边的差小于第三边.附录资料:一元一次不等式组(基础)知识讲解【学习目标】1.理解不等式组的概念;2.会解一元一次不等式组,并会利用数轴正确表示出解集;3.会利用不等式组解决较为复杂的实际问题,感受不等式组在实际生活中的作用. 【要点梳理】要点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.要点诠释:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.要点二、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.要点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.【典型例题】类型一、不等式组的概念1.某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边为x,请你根据题意写出x必须满足的不等式.【思路点拨】由题意知,x必须满足两个条件①面积大于48平方米.②周长小于34米.故必须构建不等式组来体现其不等关系.【答案与解析】解:依题意得:8482(8)34. xx>⎧⎨+<⎩【总结升华】建立不等式组的条件是:当感知所求的量同时满足几个不等关系时,要建立不等式组,建立不等式组的意义与建立方程组的意义类似.【高清课堂:第二讲一元一次不等式组的解法370096 例2】举一反三:【变式】直接写出解集:(1)2,3x x >⎧⎨>-⎩的解集是______;(2)2,3x x <⎧⎨<-⎩的解集是______;(3)2,3x x <⎧⎨>-⎩的解集是_______;(4)2,3x x >⎧⎨<-⎩的解集是_______.【答案】(1)2x >;(2)3x <-;(3)32x -<<;(4)空集.类型二、解一元一次不等式组2. 解下列不等式组(1) 313112123x x x x +<-⎧⎪⎨++≤+⎪⎩①②(2)213(1)4x x x +>-≥-.【思路点拨】解不等式组时,要先分别求出不等式组中每个不等式的解集,然后画数轴,找它们解集的公共部分,这个公共部分就是不等式组的解集. 【答案与解析】解:(1)解不等式①,得x <-2解不等式②,得x ≥-5故原不等式组的解集为-5≤x <-2. 其解集在数轴上表示如图所示.(2) 原不等式可变为:213(1)3(1)4x x x x +>-⎧⎨-≥-⎩①②解①得:4x < 解②得:12x ≥-故原不等式组的解集为142x -≤<.【总结升华】确定一元一次不等式组解集的常用方法有两种:(1)数轴法:运用数轴法确定不等式组的解集,就是将不等式组中的每一个不等式的解集在数轴上表示出来,然后找出它们的公共部分,这个公共部分就是此不等式组的解集;如果没有公共部分,则这个不等式组无解,这种方法体现了数形结合的思想,既直观又明了,易于掌握.(2)口诀法:为了便于快速找出不等式组的解集,结合数轴将其总结为朗朗上口的四句口诀:同大取大、同小取小、大小小大中间找,大大小小无解了.举一反三:【变式】(2015•江西样卷)解不等式组,并把解集在数轴上表示出来.【答案】解:,∵解不等式①得:x≤1,解不等式②得:x>﹣2,∴不等式组的解集为:﹣2<x≤1.在数轴上表示不等式组的解集为:类型三、一元一次不等式组的应用3. “六·一”儿童节,学校组织部分少先队员去植树.学校领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有多少棵.【思路点拨】设有x名学生,则由第一种植树法,知道一共有(4x +37)棵树;第二种植树法中,前(x-1)名学生中共植6(x-1)棵树;最后一名学生植树的数量是:[(4x +37)- 6(x-1)]棵,这样,我们就探求到第一个不等量关系:最后一人有树植,说明第二种植树法中前(x-1)名学生植树的数量要比树木总数少,即(4x +37)>6(x-1);第二种植树法中,最后一名学生植树的数量不到3棵,也就是说[(4x +37)- 6(x-1)]<3,或者理解为:[(3x +8)- 5(x-1)]≤2,这样,我们就又找到了第二个不等量关系式.到此,不等式组即建立起来了,接下来就是解不等式组.【答案与解析】解:设有x名学生,根据题意,得:437611 4376132x xx x+>-⎧⎨+--<⎩()()()()(),不等式(1)的解集是:x <2121; 不等式(2)的解集是:x >20,所以,不等式组的解集是:20<x <2121, 因为x 是整数,所以,x=21,4×21+37=121(棵) 答:这批树苗共有121棵.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系. 举一反三:【变式】一件商品的成本价是30元,若按原价的八八折销售,至少可获得10%的利润;若按原价的九折销售,可获得不足20%的利润,此商品原价在什么范围内? 【答案】解:设这件商品原价为x 元,根据题意可得:88%303010%90%303020%x x ≥+⨯⎧⎨<+⨯⎩ 解得:37.540x ≤<答:此商品的原价在37.5元(包括37.5元)至40元范围内.4.(2015•桂林)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样). (1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案. 【思路点拨】(1)设每本文学名著x 元,动漫书y 元,根据题意列出方程组解答即可; (2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,列出不等式组,解答即可. 【答案与解析】 解:(1)设每本文学名著x 元,动漫书y 元,可得:,解得:,答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著x 本,动漫书为(x+20)本,根据题意可得:,解得:,因为取整数,所以x 取26,27,28;方案一:文学名著26本,动漫书46本; 方案二:文学名著27本,动漫书47本; 方案三:文学名著28本,动漫书48本.【总结升华】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.【高清课堂:实际问题与一元一次不等式组409416 例2】举一反三:【变式】A 地果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆,将这批水果全部运往B 地. 已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨.(1)若要安排甲、乙两种货车时有几种方案?请你帮助设计出来.(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,那么选择哪种方案使运费最少?运费最少是多少? 【答案】解:(1)设租甲种货车x 辆,则租乙种货车(10x -)辆,依题意得:42(10)302(10)13x x x x +-≥⎧⎨+-≥⎩,解得57x ≤≤, 又x 为整数,所以5x =或6或7, ∴有三种方案:方案1:租甲种货车5辆,乙种货车5辆; 方案2:租甲种货车6辆,乙种货车4辆; 方案3:租甲种货车7辆,乙种货车3辆. (2)运输费用:方案1:2000×5+1300×5=16500(元); 方案2:2000×6+1300×4=17200(元); 方案3:2000×7+1300×3=17900(元). ∴方案1运费最少,应选方案1.。
(完整版)初中数学不等式知识点
不等式性质①如果x>y,那么y<x;如果y<x,那么x>y;(对称性)②如果x>y,y>z,那么x>z;(传递性)③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)④如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(乘法原则)⑤如果x>y,m>n,那么x+m>y+n;(充分不必要条件)⑥如果x>y>0,m>n>0,那么xm>yn;⑦如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n 次幂<y的n次幂(n为负数)。
⑧倒数法则。
例如:a<b如果a,b同号(同为正数或同为负数)那么则有1/a>1/b成立(即不等号变号)如果a为负数,b为正数则仍然是1/a<1/b(即不等号不变号)总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最大值。
符号不等式两边相加或相减同一个数或式子,不等号的方向不变。
(移项要变号)不等式两边相乘或相除同一个正数,不等号的方向不变。
不等式两边乘或除以同一个负数,不等号的方向改变。
(×÷负数要变号)解集确定解集:①比两个值都大,就比大的还大(同大取大);②比两个值都小,就比小的还小(同小取小);③比大的大,比小的小,无解(大大小小取不了);④比小的大,比大的小,有解在中间(小大大小取中间)。
三个或三个以上不等式组成的不等式组,可以类推。
数轴法把每个不等式的解集在数轴上表示出来,数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集。
有几个就要几个。
注意实点与空点的区别。
在确定一元二次不等式时,a>0,Δ=b²-4ac>0时,不等式解集可用"大于取两边,小于取中间"求出。
人教版七年级数学下册一元一次不等式组(基础) 知识讲解
人教版七年级数学下册一元一次不等式组(基础)知识讲解【学习目标】1.理解不等式组的概念;2.会解一元一次不等式组,并会利用数轴正确表示出解集;3.会利用不等式组解决较为复杂的实际问题,感受不等式组在实际生活中的作用.【要点梳理】要点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.要点诠释:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.要点二、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.要点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.【典型例题】类型一、不等式组的概念1.某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边为x,请你根据题意写出x必须满足的不等式.【思路点拨】由题意知,x必须满足两个条件①面积大于48平方米.②周长小于34米.故必须构建不等式组来体现其不等关系.【答案与解析】解:依题意得:8482(8)34.xx>⎧⎨+<⎩【总结升华】建立不等式组的条件是:当感知所求的量同时满足几个不等关系时,要建立不等式组,建立不等式组的意义与建立方程组的意义类似.【高清课堂:第二讲一元一次不等式组的解法370096 例2】举一反三:【变式】直接写出解集:(1)2,3xx>⎧⎨>-⎩的解集是______;(2)2,3xx<⎧⎨<-⎩的解集是______;(3)2,3xx<⎧⎨>-⎩的解集是_______;(4)2,3xx>⎧⎨<-⎩的解集是_______.【答案】(1)2x>;(2)3x<-;(3)32x-<<;(4)空集.类型二、解一元一次不等式组2. 解下列不等式组(1)313112123x xx x+<-⎧⎪⎨++≤+⎪⎩①②(2)213(1)4x x x+>-≥-.【思路点拨】解不等式组时,要先分别求出不等式组中每个不等式的解集,然后画数轴,找它们解集的公共部分,这个公共部分就是不等式组的解集.【答案与解析】解:(1)解不等式①,得x<-2解不等式②,得x≥-5故原不等式组的解集为-5≤x<-2.其解集在数轴上表示如图所示.(2)原不等式可变为:213(1)3(1)4x xx x+>-⎧⎨-≥-⎩①②解①得:4x<解②得:12 x≥-故原不等式组的解集为14 2x-≤<.【总结升华】确定一元一次不等式组解集的常用方法有两种:(1)数轴法:运用数轴法确定不等式组的解集,就是将不等式组中的每一个不等式的解集在数轴上表示出来,然后找出它们的公共部分,这个公共部分就是此不等式组的解集;如果没有公共部分,则这个不等式组无解,这种方法体现了数形结合的思想,既直观又明了,易于掌握.(2)口诀法:为了便于快速找出不等式组的解集,结合数轴将其总结为朗朗上口的四句口诀:同大取大、同小取小、大小小大中间找,大大小小无解了.举一反三:【变式】(2015•江西样卷)解不等式组,并把解集在数轴上表示出来.【答案】解:,∵解不等式①得:x≤1,解不等式②得:x>﹣2,∴不等式组的解集为:﹣2<x≤1.在数轴上表示不等式组的解集为:类型三、一元一次不等式组的应用3. “六·一”儿童节,学校组织部分少先队员去植树.学校领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有多少棵.【思路点拨】设有x名学生,则由第一种植树法,知道一共有(4x +37)棵树;第二种植树法中,前(x-1)名学生中共植6(x-1)棵树;最后一名学生植树的数量是:[(4x +37)- 6(x-1)]棵,这样,我们就探求到第一个不等量关系:最后一人有树植,说明第二种植树法中前(x-1)名学生植树的数量要比树木总数少,即(4x +37)>6(x-1);第二种植树法中,最后一名学生植树的数量不到3棵,也就是说[(4x +37)- 6(x-1)]<3,或者理解为:[(3x +8)- 5(x-1)]≤2,这样,我们就又找到了第二个不等量关系式.到此,不等式组即建立起来了,接下来就是解不等式组.【答案与解析】解:设有x 名学生,根据题意,得:4376114376132x x x x +>-⎧⎨+--<⎩()()()()(), 不等式(1)的解集是:x <2121;不等式(2)的解集是:x >20,所以,不等式组的解集是:20<x <2121,因为x 是整数,所以,x=21,4×21+37=121(棵)答:这批树苗共有121棵.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系. 举一反三:【变式】一件商品的成本价是30元,若按原价的八八折销售,至少可获得10%的利润;若按原价的九折销售,可获得不足20%的利润,此商品原价在什么范围内?【答案】解:设这件商品原价为x 元,根据题意可得: 88%303010%90%303020%x x ≥+⨯⎧⎨<+⨯⎩ 解得:37.540x ≤<答:此商品的原价在37.5元(包括37.5元)至40元范围内.4.(2015•桂林)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.【思路点拨】(1)设每本文学名著x 元,动漫书y 元,根据题意列出方程组解答即可;(2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,列出不等式组,解答即可.【答案与解析】解:(1)设每本文学名著x 元,动漫书y 元,可得:,解得:,答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著x 本,动漫书为(x+20)本,根据题意可得:,解得:,因为取整数,所以x 取26,27,28;方案一:文学名著26本,动漫书46本;方案二:文学名著27本,动漫书47本;方案三:文学名著28本,动漫书48本.【总结升华】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.【高清课堂:实际问题与一元一次不等式组409416 例2】举一反三:【变式】A 地果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆,将这批水果全部运往B 地. 已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨.(1)若要安排甲、乙两种货车时有几种方案?请你帮助设计出来.(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,那么选择哪种方案使运费最少?运费最少是多少?【答案】解:(1)设租甲种货车x 辆,则租乙种货车(10x -)辆,依题意得:42(10)302(10)13x x x x +-≥⎧⎨+-≥⎩,解得57x ≤≤, 又x 为整数,所以5x =或6或7,∴有三种方案:方案1:租甲种货车5辆,乙种货车5辆;方案2:租甲种货车6辆,乙种货车4辆;方案3:租甲种货车7辆,乙种货车3辆.(2)运输费用:方案1:2000×5+1300×5=16500(元);方案2:2000×6+1300×4=17200(元);方案3:2000×7+1300×3=17900(元).∴方案1运费最少,应选方案1.。
不等式的基本性质-【帮课堂】2022-2023学年七年级数学下册同步精品讲义(苏科版)
不等式的基本性质知识点一、不等式的基本性质1不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;即如果a >b ,那么a +c >b +c 或a -c >b -c ;如果a <b ,那么a +c <b +c 或a -c <b -c .1. 如果a >b ,那么2a -_______2b -(填“=”、“>”或“<”).知识点二、不等式的性质2不等式两边都乘(或除以)同一个正数,不等号的方向不变;不等式的两边都乘(或除以)同一个负数,不等号的方向改变,即如果a >b 且c >0,那么ac >bc 或a b c c >,如果a >b且c <0,那么ac <bc 或a b c c <.2. 已知x <y ,则23x --_____23y --(填“>”、“<”或“=”)一.选择题(共10小题)3. 若x y >,则下列式子中错误的是( )A. 22x y > B. 22x y ->- C. 22x y ->- D. 33x y +>+4. 若不等式21x -<,两边同时除以2-,结果正确的是( )A. 12x >- B. 12x < C. 2x >- D. 2x <5. 下列各式中正确的是( )A. 若a b >,则22a b -<- B. 若a b >,则22a b >C. 若a b >,且0c ≠,则22ac bc > D. 若a b c c>,则a b >6. 已知a b <,若c 是任意有理数,则下列不等式中总成立的是( )A. a c b c +<+B. a c b c ->-C. ac bc >D. 22ac bc >7. 已知a b <,则下列各式成立的是( )A. 22ac bc <B. 1313a b -<-C. 23a b -<-D. 33a b +<+8. 已知实数a b c ≤≤,则( )A. 2a c b +≤B. 3a b c +≤C. 2a b c+≥ D. b a c≤+的9. 如图所示,A ,B ,C ,D 四人在公园玩跷跷板,根据图中的情况,这四人体重从小到大排列的顺序为( )A. D B A C <<<B. B D C A <<<C. B A D C <<<D. B C D A <<<10. 已知非负实数a ,b ,c 满足123234a b c ---==,设S a b c =++,则S 的最大值为( )A. 112 B. 152 C. 274 D.31411. 已知三个实数a ,b ,c 满足0ab >,a b c +<,0a b c ++=,则下列结论一定成立的是( )A. 0a <,0b <,0c > B. 0a >,0b >,0c <C. 0a >,0b <,0c > D. 0a >,0b <,0c <12. 若2a b +=-,且2a b ≥,则( ).A. b a 有最小值12 B. b a 有最大值1C. a b 有最大值2 D. a b 有最小值89-二.填空题(共10小题)13. 若x y >,且(3)(3)a x a y +<+,求a 的取值范围______.14. 若a<0,则a -_____0.(用<,=,>填空)15. 选择适当的不等号填空:若a b <,则2a -______2b -.16. 已知m n >,则 3.51m -+______ 3.51n -+.(填>、=或<)17. 若a b <,则21a -+__________21b -+.(用“>”,“<”,或“=”填空)18. 如果x >y ,且(a-1)x <(a-1)y ,那么a 的取值范围是______.19. 已知x ,y 满足132x y +=,若13x -≤<,则y 的范围是__________.20. 用不等号填空,并说明根据的是不等式的哪一条基本性质:(1)若x +2>5,则x ________3,根据不等式的基本性质________;(2)若-34x <-1,则x ________43,根据不等式的基本性质________.21. 已知 2ab =.①若31b -≤≤-,则a 的取值范围是________;②若0b >,且225a b +=,则a b +=____.22. 某数学兴趣小组在研究下列运算流程图时发现,取某个实数范围内的x 作为输入值,则永远不会有输出值,这个数学兴趣小组所发现的实数x 的取值范围是_____.三.解答题(共8小题)23. 已知关于x ,y 的方程组325x y a x y a -=+⎧⎨+=⎩.(1)若x ,y 为非负数,求a 的取值范围;(2)若x y >,且20x y +<,求a 的取值范围.24. 根据不等式的性质:若0x y ->,则x y >;若0x y -<,则x y <.利用上述方法证明:若0n <,则121n n n n -->-.25. 已知:x ,y 满足3x-4y=5.(1)用含x 的代数式表示y ,结果为______;(2)若y 满足-1<y≤2,求x 的取值范围;(3)若x ,y 满足x+2y=a ,且x >2y ,求a 的取值范围.26. 已知实数x 、y 满足231x y +=.(1)用含有x 的代数式表示y ;(2)若实数y 满足y >1,求x 的取值范围;(3)若实数x 、y 满足1x >-,13y ≥-且23x y k -=,求k 的取值范围.27. 知识阅读:我们知道,当a >2时,代数式a -2>0;当a <2时,代数式a -2<0;当a =2时,代数式a -2=0.(1)基本应用:当a >2时,用“>,<,=”填空:a +5________0;(a +7)(a -2)________0;(2)理解应用:当a >1时,求代数式2a +2a -15的值的大小;(3)灵活应用:当a >2时,比较代数式a +2与2a +5a -19的大小关系.28. 用等号或不等号填空:(1)比较4m 与24m +的大小当3m =时,4m24m +当2m =时,4m24m +当3m =-时,4m 24m +(2)无论取什么值,4m 与24m +总有这样的大小关系吗?试说明理由.(3)比较22x +与2246x x ++的大小关系,并说明理由.(4)比较23x +与37--x 的大小关系.29. 阅读下列材料:问题:已知2x y -=,且1x >,0y <,试确定x y +的取值范围解:2x y -= ,2x y ∴=+,又1x > ,21y ∴+>,1y ∴>-,又0y < ,10y ∴-<<①,12202y ∴-+<+<+,即12x <<②,①+②得:1102x y -+<+<+,x y ∴+的取值范围是02x y <+<.请按照上述方法,完成下列问题:(1)已知5x y -=,且2x >-,0y <,①试确定y 的取值范围;②试确定x y +的取值范围;(2)已知1x y a -=+,且x b <-,2y b >,若根据上述做法得到35x y -的取值范围是103526x y -<-<,请直接写出a 、b 的值.30. 题目:已知关于x 、y 的方程组2324x y a x y a +=-+⎧⎨+=⎩①②,求:(1)若3x +3y =18,求a 值;(2)若-5x -y =16,求a 值.问题解决:(1)王磊解决的思路:观察方程组中x 、y 的系数发现,将①+②可得3x +3y =3a +3,又因为3x +3y =18,则a 值为________;(2)王磊解决的思路:观察方程组中x 、y 的系数发现,若将方程组中的①与②直接进行加减,已经不能解决问题,经过思考,王磊将①×m ,②×n ,得2324mx my ma m nx ny na +=-+⎧⎨+=⎩③④,再将③+④得:(m +2n )x +(2m +n )y =(-m +4n )a +3m ,又因为-5x -y =16,……,请根据王磊的思路,求出m 、n 及a 的值;问题拓展:(3)已知关于x 、y 的不等式组2324x y a x y a +-+⎧⎨+⎩><,若x +5y =2,求a 的取值范围.不等式的基本性质知识点一、不等式的基本性质1不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;即如果a >b ,那么a +c >b +c 或a -c >b -c ;如果a <b ,那么a +c <b +c 或a -c <b -c .【1题答案】【答案】<【解析】【分析】根据不等式的性质进行变形即可.【详解】解:∵a >b ,∴-a <-b ,∴2-a <2-b ,故答案为:<.【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.知识点二、不等式的性质2不等式的两边都乘(或除以)同一个正数,不等号的方向不变;不等式的两边都乘(或除以)同一个负数,不等号的方向改变,即如果a >b 且c >0,那么ac >bc 或a b c c >,如果a >b 且c <0,那么ac <bc 或a b c c<.【2题答案】【答案】>【解析】【分析】根据不等式的基本性质进行解答即可.【详解】解:∵x <y ,∴22x y ->-,∴2323x y -->--.故答案为:>.【点睛】本题主要考查了不等式的基本性质,注意不等式两边同时乘以或除以一个负数,不等号方向发生改变.一.选择题(共10小题)的【3题答案】【答案】B【解析】【分析】根据不等式的性质可进行求解.【详解】解:由x y >可知:A 、22x y >,正确,故不符合题意;B 、22x y -<-,原不等式错误,故符合题意;C 、22x y ->-,正确,故不符合题意;D 、33x y +>+,正确,故不符合题意;故选B .【点睛】本题主要考查不等式的性质,熟练掌握不等式的性质是解题的关键.【4题答案】【答案】A【解析】【分析】根据不等式的性质即可求出答案.【详解】不等式21x -<,两边同时除以2-,可得12x >-,故选:A .【点睛】本题考查不等式的性质,解题的关键是正确理解不等式的性质,本题属于基础题型.【5题答案】【答案】D【解析】【分析】根据不等式的性质逐项分析判断即可求解.【详解】解:A. 若a b >,则22a b ->-,故该选项不正确,不符合题意;B. 若0a b >>,则22a b >,故该选项不正确,不符合题意;C. 若a b >,且0c >,则22ac bc >,故该选项不正确,不符合题意;D. 若a b c c>,则a b >,故该选项正确,符合题意;【点睛】本题考查了不等式的基本性质.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.【6题答案】【答案】A【解析】【分析】根据不等式的性质逐一判断即可:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.【详解】解:A 、由a b <根据不等式的性质1,可得a c b c +<+,故此选项正确,符合题意;B 、由a b <根据不等式的性质1,可得a c b c -<-,不能得到a c b c ->-,故此选项错误,不符合题意;C 、根据不等式的性质,如果0c <则可得ac bc >,如果0c >,则ac bc <,故此选项错误,不符合题意;D 、当0c 时,22ac bc =,故此选项错误,不符合题意.故选:A .【点睛】本题主要考查了不等式的性质,熟知不等式的性质是解题的关键.【7题答案】【答案】D【解析】【分析】根据不等式的性质逐一判断即可解题.【详解】解:A.a b <,当0c ≠时,22ac bc <,故A 不成立;B.a b <,1313a b ->-,故B 不成立;C.a b <,22a b -<-,故C 不成立;D.33a b a b ++<,<,故D 成立;【点睛】本题考查了不等式的性质,注意不等式的两边都乘或除以一个负数,不等号的方向改变.【8题答案】【答案】B【解析】【分析】根据实数a b c ≤≤,逐项给出a b c 、、的值举例,看能否举出反例,即可得到答案.【详解】解:当12a =-,0b =,1c =时,2a c b +>,故A 选项错误;当12a =-,0b =,1c =时,2a b c +<,故C 选项错误;当2a =-,0b =,1c =时,a c b +<,故D 选项错误;故选:B .【点睛】本题考查不等式的性质,可以通过举反例来得到结论.【9题答案】【答案】C【解析】【分析】根据不等式的性质,进行计算即可解答.【详解】解:由题意得:D A >①,A C B D +>+②,B C A D +=+③,由③得:C A D B =+-④,把④代入②得:A A D B B D ++->+,22A B >,A B ∴>,0A B ∴->,由③得:A B C D -=-,0D A -> ,0C D ∴->,C D ∴>,C D A B ∴>>>,即B A D C <<<.故本题选:C .【点睛】本题考查了不等式的性质,熟练掌握不等式的性质是解题的关键.【10题答案】【答案】C【解析】【分析】设123234a b c k ---===,则21a k =+,32b k =+,34c k =-,可得6S k =+;利用a ,b ,c 为非负实数可得k 的取值范围,从而求得最大值.【详解】解:设123234a b c k ---===,则21a k =+,32b k =+,34c k =-,()()()2132346S a b c k k k k ∴=++=++++-=+.a ,b ,c 为非负实数,210320340k k k +≥⎧⎪∴+≥⎨⎪-≥⎩,解得:1324k -≤≤.∴当12k =-时,S 取最小值,当34k =时,S 取最大值.116522S ∴=-+=最小值,327644S =+=最大值.故选:C .【点睛】本题主要考查了不等式的性质,非负数的应用,设123234a b c k ---=== 是解题的关键.【11题答案】【答案】A【解析】【分析】根据0ab >,可得a 和b 同号,再根据a b c +<和0a b c ++=,即可判断a ,b ,c 的符号.【详解】解:∵0ab >,∴a 和b 同号,又∵a b c +<和0a b c ++=,∴0a <,0b <,0c >.故选:A .【点睛】本题主要考查了有理数的运算法则,解题的关键是掌握两数相乘,同号得正,异号得负;同号两数相加,取它们相同的符号;异号两数相加,取绝对值较大数的符号.【12题答案】【答案】C【解析】【详解】由已知条件,根据不等式的性质求得b≤23-<0和a≥43-;然后根据不等式的基本性质求得a b ≤2 和当a >0时,b a <0;当43-≤a <0时,b a ≥12;所以A 、当a >0时,b a <0,即b a 的最小值不是12,故本选项错误;B 、当43-≤a <0时,b a ≥12,b a 有最小值是12,无最大值;故本选项错误;C 、a b有最大值2;故本选项正确;D 、a b 无最小值;故本选项错误.故选C .考点:不等式的性质.二.填空题(共10小题)【13题答案】【答案】3a <-【解析】【分析】根据题意,在不等式x y >的两边同时乘以(3)a +后不等号改变方向,根据不等式的性质3,得出30a +<,解此不等式即可求解.【详解】解:∵x y >,且(3)(3)a x a y +<+,∴30a +<,则3a <-.故答案为:3a <-.【点睛】本题考查了不等式的性质,解题的关键是掌握不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.【答案】>【解析】【分析】根据不等式的性质可进行求解.【详解】∵a<0,∴0a ->,故答案为:>.【点睛】本题主要考查不等式的性质,熟练掌握不等式的性质是解题的关键.【15题答案】【答案】>【解析】【分析】根据不等式的性质,即可解答.【详解】解:∵a b <,∴22a b ->-,故答案为:>.【点睛】本题主要考查了不等式的性质,熟练掌握不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.【16题答案】【答案】<【解析】【分析】先根据不等式的性质3得 3.5m -< 3.5n -,再根据不等式的性质1即可得到结论.【详解】解:m n >,根据不等式的性质3,得 3.5m -< 3.5n -,根据不等式的性质1,得 3.51m -+< 3.51n -+,故答案为:<.【点睛】本题考查不等式的基本性质,解题关键是熟练掌握不等式的三个基本性质,特别是性质3,不等式的两边同乘以或同除以同一个负数不等号的方向改变.【17题答案】【解析】【分析】根据不等式的性质即可求解.【详解】解:∵a b <,∴22a b->-2121a b ∴-+>-+故答案为:>【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.不等式的性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变;不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.【18题答案】【答案】a <1【解析】【分析】根据不等式的性质3,可得答案.【详解】解:由题意,得a-1<0,解得a <1,故答案为a <1.【点睛】本题考查不等式的性质,利用不等式的性质是解题关键.【19题答案】【答案】-1.5<y ≤3.5【解析】【分析】先变形为x =6-2y ,根据13x -≤<列得-1≤6-2y <3,求解即可.【详解】解:∵132x y +=,∴x =6-2y ,∵13x -≤<,∴-1≤6-2y <3,解得-1.5<y ≤3.5,故答案为:-1.5<y ≤3.5.【点睛】此题考查了解一元一次不等式组,正确理解题意将方程变形得到不等式组是解题的关键.【20题答案】【答案】①. (1)> ②. 1 ③. (2)> ④. 2【解析】【分析】根据不等式的性质,即可解答.【详解】(1)若x+2>5,则x >3,根据不等式的性质1;(2)若−34x <-1,则x >43,根据不等式的性质3;故答案为(1)>,1;(2)>,3.【点睛】本题考查了不等式的性质,解决本题的关键是熟记不等式的性质.【21题答案】【答案】①. 223a -≤≤- ②. 3【解析】【分析】①由2ab =,可得2b a =,代入31b -≤≤-,即可求解,②由0b >,2ab =,可得0a >,即0a b +>,再利用完全平方公式即可作答.【详解】∵2ab =,即2b a=,①若31b -≤≤-,即231a-≤≤-,即有a<0,解得:223a -≤≤-;②若0b >,2ab =,∴0a >,即0a b +>,∵225a b +=,∴()22225229a b a b ab +=++=+⨯=,∴3a b +=.故答案为:①223a -≤≤-;②3.【点睛】本题考查了求解不等式的解,运用完全平方公式进行计算等知识,根据已知条件确定a 的符号是解答本题的关键.【22题答案】【答案】12x ≤【解析】【分析】通过找到临界值解决问题.【详解】由题意知,令3x-1=x ,x=12,此时无输出值当x >12时,数值越来越大,会有输出值;当x <12时,数值越来越小,不可能大于10,永远不会有输出值故x≤12,故答案为x≤12.【点睛】本题考查不等式的性质,解题的关键是理解题意,学会找到临界值解决问题.三.解答题(共8小题)【23题答案】【答案】(1)2a ≥(2)30a -<<【解析】【分析】(1)用加减消元法解二元一次方程组,再由题意可得21020a a +≥⎧⎨-≥⎩,求出a 的范围即可;(2)由题意可得212a a +>-,50a <,求出a 的范围即可.【小问1详解】解:325x y a x y a -=+⎧⎨+=⎩①②,①+②得21x a =+,将21x a =+代入①得,2y a =-,x ,y 为非负数,∴21020a a +≥⎧⎨-≥⎩,解得2a ≥;【小问2详解】解:x y > ,212a a ∴+>-,3a ∴>-,20x y +< ,50a ∴<,<0a ∴,30a ∴-<<.【点睛】本题考查二元一次方程组的解,一元一次不等式组的解,熟练掌握加减消元法和代入消元法解二元一次方程组、并准确求解一元一次不等式组的解集是解题的关键.【24题答案】【答案】见解析【解析】【分析】先求出1211(1)n n n n n n ---=--,根据0n <,得出10n -<,从而得出()10n n ->,即10(1)n n ->,从而证明结论.【详解】证明:121n n n n ----2(1)(2)(1)n n n n n ---=-1(1)n n =-∵0n<,∴10n-<,∴()10 n n->,∴121n nn n-->-.【点睛】本题主要考查了分式加减运算的应用,不等式的性质,解题的关键是熟练掌握分式加减运算法则.【25题答案】【答案】(1)354x-;(2)13<x≤133;(3)a<10.【解析】【分析】(1)解关于y的方程即可;(2)利用y满足-1<y≤2得到关于x的不等式,然后解不等式即可;(3)先解方程组,由x>2y得不等式,解不等式即可.【详解】(1)y=354x-;故答案为:y=354x-;(2)根据题意得:-1<354x-≤2,解得:13<x≤133;(3)解方程组345,2, x yx y a-=⎧⎨+=⎩得:2553510axay+⎧=⎪⎪⎨-⎪=⎪⎩,,∵x>2y,∴255a+>2×3510a-,解得:a<10.【点睛】本题考查了解不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.【26题答案】【答案】(1)123x y -=;(2)1x <-;(3)53k -<≤【解析】【分析】(1)移项得出3y =1−2x ,方程两边都除以3即可;(2)根据题意得出不等式,求出不等式的解集即可;(3)解方程组求出x 、y ,得出不等式组,求出不等式组的解集即可.【详解】解:(1)2x +3y =1,3y =1−2x ,123x y -=;(2)123x y -=>1,解得:x <−1,即若实数y 满足y >1,x 的取值范围是x <−1;(3)联立2x +3y =1和2x −3y =k 得:23123x y x y k +=⎧⎨-=⎩,解方程组得:1416k x k y +⎧=⎪⎪⎨-⎪=⎪⎩,由题意得:1141163k x k y +⎧=>-⎪⎪⎨-⎪=≥-⎪⎩,解得:−5<k ≤3.【点睛】本题考查了解二元一次方程和解二元一次方程组、解一元一次不等式组等知识点,能正确解方程组或不等式组是解此题的关键.【27题答案】【答案】(1)>,> (2)a 2+2a -15>-12(3)当a ≥3时,a 2+5a -19≥a +2;当2<a <3时,a 2+5a -19<a +2【解析】【分析】(1)当a >2时,a +5>2+5=7>0;a +7>2+7=9>0;a -2>2-2>0;根据同号得正判断即可.(2)运用完全平方公式,变形后,运用(1)的性质计算即可.(3)先对代数式作差后,分差值大于等于零和小于零,讨论计算即可.【小问1详解】∵a >2,∴a +5>0;∵a >2,∴a -2>0,a +7>0,(a +7)(a -2)>0,故答案为:>,>.【小问2详解】因为2a +2a -15=2(1)a +-16,当a =1时,2a +2a -15=-12,所以当a >1时,2a +2a -15>-12.【小问3详解】先对代数式作差,(2a +5a -19)-(a +2)=2a +4a -21=2(2)a +-25,当2(2)a +-25>0时,a <-7或a >3.因此,当a ≥3时,2a +5a -19≥a +2;当2<a <3时,2a +5a -19<a +2.【点睛】本题考查了不等式的性质及其应用,熟练掌握性质,灵活运用完全平方公式作差计算是解题的关键.【28题答案】【答案】(1)<=<,, (2)无论取什么值,总有244m m ≤+;理由见解析(3)222246x x x +≤++,理由见解析(4)当2x >-时,2337x x +>--;当2x =-时,2337x x +=--;当<2x -时,2337x x +<--.【解析】【分析】(1)当3m =时,当2m =时,当3m =-时,分别代入计算,再进行比较即可;(2)根据()()224420m m m +-=-≥,即可得出答案;(3)根据 ()()()222246220x x x x ++-+=+≥ ,即可得出答案;(4)先求出()()2337510x x x +---=+,再分当2x >-时,当2x =-时,当<2x -时分别进行讨论即可.【小问1详解】当3m =时,2412413m m =+=,,则244m m <+,当2m =时,24848m m =+=,,则244m m =+,当3m =-时,2412413m m =-+=,,则244m m <+,故答案为;<=<,,;【小问2详解】∵()()224420m m m +-=-≥,∴无论取什么值,总有244m m ≤+;【小问3详解】∵()()()222224624420x x x x x x ++-+=+=+≥+∴222246x x x +≤++;【小问4详解】∵()()2337510x x x +---=+,∴当2x >-时,51002337x x x +>+>--,,当2x =-时,51002337x x x +=+=--,,当<2x -时,51002337x x x +<+<--,.【点睛】本题考查了不等式的性质、完全平方公式、非负数的性质,整式的加减,实数大小的比较等知识点,关键是根据两个式子的差比较出数的大小.【29题答案】【答案】(1)①70y -<<;②95x y -<+<(2)122a b ⎧=⎪⎨⎪=-⎩【解析】【分析】(1)①结合题干给出的思路,根据5x y -=,可得5x y =+,结合2x >-,可得7y >-,即有70y -<<;②由①得:70y -<<,同理可得25x -<<②,问题随之得解;(2)结合题干给出的思路,可得555510a b y b ++<-<-①、63333b a x b ++<<-②,即有11883513b a x y b ++<-<-,结合103526x y -<-<,可得1188101326b a b ++=-⎧⎨-=⎩,解方程即可求解.【小问1详解】①5x y -= ,5x y ∴=+,2x >- ,52y ∴+>-,7y ∴>-,0y < ,70y ∴-<<,②由①得:70y -<<,255y ∴-<+<,即25x -<<②,7205y x ∴--<+<+,x y ∴+的取值范围是95x y -<+<;【小问2详解】1x y a -=+ ,1x y a ∴=++,x b <- ,1y a b ∴++<-,1y a b ∴<---,1y a b ∴->++,2y b > ,2y b ∴-<-,12a b y b ∴++<-<-,即()21b y a b <<-++,即555510a b y b ++<-<-①,105555b y a b ∴<<---,()21b y a b <<-++ 211b a y a b ∴++<++<-,21b a x b ∴++<<-,63333b a x b ∴++<<-②,∴①+②得:11883513b a x y b ++<-<-,35x y - 的取值范围是103526x y -<-<,1188101326b a b ++=-⎧∴⎨-=⎩,解得:122a b ⎧=⎪⎨⎪=-⎩.【点睛】本题考查了一元一次不等式组的运用、一元一次不等式的解法,解题的关键是熟练掌握一元一次不等式的解法,并能进行推理论证.【30题答案】【答案】(1)5;(2)m=1,n=-3,a=-1;(3)a的取值范围为1a>.【解析】【分析】(1)将方程组中的两个方程直接相加,整体代换求值;(2)通过对比得到关于m,n,a的方程组求值;(3)利用不等式的性质得到关于a的不等式,求出a的范围.【小问1详解】解:2324x y ax y a+=-+⎧⎨+=⎩①②,①+②得:3x+3y=3a+3,∵3x+3y=18,∴3a+3=18,∴a=5.故答案为:5;【小问2详解】解:∵(m+2n)x+(2m+n)y=(-m+4n)a+3m,又因为-5x-y=16,∴2521 (4)316m nm nm n a m+=-⎧⎪+=-⎨⎪-++=⎩,∴m=1,n=-3,a=-1;【小问3详解】解:已知关于x,y的不等式组2324x y ax y a+>-+⎧⎨+<⎩①②,①×3得:3x+6y>-3a+9④,②×(-1)得:-2x-y>-4a⑤,④+⑤得:x+5y>-7a+9,∵x+5y=2,∴2>-7a+9.∴a>1.【点睛】本题考查二元一次方程组,不等式,根据题意建立适当的方程和不等式是求解本题的关键.。
人教版七年级数学下册《一元一次不等式》知识点
不等式知识点归纳一、不等式的概念1.不等式:用不等号表示不等关系的式子,叫做不等式。
2.不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。
3.不等式的解集:对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。
4.解不等式:求不等式的解集的过程,叫做解不等式。
5.用数轴表示不等式的解集。
二、不等式的基本性质1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2.不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
3.不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。
②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立。
例:1.已知不等式3x-a ≤0的正整数解恰是1,2,3,则a 的取值范围是 。
2.如果关于x 的不等式(a-1)x<a+5和2x<4的解集相同,则a 的值为 。
3.当x 时,代数式52+x 的值不大于零4..若x <1,则22+-x 0(用“>”“=”或“”号填空)5.不等式x 27->1,的正整数解是6.不等式x ->10-a 的解集为x <3,则a7.一罐饮料净重约为300g ,罐上注有“蛋白质含量6.0 ”其中蛋白质 的含量为 _____ g三、一元一次不等式(重点)1.一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
2.解一元一次不等式的一般步骤: (1)去分母 (2)去括号 (3)移项(4)合并同类项 (5)将x 项的系数化为1例:一、 判断题(每题1分,共6分)1、 a >b ,得a +m >b +m ( )2、 由a >3,得a >23 ( ) 3、 x = 2是不等式x +3>4的解 ( )4、 由-21>-1,得-2a >-a ( ) 5、 如果a >b ,c <0,则ac 2>bc 2 ( )6、 如果a <b <0,则ba <1 ( ) 二、 填空题(每题2分,共34分)1、若a <b ,用“>”号或“<”号填空:a -5 b -5; -2a -2b ;-1+2a -1+2b ;6-a 6-b ; 2、x 与3的和不小于-6,用不等式表示为 ;3、当x 时,代数式2x -3的值是正数;4、代数式41+2x 的不大于8-2x 的值,那么x 的正整数解是 ; 5、如果x -7<-5,则x ;如果-2x >0,那么x ; 6、不等式ax >b 的解集是x <a b ,则a 的取值范围是 ; 7、一个长方形的长为x 米,宽为50米,如果它的周长不小于280米,那么x 应满足的不等式为 ;8、点A (-5,y 1)、B (-2,y 2)都在直线y = -2x 上,则y 1与y 2的关系是 ;9、如果一次函数y =(2-m )x +m 的图象经过第一、二、四象限,那么m 的取值范围是 ;易错点分析:例 解关于x 的不等式(12-a )x >1-2a . 错解:去分母,得(1-2a )x >2(1-2a ).将不等式两边同时除以(1-2a ),得x >2. 错因剖析:在利用不等式的性质解不等式时,如果不等式两边同乘(或除以)的数是含字母的式子,应注意讨论含字母的式子的符号.本例中不等式两边同乘(或除以)的(1-2a ),在不确定取值符号的情况下进行约分,所以出错.正解:将不等式变形,得(1-2a )x >2(1-2a ).(1)当1-2a >0时,即a <12时,x >2; (2)当1-2a =0时,即a =12时,不等式无解; (3)当1-2a <0时,即a >12时,x <2.。
最新初一数学七下不等式所有知识点总结和常考题型练习题
不等式知识点1.用符号“<”“>”“≤”“≥”表示大小关系的式子叫做不等式。
2.不等式的解:使不等式成立的未知数的值,叫做不等式的解。
3.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
4.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。
5.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成6.了一个一元一次不等式组。
6.不等式的性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。
不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
不等式练习一、选择题1. 若m>n,下列不等式不一定成立的是()(A )m +2>n +2 (B )2m >2n (C ) (D )2.把不等式组⎩⎨⎧x+1>0,x -1≤0的解集在数轴上表示,正确的是( )A B C D3.不等式组1011x x +>⎧⎨-⎩≤的解集是: ( ) A 、2x ≤ B 、1x >- C 、1x -<≤2 D 、无解4. 下列说法不一定成立的是( )A .若,则B .若,则C .若,则D .若,则 5.关于x 的不等式组⎩⎨⎧1a x >>x 的解集为x >1 ,则a 的取值范围是( ) A . a >1 B . a <1 C . a ≥1 D . a ≤16.已知:y 1=2x -5,y 2=-2x +3.如果y 1<y 2,则x 的取值范围是( )A .x >2B .x <2C .x >-2D .x <-27. 不等式组的整数解的个数是( ) A . 3 B . 5 C . 7 D . 无数个8. 已知点P (1-m ,2-n ),如果m >1,n <2,那么点P 在第( )象限A .一B .二C .三D .四9.不等式组的解集在数轴上表示正确的是( )A .B .C .D .10.在一次“人与自然”知识竞赛中,竞赛题共25道,每题4个答案,其中只有一个正确,选对得4分,不选或选错倒扣2分,得分不低于60分得奖,那么得奖至少应答对题( )A .18题B .19题C .20题D .21题11. 某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收1.5元(不足1千米按1千米计).某人从甲地到乙地经过的路程是x 千米,出租车费为15.5元,那么x 的最大值是( )A .11B .8C .7D .5二、填空题1. 已知a >b ,用“<”或“>”填空: (1)1-a 1-b ; (2)m 2a m 2b (m ≠0). 2. 不等式组的解集是 .3.不等式组⎩⎨⎧x -1≤0,-2x <3的整数解...是 . 4. 不等式组的所有整数解的积为 .5. 关于x 的方程kx -1=2x 的解为正实数,则 k 的取值范围是_______________.三、解答题1. 解不等式组:⎩⎪⎨⎪⎧3x -7<2(1-3x ),x -32+1≤3x -14 ,并把它的解集在数轴上表示出来.2. 已知不等式组:⎩⎪⎨⎪⎧3(2x -1)<2x +8,2+3(x +1)8 >3-x -14 . (1)求此不等式组的整数解;(2)若上述的整数解满足方程ax +6=x -2a , 求a 的值.3.已知A =﹣(1)化简A ; (2)当x 满足不等式组,且x 为整数时,求A 的值.4.在比赛中,每名射手打10枪,每命中一次得5分,每脱靶一次扣1分,得到的分数不少于35分的射手为优胜者,要成为优胜者,至少要中靶多少次?5. 每年的5月20日是中国学生营养日,我市某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如表).若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,求这份快餐最多含有多少克的蛋白质?6. “六一”期间,小张购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表:(1)小张如何进货,使进货款恰好为1300元?(2)要使销售文具所获利润最大,且所获利润不超过进货价格的40%,请你帮小张设计一个进货方案,并求出其所获利润的最大值.7. 某幼儿园在六一儿童节购买了一批牛奶.如果给每个小朋友分5盒,则剩下38盒,如果给每个小朋友分6盒,则最后小朋友不足5盒,但至少分得1盒.问:该幼儿园至少有多少名小朋友?最多有多少名小朋友?。
初一数学七下不等式所有知识点总结和常考题型练习题
初一数学七下不等式所有知识点总结和常考题型练习题1.不等式是用符号“<”“>”“≤”“≥”表示大小关系的式子。
不等式的解是指使不等式成立的未知数的值。
不等式的解集是一个含有未知数的不等式的所有解。
一元一次不等式是指不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1的不等式。
2.一元一次不等式组是关于同一未知数的几个一元一次不等式合在一起的不等式组。
3.不等式有三个基本性质:①不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。
②不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
③不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
练:1.选项(D)。
2.解集为$x\in(-\infty,1]\cup[3,+\infty)$,正确选项为(B)。
3.解集为$x\in(-1,2]$,正确选项为(C)。
4.选项(D)。
5.因为$x>1$,所以$a>x>1$,即$a>1$,正确选项为(A)。
6.将$y_1<y_2$代入得$5x<8$,即$x<\frac{8}{5}$,正确选项为(B)。
7.解为$x=3,4,5,6,7,8,9$,共7个整数解,正确选项为(C)。
8.点P的横坐标大于1,纵坐标小于2,因此P在第四象限,正确选项为(D)。
9.解集为$x\in(-\infty,-2)\cup(1,+\infty)$,正确选项为(B)。
10.设答对$x$题,则得分为$4x-2(25-x)=6x-50$分。
因为得分不低于60分,所以$6x-50\geqslant 60$,解得$x\geqslant18\frac{1}{3}$,因此至少答对19题,正确选项为(D)。
11.某市出租车的收费标准为起步价8元,超过3千米以后每增加1千米加收1.5元。
某人从甲地到乙地的路程为x千米,出租车费为15.5元。
求x的最大值。
解:根据题意,可以列出方程:8 + 1.5⌈x-3⌉ = 15.5,其中⌈x-3⌉表示向上取整。
初一数学七下不等式所有知识点总结和常考题型练习题
不等式知识点1.用符号“<”“>”“≤”“≥”表示大小关系的式子叫做不等式。
2.不等式的解:使不等式成立的未知数的值,叫做不等式的解。
3.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
4.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。
5.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成6.了一个一元一次不等式组。
6.不等式的性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。
不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
不等式练习一、选择题1. 若m>n,下列不等式不一定成立的是()(A )m +2>n +2 (B )2m >2n (C ) (D )2.把不等式组⎩⎨⎧x+1>0,x -1≤0的解集在数轴上表示,正确的是( )A B C D3.不等式组1011x x +>⎧⎨-⎩≤的解集是: ( ) A 、2x ≤ B 、1x >- C 、1x -<≤2 D 、无解4. 下列说法不一定成立的是( )A .若,则B .若,则C .若,则D .若,则 5.关于x 的不等式组⎩⎨⎧1a x >>x 的解集为x >1 ,则a 的取值范围是( ) A . a >1 B . a <1 C . a ≥1 D . a ≤16.已知:y 1=2x -5,y 2=-2x +3.如果y 1<y 2,则x 的取值范围是( )A .x >2B .x <2C .x >-2D .x <-27. 不等式组的整数解的个数是( ) A . 3 B . 5 C . 7 D . 无数个8. 已知点P (1-m ,2-n ),如果m >1,n <2,那么点P 在第( )象限A .一B .二C .三D .四9.不等式组的解集在数轴上表示正确的是( )A .B .C .D .10.在一次“人与自然”知识竞赛中,竞赛题共25道,每题4个答案,其中只有一个正确,选对得4分,不选或选错倒扣2分,得分不低于60分得奖,那么得奖至少应答对题( )A .18题B .19题C .20题D .21题11. 某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收1.5元(不足1千米按1千米计).某人从甲地到乙地经过的路程是x 千米,出租车费为15.5元,那么x 的最大值是( )A .11B .8C .7D .5二、填空题 1-100-110-110-111. 已知a >b ,用“<”或“>”填空: (1)1-a 1-b ; (2)m 2a m 2b (m ≠0). 2. 不等式组的解集是 .3.不等式组⎩⎨⎧x -1≤0,-2x <3的整数解...是 . 4. 不等式组的所有整数解的积为 .5. 关于x 的方程kx -1=2x 的解为正实数,则 k 的取值范围是_______________.三、解答题1. 解不等式组:⎩⎪⎨⎪⎧3x -7<2(1-3x ),x -32+1≤3x -14 ,并把它的解集在数轴上表示出来.2. 已知不等式组:⎩⎪⎨⎪⎧3(2x -1)<2x +8,2+3(x +1)8 >3-x -14 . (1)求此不等式组的整数解;(2)若上述的整数解满足方程ax +6=x -2a , 求a 的值.3.已知A =﹣(1)化简A ; (2)当x 满足不等式组,且x 为整数时,求A 的值.4.在比赛中,每名射手打10枪,每命中一次得5分,每脱靶一次扣1分,得到的分数不少于35分的射手为优胜者,要成为优胜者,至少要中靶多少次?5. 每年的5月20日是中国学生营养日,我市某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如表).若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,求这份快餐最多含有多少克的蛋白质?6. “六一”期间,小张购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表:(1)小张如何进货,使进货款恰好为1300元?(2)要使销售文具所获利润最大,且所获利润不超过进货价格的40%,请你帮小张设计一个进货方案,并求出其所获利润的最大值.7. 某幼儿园在六一儿童节购买了一批牛奶.如果给每个小朋友分5盒,则剩下38盒,如果给每个小朋友分6盒,则最后小朋友不足5盒,但至少分得1盒.问:该幼儿园至少有多少名小朋友?最多有多少名小朋友?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学下册《不等式与不等式组》知识点归纳
一、目标与要求
1.感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,通过解决简单的实际问题,使学生自发地寻找不等式的解,会把不等式的解集正确地表示到数轴上;
2.经历由具体实例建立不等模型的过程,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想;
3.通过对不等式、不等式解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域。
二、知识框架
三、重点
理解并掌握不等式的性质;
正确运用不等式的性质;
建立方程解决实际问题,会解"ax+b=cx+d"类型的一元一次方程;
寻找实际问题中的不等关系,建立数学模型;
一元一次不等式组的解集和解法。
四、难点
一元一次不等式组解集的理解;
弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式;
正确理解不等式、不等式解与解集的意义,把不等式的解集正确地表示到数轴上。
页脚.
五、知识点、概念总结
1.不等式:用符号"<",">","≤","≥"表示大小关系的式子叫做不等式。
2.不等式分类:不等式分为严格不等式与非严格不等式。
一般地,用纯粹的大于号、小于号">","<"连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)"≥","≤"连接的不等式称为非严格不等式,或称广义不等式。
3.不等式的解:使不等式成立的未知数的值,叫做不等式的解。
4.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
5.不等式解集的表示方法:
(1)用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个围,这个围可用最简单的不等式表达出来,例如:x-1≤2的解集是x≤3
(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。
6.解不等式可遵循的一些同解原理
(1)不等式F(x)< G(x)与不等式G(x)>F(x)同解。
(2)如果不等式F(x)< G(x)的定义域被解析式H(x)的定义域所包含,那么不等式F(x)< G(x)与不等式H(x)+F(x)
(3)如果不等式F(x)< G(x)的定义域被解析式H(x)的定义域所包含,并且H(x)>0,那么不等式F(x)< G(x)与不等式H(x)F(x)0,那么不等式F(x)< G(x)与不等式H(x)F(x)>H(x)G(x)同解。
7.不等式的性质:
(1)如果x>y,那么yy;(对称性)
(2)如果x>y,y>z;那么x>z;(传递性)
(3)如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法则)
(4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz
(5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z
(6)如果x>y,m>n,那么x+m>y+n(充分不必要条件)
(7)如果x>y>0,m>n>0,那么xm>yn
(8)如果x>y>0,那么x的n次幂>y的n次幂(n为正数)
8.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。
9.解一元一次不等式的一般顺序:
(1)去分母(运用不等式性质2、3)
(2)去括号
(3)移项(运用不等式性质1)
(4)合并同类项
(5)将未知数的系数化为1 (运用不等式性质2、3)
(6)有些时候需要在数轴上表示不等式的解集
10. 一元一次不等式与一次函数的综合运用:
一般先求出函数表达式,再化简不等式求解。
11.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成
了一个一元一次不等式组。
12.解一元一次不等式组的步骤:
页脚.
(1) 求出每个不等式的解集;
(2) 求出每个不等式的解集的公共部分;(一般利用数轴)
(3) 用代数符号语言来表示公共部分。
(也可以说成是下结论) 13.解不等式的诀窍
(1)大于大于取大的(大大大);
例如:X>-1,X>2 ,不等式组的解集是X>2
(2)小于小于取小的(小小小);
例如:X<-4,X<-6,不等式组的解集是X<-6
(3)大于小于交叉取中间;
(4)无公共部分分开无解了;
14.解不等式组的口诀
(1)同大取大
例如,x>2,x>3 ,不等式组的解集是X>3
(2)同小取小
例如,x<2,x<3 ,不等式组的解集是X<2
(3)大小小大中间找
例如,x<2,x>1,不等式组的解集是1
(4)大大小小不用找
例如,x<2,x>3,不等式组无解
15.应用不等式组解决实际问题的步骤
(1)审清题意
(2)设未知数,•根据所设未知数列出不等式组
(3)解不等式组
(4)由不等式组的解确立实际问题的解
(5)作答
16.用不等式组解决实际问题:其公共解不一定就为实际问题的解,所以需结合生活实际具体分析,最后确定结果。
四、经典例题
例1某种植物适宜生长在温度为18℃~20℃的山区,已知山区海拔每升高100米,气温下降0。
5℃,现在测出山脚下的平均气温为22℃,问该植物种在山的哪一部分为宜?(假设山脚海拔为0米)
例2某园林的门票每10元,一次使用,考虑到人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年)。
年票分A、B、C三类:A类年票每120元,持票者进入园林时,无需再用门票;B类年票每60元,持票者进入该园林时,需再购买门票,每次2元;C类年票每40元,持票者进入该园林时,需再购买门票,每次3元。
(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出可进入该园林的次数最多的购票方式。
(2)求一年中进入该园林至少超过多少次时,购买A类年票比较合算。
页脚.。