人教版高中数学高一-教案必修4第2章(第1课时)平面向量的实际背景及基本概念
人教A版高中数学必修4第二章 平面向量2.1 平面向量的实际背景及基本概念教案(2)
2.1平面向量的实际背景及基本概念教学设计高一B7一、教材分析:向量是近代数学最重要和最基本的数学概念之一,它是沟通代数、几何与三角函数的桥梁,对更新和完善中学数学知识结构起着重要的作用.向量集数与形于一身,有着极其丰富的实际背景,在现实生活中随处可见的位移、速度、力等既有大小又有方向的量是它的物理背景,有向线段是它的几何背景.向量就是从这些实际对象中抽象概括出来的数学概念,经过研究,建立起完整的知识体系之后,向量又作为数学模型,广泛地应用于解决数学、物理学科及实际生活中的问题,因此它在整个高中数学的地位是不言而喻的.本节从物理学中的速度、力等既有大小又有方向的量出发,抽象出向量的概念,并重点说明了向量与数量的区别,然后介绍了向量的几何表示、向量的长度(模)、零向量、单位向量、平行向量、共线向量、相等向量等基本概念.本课包括“章引言”和“平面向量的实际背景及基本概念”两部分,是“平面向量”的概念课,具有“统领全局”的作用.不仅要让学生理解向量的形式化定义及几个相关概念,而且能让学生去体会认识与研究数学新对象的方法和基本思路,进而提高提出问题,解决问题的能力.二、学情分析:在学生的已有经验中,与本课相关的有:知道力、位移、速度等是既有大小又有方向的物理量(矢量),知道可以借助有向线段来求作力的图示;了解数的抽象过程、实数的绝对值(线段的长度)、数的相等、单位长度、0和1的特殊性、线段的平行与共线;对类比的思想方法有所了解等.虽然学生具备以上的认知基础,但是,由于学生处于高一年级,对于本节课的难点:向量概念的理解及形成过程、零向量、相等向量、共线向量等概念,尤其在思维辨析方面,总体情况可能不是太好.所以在分辨对向量的长度而不是对向量本身进行度量的问题上,适度加以引导和指导.三、教学目标:1.知识与技能(1)理解向量的概念;理解数量与向量的区别;掌握向量的表示方法:几何表示、字母表示;(2)理解特殊的向量:零向量、单位向量;理解向量的几种特殊关系:平行(共线)向量、相等向量;揭示向量可以平移这一特性;(3)在学习的过程中,学生的观察、联系、类比、抽象、概括、归纳、实践等方面的能力都能得到一定程度培养和提高.2.过程与方法(1) 了解向量概念及其产生的实际背景,让学生经历向量学习的过程,能体会出向量来自于客观现实;(2) 能体会到研究一个新的量的基本套路、能体会认识数学新对象的基本方法;(3) 学生经历向量概念、表示,特殊向量和特殊关系的学习,感受到类比的思想和联系的观点是科学探究中常用的手段.3.情感、态度与价值观(1)学生感受向量的概念、方法源于现实放世界,激发数学学习兴趣;经历用有向线段表示向量的操作过程,体会数学的实用性、表达的简洁美;(2) 在体会研究数学问题的基本套路的同时,进而提高提出问题、研究问题的能力.四、教学重、难点:教学重点:理解向量的概念、掌握向量的几何表示、零向量、单位向量、相等向量、平行(共线)向量的概念.突出策略:通过教师举例引导,启发学生联系既有经验,主动找寻实际生活中所存在的既有大小又有方向的量,让学生充分感知从而提炼出“向量”的概念;引导学生从向量的两个要素出发,启发学生联想到物理学中表示力的方式,引导学生借助有向线段来表示向量;并进一步启发学生,用类比的思想、联系的观点回忆在学习实数时,0与1的特殊性,从而发现长度(模)为零的向量(零向量),长度为1的向量(单位向量)是特殊的,至于方向,启发学生之间互相争论,让学生主动认识从“方向”的角度去认识平行向量;最后抓住向量的本质属性,理解相等向量、共线向量的概念.教学难点:让学生感受抽象出向量概念的过程,平行向量、相等向量和共线向量的区别和联系.突破策略:通过演示实验抓住向量的内涵:既有大小又有方向;通过出示已经准备好的含有多个向量的PPT,让学生主动探求向量之间的特殊位置关系,用类比的思想、联系的观点,抓住向量的本质属性,启发学生结合图形实物去区分平行向量、相等向量、共线向量等概念;并揭示向量可以平移这一特性.五、教法学法:以学生为学习的主体,师生互动为主线,以问题导学,提高学习效率,探索高效的教学模式.启发式教学:学生在物理学中已经具备了一些感性经验,在生活实际中亦大量存在既有大小又有方向的量.另一方面,向量作为一个全新的概念,需要大量实例的引导、铺垫来抽象出这个概念.教师可采取问题串的方式进行启发式教学,引导学生积极思考,让学生从生活实例中抽象、提炼出向量的概念.讨论、合作学习——借助学生已有知识经验,用类比的思想、联系的观点来研究向量,让学生在互相讨论、合作学习的过程之中主动突破难点.在学习了相关概念之后,可以借助多媒体出示相关概念辨析题目,从而立即获取学生学习效果的反馈.学建构思考:零向量有没有方向?练习1. 如图2.1-6,试根据图中的比例尺以及三地的位置,在图中分别用向量表示A地至B、C两地的位移,并求出A地至B、C两地的实际距离(精确到1km)练习2.指出图中各向量的长度.为0,方向为任意方向.师:强调零向量作为向量,同样需要具备两个要素(大小、方向),那么,还有特殊的向量吗?生:(可能的回答)长度等于1个单位的向量.生: 解:AB表示A地至B地的位移,且≈AB232km . AC表示A地至C地的位移,且≈AC296km .师:(追问)向量IJCDAB,,有怎样的位置关系?生:(可能的回答)平行……师:可不可以借助向量概念中的大小、方向对平行进行描述?生:讨论、思考……(可能的回答)方向相同或相反的向量.师:(追问)两个向量平行是从方向上对向量关系的刻画,与他们大小有关吗?生:没有.规定:0与任一向量平行.与前面类似,启发学生通过类比的方法,发现单位向量.本例是一个简单的实际问题,要求画出有向线段表示位移,目的在于巩固向量概念及其几何表示.这样过渡学生不会感觉新的概念是从天而降,而是进一步学习的需要适时提醒和加深对向量概念的认识.数学中的规定都有其合理性,适当让学生进行讨论,能使学生认识到数学的严密性与科学性.IJ上.⑸向量a 与b 平行,则向量a 与b 的方向相同或相反. 练习5.如图2.1-10,设O 是正六边形ABCDEF 的中心,分别写出图中所示向量与、OC 、OB 、OA 相等的量.变式:(1)与向量OA 长度相等的向量有多少个?(2)与向量OA 共线的向量有哪些?生:思考并作答…… 师:展台展示,激励性评价.生:思考并作答…… 师:展台展示,激励性评价.本例是结合正六边形的一些几何性质,让学生巩固相等向量和平行(共线)向量的概念.归纳总结 问题5 你是怎样研究向量的,能理一理本节课所学的知识结构吗?生:…师:这节课我们通过对既有大小,又有方向的量(向量)进行了数学的归纳、抽象和定义.围绕这个概念,探究了它的表示及特殊向量——零向量、单位向量,特殊关系——平行(共线)、相等.实际上,今天我们不仅仅是在探究向量体系的基础,也经历了建立一个数学知识体系的过程,即“归纳共性——抽象定义——形象表示——认识特殊——研究一般——……归纳总结,形成知识结构体系,进一步加深对向量概念的理解.体会研究一个新的数学对象的基本套路、基本方法.作业教科书P77习题2.1A 组板书设计平面向量的实际背景及基本概念一、向量的概念: 三、零向量与单位向量: 二、向量的表示: 四、平行(共线)向量: ①几何表示: 五、相等向量: ②字母表示: 练习2、练习1、 练习3、七、课后作业:1. 判断下列命题是否正确,若不正确,请简述理由.(1)ABCD 中,AB 与CD 是共线向量;(2)单位向量都相等. 2. 下列命题正确的是( )A.a 与b 共线,b 与c 共线,则a 与c 也共线;B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点;C.向量a 与b 不共线,则a 与b 都是非零向量;D.有相同起点的两个非零向量不平行. 3. 下列命题中,正确的是( )A .|a |=|b |⇒a =bB .|a |=|b |且a ∥b ⇒a =bC . a =b ⇒a ∥bD .a ∥0⇒|a |=04.把平面上一切单位向量的始点放在同一点,那么这些向量的终点所构成的图形是( ) A.一条线段 B.一段圆弧 C.圆上一群孤立点D.一个单位圆5. 设在平面上给定了一个四边形ABCD ,点K 、L 、M 、N 分别是AB 、BC 、CD 、DA 的中 点,则_______,||=________=.6.根据下列的条件,分别判断四边形ABCD 的形状:(1) = ; (2)AD AB ,==且.八、向量的发展历程:向量,最初被应用于物理学.很多物理量如力、速度、位移以及电场强度、磁感应强度等都是向量.大约公元前350年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到.“向量”一词来自力学、解析几何中的有向线段.最先使用有向线段表示向量的是英国大科学家牛顿.从数学发展史来看,历史上很长一段时间,空间的向量结构并未被数学家们所认识,直到19世纪末20世纪初,人们才把空间的性质与向量运算联系起来,使向量成为具有一套优良运算通性的数学体系.向量能够进入数学并得到发展,首先应从复数的几何表示谈起.18世纪末期,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数bi a (b a ,为有理数,且不同时等于0),并利用具有几何意义的复数运算来定义向量的运算.把坐标平面上的点用向量表示出来,并把向量的几何表示用于研究几何问题与三角问题.人们逐步接受了复数,也学会了利用复数来表示和研究平面中的向量,向量就这样平静地进入了数学中.但复数的利用是受限制的,因为它仅能用于表示平面,若有不在同一平面上的力作用于同一物体,则需要寻找所谓三维“复数”以及相应的运算体系.19世纪中期,英国数学家哈密尔顿发明了四元数(包括数量部分和向量部分),以代表空间的向量.他的工作为向量代数和向量分析的建立奠定了基础.随后,电磁理论的发现者,英国的数学物理学家麦克斯韦把四元数的数量部分和向量部分分开处理,从而创造了大量的向量分析.三维向量分析的开创,以及同四元数的正式分裂,是英国的居伯斯和海维塞德于19世纪80年代各自独立完成的.他们提出,一个向量不过是四元数的向量部分,但不独立于任何四元数.他们引进了两种类型的乘法,即数量积和向量积.并把向量代数推广到变向量的向量微积分.从此,向量的方法被引进到分析和解析几何中来,并逐步完善,成为了一套优良的数学工具.。
高一数学人教A版必修四教案:平面向量的实际背景及基本概念
第二章平面向量本章教材分析1.豐富多彩的背景,引人入勝的內容.教材首先從力、位移等量講清向量的實際背景以及研究向量的必要性,接著介紹了平面向量的有關知識.學生將瞭解向量豐富的實際背景,理解平面向量及其運算的意義,能用向量語言與方法表述和解決數學、物理中的一些問題,發展運算能力和解決實際問題的能力.平面向量基本定理是平面向量正交分解及座標表示的基礎,從學生熟知的功的概念出發,引出了平面向量數量積的概念及其幾何意義,接著介紹了向量數量積的性質、運算律及座標表示.向量數量積把向量的長度和三角函數聯繫了起來,這樣為解決有關的幾何問題提供了方便,特別能有效地解決線段的垂直問題.最後介紹了平面向量的應用.2.教學的最佳契機,全新的思維視角.向量具有幾何形式和代數形式的“雙重身份”,這一概念是由物理學和工程技術抽象出來的.反過來,向量的理論和方法,又成為解決物理學和工程技術的重要工具,向量之所以有用,關鍵是它具有一套良好的運算性質,通過向量可把空間圖形的性質轉化為向量的運算,這樣通過向量就能較容易地研究空間的直線和平面的各種有關問題.這一章的內容雖然概念多,但大都有其物理上的來源,雖然抽象,卻與圖形有著密切的聯繫,向量應用的優越性也是非常明顯的.全新的思維視角,恰當的教與學,使得向量不僅生動有趣,而且是培養學生創新精神與能力的極佳契機.3.本章充分體現出新教材特點.以學生已有的物理知識和幾何內容為背景,直觀介紹向量的內容,注重向量運算與數的運算的對比,特別注意知識的發生過程.對概念、法則、公式、定理等的處理主要通過觀察、比較、分析、綜合、抽象、概括得出結論.這一章中的一些例題,教科書不是先給出解法,而是先進行分析,探索出解題思路,再給出解法.解題後有的還總結出解決該題時運用的數學思想和數學方法,有的還讓學生進一步考慮相關的問題.對知識的處理,都儘量設計成讓學生自己觀察、比較、猜想、分析、歸納、類比、想像、抽象、概括的形式,從而培養學生的思維能力.向量的座標實際上是把點與數聯繫起來,進而可把曲線與方程聯繫起來,這樣就可用代數方程研究幾何問題,同時也可以用幾何的觀點處理某些代數問題.4.§2.1 平面向量的實際背景及基本概念一、教學分析本節是本章的入門課,概念較多,但難度不大.學生可根據原有的位移、力等物理概念來學習向量的概念,結合圖形實物區分平行向量、相等向量、共線向量等概念.由於向量來源於物理,並且兼具“數”和“形”的特點,所以它在物理和幾何中具有廣泛的應用,可通過幾個具體的例子說明它的應用.位移是物理中的基本量之一,也是幾何研究的重要對象.幾何中常用點表示位置,研究如何由一點的位置確定另外一點的位置.位移簡明地表示了點的位置之間的相對關係,它是向量的重要的物理模型.力是常見的物理量.重力、浮力、彈力等都是既有大小又有方向的量.物理中還有其他力,讓學生舉出物理學中力的其他一些實例,目的是要建立物理課中學過的位移、力及向量等概念與向量之間的聯繫,以此更加自然地引入向量概念,並建立學習向量的認知基礎.二、教學目標1、知識與技能:瞭解向量的實際背景,理解平面向量的概念和向量的幾何表示;掌握向量的模、零向量、單位向量、平行向量、相等向量、共線向量等概念;並會區分平行向量、相等向量和共線向量。
高中数学必修4第二章平面向量教案完整版
§ 平面向量的实际背景及基本概念1、数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小. 2.向量的表示方法:①用有向线段表示;②用字母a、b(黑体,印刷用)等表示; ③用有向线段的起点与终点字母:;④向量的大小――长度称为向量的模,记作||.3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度. 向量与有向线段的区别:(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.4、零向量、单位向量概念:①长度为0的向量叫零向量,记作0. 0的方向是任意的. 注意0与0的含义与书写区别.②长度为1个单位长度的向量,叫单位向量. 说明:零向量、单位向量的定义都只是限制了大小. 5、平行向量定义:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c.6、相等向量定义:长度相等且方向相同的向量叫相等向量.说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段.....的起点无关...... 7、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的......起点无关)...... 说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.A(起点)B(终点)aO ABaaab b b§2.2.1 向量的加法运算及其几何意义二、探索研究:1、向量的加法:求两个向量和的运算,叫做向量的加法. 2、三角形法则(“首尾相接,首尾连”)如图,已知向量a 、b.在平面内任取一点A ,作=a ,=b,则向量叫做a 与b的和,记作a +b,即 a +bAC BC AB =+=,规定: a + 0-= 0 + a探究:(1)两相向量的和仍是一个向量;(2)当向量与不共线时,+的方向不同向,且|+|<||+||; (3)当a 与b 同向时,则a +b 、a 、b 同向,且|a +b |=|a |+|b |,当a 与b 反向时,若||>||,则+的方向与相同,且|+|=||-||;若||<||,则+的方向与相同,且|+b|=||-||. (4)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点,可以推广到n 个向量连加3.例一、已知向量a 、b ,求作向量a +b作法:在平面内取一点,作= =,则+=. 4.加法的交换律和平行四边形法则问题:上题中b +a 的结果与a +b 是否相同? 验证结果相同 从而得到:1)向量加法的平行四边形法则(对于两个向量共线不适应)aABCa +ba +baa bbabb aa2)向量加法的交换律:a +b =b +a 5.向量加法的结合律:(a +b ) +c =a + (b +c ) 证:如图:使a AB =, b BC =, c CD =则(a +b ) +c =AD CD AC =+,a + (b +c ) =AD BD AB =+ ∴(a +b ) +c =a + (b +c )从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行.第3课时§2.2.2 向量的减法运算及其几何意义1. 用“相反向量”定义向量的减法(1) “相反向量”的定义:与a 长度相同、方向相反的向量.记作 a (2) 规定:零向量的相反向量仍是零向量.(a ) = a. 任一向量与它的相反向量的和是零向量.a + (a ) = 0如果a 、b 互为相反向量,则a = b , b = a , a + b = 0 (3) 向量减法的定义:向量a 加上的b 相反向量,叫做a 与b 的差. 即:a b = a + (b ) 求两个向量差的运算叫做向量的减法. 2. 用加法的逆运算定义向量的减法: 向量的减法是向量加法的逆运算:若b + x = a ,则x 叫做a 与b 的差,记作a b 3. 求作差向量:已知向量a 、b ,求作向量 ∵(a b ) + b = a + (b ) + b = a + 0 = a作法:在平面内取一点O , 作OA = a , AB = b则BA = a b 即a b 可以表示为从向量b 的终点指向向量a 的终点的向量.4. 探究:1)如果从向量a 的终点指向向量b 的终点作向量,那么所得向量是b a.O abBa ba b2)若a ∥b , 如何作出ab§2.3.1 平面向量基本定理复习引入:1.实数与向量的积:实数λ与向量a ρ的积是一个向量,记作:λa ρ(1)|λa ρ|=|λ||a ρ|;(2)λ>0时λa ρ与a ρ方向相同;λ<0时λa ρ与a ρ方向相反;λ=0时λa ρ=0 2.运算定律结合律:λ(μa ρ)=(λμ)a ρ ;分配律:(λ+μ)a ρ=λa ρ+μa ρ, λ(a ρ+b ρ)=λa ρ+λb ρ3. 向量共线定理 向量b ρ与非零向量a ρ共线的充要条件是:有且只有一个非零实数λ,使b ρ=λa ρ.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ρ,有且只有一对实数λ1,λ2使a ρ=λ11e +λ22e . 探究:(1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底; (2) 基底不惟一,关键是不共线;(3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解; (4) 基底给定时,分解形式惟一. λ1,λ2是被a ρ,1e ,2e 唯一确定的数量a bAABBB ’Oa baa b bOAOBa ba bBA Ob§2.3.2—§ 平面向量的正交分解和坐标表示及运算一、复习引入:1.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ρ,有且只有一对实数λ1,λ2使a ρ=λ11e +λ22e(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底; (2)基底不惟一,关键是不共线;(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解; (4)基底给定时,分解形式惟一. λ1,λ2是被a ρ,1e ,2e 唯一确定的数量 二、讲解新课: 1.平面向量的坐标表示如图,在直角坐标系内,我们分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a +=…………○1 我们把),(y x 叫做向量a 的(直角)坐标,记作),(y x a =…………○2 其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,○2式叫做向量的坐标表示.与.a 相.等的向量的坐标也为.........),(y x .特别地,)0,1(=i ,)1,0(=j ,)0,0(0=.如图,在直角坐标平面内,以原点O 为起点作a =,则点A 的位置由a 唯一确定. 设yj xi +=,则向量OA 的坐标),(y x 就是点A 的坐标;反过来,点A 的坐标),(y x 也就是向量OA 的坐标.因此,在平面直角坐标系内,每一个平面向量都是可以用一对实数唯一表示.2.平面向量的坐标运算(1) 若),(11y x a =,),(22y x b =,则ba +),(2121y y x x ++=,b a -),(2121y y x x --=两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.设基底为i 、j ,则b a +)()(2211j y i x j y i x +++=j y y i x x )()(2121+++= 即b a +),(2121y y x x ++=,同理可得b a -),(2121y y x x --= (2) 若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.AB =OB OA =( x 2, y 2) (x 1,y 1)= (x 2 x 1, y 2 y 1)(3)若),(y x a =和实数λ,则),(y x a λλλ=.实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标. 设基底为i 、j ,则a λ)(yj xi +=λyj xi λλ+=,即),(y x a λλλ=第6课时§2.3.4 平面向量共线的坐标表示一、复习引入: 1.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a += 把),(y x 叫做向量a 的(直角)坐标,记作),(y x a =其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标, 特别地,)0,1(=i ,)1,0(=j ,)0,0(0=.2.平面向量的坐标运算若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --=,),(y x a λλλ=. 若),(11y x A ,),(22y x B ,则()1212,y y x x --=二、讲解新课:a ρ∥b ρ (bρ0)的充要条件是x 1y 2-x 2y 1=0设a ρ=(x 1, y 1) ,b ρ=(x 2, y 2) 其中bρa ρ.由a ρ=λb ρ得, (x 1, y 1) =λ(x 2, y 2) ⎩⎨⎧==⇒2121y y x x λλ 消去λ,x 1y 2-x 2y 1=0探究:(1)消去λ时不能两式相除,∵y 1, y 2有可能为0, ∵bρ0 ∴x 2, y 2中至少有一个不为0(2)充要条件不能写成2211x y x y =∵x 1, x 2有可能为0 (3)从而向量共线的充要条件有两种形式:a ρ∥b ρ (bρ)01221=-=⇔y x y x λ§平面向量的数量积一、 平面向量的数量积的物理背景及其含义一、复习引入:1. 向量共线定理 向量b ρ与非零向量a ρ共线的充要条件是:有且只有一个非零实数λ,使b ρ=λa ρ.2.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ρ,有且只有一对实数λ1,λ2使a ρ=λ11e +λ22e 3.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a += 把),(y x 叫做向量a 的(直角)坐标,记作),(y x a = 4.平面向量的坐标运算若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --=,),(y x a λλλ=.若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=5.a ρ∥b ρ (bρ0)的充要条件是x 1y 2-x 2y 1=06.线段的定比分点及λP 1, P 2是直线l 上的两点,P 是l 上不同于P 1, P 2的任一点,存在实数λ, 使 P P 1=λ2PP ,λ叫做点P 分21P P 所成的比,有三种情况:λ>0(内分) (外分) λ<0 (λ<-1) ( 外分)λ<0 (-1<λ<0)7. 定比分点坐标公式:若点P 1(x 1,y 1) ,P2(x 2,y 2),λ为实数,且P P 1=λ2PP ,则点P 的坐标为(λλλλ++++1,12121y y x x ),我们称λ为点P 分21P P 所成的比.8. 点P 的位置与λ的范围的关系:①当λ>0时,P P 1与2PP 同向共线,这时称点P 为21P P 的内分点.②当λ<0(1-≠λ)时,P P 1与2PP 反向共线,这时称点P 为21P P 的外分点. 9.线段定比分点坐标公式的向量形式:在平面内任取一点O ,设1OP =a,2OP =b, 可得OP =b a b a λλλλλ+++=++1111.10.力做的功:W = |F ||s |cos ,是F 与s 的夹角. 二、讲解新课:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.说明:(1)当θ=0时,a与b同向;(2)当θ=π时,a与b反向; (3)当θ=2π时,a与b垂直,记a⊥b;(4)注意在两向量的夹角定义,两向量必须是同起点的.范围0≤≤1802.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos 叫a与b的数量积,记作a b ,即有a b = |a ||b |cos ,(0≤θ≤π).并规定0与任何向量的数量积为0. 探究:两个向量的数量积与向量同实数积有很大区别(1)两个向量的数量积是一个实数,不是向量,符号由cos 的符号所决定.(2)两个向量的数量积称为内积,写成a b ;今后要学到两个向量的外积a ×b ,而a b 是两个向量的数量的积,书写时要严格区分.符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替.(3)在实数中,若a 0,且a b =0,则b =0;但是在数量积中,若a 0,且a b =0,不能推出b =0.因为其中cos 有可能为0.(4)已知实数a 、b 、c (b 0),则ab=bc a=c .但是a b = b c a = c 如右图:a b = |a ||b |cos = |b ||OA|,bc = |b ||c |cos = |b ||OA|a b = b c 但a c(5)在实数中,有(a b )c = a (b c ),但是(a b )ca (bc )显然,这是因为左端是与c 共线的向量,而右端是与a 共线的向量,而一般a 与c 不共线.3.“投影”的概念:作图定义:|b |cos 叫做向量b 在a 方向上的投影.投影也是一个数量,不是向量;当为锐角时投影为正值;当为钝角时投影为负值;当为直角时投影为0;当 = 0时投影为 |b |;当 = 180时投影为 |b |. 4.向量的数量积的几何意义:数量积a b 等于a 的长度与b 在a 方向上投影|b |cos 的乘积. 5.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量. 1 e a = a e =|a |cos 2 a b a b = 03 当a 与b 同向时,a b = |a ||b |;当a 与b 反向时,a b = |a ||b |. 特别的a a = |a |2或a a a ⋅=||4 cos =||||b a ba ⋅5 |ab | ≤ |a ||b |C二、平面向量数量积的运算律一、复习引入:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos 叫a与b的数量积,记作a b ,即有a b = |a ||b |cos ,(0≤θ≤π).并规定0与任何向量的数量积为0. 3.“投影”的概念:作图定义:|b |cos 叫做向量b 在a 方向上的投影.投影也是一个数量,不是向量;当为锐角时投影为正值;当为钝角时投影为负值;当为直角时投影为0;当 = 0时投影为 |b |;当 = 180时投影为 |b |. 4.向量的数量积的几何意义:数量积a b 等于a 的长度与b 在a 方向上投影|b |cos 的乘积. 5.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量. 1 e a = a e =|a |cos ; 2 ab a b = 03 当a 与b 同向时,a b = |a ||b |;当a 与b 反向时,a b = |a ||b |. 特别的a a = |a |2或a a a ⋅=||4cos =||||b a ba ⋅ ;5|ab | ≤ |a ||b |二、讲解新课: 平面向量数量积的运算律1.交换律:a b = b a 证:设a ,b 夹角为,则a b = |a ||b |cos ,ba = |b ||a |cos ∴a b = b a 2.数乘结合律:(λa )b =λ(a b ) = a (λb ) 证:若λ> 0,(λa )b =λ|a ||b |cos, λ(a b ) =λ|a ||b |cos ,a (λb )=λ|a ||b |cos ,若λ< 0,(λa )b =|λa ||b |cos() =λ|a ||b |(cos ) =λ|a ||b |cos ,λ(a b ) =λ|a ||b |cos ,a (λb ) =|a ||λb |cos() =λ|a ||b |(cos ) =λ|a ||b |cos .C3.分配律:(a + b )c = a c + b c在平面内取一点O ,作OA = a , AB = b ,OC = c , ∵a + b (即OB )在c 方向上的投影等于a 、b 在c 方向上的投影和,即 |a + b | cos = |a | cos1 + |b | cos2 ∴| c | |a + b | cos =|c | |a | cos1 + |c | |b | cos 2, ∴c (a + b ) = c a + c b即:(a + b )c = a c + b c 说明:(1)一般地,(a·b)с≠a(b·с)(2)a·с=b·с,с≠0a=b(3)有如下常用性质:a2=|a|2,(a+b)(с+d)=a·с+a·d+b·с+b·d(a+b)2=a2+2a·b+b2 三、平面向量数量积的坐标表示、模、夹角一、复习引入:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos 叫a与b的数量积,记作a b ,即有a b = |a ||b |cos ,(0≤θ≤π).并规定0与任何向量的数量积为0.3.向量的数量积的几何意义:数量积a b 等于a 的长度与b 在a 方向上投影|b |cos 的乘积.4.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量.1 e a = a e =|a |cos ;2 a b a b = 03 当a 与b 同向时,a b = |a ||b |;当a 与b 反向时,a b = |a ||b |. 特别的a a = |a |2或a a a ⋅=||4 cos =||||b a b a ⋅ ;5|a b | ≤ |a ||b | 5.平面向量数量积的运算律交换律:a b = ba 数乘结合律:(λa )b =λ(a b ) = a (λb ) 分配律:(a + b )c = a c + b c二、讲解新课:⒈ 平面两向量数量积的坐标表示已知两个非零向量),(11y x a =,),(22y x b =,试用a 和b 的坐标表示b a ⋅. 设i 是x 轴上的单位向量,j 是y 轴上的单位向量,那么j y i x a 11+=,j y i x b 22+= 所以))((2211j y i x j y i x b a ++=⋅2211221221j y y j i y x j i y x i x x +⋅+⋅+= 又1=⋅i i ,1=⋅j j ,0=⋅=⋅i j j i ,所以b a ⋅2121y y x x += 这就是说:两个向量的数量积等于它们对应坐标的乘积的和.即b a ⋅2121y y x x +=2. 平面内两点间的距离公式一、 设),(y x a =,则222||y x a +=或22||y x a +=.(2)如果表示向量a 的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x ,那么221221)()(||y y x x a -+-=(平面内两点间的距离公式)二、 向量垂直的判定设),(11y x a =,),(22y x b =,则b a ⊥ ⇔02121=+y y x x三、 两向量夹角的余弦(πθ≤≤0)co s =||||b a b a ⋅⋅。
人教版高中数学必修4第二章平面向量-《2.1平面向量的实际背景及基本概念》教案(4)
平面向量的实际背景及基本概念教学目标 1. 了解向量的物理背景及在物理中的意义2. 理解向量、零向量、单位向量、相等向量的概念,会用字母表示向量,能读写已知图中的向量;3. 掌握向量的几何表示,明确向量的长度、零向量、单位向量的几何意义; 4.了解共线向量、平行向量的概念,会根据图形判定是否平行、共线、相等.本节重点向量的概念、相等向量的概念、向量的几何表示等 本节难点向量的概念 教学模式教学过程 主 要 内 容 及 板 书摘要与反思一、提出问题,引入新课: (1)我们已学了哪些既有大小又有方向的量?(2)角的正弦线、余弦线、正切线是怎样的图形? 强调已学的位移、力、速度、加速度及三角函数线等都是既有大小又有方向的量.这种量就是我们本章所要研究的向量.1.向量:既有大小,又有方向的量;2.数量:只有大小,没有方向的量。
二、新课教学(1)有向线段及有关概念一般,在线段AB 的两个端点中,规定一个顺序,终点B 一个为起点,一个为终点,我们就说线段AB 具有方向,具有方向的线段叫做有向线段. 起点A以A 为起点,B 为终点的有向线段,记作,线段AB 的长度也叫做有向线段.有向线段的三要素:起点、方向、长度. (2)向量的表示及模的概念①表示:向量通常用一条有向线段来表示,也可以用字母,,等来表示,或用表示有向线段的起点和终点的字母表示,如.②模:有向线段的长度表示向量的大小,也就是向量的长度(或称模),摘要与反思主 要 内 容 及 板 书③零向量:长度为0的向量叫做零向量,记作; ④单位向量:长度等于1个单位长度的向量,叫做单位向量.(3)平行向量(共线向量)与相等向量的概念 ①平行向量:方向相同或相反的非零向量,叫做平行向量. 如图中,,,就是一组平行向量,记作 ∥∥.任作一条与所在直线平行的直线l ,在l 上取一点O,则可在l 上分别作出===,,.这就是说,任一组平行向量都可移到同一直线上,因此,平行向量也叫做共线向量.规定:与任一向量平行.②相等向量:长度相等且方向相同的向量,叫做相等向量.(4)例题与练习例1(课本P84例1)例2(课本P85例2)例3.有两个长度相等的向量,在什么情况下,这两个向量一定相等? 解:有下列两种情况之一,这两个向量一定相等.①两个长度相等的向量,方向也相同;②两个向量的长度都为零. 练习:1.课本P86,练习1,2,3,42.回答下列问题(1)平行向量是否一定方向相同?(不一定)(2)不相等的向量一定不平行吗? (不一定)(3)与零向量相等的向量必定是什么向量?(零向量)(4)与任何向量都平行的向量是什么向量?(零向量)(5)若两个向量在同一直线上,则这两个向量一定是什么向量?(平行(或共线向量)3.下列各种情况中,向量的终点各构成什么图形?(1) 把所有单位向量平移到同一个起点.(一个半径为1的圆)(2) 把平行于某一直线的所有单位向量平移到同一个起点.(两个点) (3) 把平行于某一直线的所有向量平移到同一个起点.(一条直线)三.小结:作 业P86 习题 2.1/A 组5;B 组2 abc abc。
高中数学 第二章 平面向量 2.1 平面向量的实际背景及基本概念教案 新人教A版必修4(1)
2.1 平面向量的实际背景及基本概念1.知识与技能(1)了解向量的实际背景,理解平面向量的概念和向量的几何表示.(2)掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念.(3)学会区分平行向量、相等向量和共线向量.2.过程与方法通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.3.情感、态度与价值观通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力.重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.难点:向量的概念,平行向量、相等向量和共线向量的区别和联系.(1)重点的突破:从向量的物理背景、几何背景等入手,从学生熟悉的矢量概念引出向量概念;还要注意与数量概念的比较,使学生在区分相似概念的过程中把握向量的概念.(2)难点的突破:借助信息技术,通过向量平移来说明向量的相等与起点无关.让学生体会,只要表示两个向量的有向线段所在直线平行或重合,这两个向量就是共线向量.向量及向量符号的由来向量最初应用于物理学,被称为矢量,很多物理量,如力、速度、位移、电场强度、磁感应强度等都是向量.大约公元前350年,古希腊著名学者亚里士多德(Aristotle,公元前384—前322)就知道力可以表示成向量.向量一词来自力学、解析几何中的有向线段.最先使用有向线段表示向量的是英国大科学家牛顿(Newton,1642—1727).向量是一种带几何性质的量,除零向量外,总可以画出箭头表示方向,线段长表示大小的有向线段来表示它.1806年,瑞士人阿尔冈(R.Argand,1768—1822)以AB表示一个有向线段或向量.1827年,莫比乌斯(Mobius,1790—1868)以AB表示起点为A,终点为B的向量,这种用法被数学家广泛接受.另外,哈密尔顿(W.R.Hamilton,1805—1865)、吉布斯(J.W.Gibbs,1839—1903)等人则以小写希腊字母表示向量.1912年,兰格文用表示向量,以后,字母上加箭头表示向量的方法逐渐流行,尤其在手写稿中.为了方便印刷,用粗黑小写字母a,b等表示向量,这两种符号一直沿用至今.向量进入数学并得到发展,是从复数的几何表示开始的.1797年,丹麦数学家威塞尔(C.Wessel,1745—1818)利用坐标平面上的点(a,b)来表示复数a+b i,并利用具有几何意义的复数运算来定义向量的运算.把坐标平面上的点用向量表示出来,并把向量的几何表示用于研究几何与三角问题.人们逐步接受了复数,也学会了利用复数表示、研究平面中的向量.。
高中数学必修4第二章平面向量教案完整版
§2.1 平面向量的实际背景及基本概念1、数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小.2.向量的表示方法:①用有向线段表示;②用字母a、b(黑体,印刷用)等表示; ③用有向线段的起点与终点字母:AB ; ④向量AB 的大小――长度称为向量的模,记作|AB |.3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度.向量与有向线段的区别:(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.4、零向量、单位向量概念:①长度为0的向量叫零向量,记作0. 0的方向是任意的.注意0与0的含义与书写区别.②长度为1个单位长度的向量,叫单位向量.说明:零向量、单位向量的定义都只是限制了大小.5、平行向量定义:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c.6、相等向量定义:长度相等且方向相同的向量叫相等向量.说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有..向线段的起点无关......... 7、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的......起点无关)...... 说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.A(起点) B (终点)aO A B a a a b b b §2.2.1 向量的加法运算及其几何意义二、探索研究:1、向量的加法:求两个向量和的运算,叫做向量的加法.2、三角形法则(“首尾相接,首尾连”)如图,已知向量a 、b.在平面内任取一点A ,作AB =a ,BC =b,则向量AC 叫做a 与b的和,记作a +b,即 a +bAC BC AB =+=,规定: a + 0-= 0 + a探究:(1)两相向量的和仍是一个向量;(2)当向量a 与b 不共线时,a +b 的方向不同向,且|a +b |<|a |+|b |;(3)当a 与b 同向时,则a +b 、a 、b 同向,且|a +b |=|a |+|b |,当a 与b 反向时,若|a |>|b |,则a +b 的方向与a 相同,且|a +b |=|a |-|b |;若|a |<|b |,则a +b 的方向与b 相同,且|a +b|=|b |-|a |.(4)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点,可以推广到n 个向量连加 3.例一、已知向量a 、b ,求作向量a +b作法:在平面内取一点,作a OA = b AB =,则b a OB +=.4.加法的交换律和平行四边形法则 问题:上题中b +a 的结果与a +b 是否相同? 验证结果相同从而得到:1)向量加法的平行四边形法则(对于两个向量共线不适应)aA B C a +b a +b a a b b a b b aa2)向量加法的交换律:a +b =b +a5.向量加法的结合律:(a +b ) +c =a + (b +c ) 证:如图:使a AB =, b BC =, c CD =则(a +b ) +c =AD CD AC =+,a + (b +c ) =AD BD AB =+∴(a +b ) +c =a + (b +c )从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行.第3课时§2.2.2 向量的减法运算及其几何意义1. 用“相反向量”定义向量的减法(1) “相反向量”的定义:与a 长度相同、方向相反的向量.记作 -a(2) 规定:零向量的相反向量仍是零向量.-(-a ) = a.任一向量与它的相反向量的和是零向量.a + (-a ) = 0如果a 、b 互为相反向量,则a = -b , b = -a , a + b = 0(3) 向量减法的定义:向量a 加上的b 相反向量,叫做a 与b 的差.即:a - b = a + (-b ) 求两个向量差的运算叫做向量的减法.2. 用加法的逆运算定义向量的减法:向量的减法是向量加法的逆运算:若b + x = a ,则x 叫做a 与b 的差,记作a - b3. 求作差向量:已知向量a 、b ,求作向量∵(a -b ) + b = a + (-b ) + b = a + 0 = a作法:在平面内取一点O ,作OA = a , AB = b 则BA = a - b 即a - b 可以表示为从向量b 的终点指向向量a 的终点的向量.4. 探究:1)如果从向量a 的终点指向向量b 的终点作向量,那么所得向量是b -a. O ab B a b a -b2)若a ∥b , 如何作出a - b§2.3.1 平面向量基本定理复习引入:1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa(1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a方向相反;λ=0时λa =02.运算定律结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b =λa . 平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a =λ11e +λ22e .探究:(1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2) 基底不惟一,关键是不共线;(3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解;(4) 基底给定时,分解形式惟一. λ1,λ2是被a ,1e ,2e 唯一确定的数量a -b A A B B B’ O a -b a a b b O A O B a -b a -b B A O -b§2.3.2—§2.3.3 平面向量的正交分解和坐标表示及运算一、复习引入:1.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a =λ11e +λ22e(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不惟一,关键是不共线;(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;(4)基底给定时,分解形式惟一. λ1,λ2是被a ,1e ,2e 唯一确定的数量二、讲解新课:1.平面向量的坐标表示如图,在直角坐标系内,我们分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a +=…………○1 我们把),(y x 叫做向量a 的(直角)坐标,记作),(y x a =…………○2 其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,○2式叫做向量的坐标表示.与.a 相等的向量的坐标也为..........),(y x .特别地,)0,1(=i ,)1,0(=j ,)0,0(0=. 如图,在直角坐标平面内,以原点O 为起点作a OA =,则点A 的位置由a 唯一确定. 设yj xi OA +=,则向量OA 的坐标),(y x 就是点A 的坐标;反过来,点A 的坐标),(y x 也就是向量OA 的坐标.因此,在平面直角坐标系内,每一个平面向量都是可以用一对实数唯一表示.2.平面向量的坐标运算(1) 若),(11y x a =,),(22y x b =,则ba +),(2121y y x x ++=,b a -),(2121y y x x --=两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.设基底为i 、j ,则b a +)()(2211j y i x j y i x +++=j y y i x x )()(2121+++=即b a +),(2121y y x x ++=,同理可得b a -),(2121y y x x --=(2) 若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.AB =OB -OA =( x 2, y 2) - (x 1,y 1)= (x 2- x 1, y 2- y 1)(3)若),(y x a =和实数λ,则),(y x a λλλ=.实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.设基底为i 、j ,则a λ)(yj xi +=λyj xi λλ+=,即),(y x a λλλ=第6课时§2.3.4 平面向量共线的坐标表示一、复习引入:1.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a +=把),(y x 叫做向量a 的(直角)坐标,记作),(y x a =其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标, 特别地,)0,1(=i ,)1,0(=j ,)0,0(0=.2.平面向量的坐标运算若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --=,),(y x a λλλ=.若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=二、讲解新课:a ∥b (b ≠0)的充要条件是x 1y 2-x 2y 1=0设a =(x 1, y 1) ,b =(x 2, y 2) 其中b ≠a .由a =λb 得, (x 1, y 1) =λ(x 2, y 2) ⎩⎨⎧==⇒2121y y x x λλ 消去λ,x 1y 2-x 2y 1=0 探究:(1)消去λ时不能两式相除,∵y 1, y 2有可能为0, ∵b ≠0 ∴x 2, y 2中至少有一个不为0(2)充要条件不能写成2211x y x y = ∵x 1, x 2有可能为0 (3)从而向量共线的充要条件有两种形式:a ∥b (b ≠0)01221=-=⇔y x y x b a λ§2.4平面向量的数量积一、 平面向量的数量积的物理背景及其含义一、复习引入:1. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b =λa .2.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a=λ11e +λ22e3.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a +=把),(y x 叫做向量a 的(直角)坐标,记作),(y x a =4.平面向量的坐标运算若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --=,),(y x a λλλ=.若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=5.a ∥b (b ≠0)的充要条件是x 1y 2-x 2y 1=06.线段的定比分点及λP 1, P 2是直线l 上的两点,P 是l 上不同于P 1, P 2的任一点,存在实数λ,使 P P 1=λ2PP ,λ叫做点P 分21P P 所成的比,有三种情况:λ>0(内分) (外分) λ<0 (λ<-1) ( 外分)λ<0 (-1<λ<0)7. 定比分点坐标公式:若点P 1(x 1,y 1) ,P2(x 2,y 2),λ为实数,且P P 1=λ2PP ,则点P 的坐标为(λλλλ++++1,12121y y x x ),我们称λ为点P 分21P P 所成的比. 8. 点P 的位置与λ的范围的关系:①当λ>0时,P P 1与2PP 同向共线,这时称点P 为21P P 的内分点.②当λ<0(1-≠λ)时,P P 1与2PP 反向共线,这时称点P 为21P P 的外分点.9.线段定比分点坐标公式的向量形式:在平面内任取一点O ,设1OP =a,2OP =b,可得OP =b a b a λλλλλ+++=++1111. 10.力做的功:W = |F |⋅|s |cos θ,θ是F 与s 的夹角.二、讲解新课:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.说明:(1)当θ=0时,a与b同向;(2)当θ=π时,a与b反向;(3)当θ=2π时,a与b垂直,记a⊥b; (4)注意在两向量的夹角定义,两向量必须是同起点的.范围0︒≤θ≤180︒2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos θ叫a与b的数量积,记作a ⋅b ,即有a ⋅b = |a ||b |cos θ,(0≤θ≤π).并规定0与任何向量的数量积为0.⋅探究:两个向量的数量积与向量同实数积有很大区别(1)两个向量的数量积是一个实数,不是向量,符号由cos θ的符号所决定.(2)两个向量的数量积称为内积,写成a ⋅b ;今后要学到两个向量的外积a ×b ,而a ⋅b 是两个向量的数量的积,书写时要严格区分.符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替.(3)在实数中,若a ≠0,且a ⋅b =0,则b =0;但是在数量积中,若a ≠0,且a ⋅b =0,不能推出b =0.因为其中cos θ有可能为0.(4)已知实数a 、b 、c (b ≠0),则ab=bc ⇒ a=c .但是a ⋅b = b ⋅ca = c如右图:a ⋅b = |a ||b |cos β = |b ||OA|,b ⋅c = |b ||c |cos α = |b ||OA|⇒ a ⋅b = b ⋅c 但a ≠ c(5)在实数中,有(a ⋅b )c = a (b ⋅c ),但是(a ⋅b )c ≠ a (b ⋅c )显然,这是因为左端是与c 共线的向量,而右端是与a 共线的向量,而一般a 与c 不共线.3.“投影”的概念:作图定义:|b |cos θ叫做向量b 在a 方向上的投影.投影也是一个数量,不是向量;当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ = 0︒时投影为 |b |;当θ = 180︒时投影为 -|b |.C4.向量的数量积的几何意义:数量积a ⋅b 等于a 的长度与b 在a 方向上投影|b |cos θ的乘积.5.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量.1︒ e ⋅a = a ⋅e =|a |cos θ2︒ a ⊥b ⇔ a ⋅b = 03︒ 当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = -|a ||b |. 特别的a ⋅a = |a |2或a a a ⋅=|| 4︒ cos θ =||||b a b a ⋅ 5︒ |a ⋅b | ≤ |a ||b |二、平面向量数量积的运算律一、复习引入:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos θ叫a与b的数量积,记作a ⋅b ,即有a ⋅b = |a ||b |cos θ,(0≤θ≤π).并规定0与任何向量的数量积为0.3.“投影”的概念:作图定义:|b |cos θ叫做向量b 在a 方向上的投影. 投影也是一个数量,不是向量;当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ = 0︒时投影为 |b |;当θ = 180︒时投影为 -|b |.4.向量的数量积的几何意义:数量积a ⋅b 等于a 的长度与b 在a 方向上投影|b |cos θ的乘积.5.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量.1︒ e ⋅a = a ⋅e =|a |cos θ; 2︒ a ⊥b ⇔ a ⋅b = 0C3︒ 当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = -|a ||b |. 特别的a ⋅a = |a |2或a a a ⋅=|| 4︒cos θ =||||b a b a ⋅ ;5︒|a ⋅b | ≤ |a ||b | 二、讲解新课:平面向量数量积的运算律1.交换律:a ⋅ b = b ⋅ a 证:设a ,b 夹角为θ,则a ⋅ b = |a ||b |cos θ,b ⋅ a = |b ||a |cos θ ∴a ⋅ b = b ⋅ a2.数乘结合律:(λa )⋅b =λ(a ⋅b ) = a ⋅(λb )证:若λ> 0,(λa )⋅b =λ|a ||b |cos θ, λ(a ⋅b ) =λ|a ||b |cos θ,a ⋅(λb ) =λ|a ||b |cos θ,若λ< 0,(λa )⋅b =|λa ||b |cos(π-θ) = -λ|a ||b |(-cos θ) =λ|a ||b |cos θ,λ(a ⋅b ) =λ|a ||b |cos θ, a ⋅(λb ) =|a ||λb |cos(π-θ) = -λ|a ||b |(-cos θ) =λ|a ||b |cos θ.3.分配律:(a + b )⋅c = a ⋅c + b ⋅c在平面内取一点O ,作OA = a , AB = b ,OC = c , ∵a + b (即OB )在c 方向上的投影等于a 、b 在c 方向上的投影和,即 |a + b | cos θ = |a | cos θ1 + |b | cos θ2∴| c | |a + b | cos θ =|c | |a | cos θ1 + |c | |b | cos θ2, ∴c ⋅(a + b ) = c ⋅a + c ⋅b 即:(a + b )⋅c = a ⋅c + b ⋅c说明:(1)一般地,(a·b)с≠a(b·с)(2)a·с=b·с,с≠0a=b(3)有如下常用性质:a2=|a|2,(a+b)(с+d)=a·с+a·d+b·с+b·d(a+b)2=a2+2a·b+b2三、平面向量数量积的坐标表示、模、夹角一、复习引入:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos θ叫a与b的数量积,记作a ⋅b ,即有a ⋅b = |a ||b |cos θ,(0≤θ≤π).并规定0与任何向量的数量积为0.3.向量的数量积的几何意义:数量积a ⋅b 等于a 的长度与b 在a 方向上投影|b |cos θ的乘积.4.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量.1︒ e ⋅a = a ⋅e =|a |cos θ; 2︒ a ⊥b ⇔ a ⋅b = 03︒ 当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = -|a ||b |. 特别的a ⋅a = |a |2或a a a ⋅=||4︒ cos θ =||||b a b a ⋅ ;5︒|a ⋅b | ≤ |a ||b | 5.平面向量数量积的运算律交换律:a ⋅ b = b ⋅ a 数乘结合律:(λa )⋅b =λ(a ⋅b ) = a ⋅(λb )分配律:(a + b )⋅c = a ⋅c + b ⋅c二、讲解新课:⒈ 平面两向量数量积的坐标表示已知两个非零向量),(11y x a =,),(22y x b =,试用a 和b 的坐标表示b a ⋅.设i 是x 轴上的单位向量,j 是y 轴上的单位向量,那么j y i x a 11+=,j y i x b 22+= 所以))((2211j y i x j y i x b a ++=⋅2211221221j y y j i y x j i y x i x x +⋅+⋅+=又1=⋅i i ,1=⋅j j ,0=⋅=⋅i j j i ,所以b a ⋅2121y y x x +=这就是说:两个向量的数量积等于它们对应坐标的乘积的和.即b a ⋅2121y y x x +=2. 平面内两点间的距离公式一、 设),(y x a =,则222||y x a +=或22||y x a +=.(2)如果表示向量a 的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x ,那么221221)()(||y y x x a -+-=(平面内两点间的距离公式)二、 向量垂直的判定设),(11y x a =,),(22y x b =,则b a ⊥ ⇔02121=+y y x x三、 两向量夹角的余弦(πθ≤≤0)co s θ =||||b a b a ⋅⋅222221212121y x y x y y x x +++=。
高中数学 第二章平面向量教学设计教案人教版必修4
第二章平面向量教学设计人教A版数学必修4一、教材分析向量这一概念是由物理学和工程技术抽象出来的,是近代数学中重要和基本的数学概念之一,它是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景和深刻的几何背景,是解决几何问题的有力工具. 在数学和物理中都有广泛的应用.在本单元中,学生将了解向量丰富的实际背景,理解平面向量及其运算的意义,学习平面向量的线性运算、平面向量的基本定理及坐标表示、平面向量的数量积、平面向量应用五部分内容.能用向量语言和方法表述和解决数学及物理中的一些问题.发展运算能力和解决实际问题的能力.1.本单元的教学内容的范围(1)平面向量的实际背景及基本概念通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示。
(2)向量的线性运算①通过实例,掌握向量加、减法的运算,并理解其几何意义。
②通过实例,掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义。
③了解向量的线性运算性质及其几何意义。
(3)平面向量的基本定理及坐标表示①了解平面向量的基本定理及其意义。
②掌握平面向量的正交分解及其坐标表示。
③会用坐标表示平面向量的加、减与数乘运算。
④理解用坐标表示的平面向量共线的条件。
(4)平面向量的数量积①通过物理中“功”等实例,理解平面向量数量积的含义及其物理意义。
②体会平面向量的数量积与向量投影的关系。
③掌握数量积的坐标表达式,会进行平面向量数量积的运算。
④能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。
(5)向量的应用经历用向量方法解决某些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具,发展运算能力和解决实际问题的能力。
本章知识结构如下:平面向量、实际背景向量及其基本概念线性运算向量的数量积基本定理坐标表示向量的应用根据数学知识的发展过程与学生的认知过程安排内容向量是高中数学课程近年来引进的新内容,为了保证其科学性,同时又易于被学生接受,根据向量知识的发展过程和学生的思维规律,根据“标准”对向量内容的定位,并考虑到学生在数及其运算中建立起来的经验,本章按照如下次序来编排:向量的实际背景及基本概念一向量的线性运算一平面向量基本定理及坐标表示一向量的数量积一向量应用举例.课标要求的具体化和深广度分析①平面向量的实际背景及基本概念《标准》表述《标准》要求的具体化和深广度分析《大纲》相应的要求通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示.如:用向量a,则-a表示____.一辆汽车从A地出发向西行驶了100km,到达B地,可以用向量a表示,那么从B地出发到A达地应如何表示?向量a,b都是非零向量,下面说法不正确的是()(A)向量a与b反向,则向量a+b与向量a的方向可能相同(B)向量a与b反向,则向量a+b与向量b的方向可能相同(C)向量a与b反向,且a b>,则向量a+b与向量a的方向可能相同(D)向量a与b反向,且a b<,则向量a+b与向量a的方向可能相同理解向量的概念,掌握向量的几何表示,了解共线向量②向量的线性运算《标准》表述《标准》要求的具体化和深广度分析《大纲》相应的要求①通过实例,掌握向量加、减法的运算,并理解其几何意义.②通过实例,掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义.③了解向量的①如:若向量a表示向东走了2km,b表示向南走了1km,则a-b表示___________.已知下列各式①AB BC CA++;②AB MB BO OM+++;③OA OB BO CO+++;④AB AC BD CD-+-;①掌握向量的加法与减法,并理解其几何意义.②掌握实数与向量的积的运算,理解两个向量共线的充要条件.③会进行向量的线性运算.线性运算性质及其几何意义.其中结果为零向量的个数为()(A)1(B)2(C)3(D)4②已知向量a,b满足AB =a+2b,BC =-5a+6b,CD =7a-2b,则一定共线的三点是()(A)A,B,D (B)A,B,C(C)B,C,D (D)A,C,D③如:在ABC∆中,D,F分别是AB,AC的中点,BF与CD交于O,设AB =a,AC =b,用a,b表示向量AO.③平面向量的基本定理及坐标表示《标准》表述《标准》要求的具体化和深广度分析《大纲》相应的要求①了解平面向量的基本定理及其意义.②掌握平面向量的正交分解及其坐标表示.③会用坐标表示平面向量的加、减与数乘运算.④理解用坐标表示的平面向量共线的条件.①如:某人在静水中游泳,速度为每小时3km,水流的速度为每小时4km,如果他要垂直游到对岸,则他的实际速度是多少?②如:已知平行四边形ABCD的三个顶点坐标分别为A(-2,1),B(3,4),C(-1,3),则顶点D的坐标为___________.③如:已知(0,1)A,(3,4)B-且点C在AOB∠的平分线上,若2OC=,则向量OC=_________.④已知向量(,12)OA k=,(4,5)OB=,(,10)OC k=-且A,B,C三点共线,则k=_________.①了解平面向量的基本定理②理解平面向量的坐标的概念③掌握平面向量的坐标运算④理解两个向量共线的充要条件④平面向量的数量积《标准》表述《标准》要求的具体化和深广度分析《大纲》相应的要求①通过物理中“功”等实例,理解平面向量数量积的含义及其物理意义.②体会平面向量的数量积与向量投影的关系.③掌握数量积的坐标表达式,会进行平面向量数量积的运算.④能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.①如:用两根夹角为120角的等长的绳子悬挂一个灯具,若灯具的重量为10N,则每根绳子的拉力大小是_________.②如:已知点(0,1)A-,(2,2)B,(4,6)C-,则AB在AC上的投影的值为_________.③如:a=(-3,2),b=(-4,k),若(5a-b)⋅(3a-b)=55,求实数k的值.④如:两单位向量a,b的夹角为60,则两向量p=2a+b与q=3a+2b的夹角为_________.换垂直的题①明确平面向量数量积的定义、数学表达式及其几何意义②明确向量b在向量a的方向上的投影③掌握数量积的公式,能进行数量积的运算④明确两向量夹角的意义,掌握两向量垂直的充要条件,能用两种形式表示向量垂直的充要条件.⑤向量的应用《标准》表述《标准》要求的具体化和深广度分析《大纲》相应的要求经历用向量方法解决某些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具,发展运算如图,在平行四边形ABCD中,13DE DC=,AE与BD交于F,用向量的方法证明:14DF DB=.掌握平面两点间的距离公式、掌握线段的定比分点和中点坐标公式、平移公式,并能熟练运用,会用平面向量数量积处理长度、角度等有关问题能力和解决实际问题的能力.ABCD E F实际问题如:一条河的两岸平行,河的宽度为0.4km ,一艘船从一岸边的A 处出发驶向对岸,已知船速为15kmv h =,水速为23kmv h =,欲使航行最短,则所用时间为_________.(2)本单元变化之处①删繁就简,降低了知识的难度 ②调整章节,凸显了知识的框架 ③贴近生活,重视了知识的应用 (3)人教B 版向量一章的教材特点强调向量法的基本思想,明确向量运算及运算律的核心地位向量具有明确的几何背景,向量的运算及运算律具有明显的几何意义,因此涉及长度、夹角的几何问题可以通过向量及其运算得到解决.另外,向量及其运算(运算律)与几何图形 的性质紧密相联,向量的运算(包括运算律)可以用图形直观表示,图形的一些性质也可以用向量的运算(运算律)来表示.例如,平行四边形是表示向量加法和减法的几何模型,而向量的加法及其交换律(=+a b b +a )又可以表示平行四边形的性质(在平行四边形AB ∥CD 中,AD ∥BC ,AB ∥CD ,ABD ∆≌CBD ∆).这样,建立了向量运算(包括运算律)与几何图形之间的关系后,可以使图形的研究推进到有效能算的水平,向量运算(运算律)把向量与几何、代数有机地联系在一起.几何中的向量方法与解析几何的思想具有一致性,不同的只是用“向量和向量运算”来代替解析几何中的“数和数的运算”.这就是把点、线、面等几何要素直接归结为向量,对这些向量借助于它们之间的运算进行讨论,然后把这些计算结果翻译成关于点、线、面的相应结果.如果把解析几何的方法简单地表述为 [形到数]——[数的运算]——[数到形], 则向量方法可简单地表述为[形到向量]——[向量的运算]——[向量和数到形].教科书特别强调了向量法的上述基本思想,并根据上述基本思想明确提出了用向量法解决几何问题的“三步曲”.为了使学生体会向量运算及运算律的重要性,教科书注意引导学生在解决具体问题时及时进行归纳,同时还明确使用了“因为有了运算,向量的力量无限;如果没有运算,向量只是示意方向的路标”的提示语.说明:由于我们按照必修1,必修4的顺序进行教学,因此向量法这种解决问题的方法就显得尤其重要,他为今后学习解析法奠定了基础。
人教A版高中数学必修4第二章 平面向量2.1 平面向量的实际背景及基本概念教案(1)
第二章平面向量2.1平面向量的实际背景及基本概念教学设计一、内容和内容解析向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何和三角函数的一种工具,它有着丰富的现实背景和物理背景。
向量是刻画位置的重要数学工具,在诸如卫星定位、飞船设计等领域有着广泛的应用。
向量也是刻画物理量——力、位移、速度、加速度、动量、电场强度这些物理量的数学工具,它体现了数学和物理的天然联系。
向量的学习有助于学生认识数学和实际生活以及物理学科的紧密联系,体会向量在刻画和解决实际问题中的作用,从中感受数学的应用价值。
在教学中需要引导学生对现实原型的观察分析和比较,得出抽象的数学模型,所以本节内容是渗透“数学抽象”很好的载体。
在本节中,学生将了解平面向量丰富的实际背景,理解平面向量的意义,能用向量的语言和方法表达和解决数学和物理中的一些问题。
本节课是一节概念课,在向量基本概念的形成过程中,需要将学生已有的旧知识作为新知识的固着点和生长点,在探究向量的几何表示时让学生经历以物理中学习力的图示,位移的表示,速度的表示为起点,归纳并确定向量的几何表示以及符号表示,而在探索向量间的特殊关系时,引导学生借助图形进行,这样不仅使研究有序,同时更锻炼学生的直观想象能力,有助于感受向量集数与形于一身的特性。
通过类比学习数量的过程,让学生自然的获得新知识的探究方向,在基本概念的学习中,要让学生体验概念的生成过程,获得这些概念的“基本思路”即获得数学研究对象,认识数学新对象的基本方法,用数学的观点刻画和研究现实事物的方法和途径。
二、目标和目标解析1. 通过对平面向量概念的抽象概括,体验数学概念的形成过程,了解平面向量的实际背景;2. 理解平面向量的意义和两个向量相等的含义;3. 理解平面向量的几何表示和基本要素,会用有向线段表示向量,会判断零向量,单位向量,能做一个向量和已知向量相等,能根据图形判定向量是否是平行,共线,相等向量。
4.通过类比“学习数量的过程”而获得研究的内容与方法的启发,再一次体会研究一类新的数学问题的基本思路.学生已经学习过数量,但是形如确定位置的问题,只用数量是无法满足需要的,这就使得学习新知识是自然的有必要的,同时可以引导学生类比“学习数量的过程”明确研究向量概念的基本方向,因此,复习回顾数量的相关知识是有必要的。
(完整版)高中数学必修4第二章平面向量教案完整版
第1课时§2.1 平面向量的实际背景及基本概念1、数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小. 2.向量的表示方法: ①用有向线段表示; ②用字母a、b(黑体,印刷用)等表示;③用有向线段的起点与终点字母:AB ;④向量AB 的大小――长度称为向量的模,记作|AB |.3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度. 向量与有向线段的区别:(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.4、零向量、单位向量概念:①长度为0的向量叫零向量,记作0. 0的方向是任意的. 注意0与0的含义与书写区别.②长度为1个单位长度的向量,叫单位向量. 说明:零向量、单位向量的定义都只是限制了大小. 5、平行向量定义:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c.6、相等向量定义:长度相等且方向相同的向量叫相等向量.说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有..向线段的起点无关......... A(起点)B(终点)aOABaaa bb b7、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的......起点无关)...... 说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.第2课时§2.2.1 向量的加法运算及其几何意义二、探索研究:1、向量的加法:求两个向量和的运算,叫做向量的加法. 2、三角形法则(“首尾相接,首尾连”)如图,已知向量a 、b.在平面内任取一点A ,作AB =a ,BC =b,则向量AC 叫做a 与b的和,记作a +b,即 a +b=+=,规定: a + 0-= 0 + a探究:(1)两相向量的和仍是一个向量;(2)当向量a 与b 不共线时,a +b 的方向不同向,且|a +b |<|a |+|b |; (3)当与同向时,则+、、同向,且|+|=||+||,当与反向时,若||>||,则+的方向与相同,且|+|=||-||;若||<||,则+的方向与相同,且|+b|=||-||.(4)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点,可以推广到A BCa +ba +baa b b abb aan 个向量连加3.例一、已知向量a 、b ,求作向量a +b作法:在平面内取一点,作a OA = b AB =,则b a OB +=. 4.加法的交换律和平行四边形法则问题:上题中b +a 的结果与a +b 是否相同? 验证结果相同 从而得到:1)向量加法的平行四边形法则(对于两个向量共线不适应)2)向量加法的交换律:a +b =b +a 5.向量加法的结合律:(a +b ) +c =a + (b +c ) 证:如图:使a AB =, b BC =, c CD =则(a +b ) +c =AD CD AC =+,a + (b +c ) =AD BD AB =+ ∴(a +b ) +c =a + (b +c )从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行.第3课时§2.2.2 向量的减法运算及其几何意义1. 用“相反向量”定义向量的减法(1) “相反向量”的定义:与a 长度相同、方向相反的向量.记作 -a (2) 规定:零向量的相反向量仍是零向量.-(-a ) = a. 任一向量与它的相反向量的和是零向量.a + (-a ) = 0 如果a 、b 互为相反向量,则a = -b , b = -a , a + b = 0 (3) 向量减法的定义:向量a 加上的b 相反向量,叫做a 与b 的差. 即:a - b = a + (-b ) 求两个向量差的运算叫做向量的减法. 2. 用加法的逆运算定义向量的减法: 向量的减法是向量加法的逆运算:若b + x = a ,则x 叫做a 与b 的差,记作a - b 3. 求作差向量:已知向量a 、b ,求作向量 ∵(a -b ) + b = a + (-b ) + b = a + 0 = aOabBa ba -b作法:在平面内取一点O , 作= a , = b 则BA = a - b即a - b 可以表示为从向量b 的终点指向向量a 的终点的向量. 注意:1︒AB 表示a - b .强调:差向量“箭头”指向被减数 2︒用“相反向量”定义法作差向量,a - b = a + (-b ) 显然,此法作图较繁,但最后作图可统一.4. 探究:1)如果从向量a 的终点指向向量b 的终点作向量,那么所得向量是b - a.2)若a ∥b , 如何作出a - b ?2.3平面向量的基本定理及坐标表示第4课时§2.3.1 平面向量基本定理复习引入:1.实数与向量的积:实数λ与向量a ρ的积是一个向量,记作:λa ρ(1)|λa ρ|=|λ||a ρ|;(2)λ>0时λa ρ与a ρ方向相同;λ<0时λa ρ与a ρ方向相反;λ=0时λO ABa B’b-b bBa + (-b )a b a -bA ABBB’Oa -b a a bbO AOBa -ba -b BA O-ba ρ=2.运算定律结合律:λ(μa ρ)=(λμ)a ρ ;分配律:(λ+μ)a ρ=λa ρ+μa ρ, λ(a ρ+b ρ)=λa ρ+λb ρ3. 向量共线定理 向量b ρ与非零向量a ρ共线的充要条件是:有且只有一个非零实数λ,使b ρ=λa ρ.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ρ,有且只有一对实数λ1,λ2使a ρ=λ11e +λ22e . 探究:(1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底; (2) 基底不惟一,关键是不共线;(3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解; (4) 基底给定时,分解形式惟一. λ1,λ2是被a ρ,1e ,2e 唯一确定的数量第5课时§2.3.2—§2.3.3 平面向量的正交分解和坐标表示及运算一、复习引入:1.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ρ,有且只有一对实数λ1,λ2使a ρ=λ11e +λ22e(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底; (2)基底不惟一,关键是不共线;(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解; (4)基底给定时,分解形式惟一. λ1,λ2是被a ρ,1e ,2e 唯一确定的数量 二、讲解新课: 1.平面向量的坐标表示如图,在直角坐标系内,我们分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a +=…………○1 我们把),(y x 叫做向量a 的(直角)坐标,记作),(y x a =…………○2 其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,○2式叫做向量的坐标表示.与.a 相等的向量的坐标也为..........),(y x . 特别地,)0,1(=i ,)1,0(=j ,)0,0(0=.如图,在直角坐标平面内,以原点O 为起点作a OA =,则点A 的位置由a 唯一确定.设yj xi OA +=,则向量OA 的坐标),(y x 就是点A 的坐标;反过来,点A 的坐标),(y x 也就是向量OA 的坐标.因此,在平面直角坐标系内,每一个平面向量都是可以用一对实数唯一表示.2.平面向量的坐标运算(1) 若),(11y x a =,),(22y x b =,则ba +),(2121y y x x ++=,b a -),(2121y y x x --=两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.设基底为i 、j ,则b a +)()(2211j y i x j y i x +++=j y y i x x )()(2121+++= 即b a +),(2121y y x x ++=,同理可得b a -),(2121y y x x --= (2) 若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.AB =OB -OA =( x 2, y 2) - (x 1,y 1)= (x 2- x 1, y 2- y 1)(3)若),(y x a =和实数λ,则),(y x a λλλ=.实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.设基底为i 、j ,则a λ)(yj xi +=λyj xi λλ+=,即),(y x a λλλ=第6课时§2.3.4 平面向量共线的坐标表示一、复习引入: 1.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a += 把),(y x 叫做向量a 的(直角)坐标,记作),(y x a =其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标, 特别地,)0,1(=i ,)1,0(=j ,)0,0(0=.2.平面向量的坐标运算若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --=,),(y x a λλλ=. 若),(11y x A ,),(22y x B ,则()1212,y y x x AB --= 二、讲解新课:a ρ∥b ρ (b ρ≠0)的充要条件是x 1y 2-x 2y 1=0设a ρ=(x 1, y 1) ,b ρ=(x 2, y 2) 其中b ρ≠a ρ.由a ρ=λb ρ得, (x 1, y 1) =λ(x 2, y 2) ⎩⎨⎧==⇒2121y y x x λλ 消去λ,x 1y 2-x 2y 1=0探究:(1)消去λ时不能两式相除,∵y 1, y 2有可能为0, ∵b ρ≠0 ∴x 2, y 2中至少有一个不为0(2)充要条件不能写成2211x y x y = ∵x 1, x 2有可能为0 (3)从而向量共线的充要条件有两种形式:a ρ∥b ρ (b ρ≠0)01221=-=⇔y x y x ba λ§2.4平面向量的数量积第7课时一、 平面向量的数量积的物理背景及其含义一、复习引入:1. 向量共线定理 向量b ρ与非零向量a ρ共线的充要条件是:有且只有一个非零实数λ,使b ρ=λa ρ.2.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ρ,有且只有一对实数λ1,λ2使a ρ=λ11e +λ22e 3.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a += 把),(y x 叫做向量a 的(直角)坐标,记作),(y x a = 4.平面向量的坐标运算若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --=,),(y x a λλλ=.若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=5.a ρ∥b ρ (b ρ≠0)的充要条件是x 1y 2-x 2y 1=06.线段的定比分点及λP 1, P 2是直线l 上的两点,P 是l 上不同于P 1, P 2的任一点,存在实数λ,使 P P 1=λ2PP ,λ叫做点P 分21P P 所成的比,有三种情况:λ>0(内分) (外分) λ<0 (λ<-1) ( 外分)λ<0 (-1<λ<0)7. 定比分点坐标公式:若点P 1(x 1,y 1) ,P2(x 2,y 2),λ为实数,且P P 1=λ2PP ,则点P 的坐标为(λλλλ++++1,12121y y x x ),我们称λ为点P 分21P P 所成的比.8. 点P 的位置与λ的范围的关系:①当λ>0时,P P 1与2PP 同向共线,这时称点P 为21P P 的内分点.②当λ<0(1-≠λ)时,P P 1与2PP 反向共线,这时称点P 为21P P 的外分点. 9.线段定比分点坐标公式的向量形式:在平面内任取一点O ,设1OP =a,2OP =b, 可得OP =b a b a λλλλλ+++=++1111.10.力做的功:W = |F |⋅|s |cos θ,θ是F 与s 的夹角. 二、讲解新课:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.说明:(1)当θ=0时,a与b同向;(2)当θ=π时,a与b反向; (3)当θ=2π时,a与b垂直,记a⊥b; (4)注意在两向量的夹角定义,两向量必须是同起点的.范围0︒≤θ≤180︒2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos θ叫a与b的数量积,记作a ⋅b ,即有a ⋅b = |a ||b |cos θ,(0≤θ≤π).并规定0与任何向量的数量积为0. ⋅探究:两个向量的数量积与向量同实数积有很大区别(1)两个向量的数量积是一个实数,不是向量,符号由cos θ的符号所决定.(2)两个向量的数量积称为内积,写成a ⋅b ;今后要学到两个向量的外积a ×b ,而a ⋅b 是两C个向量的数量的积,书写时要严格区分.符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替.(3)在实数中,若a ≠0,且a ⋅b =0,则b =0;但是在数量积中,若a ≠0,且a ⋅b =0,不能推出b =0.因为其中cos θ有可能为0.(4)已知实数a 、b 、c (b ≠0),则ab=bc ⇒ a=c .但是a ⋅b = b ⋅c a = c如右图:a ⋅b = |a ||b |cos β = |b ||OA|,b ⋅c = |b ||c |cos α = |b ||OA|⇒ a ⋅b = b ⋅c 但a ≠ c(5)在实数中,有(a ⋅b )c = a (b ⋅c ),但是(a ⋅b )c ≠ a (b ⋅c )显然,这是因为左端是与c 共线的向量,而右端是与a 共线的向量,而一般a 与c 不共线.3.“投影”的概念:作图定义:|b |cos θ叫做向量b 在a 方向上的投影.投影也是一个数量,不是向量;当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ = 0︒时投影为 |b |;当θ = 180︒时投影为 -|b |. 4.向量的数量积的几何意义:数量积a ⋅b 等于a 的长度与b 在a 方向上投影|b |cos θ的乘积. 5.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量. 1︒ e ⋅a = a ⋅e =|a |cos θ 2︒ a ⊥b ⇔ a ⋅b = 03︒ 当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = -|a ||b |. 特别的a ⋅a = |a |2或a a a ⋅=||4︒ cos θ =||||b a ba ⋅5︒ |a ⋅b | ≤ |a ||b |第8课时二、平面向量数量积的运算律一、复习引入:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角. 2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos θ叫a与b的数量积,记作a ⋅b ,即有a ⋅b = |a ||b |cos θ,(0≤θ≤π).并规定0与任何向量的数量积为0.3.“投影”的概念:作图定义:|b |cos θ叫做向量b 在a 方向上的投影. 投影也是一个数量,不是向量;当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ = 0︒时投影为 |b |;当θ = 180︒时投影为 -|b |.4.向量的数量积的几何意义:数量积a ⋅b 等于a 的长度与b 在a 方向上投影|b |cos θ的乘积.5.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量.1︒ e ⋅a = a ⋅e =|a |cos θ; 2︒ a ⊥b ⇔ a ⋅b = 03︒ 当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = -|a ||b |. 特别的a ⋅a = |a |2或a a a ⋅=|| 4︒cos θ =||||b a b a ⋅ ;5︒|a ⋅b | ≤ |a ||b | 二、讲解新课:平面向量数量积的运算律1.交换律:a ⋅ b = b ⋅ a证:设a ,b 夹角为θ,则a ⋅ b = |a ||b |cos θ,b ⋅ a = |b ||a |cos θ∴a ⋅ b = b ⋅ a2.数乘结合律:(λa )⋅b =λ(a ⋅b ) = a ⋅(λb )C证:若λ> 0,(λa )⋅b =λ|a ||b |cos θ, λ(a ⋅b ) =λ|a ||b |cos θ,a ⋅(λb ) =λ|a ||b |cos θ,若λ< 0,(λa )⋅b =|λa ||b |cos(π-θ) = -λ|a ||b |(-cos θ) =λ|a ||b |cos θ,λ(a ⋅b ) =λ|a ||b |cos θ, a ⋅(λb ) =|a ||λb |cos(π-θ) = -λ|a ||b |(-cos θ) =λ|a ||b |cos θ.3.分配律:(a + b )⋅c = a ⋅c + b ⋅c在平面内取一点O ,作OA = a , AB = b ,OC = c , ∵a + b (即OB )在c 方向上的投影等于a 、b 在c 方向上的投影和,即 |a + b | cos θ = |a | cos θ1 + |b | cos θ2∴| c | |a + b | cos θ =|c | |a | cos θ1 + |c | |b | cos θ2, ∴c ⋅(a + b ) = c ⋅a + c ⋅b 即:(a + b )⋅c = a ⋅c + b ⋅c说明:(1)一般地,(a·b)с≠a(b·с)(2)a·с=b·с,с≠0a=b(3)有如下常用性质:a2=|a|2,(a+b)(с+d)=a·с+a·d+b·с+b·d(a+b)2=a2+2a·b+b2第9课时三、平面向量数量积的坐标表示、模、夹角一、复习引入:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos θ叫a与b的数量积,记作a ⋅b ,即有a ⋅b = |a ||b |cos θ,(0≤θ≤π).并规定0与任何向量的数量积为0.3.向量的数量积的几何意义:数量积a ⋅b 等于a 的长度与b 在a 方向上投影|b |cos θ的乘积. 4.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量.1︒ e ⋅a = a ⋅e =|a |cos θ; 2︒ a ⊥b ⇔ a ⋅b = 03︒ 当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = -|a ||b |. 特别的a ⋅a = |a |2或a a a ⋅=||4︒ cos θ =||||b a b a ⋅ ;5︒|a ⋅b | ≤ |a ||b | C5.平面向量数量积的运算律交换律:a ⋅ b = b ⋅ a数乘结合律:(λa )⋅b =λ(a ⋅b ) = a ⋅(λb )分配律:(a + b )⋅c = a ⋅c + b ⋅c二、讲解新课:⒈ 平面两向量数量积的坐标表示已知两个非零向量),(11y x a =,),(22y x b =,试用a 和b 的坐标表示b a ⋅. 设i 是x 轴上的单位向量,j 是y 轴上的单位向量,那么j y i x a 11+=,j y i x b 22+= 所以))((2211j y i x j y i x b a ++=⋅2211221221j y y j i y x j i y x i x x +⋅+⋅+= 又1=⋅i i ,1=⋅j j ,0=⋅=⋅i j j i ,所以b a ⋅2121y y x x += 这就是说:两个向量的数量积等于它们对应坐标的乘积的和.即b a ⋅2121y y x x +=2. 平面内两点间的距离公式一、 设),(y x a =,则222||y x a +=或22||y x a +=.(2)如果表示向量a 的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x ,那么221221)()(||y y x x a -+-=(平面内两点间的距离公式)二、 向量垂直的判定设),(11y x a =,),(22y x b =,则b a ⊥ ⇔02121=+y y x x三、 两向量夹角的余弦(πθ≤≤0)co s θ =||||b a b a ⋅⋅222221212121y x y x y y x x +++=。
高中数学必修四(2.1平面向量的实际背景及基本概念)教案新人教A版必修4
样特征呢 ?这些量的共同特征是什么?怎样利用你所学的数学中的知识抽象这些具有共同特
征的量呢?
②新的概念是对这些具有共同特征的量的描述 , 应怎样定义这样的量呢?
③数量与向量的区别在哪里? 活动 : 教师指导学生阅读教材 , 思考讨论并解决上述问题 , 学生讨论列举与位移一样的一
些量 . 物体受到的重力是竖直向下的 , 物体的质量越大 , 它受到的重力越大;物体在液体中受
④满足什么条件的两个向量是相等向量?单位向量是相等向量吗
?
⑤有一组向量 , 它们的方向相同或相反 , 这组向量有什么关系?怎样定义平行向量 ?
⑥如果把一组平行向量的起点全部移到一点
O, 它们是不是平行向量?这时各向量的终点之
间有什么关系 ?
⑦数量与向量有什么区别 ?
⑧数学中的向量与物理中的力有什么区别 ?
要素 : 起点、方向、长度 .
知道了有向线段的起点、方向和长度 用有向线段表示向量的方法是 :
图2 , 它的终点就唯一确定 .
1°起点是 A, 终点是 B 的有向线段 , 对应的向量记作 : AB .
这里要提醒学生注意 AB 的方向是由点 A 指向点 B, 点 A 是向量的起点 .
2°用字母 a, b, c, …表示 .( 一定要学生规范书写 : 印刷用黑体 a, 书写用 a )
第二章 平面向量
2.1 平面向量的实际背景及基本概念
情境导入 ) 如图 1, 在同一时刻 , 老鼠由 A 向西北方向的 C 处逃窜 , 猫在 B 处向正
东方向的 D 处追去 , 猫能否追到老鼠呢?学生马上得出结论 : 追不上 , 猫的速度再快也没用 ,
因为方向错了 . 教师适时设问 : 如何从数学的角度来揭示这个问题的本质?由此展开新课
(完整版)高中数学必修4第二章平面向量教案完整版
第1课时§2。
1 平面向量的实际背景及基本概念1、数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小。
2.向量的表示方法: ①用有向线段表示; ②用字母a、b(黑体,印刷用)等表示;③用有向线段的起点与终点字母:AB ;④向量AB 的大小――长度称为向量的模,记作|AB |.3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度. 向量与有向线段的区别:(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量; (2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段. 4、零向量、单位向量概念:①长度为0的向量叫零向量,记作0。
0的方向是任意的. 注意0与0的含义与书写区别.②长度为1个单位长度的向量,叫单位向量。
说明:零向量、单位向量的定义都只是限制了大小。
5、平行向量定义:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行。
说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c. 6、相等向量定义:长度相等且方向相同的向量叫相等向量.说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段.....的起点无关...... 7、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关..........).。
说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系。
A(起点)B(终点)aOABaaa bb b第2课时§2。
2.1 向量的加法运算及其几何意义二、探索研究:1、向量的加法:求两个向量和的运算,叫做向量的加法。
人教版高中数学高一A版必修4 第二章第一节平面向量的实际背景及基本概念
第二章第一节平面向量的实际背景及基本概念1.丰富多彩的背景,引人入胜的内容.教材首先从力、位移等量讲清向量的实际背景以及研究向量的必要性,接着介绍了平面向量的有关知识.学生将了解向量丰富的实际背景,理解平面向量及其运算的意义,能用向量语言与方法表述和解决数学、物理中的一些问题,发展运算能力和解决实际问题的能力.平面向量基本定理是平面向量正交分解及坐标表示的基础,从学生熟知的功的概念出发,引出了平面向量数量积的概念及其几何意义,接着介绍了向量数量积的性质、运算律及坐标表示.向量数量积把向量的长度和三角函数联系了起来,这样为解决有关的几何问题提供了方便,特别能有效地解决线段的垂直问题.最后介绍了平面向量的应用.2.教学的最佳契机,全新的思维视角.向量具有几何形式和代数形式的“双重身份”,这一概念是由物理学和工程技术抽象出来的.反过来,向量的理论和方法,又成为解决物理学和工程技术的重要工具,向量之所以有用,关键是它具有一套良好的运算性质,通过向量可把空间图形的性质转化为向量的运算,这样通过向量就能较容易地研究空间的直线和平面的各种有关问题.这一章的内容虽然概念多,但大都有其物理上的来源,虽然抽象,却与图形有着密切的联系,向量应用的优越性也是非常明显的.全新的思维视角,恰当的教与学,使得向量不仅生动有趣,而且是培养学生创新精神与能力的极佳契机.3.本章充分体现出新教材特点.以学生已有的物理知识和几何内容为背景,直观介绍向量的内容,注重向量运算与数的运算的对比,特别注意知识的发生过程.对概念、法则、公式、定理等的处理主要通过观察、比较、分析、综合、抽象、概括得出结论.这一章中的一些例题,教科书不是先给出解法,而是先进行分析,探索出解题思路,再给出解法.解题后有的还总结出解决该题时运用的数学思想和数学方法,有的还让学生进一步考虑相关的问题.对知识的处理,都尽量设计成让学生自己观察、比较、猜想、分析、归纳、类比、想象、抽象、概括的形式,从而培养学生的思维能力.向量的坐标实际上是把点与数联系起来,进而可把曲线与方程联系起来,这样就可用代数方程研究几何问题,同时也可以用几何的观点处理某些代数问题.4作者:赵勇,永安三中教师,本教学设计获福建省教学设计大赛三等奖整体设计教学理念新的课程标准要求我们创造性地使用教材,积极开发、利用各种教学资源,创设教学情境,让学生通过主动参与、积极思考、合作交流和创新等过程,获得知识、能力、情感的全面发展.本节课将充分体现以“学生为本”的教学观念,实现课程理念、教学方式和学生学习方式的转变.教学目标1.通过力的分析等实例,了解向量的实际背景;理解向量的概念.2.理解向量的几何表示;掌握零向量、单位向量、平行向量等概念;3.理解相等向量和共线向量等概念,并会辨认图形中的相等向量或作出与某一已知向量的相等向量.教学重点、难点1.通过学生自主探究,并在教师的引导下,使学生理解向量的概念、相等向量的概念、向量的几何表示等是本节课的重点.2.难点是学生对向量的概念和共线向量的概念的理解.学情和教材分析《向量》是高中数学新教材必修四第二章第1节.向量是近代数学中重要和基本的概念之一,有深刻的几何背景,是解决几何问题的有力工具.向量概念引入后,全等和平行(平移)、相似、垂直、勾股定理就可转化为向量的加(减)法、数乘向量、数量积运算,从而把图形的基本性质转化为向量的运算体系.向量是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景,在数学和物理学科中具有广泛的应用.所以,向量是高考必考的重点内容,又因为其抽象性,它还是学生在学习中的一个难学内容.本节内容是向量一章的第一节课,因此,是十分关键、重要的一节课.教学准备多媒体课件教学过程导入新课位置是几何学研究的重要内容之一,几何中常用点表示位置,研究如何由一点的位置确定另外一点的位置.如图1,如何由点A确定点B的位置?图1一种常用的方法是,以A为参照点,用B点A点之间的方位和距离确定B点的位置.如,B点在A点东偏南45°,30千米处.这样,在A点与B点之间,我们可以用有向线段AB表示B点相对于A点的位置.有向线段AB就是A点与B点之间的位移.位移简明地表示了位置之间的相对关系.像位移这种既有大小又有方向的量,加以抽象,就是我们本章要研究的向量.推进新课新知探究本章引言中,我们知道,位移是既有大小,又有方向的量,你还能举出一些这样的量吗?图2请大家阅读课本2.1.1向量的物理背景与概念;2.1.2向量的几何表示.并回答下面问题: (1)什么是向量?向量和数量有何不同? (2)向量如何表示?(3)什么是零向量和单位向量? (4)什么是平行向量?待学生阅读完后,老师总结并展示课件: 1.什么是向量?向量和数量有何不同?(数量:只有大小,没有方向的量) 在质量、重力、速度、加速度、身高、面积、体积这些量中,哪些是数量?哪些是向量? 数量有:质量、身高、面积、体积 向量有:重力、速度、加速度提问:角度,海拔,温度是向量吗? 2.向量如何表示?(1)几何表示——向量常用有向线段表示:有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.图3 注:以A 为起点,B 为终点的有向线段记为AB →,线段AB 的长度记作|AB →|(读为模); (2)也可以表示为a ,b ,c ,…,大小记作:|a|、|b|、|c |、…说明一:我们所说的向量,与起点无关,用有向线段表示向量时,起点可以取任意位置.所以数学中的向量也叫自由向量.如图4:它们都表示同一个向量.图4练习:向量AB →和BA →是同一个向量吗?为什么? 不是,方向不同.探究:向量就是有向线段吗?有向线段就是向量吗? 说明二:有向线段与向量的区别: 有向线段:有固定起点、大小、方向.向量:可选任意点作为向量的起点、有大小、有方向.图5有向线段AB →、CD →是不同的.图6向量AB →、CD →是同一个向量. 3.什么是零向量和单位向量?零向量:长度为0的向量,记为0; 单位向量:长度为1的向量.注:零向量,单位向量都是只限制大小,不确定方向的. 向量之间的关系: 4.什么是平行向量?方向相同或相反的非零向量叫平行向量. 注:1.若是两个平行向量,则记为a ∥b .2.我们规定,零向量与任一向量平行,即对任意向量a ,都有0∥a . 练习:判断下列各组向量是否平行?图7向量的平行与线段的平行有什么区别? 练习:已知下列命题:(1)向量AB →和向量BA →长度相等;(2)方向不同的两个向量一定不平行;(3)向量就是有向线段;(4)向量0=0;(5)向量AB →大于向量CD →.其中正确命题的个数是( )A .0B .1C .2D .3 答案:B例1试根据图8中的比例尺以及三地的位置,在图中分别用向量表示A 地至B 、C 两地的位移,并求出A 地至B 、C 两地的实际距离(精确到1 km).图8请同学们阅读课本2.1.3相等向量与共线向量,并回答问题:什么是相等向量和共线向量?待学生回答后,老师总结并展示课件: 5.什么是相等向量和共线向量?长度相等且方向相同的向量叫相等向量.a =b =c A 1B 1→=A 2B 2→=A 3B 3→=A 4B 4→图9注:1.若向量a ,b 相等,则记为a =b ;2.任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.平行向量也叫共线向量.注:任一组平行向量都可以平移到同一直线上. 练习:判断下列命题是否正确:(1)两个向量相等,则它们的起点相同,终点相同;(2)若|a|=|b |,则a =b ;(3)若AB →=DC →,则四边形ABCD 是平行四边形;(4)平行四边形ABCD 中,一定有AB →=DC →;(5)若m =n ,n =k ,则m =k ;(6)若a ∥b ,b ∥c ,则a ∥c .其中不正确命题的个数是( )A .2B .3C .4D .5 答案:C练习:下列说法正确的是( ) A .若|a|>|b|,则a>b B .若|a |=0,则a =0C .若|a|=|b|,则a =b 或a =-bD .若a ∥b ,则a =bE .若a =b ,则|a|=|b |F .若a ≠b ,则a 与b 不是共线向量G .若a =0,则-a =0 答案:EG例2如图10,设O 是正六边形ABCDEF 的中心,分别写出图中与OA →、OB →、OC →相等的向量.图10解:OA →=CB →=DO →, OB →=DC →=EO →, OC →=AB →=ED →=FO →.练习:如图11,EF 是△ABC 的中位线,AD 是BC 边上的中线,在以A 、B 、C 、D 、E 、F 为端点的有向线段表示的向量中请分别写出:图11(1)与向量CD →共线的向量有________个,分别是________________________________;(2)与向量DF →的模一定相等的向量有________个,分别是______________________;(3)与向量DE →相等的向量有________个,分别是__________.答案:(1)7 DC →、DB →、BD →、FE →、EF →、CB →、BC → (2)5 FD →、EB →、BE →、EA →、AE →(3)2 CF →、FA →课堂小结 通过本节课的学习,要求大家能够理解向量的概念;掌握向量的几何表示;理解零向量、单位向量、平行向量、相等向量等概念,并能进行简单的应用.作业习题2.1A 组2,5设计思路1.首先先对本节课教材内容进行分析2.教材内容的安排和处理根据我所教学生的特点,我对教材进行了如下处理,先由物理中的位置关系导入新课,然后提出问题,并要求学生带着问题去阅读课本,最后由老师总结,并对概念进行概念辨析,以加大学生的思维的深度,拓宽了学生的视野,实现本节课难点的突破,整堂课充分发挥学生的主导作用.3.教法“问题是数学的灵魂,也是学好数学的必然手段”,本节课总体上以问题串的形式,设计为七问五练.着重抓四个知识点,突出学生的“主导地位”.并通过多媒体课件的演示,直观展示向量的有关内容,激发学生的兴趣.4.学法指导以问题为载体,通过提问、阅读、归纳,练习的过程,掌握思考、讨论、交流的学习方法,并体验探究和发现的乐趣.。
人教A版高中数学必修4第二章 平面向量2.1 平面向量的实际背景及基本概念教案(4)
《平面向量的实际背景及基本概念》教学设计一、教材内容分析1.教材的地位和作用本节内容是选自人教A版高中数学必修4第二章第一节,由于向量是近代数学中重要和基础的数学概念之一,它具有几何形式和代数形式的“双重身份”,因而成为数形结合的桥梁,成为沟通代数、几何、三角的得力工具.向量的概念从大量的生活实例和丰富的物理素材中抽象出来,反过来,它的理论和方法又成为解决生活实际问题和的物理学重要工具.它之所以有用,关键是它具有一套良好的运算性质,可以使复杂问题简单化、直观化,使代数问题几何化、几何问题代数化.正是由于向量所特有的数形二重性,使它成为中学数学知识的一个交汇点,成为联系多项内容的媒介,在高中数学教学内容中有广泛的应用.本节课是向量的入门课,概念较多,但难度不大,学生可借鉴对物理学中的位移、力、速度等的认识来学习.2.学情分析:高一学生在认识能力、抽象能力和思维能力等方面相对较弱,由于对向量的认识还是比较单一的(往往只考虑大小而忽略方向),所以学生对它的认识不可能一步到位。
因此,进行概念教学时,除了对概念进行逐字逐句分析外,还要通过日常生活中的实例和不同的例题对概念进行分析,并通过老师的引导,使学生对概念的理解逐步深入。
3.教学目标的确定根据本课教材的特点,新课标的教学要求,学生身心发展的需要,本节课确定教学目标如下:知识与技能(1)了解向量的实际背景,理解平面向量的概念和向量的几何表示;(2)掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并能弄清平行向量、相等向量、共线向量的关系(3)通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.过程与方法引导发现法与讨论相结合。
这是向量的第一节课,概念与知识点较多,在对学生进行适当的引导之后,应让学生清清楚楚得明白其概念,这是学生进一步获取向量知识的前提;通过学生主动地参与到课堂教学中,提高学生学习的积极性。
体现了在老师的引导下,学生的主体地位和作用。
【说课稿】人教A版数学必修4 2.1平面向量的实际背景及基本概念 说课稿
《平面向量的实际背景及基本概念》说课稿---人教A版必修4第二章2.1一、教材结构与内容简析1 本节内容在全书及章节的地位:《平面向量的实际背景及基本概念》出现在高中数学必修4第二章第一节。
本节内容是传统意义上《平面解析几何》的基础部分,因此,在《数学》这门学科中,占据极其重要的地位。
2 数学思想方法分析:(1)从“向量可以用有向线段来表示”所反映出的“数”与“形”之间的转化,就可以看到《数学》本身的“量化”与“物化”。
(2)从建构手段角度分析,在教材所提供的材料中,可以看到“数形结合”思想。
二、教学目标根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:1 基础知识目标:掌握“向量”的概念及其表示方法,能利用它们解决相关的问题。
2 能力训练目标:逐步培养学生观察、分析、综合和类比能力,会准确地阐述自己的思路和观点,着重培养学生的认知和元认知能力。
3 创新素质目标:引导学生从日常生活中挖掘数学内容,培养学生的发现意识和整合能力;《平面向量的实际背景及基本概念》的教学旨在培养学生的“知识重组”意识和“数形结合”能力。
4 个性品质目标:培养学生勇于探索,善于发现,独立意识以及不断超越自我的创新品质。
三、教学重点、难点、关键重点:向量概念的引入及理解零向量,单位向量,平行向量和共线向量的概念. 难点:“数”与“形”完美结合。
关键:本节课通过“数形结合”,着重培养和发展学生的认知和变通能力。
四、教材处理建构主义学习理论认为,建构就是认知结构的组建,其过程一般是先把知识点按照逻辑线索和内在联系,串成知识线,再由若干条知识线形成知识面,最后由知识面按照其内容、性质、作用、因果等关系组成综合的知识体。
本课时为何提出“数形结合”呢,应该说,这一处理方法正是基于此理论的体现。
其次,本节课处理过程力求达到解决如下问题:知识是如何产生的?如何发展?又如何从实际问题抽象成为数学问题,并赋予抽象的数学符号和表达式,如何反映生活中客观事物之间简单的和谐关系。
平面向量的实际背景及基本概念说课稿
“平面向量的实际背景及基本概念”说课稿高一数学组朱雯婷各位领导各位同事大家下午好:很高兴今天能有机会和大家一起在这里交流对说课的理解,我今天说课的题目是普通高中课程标准实验教科书数学必修四第二章第一节平面向量的实际背景及基本概念,我将从四个方面进行具体说明:1.教材内容分析2.教法学法分析3.教学目标4.教学过程。
一教材内容分析:向量是近代数学最重要和最基本的数学概念之一,它是沟通代数、几何与三角函数的桥梁,对更新和完善中学数学知识结构起着重要的作用。
向量集数与形于一身,有着极其丰富的实际背景,在现实生活中随处可见的位移、速度、力等既有大小又有方向的量是它的物理背景,有向线段是它的几何背景。
向量就是从这些实际对象中抽象概括出来的数学概念,经过研究,建立起完整的知识体系之后,向量又作为数学模型,广泛地应用于解决数学、物理学科及实际生活中的问题,因此它在整个高中数学的地位是不言而喻的。
本课是“平面向量”的入门课,具有“统领全局”的作用。
本节概念课,重要的不是向量的形式化定义及几个相关概念,而是能让学生去体会认识与研究数学新对象的方法和基本思路,进而提高提出问题,解决问题的能力,概念较多,但难度不大,学生可借鉴对物理学中的位移、力、速度等的认识来学习.二.教法学法分析:1.教法分析:本课的教学,我们力求使学生理了解向量概念的背景和形成过程,了解为什么要引入这个概念,怎样定义这个概念,怎样入手研究一个新的问题。
因此,在教学中教师应注意从宏观上为学生勾勒研究框架和总体思路,使学生能“抬头看路”,知道往哪里走,这是起始课的重要任务;微观上,引导学生通过类比,有序地给出向量的定义、讨论向量的表示、定义特殊向量、研究特殊向量的关系。
在引导学生展开对向量及其相关概念的学习过程中,应强调“让学生参与到定义概念的活动中来”,不轻易打断学生的思维和活动,恰如其分地“以问题引导学习”,在质疑——反思的过程中深化概念的理解,使概念的理解成为学生自己主动思维的结果。
高中数学人教A版必修4第二章2.1平面向量实际背景及基本概念教案设计
平面向量的物理背景及根本概念教学目标:1 .了解向量的实际背景,理解平面向量的概念和向量的几何表示.2 .掌握向量的模、零向量、单位向量、平行向量和单位向量等概念.3 .通过对向量的学习,使学生初步认识现实生活中向量和数量的区别.教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.教学难点:平行向量、相等向量和共线向量的区别和联系.教学方法:自主学习,合作探究.教学过程:一、新课引入在物理学中,位移是既有大小又有方向的量.那么,你还能举出一些这样的量吗?解析:教材图示:重力,浮力,弹力,速度,加速度.阅读教材74—76面,完成?世纪金榜?自主预习局部二、根底知识讲解向量与数量的概念向量:既有大小,又有方向的量.数量:只有大小,没有方向的量.提问:时间,路程,功是向量吗?速度,加速度是向量吗?有向线段概念:带有方向的有向线段.〔在三角函数线那里提到过〕三要素:起点,方向和长度.uuur uuur示范:有向线段AB,CD向量的有关概念〔1〕向量的表示方法:uuur uuur①有向线段:AB,CDrr r②小写英文字母:a,b,c,......注意:在字母上方打〔2〕向量的模长:〔3〕用模长定义的r1①单位向量:a图示:长度为1的一r②零向量:b图示:一个点.注意:零向量的方向是任意的,r arb三、课堂练习即时小测:有以下物理量:①质量;②温度;③角度;④弹力;⑤风速.其中可以看成是向量的有( )个个个个2.向量a 如下列图,以下说法不正确的选项是 ()uuuurB.方向是由M 指向NA.也可以用MN 表示C.起点是MD.终点是M uuuuruuuur uuuur3.假设点M 是△ABC的外心,那么向量 AM ,BM ,CM 是()A.有共同起点的向量B.相等向量C.共线向量D.模相等的向量知识点4概念〔1〕平行向量:方向相同或相反的两个非零向量叫做平行向量.rrr r式子:假设向量a 与b 平行,记作:a//b.r r规定:零向量与任一向量平行,即:0//a.〔2〕相等向量:长度相等且方向相同两个向量叫做相等向量.rrr rrrr r式子:假设向量a 与b 相等,记作:ab.〔a//b ,a b 〕.注意:相等向量一定是平行向量,反之不一定成立 .3〕共线向量:因为任意一组平行向量都可以移动到同一直线上,所以,平行向量也叫做共线向量.练习1如图,设O 是正六边形ABCDEF 的中心.分别写出图中与uuuruuuruuurOA ,OB ,OC 相等的向量.〔教材76面例2〕uuur uuur uuur uuur 思考:向量OA与FE相等吗?向量OB与AF相等吗?补充:1.假设四边形ABCD为平行四边形,那么uuur〔1〕与AB平行的向量有.uuur.〔2〕与AB相等的向量有2.四边形ABCD,那么uuuruuur uuuruuur①四边形ABCD为平行四边形AB//DC,BC//AD.②四边形ABCD为平行四边形uuur uuur uuur uuur AB DC〔或BC AD〕.作业:教材77面A组,第2,3题。
人教版高中数学必修4学案 2.1 平面向量的实际背景及基本概念
2.1 平面向量的实际背景及基本概念[学习目标] 1.能结合物理中的力、位移、速度等具体背景认识向量,掌握向量与数量的区别.2.会用有向线段作向量的几何表示,了解有向线段与向量的联系与区别,会用字母表示向量.3.理解零向量、单位向量、平行向量、共线向量、相等向量及向量的模等概念,会辨识图形中这些相关的概念.[知识链接]1.力和位移都是既有大小,又有方向的量,在物理学中常称为矢量,在数学中称为向量;而把那些只有大小,没有方向的量,在数学中称为数量,在物理学中常称为标量. 2.已知下列各量:①力;②功;③速度;④质量;⑤温度;⑥位移;⑦加速度;⑧重力;⑨路程;⑩密度.其中是数量的有②④⑤⑨⑩,是向量的有①③⑥⑦⑧. 3.向量与数量有什么联系和区别?答 联系是向量与数量都是有大小的量;区别是向量有方向且不能比较大小,数量无方向且能比较大小. [预习导引]1.向量:既有大小,又有方向的量叫做向量.2.向量的几何表示:以A 为起点、B 为终点的有向线段记作AB →. 3.向量的有关概念:(1)零向量:长度为0的向量,叫做零向量,记作0. (2)单位向量:长度等于1个单位的向量叫做单位向量. (3)相等向量:长度相等且方向相同的向量叫做相等向量.(4)平行向量(共线向量):方向相同或相反的非零向量叫做平行向量,也叫共线向量. ①记法:向量a 平行于b ,记作a ∥b . ②规定:零向量与任一向量平行.要点一 向量的概念 例1 给出下列各命题: (1)零向量没有方向; (2)若|a |=|b |,则a =b ; (3)单位向量都相等; (4)向量就是有向线段;(5)两相等向量若其起点相同,则终点也相同; (6)若a =b ,b =c ,则a =c ; (7)若a ∥b ,b ∥c ,则a ∥c ;(8)若四边形ABCD 是平行四边形,则AB →=CD →,BC →=DA →. 其中正确命题的序号是________. 答案 (5)(6)解析 (1)该命题不正确,零向量不是没有方向,只是方向不定;(2)该命题不正确,|a |=|b |只是说明这两向量的模相等,但其方向未必相同; (3)该命题不正确,单位向量只是模为单位长度1,而对方向没要求;(4)该命题不正确,有向线段只是向量的一种表示形式,但不能把两者等同起来;(5)该命题正确,因两相等向量的模相等,方向相同,故当它们的起点相同时,其终点必重合;(6)该命题正确.由向量相等的定义知,a 与b 的模相等,b 与c 的模相等,从而a 与c 的模相等;又a 与b 的方向相同,b 与c 的方向相同,从而a 与c 的方向也必相同,故a =c ; (7)该命题不正确.因若b =0,则对两不共线的向量a 与c ,也有a ∥0,0∥c ,但a c 不成立;(8)该命题不正确.如图所示,显然有AB →≠CD →,BC →≠DA →.规律方法 要充分理解与向量有关的概念,明白它们各自所表示的含义,搞清它们之间的区别是解决与向量概念有关问题的关键. 跟踪演练1 下列命题中,正确的是( ) A .a ,b 是两个单位向量,则a 与b 相等 B .若向量a 与b 不共线,则a 与b 都是非零向量 C .两个相等的向量,起点、方向、长度必须都相同 D .共线的单位向量必是相等向量 答案 B解析 若a 与b 中有一个是零向量,则a 与b 是平行向量. 要点二 向量的表示例2 在如图所示的坐标纸上(每个小方格边长为1),用直尺和圆规画出下列向量:(1)OA →,使|OA →|=42,点A 在点O 北偏东45°; (2)AB →,使|AB →|=4,点B 在点A 正东; (3)BC →,使|BC →|=6,点C 在点B 北偏东30°.解 (1)由于点A 在点O 北偏东45°处,所以在坐标纸上点A 距点O 的横向小方格数与纵向小方格数相等.又|OA →|=42,小方格边长为1,所以点A 距点O 的横向小方格数与纵向小方格数都为4,于是点A 位置可以确定,画出向量OA →如图所示.(2)由于点B 在点A 正东方向处,且|AB →|=4,所以在坐标纸上点B 距点A 的横向小方格数为4,纵向小方格数为0,于是点B 位置可以确定,画出向量AB →如图所示.(3)由于点C 在点B 北偏东30°处,且|BC →|=6,依据勾股定理可得:在坐标纸上点C 距点B的横向小方格数为3,纵向小方格数为33≈5.2,于是点C 位置可以确定,画出向量BC →如图所示.规律方法 在画图时,向量是用有向线段来表示的,用有向线段的长度表示向量的大小,用箭头所指的方向表示向量的方向.应该注意的是有向线段是向量的表示,并不是说向量就是有向线段.跟踪演练2 中国象棋中规定:马走“日”字.下图是中国象棋的半个棋盘,若马在A 处,可跳到A 1处,也可跳到A 2处,用向量AA 1→或AA 2→表示马走了“一步”.试在图中画出马在B ,C 处走了“一步”的所有情况.解 根据规则,画出符合要求的所有向量. 马在B 处走了“一步”的情况如图(1)所示; 马在C 处走了“一步”的情况如图(2)所示.要点三 相等向量与共线向量例3 如图,在正方形ABCD 中,M ,N 分别为AB 和CD 的中点,在以A ,B ,C ,D ,M ,N 为起点和终点的所有向量中,相等的向量分别有多少对?解 不妨设正方形的边长为2,则以A ,B ,C ,D ,M ,N 为起点和终点的向量中:(1)模为2的相等向量共有8对,AB →=DC →,BA →=CD →,AD →=BC →,DA →=CB →,AD →=MN →,DA →=NM →,BC →=MN →,CB →=NM →.(2)模为1的相等向量有12对,其中与AM →同向的有MB →,DN →,NC →,这四个向量组成相等的向量有6对,即AM →=MB →,AM →=DN →,AM →=NC →,MB →=DN →,MB →=NC →,DN →=NC →,同理与AM→反向的也有6对.(3)模为5的相等向量共有4对,AN →=MC →,NA →=CM →,MD →=BN →,DM →=NB →.规律方法 判断一组向量是否相等,关键是看这组向量是否方向相同,长度相等,与起点和终点的位置无关.对于共线向量,则只要判断它们是否同向或反向即可. 跟踪演练3 如图所示,O 为正方形ABCD 对角线的交点,四边形OAED 、OCFB 都是正方形. (1)写出与AO →相等的向量; (2)写出与AO →共线的向量; (3)向量AO →与CO →是否相等?解 (1)与AO →相等的向量为:OC →、BF →、ED →.(2)与AO →共线的向量为:OA →、OC →、CO →、AC →、CA →、ED →、DE →、BF →、FB →. (3)向量AO →与CO →不相等,因为AO →与CO →的方向相反,所以它们不相等.1.下列说法正确的是( ) A .零向量没有大小,没有方向 B .零向量是唯一没有方向的向量 C .零向量的长度为0D .任意两个单位向量方向相同 答案 C解析 零向量的长度为0,方向是任意的,故A ,B 错误,C 正确.任意两个单位向量的长度相等,但方向不一定相同,故D 错误.2.如图,在四边形ABCD 中,若AB →=DC →,则图中相等的向量是( ) A.AD →与CB → B.OB →与OD → C.AC →与BD → D.AO →与OC →答案 D解析 ∵AB →=DC →,∴四边形ABCD 是平行四边形,∴AC 、BD 互相平分,∴AO →=OC →. 3.如图,在△ABC 中,若DE ∥BC ,则图中是共线向量的有________.答案 ED →与CB →,AD →与BD →,AE →与CE →4.在四边形ABCD 中,AB →∥CD →且|AB →|≠|CD →|,则四边形ABCD 的形状是________. 答案 梯形解析 ∵AB →∥CD →且|AB →|≠|CD →|,∴AB ∥DC ,但AB ≠DC ,∴四边形ABCD 是梯形.1.向量是既有大小又有方向的量,从其定义可以看出向量既有代数特征又有几何特征,因此借助于向量,我们可以将某些代数问题转化为几何问题,又可以将几何问题转化为代数问题,故向量能起数形结合的桥梁作用.2.共线向量与平行向量是一组等价的概念.平行向量是指向量所在直线平行或重合即可,是一种示意平行.3.注意两个特殊向量——零向量和单位向量,零向量与任何向量都平行,单位向量有无穷多个,起点相同的所有单位向量的终点在平面内形成一个单位圆.一、基础达标 1.有下列说法:①若向量a 与向量b 不平行,则a 与b 方向一定不相同; ②若向量AB →,CD →满足|AB →|>|CD →|,且AB →与CD →同向,则AB →>CD →; ③若|a |=|b |,则a ,b 的长度相等且方向相同或相反; ④由于零向量方向不确定,故其不能与任何向量平行. 其中,正确说法的个数是( ) A .1 B .2 C .3 D .4 答案 A解析 对于①,由共线向量的定义知,两向量不平行,方向一定不相同,故①正确; 对于②,因为向量不能比较大小,故②错误;对于③,由|a |=|b |,只能说明a ,b 的长度相等,确定不了它们的方向,故③错误; 对于④,因为零向量与任一向量平行,故④错误.2.下列说法正确的是( )A .数量可以比较大小,向量也可以比较大小B .方向不同的向量不能比较大小,但同向的可以比较大小C .向量的大小与方向有关D .向量的模可以比较大小 答案 D解析 向量不能比较大小,但是向量的模是实数,可以比较大小. 3.给出下列五个命题:①两个向量相等,则它们的起点相同,终点相同; ②若|a |=|b |,则a =b ;③若AB →=DC →,则四边形ABCD 是正方形; ④在平行四边形ABCD 中,一定有AB →=DC →; ⑤若m =n ,n =k ,则m =k . 其中不正确的命题的个数为( ) A .2 B .3 C .4 D .5答案 B解析 不正确的是①②③.4.设O 是正方形ABCD 的中心,则向量AO →,BO →,OC →,OD →是( ) A .相等的向量 B .平行的向量 C .有相同起点的向量 D .模相等的向量 答案 D解析 这四个向量的模相等.5.若a 为任一非零向量,b 为模为1的向量,下列各式:①|a |>|b |;②a ∥b ;③|a |>0;④|b |=±1,其中正确的是( ) A .①④ B .③ C .①②③ D .②③ 答案 B解析 a 为任一非零向量,故|a |>0.6.如图,等腰梯形ABCD 中,对角线AC 与BD 交于点P ,点E ,F 分别在两腰AD ,BC 上,EF 过点P ,且EF ∥AB ,则( )A.AD →=BC →B.AC →=BD →C.PE →=PF →D.EP →=PF → 答案 D解析 由平面几何知识知,AD →与BC →方向不同,故AD →≠BC →;AC →与BD →方向不同,故AC →≠BD →;PE →与PF →模相等而方向相反,故PE →≠PF →;EP →与PF →模相等且方向相同, ∴EP →=PF →.7.如图,在四边形ABCD 中,AB →=DC →,N 、M 分别是AD 、BC 上的点,且CN →=MA →. 求证:DN →=MB →.证明 ∵AB →=DC →,∴|AB →|=|CD →|且AB ∥CD , ∴四边形ABCD 是平行四边形, ∴|DA →|=|CB →|,且DA ∥CB . 又∵DA →与CB →的方向相同,∴CB →=DA →.同理可证,四边形CNAM 是平行四边形, ∴CM →=NA →.∵|CB →|=|DA →|,|CM →|=|NA →|, ∴|DN →|=|MB →|.∵DN ∥MB 且DN →与MB →的方向相同,∴DN →=MB →. 二、能力提升8.下列结论中,正确的是( )A .2 010 cm 长的有向线段不可能表示单位向量B .若O 是直线l 上的一点,单位长度已选定,则l 上有且仅有两个点A ,B ,使得OA →,OB →是单位向量C .方向为北偏西50°的向量与南偏东50°的向量不可能是平行向量D .一个从A 点向东走500米到达B 点,则向量AB →不能表示这个人从A 点到B 点的位移答案 B解析 一个单位长度取作2 010 cm 时,2 010 cm 长的有向线段刚好表示单位向量,故A 错误;B 正确;C 中两向量为平行向量;D 选项的AB →表示从点A 到点B 的位移. 9.如图,已知四边形ABCD 为正方形,△CBE 为等腰直角三角形,回答下列问题:(1)图中与AB →共线的向量有_____________________________________; (2)图中与AB →相等的向量有____________; (3)图中与AB →模相等的向量有____________. 答案 (1)BA →,BE →,EB →,AE →,EA →,CD →,DC →(2)DC →,BE →(3)BA →,BE →,EB →,DC →,CD →,AD →,DA →,BC →,CB →10.一辆汽车从A 点出发向西行驶了100 km 到达B 点,然后又改变方向向北偏西40°走了200 km 到达C 点,最后又改变方向,向东行驶了100 km 到达D 点. (1)作出向量AB →、BC →、CD →; (2)求|AD →|.解 (1)向量AB →、BC →、CD →如图所示:(2)由题意,易知AB →与CD →方向相反,故AB →与CD →共线,又|AB →|=|CD →|,∴在四边形ABCD 中,AB 綊CD .∴四边形ABCD 为平行四边形. ∴AD →=BC →,∴|AD →|=|BC →|=200 km.11.一位模型赛车手遥控一辆赛车沿正东方向向前行进1米,逆时针方向转变α度,继续按直线向前行进1米,再逆时针方向转变α度,按直线向前行进1米,按此方法继续操作下去.(注:至少转变两次方向)(1)按1∶100比例作图说明当α=45°时,操作几次时赛车的位移为零; (2)按此法操作使赛车能回到出发点,α应满足什么条件? 解 (1)如图所示,操作8次后,赛车的位移为零;(2)要使赛车能回到出发点,只需赛车的位移为零,按(1)的方式作图,则所作图形是内角为180°-α的正多边形,故有:n (180°-α)=(n -2)180°.∴即α=360°n,n 为不小于3的整数.12.如图平面图形中,已知AA ′→=BB ′→=CC ′→.求证: (1)△ABC ≌△A ′B ′C ′; (2)AB →=A ′B ′→,AC →=A ′C ′→. 证明 (1)∵AA ′→=BB ′→, ∴|AA ′→|=|BB ′→|,且AA ′→∥BB ′→. 又∵A 不在BB ′→上,∴AA ′綊BB ′. ∴四边形AA ′B ′B 是平行四边形. ∴|AB →|=|A ′B ′→|.同理|AC →|=|A ′C ′→|,|BC →|=|B ′C ′→|. ∴△ABC ≌△A ′B ′C ′.(2)∵四边形AA ′B ′B 是平行四边形, ∴AB →∥A ′B ′→,且|AB →|=|A ′B ′→|. ∴AB →=A ′B ′→.同理可证AC →=A ′C ′→.三、探究与创新13.如图,在平行四边形ABCD 中,O 是两对角线AC ,BD 的交点,设点集S ={A ,B ,C ,D ,O },向量集合T ={MN →|M ,N ∈S ,且M ,N 不重合},试求集合T 中元素的个数.解 由题意知,集合T 中的元素实质上是S 中任意两点连成的有向线段,共有20个,即AB →,AC →,AD →,AO →;BA →,BC →,BD →,BO →;CA →,CB →,CD →,CO →;DA →,DB →,DC →,DO →;OA →,OB →,OC →,OD →.由平行四边形的性质可知,共有8对向量相等,即AB →=DC →,AD →=BC →,DA →=CB →,BA →=CD →,AO →=OC →,OA →=CO →,DO →=OB →,OD →=BO →. ∵集合中元素具有互异性,高中数学-打印版∴集合T中的元素共有12个.精校版。
人教版数学必修四第二章2.1 平面向量的实际背景及基本概念 同步教学设计
2.1 平面向量的实际背景及基本概念(教学设计)[教学目标]一、知识与能力:理解向量、零向量、单位向量、平行向量的概念:掌握向量的几何表示,会用字母表示向量;理解相等向量与共线向量的含义.二、过程与方法:通过力和力的分析等实例,了解向量的实际背景;渗透数形结合的数学思想方法.三、情感、态度与价值观:培养对现实世界中的数学现象的好奇心,学习从数学角度发现和提出问题.[教学重点]向量的概念,向量的几何表示.[教学难点]向量的概念.[教学要求]向量概念的教学应从物理背景和几何背景入手,物理背景是力、速度、加速度等概念,几何背景是有向线段。
了解这些物理背景和几何背景,对于学生理解向量和运用向量解决实际问题都是十分重要的。
[教学过程]一、创设情境,新课引入问题 1:我们已经知道位移是既有大小,又有方向的量。
请再举出一些这样的量.学生思考讨论,举出物理学中既有大小,又有方向的量,例如力,包括重力G 、浮力F 、拉力F 等。
在学生讨论的基础上,抽象概括出向量的概念:数学中,把既有大小,又有方向的量叫做向量,而把那些只有大小,没有方向的量,称为数量(或标量)。
教师提问,学生回答,并再次强调向量的两要素。
有学生总结判断方法。
课堂练习1:判定下列各量中哪些是向量:(1)浮力;(2)密度;(3)质量;(4)路程;(5)面积;(6)电流强度.二、师生互动,新课讲解:向量的表示1.几何表示:用有向线段表示向量,以A 为起点,B 为终点的向量记作向量AB u u u r ,注意起点在前,终点在后。
2.字母表示:印刷体可用黑体小写字母,,a b c L 表示向量,手写时写成带箭头的小写字母,如a r 。
3.图示表示:4.向量的模向量的长度称为向量的模,如向量AB u u u r 的模记作||AB u u u r ,向量a 的模记作||a 。
零向量:长度等于0的向量叫做零向量,记作0。
单位向量:长度等于1的向量叫做单位向量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:2.1.1向量的物理背景与概念
2.1.2向量的几何表示
2.1.3相等向量与共线向量
教学目的:
1.理解向量的概念,掌握向量的几何表示;
2.了解零向量、单位向量、平行向量、相等向量等概念,并会辨认图形中的相等向量或出与某一已知向量相等的向量;
3.了解平行向量的概念.
教学重点:向量概念、相等向量概念、向量几何表示
教学难点:向量概念的理解
授课类型:新授课
课时安排:1课时
教具:多媒体、实物投影仪
内容分析:
向量这一概念是由物理
学和工程技术抽象出来的,
反过来,向量的理论和方法,
又成为解决物理学和工程技
术的重要工具,向量之所以有用,关键是它具有一套良好的运算
性质,通过向量可把空间图形的性质转化为向量的运算,这样通
过向量就能较容易地研究空间的直线和平面的各种有关问题
向量不同于数量,它是一种新的量,关于数量的代数运算在
向量范围内不都适用因此,本章在介绍向量概念时,重点说明了
向量与数量的区别,然后又重新给出了向量代数的部分运算法则,
包括加法、减法、实数与向量的积、向量的数量积的运算法则等之后,
又将向量与坐标联系起来,把关于向量的代数运算与数量(向量的坐标)
的代数运算联系起来,这就为研究和解决有关几何问题又提供了两种
方法——向量法和坐标法
教学过程:
一、复习引入:
在现实生活中,我们会遇到很多量,其中一些量在取定单位后用一个实数就可以表示出来,如长度、质量等.还有一些量,如我们在物理中所学习的位移,是一个既有大小又有方向的量,这种量就是我们本章所要研究的向量.
向量是数学中的重要概念之一,向量和数一样也能进行运算,而且用向量的有关知识还能有效地解决数学、物理等学科中的很多问题,在这一章,我们将学习向量的概念、运算及其简单应用.这一节课,我们将学习向量的有关概念.
二、讲解新课:
1.向量的概念:我们把既有大小又有方向的量叫向量
注意:1︒数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小
2︒从19世纪末到20世纪初,向量就成为一套优良通性的数学体系,用以研究空间性
质
2.向量的表示方法:
①用有向线段表示;
②用字母a、b等表示;
③用有向线段的起点与终点字母:AB;
注意:起点一定写在终点的前面
④向量AB的大小――长度称为向量的模,记作|AB|.
3.零向量、单位向量概念:
①长度为0的向量叫零向量,记作00的方向是任意的
注意0与0的区别
②长度为1个单位长度的向量,叫单位向量.
说明:零向量、单位向量的定义都是只限制大小,不确定方向.
4.平行向量定义:
①方向相同或相反的非零向量叫平行向量;
②我们规定0与任一向量平行.
说明:(1)综合①、②才是平行向量的完整定义;
(2)向量a、b、c平行,记作a∥b∥c.
5.相等向量定义:
长度相等且方向相同的向量叫相等向量.
说明:(1)向量a与b相等,记作a=b;
(2)零向量与零向量相等;
(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起
.......
点无关
....
6.共线向量与平行向量关系:
平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上.
说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;
(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.
探究:1.对向量概念的理解
要深刻理解向量的概念,就要深刻理解有向线段这一概念.在线段AB的两个端点中,我们规定了一个顺序,A为起点,B为终点,我们就说线段AB具有射线AB的方向,具有方向的线段就叫做有向线段.通常有向线段的终点要画箭头表示它的方向,以A为起点,以B为终点的有向线段记为AB,需要学生注意的是:AB的字母是有顺序的,起点在前终点在后,
所以我们说有向线段有三个要素:起点、方向、长度.
既有大小又有方向的量,我们叫做向量,有些向量既有大小、方向、作用点(起点),比如力;有些向量只有大小、方向,比如位移、速度,我们现在所学的向量一般指后者.
2.向量与有向线段的区别:
(1)向量是自由向量,只有大小和方向两个要素;与起点无关:只要大小和方向相同,则这两个向量就是相同的向量;
(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段
三、讲解范例:
例1判断下列命题是否正确,若不正确,请简述理由.
①向量AB与CD是共线向量,则A、B、C、D四点必在一直线上;
②单位向量都相等;
③任一向量与它的相反向量不相等;
④四边形ABCD是平行四边形的充要条件是AB=DC
⑤模为0是一个向量方向不确定的充要条件;
⑥共线的向量,若起点不同,则终点一定不同.
解:①不正确.共线向量即平行向量,只要求方向相同或相反即可,并不要求两个向量AB、AC在同一直线上.
②不正确.单位向量模均相等且为1,但方向并不确定.
③不正确.零向量的相反向量仍是零向量,但零向量与零向量是相等的.
④、⑤正确.⑥不正确.如图AC与BC共线,虽起点不同,但其终点却相同.
评述:本题考查基本概念,对于零向量、单位向量、平行向量、共线向量的概念特征及相互关系必须把握好.
例2下列命题正确的是()
A.a与b共线,b与c共线,则a与c也共线
B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点
C.向量a与b不共线,则a与b都是非零向量
D.有相同起点的两个非零向量不平行
解:由于零向量与任一向量都共线,所以A不正确;由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B不正确;向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D不正确;对于C,其条件以否定形式给出,所以可从其逆否命题来入手考虑,
假若a与b不都是非零向量,即a与b至少有一个是零向量,而由零向量与任一向量都共线,可有a与b共线,不符合已知条件,所以有a与b都是非零向量,所以应选C.
评述:对于有关向量基本概念的考查,可以从概念的特征入手,也可以从反面进行考虑,要启发学生注意这两方面的结合.
例3下列命题正确的是( )如图,设O 是正六边形ABCDEF 的中心,分别写出图中与OA OB OC 、、相等的向量. 解:OA CB DO == OB DC EO
OC AB FO
==== 四、课堂练习:
五、小结 :向量及向量的有关概念、表示方法,还知道有两个特殊向量,最后学了向量间的两种关系,即平行向量(共线向量)和相等向量
六、课后作业:
七、板书设计(略)。