基于反馈(FeedBack,FB)排队算法的CPU调度的模拟实现

合集下载

进程调度模拟算法

进程调度模拟算法

进程调度模拟算法进程调度是操作系统中的重要组成部分之一,它负责决定在多道程序环境下,哪个进程将获得CPU的使用权。

进程调度模拟算法是为了研究和评估不同调度策略的性能而开发的一种仿真方法。

在实际系统中,调度算法会受到多种因素的影响,如进程优先级、进程的I/O需求、进程的实际执行时间等。

通过模拟这些因素,可以更好地理解不同调度算法之间的差异,并选择最合适的算法来满足特定需求。

下面介绍两种常见的进程调度模拟算法:先来先服务(FCFS)和最短作业优先(SJF)算法。

1. 先来先服务(FCFS)算法:该算法按照进程到达的顺序来调度任务。

当一个进程完成或阻塞时,下一个已到达的进程将获得CPU的使用权。

这种算法非常简单,但是不适用于长作业时间和短作业时间交替出现的情况。

在短作业启动时,长作业仍然在运行,使得短作业的等待时间增加。

2. 最短作业优先(SJF)算法:该算法根据任务的执行时间来调度进程。

在该算法中,每个进程的执行时间都是已知的,并且操作系统根据已知的执行时间来决定哪个进程获得CPU的使用权。

在短作业优先算法中,短作业将会先被调度,这样有助于减少平均周转时间和等待时间。

但是,短作业优先算法容易产生“饥饿”现象,即长作业可能会一直等待,而短作业一直得到CPU的使用权。

除了以上两种算法,还有其他的进程调度模拟算法。

例如:- 时间片轮转(RR)调度算法:使用固定的时间片来调度进程,当时间片用完后,该进程被放入就绪队列的末尾。

- 优先级调度算法:每个进程都拥有一个优先级,优先级越高的进程越早被调度。

这种方法可以根据不同进程的紧迫程度和重要性来进行调度。

- 多级反馈队列调度算法:将就绪队列划分为多个队列,并根据进程的性质和优先级将进程放入不同的队列。

每个队列都有不同的优先级和时间片大小,进程可以通过提高优先级或时间片大小来提高被调度的机会。

在实际应用中,需要根据系统需求和性能指标选择合适的调度算法。

常用的性能指标包括平均周转时间、平均等待时间、CPU利用率等。

基于深度强化学习的网络资源分配与调度

基于深度强化学习的网络资源分配与调度

基于深度强化学习的网络资源分配与调度引言在当今数字化时代,网络资源的高效分配与调度对于保障网络服务质量和提升用户体验至关重要。

而面对日益增长的网络流量和复杂多样的网络应用场景,传统的资源分配和调度方法已经无法满足需求。

因此,如何利用人工智能领域中的深度强化学习技术来优化网络资源的分配与调度问题成为了研究的热点之一。

本文将探讨基于深度强化学习的网络资源分配与调度的原理、方法和应用。

一、深度强化学习的简介1.1 强化学习的基本概念和原理强化学习是一种通过与环境交互学习最佳行为策略的机器学习方法。

其核心思想是智能系统通过不断试错和学习,从环境中获得反馈信号,通过最大化长期累计奖赏来选择最优决策。

强化学习包括智能体、环境和奖赏函数三个基本要素,并通过马尔可夫决策过程(MDP)进行建模和求解。

1.2 深度学习在强化学习中的应用深度学习是一种通过模拟人脑神经网络结构和算法实现的机器学习方法。

其通过多层次的神经网络结构和大量的训练数据,实现了高度复杂的特征提取和模式识别能力。

深度学习在强化学习中的应用主要体现在价值函数的近似和策略搜索的优化等方面。

通过使用深度神经网络来拟合状态-动作对的价值函数,可以更好地解决高维状态空间问题;而通过使用强化学习算法对策略进行优化,在复杂环境中实现了更高效的决策。

二、基于深度强化学习的网络资源分配与调度原理2.1 网络资源分配与调度问题的背景和挑战网络资源分配与调度问题是指在有限资源条件下,如何合理地分配和调度网络中的带宽、存储和计算等资源,以满足不同网络应用的服务质量要求。

随着网络规模的不断扩大和用户对高带宽、低延迟的需求日益增长,资源分配和调度问题变得愈发复杂和困难。

2.2 深度强化学习在网络资源分配与调度中的应用深度强化学习方法在网络资源分配与调度问题中的应用主要可以分为以下几个方面:(1)基于深度Q网络(Deep Q-Network,DQN)的带宽分配:通过使用DQN算法,将网络的带宽分配问题建模为MDP,通过不断学习和优化网络的带宽分配策略,实现带宽的智能调度和分配。

操作系统进程调度算法模拟实验报告

操作系统进程调度算法模拟实验报告

操作系统进程调度算法模拟实验报告一、实验目的本实验旨在深入理解操作系统的进程调度算法,并通过模拟实验来探究不同调度算法之间的差异和优劣。

二、实验原理操作系统的进程调度算法是决定进程执行顺序的重要依据。

常见的调度算法有先来先服务(FCFS)、最短作业优先(SJF)、优先级调度(Priority Scheduling)、轮转法(Round Robin)和多级反馈队列调度(Multilevel Feedback Queue Scheduling)等。

1.先来先服务(FCFS)算法:按照进程到达的先后顺序进行调度,被调度的进程一直执行直到结束或主动阻塞。

2.最短作业优先(SJF)算法:按照进程需要的执行时间的短长程度进行调度,执行时间越短的进程越优先被调度。

3. 优先级调度(Priority Scheduling)算法:为每个进程分配一个优先级,按照优先级从高到低进行调度。

4. 轮转法(Round Robin)算法:将进程按照到达顺序排列成一个队列,每个进程被分配一个时间片(时间量度),当时间片结束时,将进程从队列头取出放置到队列尾。

5.多级反馈队列调度算法:将进程队列分为多个优先级队列,每个队列时间片大小依次递减。

当一个队列中的进程全部执行完毕或者发生阻塞时,将其转移到下一个优先级队列。

三、实验步骤与结果1.实验环境:- 操作系统:Windows 10- 编译器:gcc2.实验过程:(1)首先,设计一组测试数据,包括进程到达时间、需要的执行时间和优先级等参数。

(2)根据不同的调度算法编写相应的调度函数,实现对测试数据的调度操作。

(3)通过模拟实验,观察不同调度算法之间的区别,比较平均等待时间、完成时间和响应时间的差异。

(4)将实验过程和结果进行记录整理,撰写实验报告。

3.实验结果:这里列举了一组测试数据和不同调度算法的结果,以便对比分析:进程,到达时间,执行时间,优先------,----------,----------,-------P1,0,10,P2,1,1,P3,2,2,P4,3,1,P5,4,5,a.先来先服务(FCFS)算法:平均等待时间:3.8完成时间:15b.最短作业优先(SJF)算法:平均等待时间:1.6完成时间:11c. 优先级调度(Priority Scheduling)算法:平均等待时间:2.8完成时间:14d. 轮转法(Round Robin)算法:时间片大小:2平均等待时间:4.8完成时间:17e.多级反馈队列调度算法:第一级队列时间片大小:2第二级队列时间片大小:4平均等待时间:3.8完成时间:17四、实验总结通过上述的实验结果可以得出以下结论:1.在上述测试数据中,最短作业优先(SJF)算法的平均等待时间最短,说明该算法在短作业的情况下能够有效地减少等待时间。

操作系统 多级反馈队列算法例题

操作系统 多级反馈队列算法例题

操作系统:多级反馈队列算法例题在操作系统中,调度算法是用来管理和执行进程的重要工具。

其中,多级反馈队列调度算法是一种经典的调度算法,它能够根据进程的优先级和执行情况动态地调整进程的执行顺序,以达到更高效的资源利用和更快速的响应时间。

接下来,我们将通过一个例题来深入探讨多级反馈队列调度算法的原理和应用。

假设有5个进程,它们的执行时间分别为3、5、2、7和4个单位。

我们可以构建一个具有3个队列的多级反馈队列调度算法,每个队列的优先级不同,分别为高、中、低。

在这个例题中,我们将以此为例,进行具体的调度过程。

将这5个进程按照它们的到达时间依次加入到第一个队列中,然后按照先来先服务的原则进行调度。

假设第一个队列的时间片为2个单位。

在第一个队列中,我们依次执行进程1和进程2,并在时间片用完之后将它们移到第二个队列中。

此时,这两个进程还有未完成的执行时间,因此它们进入第二个队列的队尾。

接下来,轮到第三个进程加入到第一个队列中,并按照相同的规则进行调度。

在第一个队列中,我们执行进程3的两个时间片,然后将它移到第二个队列中。

此时,第一个队列已经没有进程,因此我们开始执行第二个队列中的进程。

依次类推,直到所有的进程执行完毕。

通过这个例题,我们可以清楚地看到多级反馈队列调度算法是如何根据进程的优先级和执行情况进行动态调整的。

它能够兼顾短作业和长作业,保证了系统的公平性和响应速度。

总结起来,多级反馈队列调度算法是一种高效的进程调度算法,它能够根据进程的优先级和执行情况动态地调整执行顺序,以提高系统的资源利用和响应速度。

通过深入地理解和应用这个调度算法,我们能够更好地优化系统性能,提升用户体验。

在我看来,多级反馈队列调度算法是非常值得学习和掌握的一种调度算法。

它不仅能够帮助我们更好地理解操作系统的工作原理,还能够在实际的系统设计和优化中发挥重要作用。

我会继续深入研究这个算法,并将其应用到实际的项目中去。

希望本文能够帮助您更深入地理解多级反馈队列调度算法,并对操作系统有更全面、深刻和灵活的理解。

多级反馈队列调度算法的原理 -回复

多级反馈队列调度算法的原理 -回复

多级反馈队列调度算法的原理-回复什么是多级反馈队列调度算法?多级反馈队列调度算法是一种进程调度算法,根据进程的优先级和执行时间,将进程分配到不同的处理队列中,并进行轮转执行。

该算法采用了多个队列和反馈机制,使得进程能够相对公平地竞争CPU资源,并且具有较高的响应速度和吞吐量。

多级反馈队列调度算法的原理是什么?多级反馈队列调度算法的原理主要包括以下几个方面:1. 多个队列:多级反馈队列调度算法采用多个队列来存放进程。

一般来说,队列的数量不固定,可以根据实际情况进行调整。

每个队列都有一个不同的优先级,每个优先级代表了不同的执行时间片长度。

2. 进程分配:当一个进程被提交到系统中时,多级反馈队列调度算法会首先将它分配到最高优先级的队列中。

如果该进程在一个时间片内无法完成,那么它就会被移到下一级队列中,并且等待下一次执行。

同样的,进程在下一级队列中也无法完成时,就会被移到更低优先级的队列中。

这个过程会一直持续到该进程执行完成或被终止。

3. 时间片分配:每个队列中的进程都按照其优先级分配时间片。

优先级较高的队列拥有短的时间片,优先级较低的队列拥有长的时间片。

这个机制可以保证高优先级的进程更快地获得CPU资源,从而提高系统的响应速度。

4. 反馈机制:多级反馈队列调度算法还采用了反馈机制,即当进程在一个队列中等待了一定时间之后,它会被移到一个更高优先级的队列中。

这个机制可以有效地解决进程长时间处于低优先级队列中的问题,从而提高处理效率和响应速度。

多级反馈队列调度算法的实现步骤是什么?多级反馈队列调度算法的实现步骤包括以下几个方面:1. 初始化:初始化多个队列,每个队列都有一个不同的优先级,同时初始化时间片大小和进程调度参数。

2. 进程分配:当一个进程被提交到系统中时,将其分配到最高优先级的队列中。

3. 时间片分配:按照优先级分配时间片,优先级较高的队列拥有较短的时间片,优先级较低的队列拥有较长的时间片。

4. 进程执行:从最高优先级的队列中取出一个进程执行,在一个时间片内完成或被抢占后,将进程移到下一级队列中等待执行。

进程调度实验报告

进程调度实验报告

进程调度实验报告一、实验目的。

本实验旨在通过对进程调度算法的模拟和实验,加深学生对进程调度原理的理解,掌握各种进程调度算法的特点和应用场景,提高学生的实际操作能力和分析问题的能力。

二、实验环境。

本次实验使用了C语言编程语言,通过模拟实现了先来先服务(FCFS)、最短作业优先(SJF)、时间片轮转(RR)和多级反馈队列(MFQ)四种进程调度算法。

三、实验过程。

1. 先来先服务(FCFS)调度算法。

先来先服务调度算法是一种非抢占式的调度算法,按照进程到达的先后顺序进行调度。

在本次实验中,我们通过模拟多个进程到达并排队等待CPU执行,观察其平均等待时间和平均周转时间。

实验结果表明,先来先服务调度算法适用于作业长度差异较大的情况,但容易产生“饥饿”现象。

2. 最短作业优先(SJF)调度算法。

最短作业优先调度算法是一种非抢占式的调度算法,按照作业执行时间的长短进行调度。

在本次实验中,我们通过模拟多个作业的执行时间,观察其平均等待时间和平均周转时间。

实验结果表明,最短作业优先调度算法能够最大程度地减少平均等待时间,但可能会导致长作业被“饿死”。

3. 时间片轮转(RR)调度算法。

时间片轮转调度算法是一种抢占式的调度算法,每个进程被分配一个时间片,当时间片用完后,该进程被放到队尾等待。

在本次实验中,我们通过模拟多个进程的执行和时间片的调度,观察其平均等待时间和平均周转时间。

实验结果表明,时间片轮转调度算法能够保证每个进程都能得到一定的执行时间,但可能会导致上下文切换频繁。

4. 多级反馈队列(MFQ)调度算法。

多级反馈队列调度算法是一种综合性的调度算法,根据进程的优先级和执行时间进行动态调整。

在本次实验中,我们通过模拟多个进程的执行和不同优先级队列的调度,观察其平均等待时间和平均周转时间。

实验结果表明,多级反馈队列调度算法能够兼顾短作业和长作业,提高了系统的整体性能。

四、实验总结。

通过本次实验,我们深入理解了不同进程调度算法的特点和适用场景。

操作系统中的CPU调度算法实现与优化

操作系统中的CPU调度算法实现与优化

操作系统中的CPU调度算法实现与优化随着计算机技术的不断发展,操作系统作为计算机的重要组成部分已经成为了现代计算机的核心,操作系统的性能对整个计算机的运行和效率有着至关重要的影响。

其中,CPU调度算法是操作系统中的核心内容之一,其对操作系统的性能有着直接的影响作用。

什么是CPU调度算法?CPU调度是操作系统中的一项关键任务,主要负责分配CPU 时间片给各个进程,以实现多进程并发执行。

而CPU调度算法则是CPU调度的关键之一,其主要作用是决定进程在什么情况下能够获取CPU使用权,进程的优先级、时间片大小等等影响着操作系统的性能。

常见的CPU调度算法:1. 先来先服务调度算法(FCFS)先来先服务调度算法,即按照作业到达的先后顺序分配CPU 时间片,每个进程在进入就绪队列后,按照行到达时间先后依次排队等待调度,先到达的进程先分配CPU时间片,然后完成执行后才分配给后续的进程。

这种算法不需要任何额外的参数,其实现简单,但是当进程短任务和长任务交织时,会导致短任务长时间等待,并且也不能满足响应时间的需求。

2. 短作业优先调度算法(SJF)短作业优先调度算法,即根据进程的需要任务量分配CPU时间片,等待时间短的任务优先获取CPU使用权,使得短任务能够更快的得到执行,提高系统的响应速度。

但是,该定调度算法仅适用于批处理系统,当进程数量庞大时,无法快速准确地预估进程的任务量,如果预估不准,就会出现长任务等待短任务的情况。

3. 优先级调度算法优先级调度算法是基于进程的优先级确定分配CPU时间片的方法,一般根据进程的特性,为不同进程设置不同的优先级,每次调度时以优先级高的进程优先获取CPU使用权,直到时间片用完或者进程执行结束。

优先级调度算法有着良好的响应性,但不利于低优先级进程,经常会出现饥饿的情况。

4. 时间片轮转调度算法时间片轮转调度算法指将CPU时间片分成一定长度的时间段,按照进程到达的先后依次分配时间片,等待不同进程请求时间的到达,一旦时间到达,则进行轮换,并将未利用完的时间片赋予下一个进程。

多级反馈队列调度算法

多级反馈队列调度算法

多级反馈队列调度算法:(FB算法)(1)设置多个不同优先级的就绪队列,并赋予各个队列大小不同时间片,使得优先级愈高的队列时间片愈小。

(2)新就绪进程总是先进入第一级(即最高优先级)队列的末尾,并按FIFO原则等待调度;当轮到该进程执行时,如它能在规定时间片内完成,便可准备撤离系统,否则将它转入第二级队列末尾,再同样按FIFO原则等待调度;如果它在第二级队列上运行一个时间片后仍未完成,再依次将它转入第三极队列。

如此下去,当一个长作业从第一级队列降到最后一级队列时,便在该队列中采取时间片轮转方式运行。

(3)系统总是调度第一级队列上的进程执行;仅当第一级队列为空时,才调度第二级队列上的进程执行‘类推之,仅当第1~(i-1)为空时,才调度第i级队列上的进程执行。

多级反馈队列算法可有很多变形,如当处理机正在为第I级队列上的进程服务时,又有新进程进入优先级最高的队列,此时,既可采用立即抢占的方式,将正在执行的进程插入第i级队列的末尾,并将处理机分配给新进程;也可以只按时间片进行抢占,等正在执行的进程时间片用完或它不需要CPU时再进行CPU调度。

例题如下:进程到达和需服务时间进程到达时间服务时间A 0 3B 2 6C 4 4D 6 5E 8 2RR算法中,就绪进程按FIFO方式排列,CPU总是分配给队首的进程,并只能执行一个时间片;FB算法将就绪进程排成多个不同优先权及时间片的队列,就绪进程总是按FIFO方式先进入优先权最高的队列,CPU也总是分配给较高优先权队列上的队首进程,若执行一个时间片仍未完成,则转入下一级队列的末尾,最后一级队列采用时间片轮转方式进行调度。

5101520A B ED C A B ED C A B ED C 05101520RR (q=1)FB (q=2i-1)FB (q=2i-1)立即抢占说明:q=2i-1,其中的i表示是在哪个级的队列上,所以,优先级愈高的队列时间片愈小(原理)(1)q=21-1=1执行A,然后放入到第二级队列末尾(2)q=22-1=2A执行结束此时B已经在2秒时到达,放在第一队列的末尾。

操作系统进程调度算法模拟实验

操作系统进程调度算法模拟实验

操作系统进程调度算法模拟实验进程调度是操作系统中一个重要的功能,它决定了哪些进程能够获得处理器资源以及如何按照一定的策略来分配这些资源。

为了更好地理解进程调度算法的工作原理,我们可以进行一个模拟实验来观察不同算法的表现效果。

实验设想:我们设想有5个进程要运行在一个单核处理器上,每个进程有不同的运行时间和优先级。

进程信息如下:进程A:运行时间10ms,优先级4进程B:运行时间8ms,优先级3进程C:运行时间6ms,优先级2进程D:运行时间4ms,优先级1进程E:运行时间2ms,优先级5实验步骤:1.先来先服务(FCFS)调度算法实验:将上述进程按照先来先服务的原则排序,运行对应的模拟程序,观察每个进程的运行时间、完成时间和等待时间。

2.最短作业优先(SJF)调度算法实验:将上述进程按照运行时间的大小排序,运行对应的模拟程序,观察每个进程的运行时间、完成时间和等待时间。

3.优先级调度算法实验:将上述进程按照优先级的大小排序,运行对应的模拟程序,观察每个进程的运行时间、完成时间和等待时间。

4.时间片轮转(RR)调度算法实验:设置一个时间片大小,将上述进程按照先来先服务的原则排序,运行对应的模拟程序,观察每个进程的运行时间、完成时间和等待时间。

实验结果:通过模拟实验,我们可以得到每个进程的运行时间、完成时间和等待时间。

对于FCFS算法,进程的运行顺序是按照先来先服务的原则,因此进程A首先得到处理器资源并完成运行,其它进程依次按照到达顺序得到资源。

因此,对于进程A、B、C、D、E,它们的完成时间分别是10ms、18ms、24ms、28ms和30ms,等待时间分别是0ms、10ms、18ms、24ms和28ms。

对于SJF算法,进程的运行顺序是按照运行时间的大小,即短作业优先。

因此,进程E首先得到处理器资源并完成运行,其它进程依次按照运行时间的大小得到资源。

对于进程E、D、C、B、A,它们的完成时间分别是2ms、6ms、12ms、20ms和30ms,等待时间分别是0ms、2ms、6ms、12ms和20ms。

使用动态优先权的进程调度算法的模拟实验

使用动态优先权的进程调度算法的模拟实验

使用动态优先权的进程调度算法的模拟实验进程调度算法是操作系统中对进程进行调度的一种策略,动态优先权调度算法是其中一种常用的调度算法。

下面将对动态优先权调度算法进行模拟实验,并对实验结果进行分析。

首先,我们定义进程的属性包括进程编号、到达时间、服务时间、优先权和完成时间等。

动态优先权调度算法的基本思想是根据进程的优先权决定下一个被调度的进程,优先权越高,被调度的机会越大。

实验过程如下:1.创建一个进程队列,用来存放待调度的进程。

2.输入进程的个数,并依次输入每个进程的到达时间、服务时间和优先权。

3.将所有进程按照到达时间进行排序。

4.从排好序的进程队列中选择优先权最高的进程,即优先权最大的进程。

5.通过执行该进程进行模拟,更新进程队列中的进程信息。

6.根据更新后的进程信息,重新选择下一个被调度的进程。

7.重复步骤5和6,直到所有进程执行完毕。

对于每个进程,我们可以记录其等待时间、周转时间和带权周转时间。

等待时间即为该进程在就绪队列中等待的时间,周转时间是指从进程提交到完成的时间,即完成时间减去到达时间,带权周转时间是指每个进程的周转时间除以服务时间,用来评估进程的调度效果。

下面是一个动态优先权调度算法的模拟实验示例:```pythonclass Process:self.id = idself.priority = prioritydef __lt__(self, other):return self.priority < other.prioritydef dynamic_priority_scheduling(processes):queue = []while processes or queue:for process in processes:queue.append(process)processes.remove(process)queue.sort(reverse=True) # 根据进程的优先权进行排序if queue:process = queue.pop(0)for p in queue:if __name__ == '__main__':n = int(input("Enter the number of processes: "))processes = []for i in range(n):priority = int(input("Enter priority for process {}:".format(i+1)))dynamic_priority_scheduling(processes)```以上代码定义了一个Process类来表示进程,并使用动态优先权调度算法对进程进行调度。

多级反馈队列调度算法_C语言

多级反馈队列调度算法_C语言

多级反馈队列调度算法C语言模拟实现多级反馈队列调度算法:1、设置多个就绪队列,并给队列赋予不同的优先级数,第一个最高,依次递减。

2、赋予各个队列中进程执行时间片的大小,优先级越高的队列,时间片越小。

3、当一个新进程进入内存后,首先将其放入一个对列末尾,如果在一个时间片结束时尚未完成,将其转入第二队列末尾。

4、当一个进程从一个对列移至第n个队列后,便在第n个队列中采用时间片轮转执行完。

5、仅当时间片空闲时,才调度第二个队列中的进程。

(1~i-1)空闲时,才调度i,如果处理机正在第i队列中运行,又有新进程进入优先权较高队列,则新进程抢占处理机,将正在运行的进程放入第i队列队尾,将处理机分给新进程。

#include <stdio.h>#include <stdlib.h>#include <string.h>typedef struct node /*进程节点信息*/{char name[20]; /*进程的名字*/int prio; /*进程的优先级*/int round; /*分配CPU的时间片*/int cputime; /*CPU执行时间*/int needtime; /*进程执行所需要的时间*/char state; /*进程的状态,W——就绪态,R——执行态,F——完成态*/int count; /*记录执行的次数*/struct node *next; /*链表指针*/}PCB;typedef struct Queue /*多级就绪队列节点信息*/{PCB *LinkPCB; /*就绪队列中的进程队列指针*/int prio; /*本就绪队列的优先级*/int round; /*本就绪队列所分配的时间片*/struct Queue *next; /*指向下一个就绪队列的链表指针*/}ReadyQueue;PCB *run=NULL,*finish=NULL; /*定义三个队列,就绪队列,执行队列和完成队列*/ReadyQueue *Head = NULL; /*定义第一个就绪队列*/int num; /*进程个数*/int ReadyNum; /*就绪队列个数*/void Output(); /*进程信息输出函数*/void InsertFinish(PCB *in); /*将进程插入到完成队列尾部*/void InsertPrio(ReadyQueue *in); /*创建就绪队列,规定优先数越小,优先级越低*/ void PrioCreate(); /*创建就绪队列输入函数*/void GetFirst(ReadyQueue *queue); /*取得某一个就绪队列中的队头进程*/void InsertLast(PCB *in,ReadyQueue *queue); /*将进程插入到就绪队列尾部*/void ProcessCreate(); /*进程创建函数*/void RoundRun(ReadyQueue *timechip); /*时间片轮转调度算法*/void MultiDispatch(); /*多级调度算法,每次执行一个时间片*/int main(void){PrioCreate(); /*创建就绪队列*/ProcessCreate();/*创建就绪进程队列*/MultiDispatch();/*算法开始*/Output(); /*输出最终的调度序列*/return 0;}void Output() /*进程信息输出函数*/{ReadyQueue *print = Head;PCB *p;printf("进程名\t优先级\t轮数\tcpu时间\t需要时间\t进程状态\t计数器\n");while(print){if(print ->LinkPCB != NULL){p=print ->LinkPCB;while(p){printf("%s\t%d\t%d\t%d\t%d\t\t%c\t\t%d\n",p->name,p->prio,p->round,p->cputime,p->needtime,p->state,p->count);p = p->next;}}print = print->next;}p = finish;while(p!=NULL){printf("%s\t%d\t%d\t%d\t%d\t\t%c\t\t%d\n",p->name,p->prio,p->round,p->cputime,p->needtime,p->state,p->count);p = p->next;}p = run;while(p!=NULL){printf("%s\t%d\t%d\t%d\t%d\t\t%c\t\t%d\n",p->name,p->prio,p->round,p->cputime,p->needtime,p->state,p->count);p = p->next;}}void InsertFinish(PCB *in) /*将进程插入到完成队列尾部*/{PCB *fst;fst = finish;if(finish == NULL){in->next = finish;finish = in;}else{while(fst->next != NULL){fst = fst->next;}in ->next = fst ->next;fst ->next = in;}}void InsertPrio(ReadyQueue *in) /*创建就绪队列,规定优先数越小,优先级越低*/{ReadyQueue *fst,*nxt;fst = nxt = Head;if(Head == NULL) /*如果没有队列,则为第一个元素*/{in->next = Head;Head = in;}else /*查到合适的位置进行插入*/{if(in ->prio >= fst ->prio) /*比第一个还要大,则插入到队头*/{in->next = Head;Head = in;}else{while(fst->next != NULL) /*移动指针查找第一个别它小的元素的位置进行插入*/{nxt = fst;fst = fst->next;}if(fst ->next == NULL) /*已经搜索到队尾,则其优先级数最小,将其插入到队尾即可*/{in ->next = fst ->next;fst ->next = in;}else /*插入到队列中*/{nxt = in;in ->next = fst;}}}}void PrioCreate() /*创建就绪队列输入函数*/{ReadyQueue *tmp;int i;printf("输入就绪队列的个数:\n");scanf("%d",&ReadyNum);printf("输入每个就绪队列的CPU时间片:\n");for(i = 0;i < ReadyNum; i++){if((tmp = (ReadyQueue *)malloc(sizeof(ReadyQueue)))==NULL){perror("malloc");exit(1);}scanf("%d",&(tmp->round)); /*输入此就绪队列中给每个进程所分配的CPU时间片*/tmp ->prio = 50 - tmp->round; /*设置其优先级,时间片越高,其优先级越低*/tmp ->LinkPCB = NULL; /*初始化其连接的进程队列为空*/tmp ->next = NULL;InsertPrio(tmp); /*按照优先级从高到低,建立多个就绪队列*/}}void GetFirst(ReadyQueue *queue) /*取得某一个就绪队列中的队头进程*/{run = queue ->LinkPCB;if(queue ->LinkPCB != NULL){run ->state = 'R';queue ->LinkPCB = queue ->LinkPCB ->next;run ->next = NULL;}}void InsertLast(PCB *in,ReadyQueue *queue) /*将进程插入到就绪队列尾部*/{PCB *fst;fst = queue->LinkPCB;if( queue->LinkPCB == NULL){in->next = queue->LinkPCB;queue->LinkPCB = in;}else{while(fst->next != NULL){fst = fst->next;}in ->next = fst ->next;fst ->next = in;}}void ProcessCreate() /*进程创建函数*/{PCB *tmp;int i;printf("输入进程的个数:\n");scanf("%d",&num);printf("输入进程名字和进程所需时间:\n");for(i = 0;i < num; i++){if((tmp = (PCB *)malloc(sizeof(PCB)))==NULL){perror("malloc");exit(1);}scanf("%s",tmp->name);getchar(); /*吸收回车符号*/scanf("%d",&(tmp->needtime));tmp ->cputime = 0;tmp ->state ='W';tmp ->prio = 50 - tmp->needtime; /*设置其优先级,需要的时间越多,优先级越低*/tmp ->round = Head ->round;tmp ->count = 0;InsertLast(tmp,Head); /*按照优先级从高到低,插入到就绪队列*/ }}void RoundRun(ReadyQueue *timechip) /*时间片轮转调度算法*/{int flag = 1;GetFirst(timechip);while(run != NULL){while(flag){run->count++;run->cputime++;run->needtime--;if(run->needtime == 0) /*进程执行完毕*/{run ->state = 'F';InsertFinish(run);flag = 0;}else if(run->count == timechip ->round)/*时间片用完*/{run->state = 'W';run->count = 0; /*计数器清零,为下次做准备*/InsertLast(run,timechip);flag = 0;}}flag = 1;GetFirst(timechip);}}void MultiDispatch() /*多级调度算法,每次执行一个时间片*/{int flag = 1;int k = 0;ReadyQueue *point;point = Head;GetFirst(point);while(run != NULL){Output();if(Head ->LinkPCB!=NULL)point = Head;while(flag){run->count++;run->cputime++;run->needtime--;if(run->needtime == 0) /*进程执行完毕*/{run ->state = 'F';InsertFinish(run);flag = 0;}else if(run->count == run->round)/*时间片用完*/{run->state = 'W';run->count = 0; /*计数器清零,为下次做准备*/if(point ->next!=NULL){run ->round = point->next ->round;/*设置其时间片是下一个就绪队列的时间片*/InsertLast(run,point->next); /*将进程插入到下一个就绪队列中*/flag = 0;}else{RoundRun(point); /*如果为最后一个就绪队列就调用时间片轮转算法*/break;}}++k;if(k == 3){ProcessCreate();}}flag = 1;if(point ->LinkPCB == NULL)/*就绪队列指针下移*/point =point->next;if(point ->next ==NULL){RoundRun(point);break;}GetFirst(point);}}。

模拟调度实验报告(3篇)

模拟调度实验报告(3篇)

第1篇一、实验背景进程调度是操作系统核心功能之一,它负责在多道程序环境下,按照一定的策略对进程进行调度,以确保系统资源的合理分配和高效利用。

为了加深对进程调度算法的理解,本次实验采用模拟的方式,实现了先来先服务(FCFS)、时间片轮转(RR)和动态优先级调度(DP)三种算法,并对实验过程进行了详细记录和分析。

二、实验目的1. 理解进程调度的基本原理和不同调度算法的特点。

2. 掌握进程控制块(PCB)的设计与实现。

3. 通过模拟实验,验证三种调度算法的执行效果。

三、实验环境1. 操作系统:Windows 102. 编程语言:C++3. 开发环境:Visual Studio 2019四、实验内容1. 定义进程控制块(PCB)进程控制块是操作系统用于描述和管理进程的实体,它包含了进程的基本信息。

本实验中,PCB包含以下字段:- 进程ID:唯一标识一个进程。

- 到达时间:进程进入就绪队列的时间。

- 需要运行时间:进程完成所需的时间。

- 已运行时间:进程已运行的时间。

- 状态:进程当前的状态(就绪、运行、阻塞、完成)。

2. 实现三种调度算法(1)先来先服务(FCFS)算法FCFS算法按照进程到达就绪队列的顺序进行调度,先到先服务。

具体实现如下:- 将进程按照到达时间排序,形成就绪队列。

- 遍历就绪队列,依次执行进程,直到进程完成或被阻塞。

(2)时间片轮转(RR)算法RR算法将CPU时间划分为时间片,每个进程运行一个时间片后,让出CPU,等待下一个时间片。

具体实现如下:- 设置一个时间片大小。

- 将进程按照到达时间排序,形成就绪队列。

- 遍历就绪队列,每个进程执行一个时间片,如果进程未完成,则将其加入就绪队列队尾。

(3)动态优先级调度(DP)算法DP算法根据进程的优先级进行调度,优先级高的进程优先执行。

具体实现如下:- 设置一个优先级阈值,当进程的优先级高于阈值时,将其加入就绪队列。

- 遍历就绪队列,选择优先级最高的进程执行,直到进程完成或被阻塞。

进程调度算法模拟程序设计

进程调度算法模拟程序设计

进程调度算法模拟程序设计引言进程调度算法是操作系统中的重要组成部分,它决定了进程在系统中的执行顺序和分配时间片的策略。

为了更好地理解和研究不同的进程调度算法,我们可以设计一个模拟程序来模拟进程的调度过程。

本文将介绍进程调度算法的基本概念和常见的调度算法,并详细讨论如何设计一个进程调度算法模拟程序。

什么是进程调度算法进程调度算法是操作系统中的一种策略,用于决定在多个进程同时请求执行时,系统按照什么样的顺序来选择并分配CPU资源。

进程调度算法的目标是尽可能地提高系统的吞吐量、响应时间和公平性。

常见的进程调度算法先来先服务(FCFS)先来先服务是最简单的进程调度算法,它按照进程到达的先后顺序进行调度。

当一个进程到达系统后,它会被放入就绪队列中,然后按照先后顺序执行。

这种算法的优点是简单易懂,但是存在”饥饿”问题,即长作业会占用CPU资源,导致其他短作业等待时间过长。

短作业优先(SJF)短作业优先算法是根据进程的执行时间来进行调度的。

当一个进程到达系统后,系统会根据其执行时间将其放入适当的位置,执行时间短的进程优先执行。

这种算法可以最大限度地减少平均等待时间,但是对于长作业来说可能会饥饿。

时间片轮转(RR)时间片轮转算法是一种分时调度算法,它将CPU的执行时间划分为多个时间片,每个进程在一个时间片内执行一定的时间,然后切换到下一个进程。

这种算法可以保证所有进程都有机会执行,并且对于响应时间要求较高的任务比较合适。

多级反馈队列(MFQ)多级反馈队列算法是一种综合了FCFS和RR的调度算法。

系统将进程根据优先级划分为多个队列,每个队列都有不同的时间片大小。

当一个进程到达系统后,它被放入第一个队列中,如果在时间片内没有执行完,则被移到下一个队列中。

这种算法可以根据进程的优先级和执行时间动态调整调度策略,提高系统的响应性能。

进程调度算法模拟程序设计程序结构为了设计一个进程调度算法模拟程序,我们需要考虑以下几个方面的内容:1.进程的数据结构:我们可以使用一个进程控制块(PCB)来表示一个进程,PCB包含了进程的状态、优先级、执行时间等信息。

操作系统论文-----多级反馈队列调度算法

操作系统论文-----多级反馈队列调度算法

在多道程序环境下,主存中有着多个进程,其数目往往多过于处理机数目。

这就要求系统能按某种算法,动态的把处理机分配给就绪队列中的一个进程,使之执行。

在OS中的调度的实质是一种资源分配,因而调度算法是指:根据系统的资源分配策略所规定的资源分配算法。

对于不同的系统和系统目标,通常采用不同的调度算法,目前存在的多种调度算法中,有的算法适用于作业电镀,有的算法适用于进程调度;但也有些调度算法即可用于作业调度,也可用于进程调度。

多级反馈队列调度算法是一种CPU处理机调度算法,它不必事先知道各种进程所需的执行时间,而且还可以满足各种类型进程的需要,因而它是目前被公认的一种较好的进程调度算法。

多级反馈队列调度算法的思想设置多个就绪队列,并为各个队列赋予不同的优先级和不同长度的时间片;第一个队列的优先级最高,进程所执行时间片最小。

新创建的进程挂到第一优先级的队列后,然后按FCFS 原则排队等待调度。

当轮到其执行时,如它能在时间片内完成,便撤离系统;如果不能完成,便被挂入第二级队列后,……;仅当第一级队列空闲时,调度程序才调度第二级队列中的进程运行,依次类推……;新进程可抢占低级进程的处理机。

多级(假设为N级)反馈队列调度算法可以如下原理:1、设有N个队列(Q1,Q2....QN),其中各个队列对于处理机的优先级是不一样的,也就是说位于各个队列中的作业(进程)的优先级也是不一样的。

一般来说,优先级Priority(Q1) > Priority(Q2) > ... >Priority(QN)。

怎么讲,位于Q1中的任何一个作业(进程)都要比Q2中的任何一个作业(进程)相对于CPU的优先级要高(也就是说,Q1中的作业一定要比Q2中的作业先被处理机调度),依次类推其它的队列。

2、对于某个特定的队列来说,里面是遵循时间片轮转法。

也就是说,位于队列Q2中有N个作业,它们的运行时间是通过Q2这个队列所设定的时间片来确定的(为了便于理解,我们也可以认为特定队列中的作业的优先级是按照FCFS来调度的)。

多级队列调度算法和多级反馈队列调度算法

多级队列调度算法和多级反馈队列调度算法

多级队列调度算法和多级反馈队列调度算法在计算机操作系统中,进程调度是指根据一定的策略从就绪队列中选择一个进程分配CPU时间片,使得多个进程能够合理高效地共享CPU资源。

多级队列调度算法和多级反馈队列调度算法是两种常见的进程调度算法。

本文将分别介绍这两种调度算法的原理和特点。

一、多级队列调度算法多级队列调度算法是一种基于优先级的调度算法,将就绪进程划分为多个队列,每个队列具有不同的优先级,其中优先级高的队列具有更高的调度优先级。

调度器按照优先级从高到低的顺序选择进程执行,同一优先级的进程按照先到先服务的原则进行调度。

多级队列调度算法的主要特点如下:1. 简单高效:多级队列调度算法简单直观,易于实现和理解。

由于进程被划分到不同的队列中,能够更好地满足不同进程的调度需求。

2. 公平性:多级队列调度算法可以根据进程的优先级来确定调度顺序,优先级高的进程能够更早地被执行,提高了进程的响应速度。

3. 适应性:多级队列调度算法可以根据不同进程的调度需求来设置不同的优先级,能够更好地满足不同进程的执行要求。

然而,多级队列调度算法也存在一些问题。

例如,如果某个队列中的进程过多,可能会导致低优先级队列的进程长时间得不到执行,影响系统的整体性能。

为了解决这个问题,引入了多级反馈队列调度算法。

二、多级反馈队列调度算法多级反馈队列调度算法是在多级队列调度算法的基础上进行改进的一种调度算法。

它引入了时间片的概念,并允许进程在不同的队列之间移动。

每个队列具有不同的时间片大小和优先级,当一个进程的时间片用完后,它会被移到下一个优先级更低的队列中。

多级反馈队列调度算法的主要特点如下:1. 公平性:多级反馈队列调度算法兼顾了优先级和时间片的概念,能够更加公平地分配CPU时间片,避免某个队列中的进程长时间得不到执行。

2. 弹性:多级反馈队列调度算法能够根据进程的执行情况灵活地调整进程的优先级和时间片大小,提高系统的响应速度和吞吐量。

非抢占式多级反馈队列调度算法

非抢占式多级反馈队列调度算法

非抢占式多级反馈队列调度算法非抢占式多级反馈队列调度算法是一种常用的进程调度算法,也是操作系统领域中非常经典和重要的一个概念。

在操作系统中,进程调度是指操作系统对进程进行选择和分配处理器的过程,而多级反馈队列调度算法是其中一种常见的调度策略。

一、多级反馈队列调度算法的基本原理1.1 多级反馈队列的设置多级反馈队列调度算法通过设置多个队列,每个队列具有不同的优先级,来实现对进程的调度。

一般来说,优先级高的队列具有更高的调度优先级,而优先级低的队列具有较低的调度优先级。

当一个进程到达系统时,首先被放入最高优先级的队列中,如果在一个时间片内没有执行完毕,则将其移动到优先级稍低的队列中,以此类推,直到进程执行完毕或者被放入最低优先级的队列中。

1.2 时间片的设定在多级反馈队列调度算法中,不同队列具有不同的时间片大小,一般来说,优先级高的队列具有较短的时间片,而优先级低的队列具有较长的时间片。

这样设计的好处是,能够兼顾高优先级进程的及时响应和低优先级进程的长时间执行。

1.3 调度策略多级反馈队列调度算法的核心在于其调度策略。

一般来说,即使在同一优先级的队列中,也采用先来先服务的策略,即按照进程到达的顺序进行调度。

而在不同优先级的队列之间,则按照各自的调度策略来执行。

二、多级反馈队列调度算法的实现在实际的操作系统中,多级反馈队列调度算法的实现需要考虑诸多因素。

首先是如何设置各个队列的优先级和时间片大小,需要根据具体的系统特点和需求来进行调整。

其次是如何具体实现调度策略,包括进程的进入队列和离开队列的条件、时间片的划分和分配等细节问题。

针对不同的操作系统,可能会有不同的实现方式和优化方法。

三、对非抢占式多级反馈队列调度算法的个人理解和观点在我看来,非抢占式多级反馈队列调度算法是一种非常灵活和高效的调度策略。

它能够兼顾到各个进程的优先级和执行时间,既能够保证高优先级进程的及时响应,又能够充分利用处理器资源,提高系统的整体吞吐量。

多级反馈队列调度算法c语言

多级反馈队列调度算法c语言

多级反馈队列调度算法c语言多级反馈队列调度算法是一种常用的进程调度算法,具有较高的效率和准确性。

其主要思想是将所有进程按照优先级分组,并将每一组形成一个队列,然后按照一定的规则对队列进行调度。

具体实现上,在C语言中可以通过定义结构体和数组来描述进程和优先级队列。

例如:```c// 进程控制块结构体定义typedef struct PCB {int pid; // 进程IDint priority; // 进程优先级int burst_time; // 进程需要执行的时间int remain_time; // 进程剩余执行时间} PCB;// 优先级队列结构体定义typedef struct Queue {PCB arr[100]; // 存储进程控制块的数组int front; // 队列头指针int rear; // 队列尾指针} Queue;// 多级反馈队列调度算法的实现int main() {Queue queue[3]; // 三个优先级队列...}```在初始化时,可以将所有进程根据优先级分别插入到对应的队列中。

然后按照规则对队列进行调度,例如:每次从优先级最高的队列中取出一个进程进行执行,如果其执行时间不足一个时间片,则重新放回原队列;如果执行时间超过一个时间片,则将其放到下一级队列中。

如果某个队列中没有需要执行的进程,则按照优先级顺序从下一级队列中取出一个进程执行。

具体的C语言代码实现如下:```c// 将进程插入优先级队列中void enqueue(Queue *queue, PCB pcb) {queue->arr[queue->rear++] = pcb;}// 从优先级队列中取出一个进程PCB dequeue(Queue *queue) {return queue->arr[queue->front++];}int main() {Queue queue[3]; // 三个优先级队列int time_quantum = 1; // 时间片长度为1// 初始化队列for (int i = 0; i < 3; i++) {queue[i].front = 0;queue[i].rear = 0;}for (int i = 0; i < n; i++) {enqueue(&queue[0], processes[i]); // 将所有进程插入第一级队列中}// 多级反馈队列调度while (1) {int flag = 1; // 判断队列中是否还有需要执行的进程 // 优先级最高的队列中取出一个进程if (queue[0].front < queue[0].rear) {PCB cur = dequeue(&queue[0]);cur.remain_time -= time_quantum;if (cur.remain_time <= 0) {printf("进程%d执行完毕\n", cur.pid);} else {enqueue(&queue[1], cur);}flag = 0;}// 次高优先级队列中取出一个进程if (flag && queue[1].front < queue[1].rear) {PCB cur = dequeue(&queue[1]);cur.remain_time -= time_quantum;if (cur.remain_time <= 0) {printf("进程%d执行完毕\n", cur.pid);} else {enqueue(&queue[2], cur);}flag = 0;}// 最低优先级队列中取出一个进程if (flag && queue[2].front < queue[2].rear) {PCB cur = dequeue(&queue[2]);cur.remain_time -= time_quantum;if (cur.remain_time <= 0) {printf("进程%d执行完毕\n", cur.pid);} else {enqueue(&queue[2], cur); // 仍然插入到该队列 }flag = 0;}if (flag) {break; // 所有队列中均没有需要执行的进程,退出循环}}return 0;}```值得注意的是,在实现过程中还需要对进程的剩余执行时间进行处理,以保证进程可以正确地按照优先级和时间片进行调度和执行。

进程调度实验报告源码

进程调度实验报告源码

一、实验目的本次实验旨在通过模拟进程调度过程,加深对进程调度算法的理解,并掌握进程调度程序的设计与实现方法。

实验内容主要包括:创建进程、进程调度、进程执行、进程结束等。

二、实验环境操作系统:Linux编程语言:C/C++三、实验内容1. 进程调度算法本实验采用三种进程调度算法:FIFO(先进先出)、时间片轮转法、多级反馈队列调度算法。

2. 进程调度程序设计进程调度程序主要由以下部分组成:(1)进程控制块(PCB)PCB用于描述进程的基本信息,包括进程名、到达时间、需要运行时间、已运行时间、进程状态等。

(2)就绪队列就绪队列用于存储处于就绪状态的进程,按照进程的优先级或到达时间进行排序。

(3)进程调度函数进程调度函数负责从就绪队列中选择一个进程进行执行,并将CPU分配给该进程。

(4)进程执行函数进程执行函数负责模拟进程的执行过程,包括进程的创建、执行、结束等。

四、实验源码```c#include <stdio.h>#include <stdlib.h>#include <time.h>#define MAX_PROCESSES 10typedef struct PCB {int pid;int arrival_time;int need_time;int used_time;int priority;int state; // 0: 等待 1: 运行 2: 完成} PCB;PCB processes[MAX_PROCESSES];int process_count = 0;typedef struct Queue {PCB queue;int front;int rear;int size;} Queue;Queue ready_queue;void init_queue(Queue q) {q->queue = (PCB )malloc(sizeof(PCB) MAX_PROCESSES); q->front = q->rear = 0;q->size = 0;}void enqueue(Queue q, PCB p) {if (q->size == MAX_PROCESSES) {printf("Queue is full.\n");return;}q->queue[q->rear] = p;q->rear = (q->rear + 1) % MAX_PROCESSES; q->size++;}PCB dequeue(Queue q) {if (q->size == 0) {printf("Queue is empty.\n");return NULL;}PCB p = &q->queue[q->front];q->front = (q->front + 1) % MAX_PROCESSES; q->size--;return p;}int is_empty(Queue q) {return q->size == 0;}void print_queue(Queue q) {printf("Queue: ");for (int i = 0; i < q->size; i++) {PCB p = &q->queue[(q->front + i) % MAX_PROCESSES];printf("PID: %d, Arrival Time: %d, Need Time: %d, Used Time: %d, Priority: %d, State: %d\n",p->pid, p->arrival_time, p->need_time, p->used_time, p->priority, p->state);}}void init_processes() {for (int i = 0; i < MAX_PROCESSES; i++) {processes[i].pid = i;processes[i].arrival_time = rand() % 10;processes[i].need_time = rand() % 10 + 1;processes[i].used_time = 0;processes[i].priority = rand() % 3;processes[i].state = 0;}}void schedule() {int time = 0;while (process_count > 0) {for (int i = 0; i < process_count; i++) {PCB p = &processes[i];if (p->arrival_time == time) {enqueue(&ready_queue, p);p->state = 1;}}if (!is_empty(&ready_queue)) {PCB p = dequeue(&ready_queue);p->used_time++;printf("Process %d is running.\n", p->pid);if (p->used_time == p->need_time) {p->state = 2;printf("Process %d is finished.\n", p->pid); }}time++;}}int main() {srand(time(NULL));init_queue(&ready_queue);init_processes();process_count = rand() % MAX_PROCESSES + 1;schedule();print_queue(&ready_queue);return 0;}```五、实验结果与分析1. FIFO调度算法实验结果表明,FIFO调度算法按照进程的到达时间进行调度,可能导致短作业等待时间长,效率较低。

★多级反馈队列调度算法_实例

★多级反馈队列调度算法_实例
63
Feedback (q=1)
Time=7~9 RQ0=
RQ1=
RQ2=
A
B
C
Running=B and finished
64
Feedback (q=2i)
Time=0 RQ0= A
RQ1=
RQ2=
A
B
C
当一个进程第一次进入系统时,它被放置在RQ0,当它第一次被 抢占后并返回就绪状态时,它被放置在RQ1。在随后的时间里, 每当它被抢占时,它被降级到下一个低优先级队列中。一个短进 程很快会执行完,不会在就绪队列中降很多级。
A
B
C
q=21
Running=C and finished
74
Feedback (q=2i)
Time=7~9
RQ0=
RQ1=
RQ2=
A
B
C
q=21
Running=B and finished
75
Feedback
低级就绪队列
超过时间片
选中,时间片500ms
等待其 启动其他外设 他外设
运行
启动磁盘磁带
Time=3 RQ0= RQ1= A RQ2=
A
Feedback (q=2i)
B
C
69
Feedback (q=2i)
Time=3~4 RQ0=
RQ1= B
RQ2=
A
B
C
Running=A and finished
70
Time=4 RQ0= C RQ1= B RQ2=
A Running=A
Feedback (q=2i)
Time=4~5 RQ0=
RQ1= B

操作系统课程设计-进程调度的模拟实现

操作系统课程设计-进程调度的模拟实现

课程设计题目进程调度算法模拟编程学生姓名学号专业计算机科学与技术班级指导教师完成日期2012年12月18日进程调度的模拟实现摘要:进程管理是操作系统中的重要功能,用来创建进程、撤消进程、实现进程状态转换,它提供了在可运行的进程之间复用CPU的方法。

在进程管理中,进程调度是核心,因为在采用多道程序设计的系统中,往往有若干个进程同时处于就绪状态,当就绪进程个数大于处理器数目时,就必须依照某种策略决定哪些进程优先占用处理器。

本文通过两种算法模拟实现了进程之间的调度。

关键词:进程创建,先来先服务,优先级调度。

一.前言在操作系统中,调度的实质是一种资源分配,调度算法即指:根据系统的资源分配策略所规定的资源分配算法。

对于不同的系统和系统目标,通常采用不同的调度算法,如在批处理系统中,为照顾为数众多的短作业,采用短作业有限调度算法;在分时系统中,为保证系统具有合理的响应时间,采用轮转法进行调度。

采用算法时,则要考虑多方面因素,以便达到最佳效果。

做好这个课程设计,有利于加深对操作系统进程调度知识的理解。

二. 系统总体框架设计本程序采用两种算法(最高优先级数优先的调度算法和先来先服务算法)对多个进程进行调度,每个进程有三个状态,初始状态为就绪状态。

最高优先级数优先的调度算法中,程序的某进程运行时间以时间片为单位计算。

各进程的优先数或轮转时间数以及进程需运行的时间片数的初始值均由用户给定。

在优先级数优先的调度算法中,优先级数的值设计为100与运行时间的差值,即Pro_time-process->needtime。

进程每执行一次,优先数减3,CPU 时间片数加1,进程还需要的时间片数减1。

对于遇到优先数一致的情况,采用先来先服务策略解决。

程序设计组成框图程序流程图1.可强占优先调度算法实现过程流程图:开始创建进程及属性先来先服务算法 优先数调度算法显示进程执行状态结束2先来先服务调度算法实现过程流图三.数据结构设计1.设计创建进程的结构类型定义和结构变量说明struct ProcessPcb,定义PCB相关变量:ProcessPcb(){next=NULL;}char pro_name[20]; //进程的名字int time_submit ; //提交时间,从时间为1开始计时int time_exe ; //进程所需的运行时间int pro_id ; //进程ID(系统生成)int pro_priority ; //进程优先级int time_start ; //开始执行的时间int time_end ; //结束的时间int time_wait ; //等待的时间int pro_state ; //进程的状态 (就绪,执行,完成)int time_left ; //还需多少时间单位,初始化为所需的执行时间int time_turn ; //周转时间double time_aver ; //带权周转时间2.创建PCB类class CpuModel,定义程序中使用的各函数:CpuModel{CpuModel(){pcbnum=0;}void cpurun(); //cpu模拟运行函数bool GetPcb(); //进程输入函数void ShowPcb(); //将输入的进程展示出来void PriModel(); //可强占的优先进程调度模式void FcfsModel(); //先到先服务调度模式ProcessPcb PcbList[100]; //按提交时间排的未就绪进程队列()}四.测试结果及分析1.开始运行,显示:2.输入进程数,各进程属性:关于提交时间执行时间等,将检测输入是否数字,不是数字即退出程序。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

JLU《操作系统》课程设计[基于反馈(Feed Back,FB)排队算法的CPU调度的模拟实现]程序代码:// 223.cpp : Defines the entry point for the console application.//#include "stdafx.h"#include <STRING.H> //Definitions for memory and string functions.#include <CTYPE.H> //Defines the ctype macros.#include <MALLOC.H> //memory management functions and variables.#include <STDIO.H>#include <STDLIB.H>#include <IO.H> //Definitions for low level I/O functions.#include <PROCESS.H> //Symbols and structures for process management.#include <CONIO.H> //Direct MSDOS console input/output.#include <WINDOWS.H>#include <TIME.H> // Struct and function declarations for dealing with time. #include <DOS.H> //Defines structs, unions, macros, and functions for dealing //with MSDOS and the Intel iAPX86 microprocessor family.// 函数结果状态代码#define TRUE 1#define FALSE 0#define OK 1#define ERROR 0#define INFEASIBLE -1#define OVERFLOW -2//////////////////////////////////////////typedef int Status; //指定用Status和Boolean代表int类型typedef int Boolean;//////////////////////////////////////////typedef struct QNode{char name[5];int time;int timeType;struct QNode *next;}QNode,*QueuePtr;typedef struct{QueuePtr front;//队头指针QueuePtr rear; // 队尾指针}LinkQueue;int count=0; //时间计数变量LinkQueue qRun,qWait,qReady1,qReady2,qReady3,qReady4;//////////////////////////////////////////////////////////////////////////void menu1();void menu2();void gotoxy(int x,int y);void clrscr(void); //清屏函数void clreol(void); //在文本窗口中清除字符到行末void clreoscr(void); //clear end of screenStatus InitQueue(LinkQueue &Q);Status creatPro(LinkQueue &quePro);void dealTime();void runPro(void);void run();void wait();void wake();void endPro();////////////////////////////////////////////////////////////////////////////DOS界面坐标定位函数/////////////////////////////////////////////////////void gotoxy(int x,int y){CONSOLE_SCREEN_BUFFER_INFO csbiInfo; //variablendklaration HANDLE hConsoleOut;hConsoleOut = GetStdHandle(STD_OUTPUT_HANDLE);GetConsoleScreenBufferInfo(hConsoleOut,&csbiInfo);csbiInfo.dwCursorPosition.X = x; //cursorposition X koordinate festlegencsbiInfo.dwCursorPosition.Y = y; //cursorposition Y koordinate festlegenSetConsoleCursorPosition(hConsoleOut,csbiInfo.dwCursorPosition); //den cursor an die festgelegte koordinate setzen}Status InitQueue(LinkQueue &Q){ // 构造一个空队列Qif(!(Q.front=Q.rear=(QueuePtr)malloc(sizeof(QNode))))exit(OVERFLOW);Q.front->next=NULL;return OK;}Status EnQueue(LinkQueue &Q,char e[5],int proTime,int tType){ // 插入元素e为Q的新的队尾元素QueuePtr p;if(!(p=(QueuePtr)malloc(sizeof(QNode)))) // 存储分配失败exit(OVERFLOW);strcpy(p->name,e);p->time=proTime;p->timeType=tType;p->next=NULL;Q.rear->next=p;Q.rear=p;return OK;}Status DeQueue(LinkQueue &Q,char e[5]){ // 若队列不空,删除Q的队头元素,用e返回其值,并返回OK,否则返回ERROR QueuePtr p;if(Q.front==Q.rear)return ERROR;p=Q.front->next;strcpy(e,p->name);Q.front->next=p->next;if(Q.rear==p)Q.rear=Q.front;free(p);return OK;}Status QueueTraverse(LinkQueue &Q,int x,int y){QueuePtr p;p=Q.front->next;while(p){gotoxy(x,y);printf("%s",p->name);gotoxy(x,y+1);printf("%d",p->time);p=p->next;x+=6;}printf("\n");return OK;}void print(){if(qRun.front!=qRun.rear){QueueTraverse(qRun,17,5);}if(qWait.front!=qWait.rear){QueueTraverse(qWait,17,8);}if(qReady1.front!=qReady1.rear){QueueTraverse(qReady1,17,11);}if(qReady2.front!=qReady2.rear){QueueTraverse(qReady2,17,14);}if(qReady3.front!=qReady3.rear){QueueTraverse(qReady3,17,17);}if(qReady4.front!=qReady4.rear){QueueTraverse(qReady4,17,20);}}Status creatPro(LinkQueue &quePro){char proName[5];int proTime;QueuePtr p;b: gotoxy(22,3);printf("进程名: ");gotoxy(36,3);printf("所需时间: ");gotoxy(30,3);scanf("%s",&proName);gotoxy(46,3);scanf("%d",&proTime);if(proTime<=0){gotoxy(22,3);printf("信息提示: 输入时间错误!请按Enter键返回!");gotoxy(15,3); getchar();getchar();gotoxy(0,0);menu1();goto b;}getchar();if(!(p=(QueuePtr)malloc(sizeof(QNode)))) // 存储分配失败exit(OVERFLOW);strcpy(p->name,proName);p->time=proTime;p->timeType=10; //进入时间片为10的就绪队列,即优先级最高的就绪队列p->next=NULL;quePro.rear->next=p;quePro.rear=p;return OK;}void dealTime(){char e[5];int tType=qRun.front->next->timeType;++count;qRun.front->next->time--;if(qRun.front->next->time==0){DeQueue(qRun,e);runPro();count=0;}elseif(qRun.front->next->timeType==count){if(qRun.front->next->timeType==10)EnQueue(qReady2,qRun.front->next->name,qRun.front->next->time,tType+10); if(qRun.front->next->timeType==20)EnQueue(qReady3,qRun.front->next->name,qRun.front->next->time,tType+20);if(qRun.front->next->timeType==40)EnQueue(qReady4,qRun.front->next->name,qRun.front->next->time,80);if(qRun.front->next->timeType==80)EnQueue(qReady4,qRun.front->next->name,qRun.front->next->time,80);DeQueue(qRun,e);runPro();count=0;}}void runPro(void){char e[5];int pTime,f1=0,f2=0,f3=0,f4=0;if(qReady1.front!=qReady1.rear){pTime=qReady1.front->next->time;EnQueue(qRun,qReady1.front->next->name,pTime,qReady1.front->next->timeType);DeQueue(qReady1,e);f1=1; }else{if(qReady2.front!=qReady2.rear){pTime=qReady2.front->next->time;EnQueue(qRun,qReady2.front->next->name,pTime,qReady2.front->next->timeType); DeQueue(qReady2,e);f2=1;}else{if(qReady3.front!=qReady3.rear){pTime=qReady3.front->next->time;EnQueue(qRun,qReady3.front->next->name,pTime,qReady3.front->next->timeType);DeQueue(qReady3,e);f3=1;}else{if(qReady4.front!=qReady4.rear){pTime=qReady4.front->next->time;EnQueue(qRun,qReady4.front->next->name,pTime,qReady4.front->next->timeType);DeQueue(qReady4,e);f4=1;}}}}gotoxy(0,4);menu2();if(f1==0 && f2==0 && f3==0 && f4==0){gotoxy(0,0);menu1();gotoxy(22,3);printf("信息提示:无就绪进程,请输入其他功能选项!");}gotoxy(0,4);menu2();}void run(){if(qRun.front==qRun.rear)runPro();elsedealTime();}void endPro(){char e[5];if(qRun.front==qRun.rear){gotoxy(0,0);menu1();gotoxy(22,3);printf("信息提示:无运行进程,请按Enter键运行进程!");gotoxy(15,3);}else{DeQueue(qRun,e);gotoxy(0,0);menu1();gotoxy(22,3);printf("信息提示:选择菜单功能或按Enter键执行进程!");gotoxy(0,4);menu2();print();} }void wait(){char e[5];if(qRun.front!=qRun.rear){EnQueue(qWait,qRun.front->next->name,qRun.front->next->time,qRun.front->next->timeType); DeQueue(qRun,e);gotoxy(0,4);menu2();print();gotoxy(22,3);printf("信息提示: 选择菜单功能或按Enter键执行进程!");} else{gotoxy(0,0);menu1();gotoxy(22,3);printf("信息提示:无运行进程,请输入其他功能选项!");}}void wake(){char e[5];if(qWait.front!=qWait.rear){EnQueue(qReady1,qWait.front->next->name,qWait.front->next->time,qWait.front->next->timeType );DeQueue(qWait,e);gotoxy(0,4);menu2();print();gotoxy(22,3);printf("信息提示: 选择菜单功能或按Enter键执行进程!");}else{gotoxy(0,0);menu1();gotoxy(22,3);printf("信息提示:无等待进程,请输入其他功能选项!");}}void menu1(){printf(" ┏━━━━━━━┳━━━━━━┳━━━━━━┳━━━━━━┳━━━━━━┓\n");printf(" ┃ 1-> 创建进程┃2-> 撤销进程┃3-> 阻塞进程┃4-> 唤醒进程┃0->退出系统┃\n");printf(" ┣━━━━━━━╋━━━━━━┻━━━━━━┻━━━━━━┻━━━━━━┫\n");printf(" ┃菜单选择: ┃┃\n");}void menu2(){printf(" ┣━━━━━┳━┻┳━━┳━━┳━━┳━━┳━━┳━━┳━━┳━━┳━━┫\n");printf(" ┃Run: ┃┃┃┃┃┃┃┃┃┃┃\n");printf(" ┃Time ┃┃┃┃┃┃┃┃┃┃┃\n");printf(" ┣━━━━━╋━━╋━━╋━━╋━━╋━━╋━━╋━━╋━━╋━━╋━━┫\n");printf(" ┃Wait: ┃┃┃┃┃┃┃┃┃┃┃\n");printf(" ┃Time ┃┃┃┃┃┃┃┃┃┃┃\n");printf(" ┣━━━━━╋━━╋━━╋━━╋━━╋━━╋━━╋━━╋━━╋━━╋━━┫\n");printf(" ┃Ready1 ┃┃┃┃┃┃┃┃┃┃┃\n");printf(" ┃Time:10 ┃┃┃┃┃┃┃┃┃┃┃\n");printf(" ┣━━━━━╋━━╋━━╋━━╋━━╋━━╋━━╋━━╋━━╋━━╋━━┫\n");printf(" ┃Ready2 ┃┃┃┃┃┃┃┃┃┃┃\n");printf(" ┃Time:20 ┃┃┃┃┃┃┃┃┃┃┃\n");printf(" ┣━━━━━╋━━╋━━╋━━╋━━╋━━╋━━╋━━╋━━╋━━╋━━┫\n");printf(" ┃Ready3 ┃┃┃┃┃┃┃┃┃┃┃\n");printf(" ┃Time:40 ┃┃┃┃┃┃┃┃┃┃┃\n");printf(" ┣━━━━━╋━━╋━━╋━━╋━━╋━━╋━━╋━━╋━━╋━━╋━━┫\n");printf(" ┃Ready4 ┃┃┃┃┃┃┃┃┃┃┃\n");printf(" ┃Time:80 ┃┃┃┃┃┃┃┃┃┃┃\n");printf(" ┗━━━━━┻━━┻━━┻━━┻━━┻━━┻━━┻━━┻━━┻━━┻━━┛\n");}void main(){char a=NULL;system("color 0B");InitQueue(qRun);InitQueue(qWait);InitQueue(qReady1);InitQueue(qReady2);InitQueue(qReady3);InitQueue(qReady4);menu1();menu2();gotoxy(15,3);scanf("%c",&a);while(1){gotoxy(0,0);menu1();switch(a){case '1':creatPro(qReady1);print();gotoxy(22,3);printf("信息提示: 选择菜单功能或按Enter键执行进程!");while(1){f: gotoxy(15,3);a=getchar();if(a=='\n'){gotoxy(22,3);printf("信息提示: 选择菜单功能或按Enter键执行进程!"); run();gotoxy(0,4);menu2();print();}elsebreak;}getchar();break;case '2':endPro();goto f;break;case '3':wait(); goto f; print(); break;case '4':wake(); goto f; print(); break;case '0': gotoxy(22,3); exit(0); break;default:gotoxy(22,3);printf("信息提示: 输入错误!请选择正确的菜单功能选项!"); goto f;}print();}}。

相关文档
最新文档