圆锥曲线的离心率问题
圆锥曲线离心率问题浅析
圆锥曲线离心率问题浅析
圆锥曲线离心率一直是广大学子们在学术研究中的热门话题,离心率是衡量曲线数学模型的核心指标之一。
圆锥曲线离心率指的是圆锥曲线与它的定位轴之间的离心半径除以定位轴长度的比值,以及一个虚拟圆锥曲线所具有的离心率作为特征。
圆锥曲线的离心率可以通过三个量来表示,即端点的坐标、离心率的有限值以及定位轴的长度,而其中有限值的大小就决定了离心率的大小。
因此,要获得较高的圆锥曲线离心率,就需要选取有限值较大的数据,同时还要注意端点的坐标选取,使得它与定位轴之间的距离和定位轴长度之比也较大,以期获得更高精度的模型。
最后要提醒的是,圆锥曲线离心率的研究并不是一项休闲活动,需要用严谨的数学思维和大量的细心勤劳,才能有所收获。
圆锥曲线 重点 3:圆锥曲线的离心率问题 - 解析
微专题3:圆锥曲线的离心率问题离心率是圆锥曲线的一个重要几何性质,一方面刻画了椭圆,双曲线的形状,另一方面也体现了参数,a c 之间的联系。
对离心率的考查集中代表了就是对圆锥曲线基本性质的考查,因此它在高考小题中出现的频率很高,需要重点掌握。
主要题型有两类:求离心率;求离心率范围题型一 求离心率知识梳理:1、离心率公式:ce a=(其中c 为圆锥曲线的半焦距)变式有: 椭圆e =c a = 2c 2a = |F 1F 2||PF 1+PF 2| = sinF 1PF 2sinPF 2F 1+sinPF 1F 2 或者e =c a = √1−b 2a 2∈(0,1)双曲线e =c a = 2c 2a = |F 1F 2||PF 1−PF 2| = sinF 1PF 2sinPF 2F 1− sinPF 1F 2或者e =c a =1+b 2a2∈(1,+∞) 2、圆锥曲线中,,a b c 的几何性质及联系3、求离心率的方法:求椭圆和双曲线的离心率主要围绕寻找参数,,a b c 的比例关系(只需找出其中两个参数的关系即可) 方法一:利用几何性质求离心率【例1-1】设M 为椭圆22221(0)x y a b a b+=>>上一点,F 1、F 2为椭圆的焦点,若∠MF 1F 2=75°,∠MF 2F 1=15°,求椭圆的离心率 【解析】 在△MF 1F 2中,由正弦定理得12122112||||2sin sin sin MF MF cF MF MF F MF F ==∠∠∠,即12||||2sin 90sin15sin 75MF MF c ==︒︒︒∴2|1||2|2sin 90sin15sin 75sin15sin 75c MF MF a +==︒︒+︒︒+︒,∴1sin15sin 75c e a ===︒+︒【例1-2】设12,F F 分别是椭圆()2222:10x y C a b a b+=>>的左、右焦点,点P 在椭圆C 上,线段1PF 的中点在y 轴上,若1230PF F ∠=,则椭圆的离心率为( )A .33 B .36C .13D .16思路:本题存在焦点三角形12PF F ,由线段1PF 的中点在y 轴上,O 为12F F 中点可得2PF y ∥轴,从而212PF F F ⊥,又因为1230PF F ∠=,则直角三角形12PF F 中,1212::2:1:3PF PF F F =,且12122,2a PF PF c F F =+=,所以12122323F F c c e a a PF PF ∴====+ 规律方法:如果题目中存在焦点三角形(曲线上的点与两焦点连线组成的三角形),那么可考虑寻求焦点三角形三边的比例关系,进而两条焦半径与a 有关,另一条边为焦距,从而可求解【变式1】设21F F ,分别为双曲线)0,0(12222>>=-b a b y a x 的左、右焦点,双曲线上存在一点P 使得,49||||,3||||2121ab PF PF b PF PF =⋅=+则该双曲线的离心率为 A.34 B.35 C.49D.3 思路:条件与焦半径相关,所以联想到122PF PF a -=,进而与,49||||,3||||2121ab PF PF b PF PF =⋅=+找到联系,计算出,a b 的比例,从而求得e 解:122PF PF a -=()()221212124PF PF PFPF PF PF ∴+--=⋅即22229499940b a ab b ab a -=⇒--=29940b b a a ⎛⎫∴-⋅-= ⎪⎝⎭ 解得:13b a =-(舍)或43b a =::3:4:5a b c ∴= 53c e a ∴== 【变式2】椭圆()222102312x y b b +=<<与渐近线为20x y ±=的双曲线有相同的焦点12,F F ,P 为它们的一个公共点,且1290F PF ∠=,则椭圆的离心率为________思路:本题的突破口在于椭圆与双曲线共用一对焦点,设122F F c =,在双曲线中,''''1::2:1:52b a bc a =⇒=,不妨设P 在第一象限,则由椭圆定义可得:1243PF PF +=,由双曲线定义可得:'12425PF PF a c -==,因为1290F PF ∠=,222124PF PF c ∴+=而()()2222121212=2PF PF PF PF PF PF ++-+代入可得:2216488105c c c +=⇒= 306c e a ∴==方法二:利用坐标运算【例2】如图所示,已知双曲线()222210x y a b a b-=>>的右焦点为F ,过F 的直线l 交双曲线的渐近线于,A B 两点,且直线l 的倾斜角是渐近线OA 倾斜角的2倍,若2AF FB =,则该双曲线的离心率为( ) A.324 B. 233 C. 305 D. 52思路:本题没有焦半径的条件,考虑利用点的坐标求解,则将所涉及的点坐标尽力用,,a b c 表示,再寻找一个等量关系解出,,a b c 的关系。
圆锥曲线的离心率问题的求解
圆锥曲线的离心率问题的求解一、由曲线图形的性质求离心率的大小或范围问题例1、(1)已知双曲线22xa-y2=1(a>0)的一条准线为x=1.5,则该双曲线的离心率为(2)设椭圆的两个焦点分别为F1、、F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率是.(3)点P(-3,1)在椭圆x2/a2+y2/b2=0(a>b>0)的左准线上.过点P且方向为a=(2,-5)的光线,经直线y=-2反射后通过椭圆的左焦点,则这个椭圆的离心率为.(4)已知双曲线x2/a2+y2/b2 = 0 (a>0,b>0)的右焦点为F,若过点F且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是(5)已知双曲线22xa-y2=1(a>1)的两条渐近线的夹角为60°,则双曲线的离心率为(6)过标准型双曲线的右焦点作其在第一三象限的渐近线的垂线,垂足为P,若此垂线与双曲线的左右两支个交于一点,则双曲线的离心率的范围为.(7) (浙江) 过标准型双曲线的左焦点且垂直于x轴的直线与双曲线相交于M、N两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_________.(8)设标准型双曲线的右焦点为F,右准线L与两条渐近线交于P、Q两点,如果ΔPQF是直角三角形,则双曲线的离心率e= .(9)过双曲线M:x2-y2/b2=1的左顶点A作斜率为1的直线L,若L与双曲线M的两条渐近线分别相交于B、C,且|AB|=|BC|,则双曲线M的离心率是(10)在给定椭圆中,过焦点且垂直于长轴的弦长为2,焦点到相应准线的距离为2,则该椭圆的离心率为.例2、已知A、B是椭圆长轴的两个端点,如果椭圆上存在一点Q,使∠AQB=120°,求椭圆离心率的取值范围。
练习:椭圆中心在原点,焦点在x轴上,若存在过椭圆左焦点的直线L交椭圆于P、Q两点,使得OP⊥OQ,求离心率e 的取值范围。
圆锥曲线中的离心率的问题(含解析)
圆锥曲线中的离心率的问题一、题型选讲题型一 、求离心率的值求离心率的值关键是找到等式关系,解出a 与c 的关系,进而求出离心率。
常见的等式关系主要有:1、题目中给出等式关系;2、通过几何关系如垂直或者夹角的关系得出等式关系;3、挖掘题目中的等式关系。
例1、【2019年高考全国Ⅱ卷理数】设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率为A BC .2D例2、(2020届山东省泰安市高三上期末)已知圆22:10210C x y y +-+=与双曲线22221(0,0)x y a b a b-=>>的渐近线相切,则该双曲线的离心率是( )A B .53C .52D例3、(2020届山东省九校高三上学期联考)已知直线1l ,2l 为双曲线M :()222210,0x y a b a b-=>>的两条渐近线,若1l ,2l 与圆N :2221x y 相切,双曲线M 离心率的值为( )A BCD .3例4、(2020届山东省德州市高三上期末)双曲线22221x y a b-=(0a >,0b >)的右焦点为()1F ,点A 的坐标为()0,1,点P 为双曲线左支上的动点,且1APF ∆周长的最小值为8,则双曲线的离心率为( )AB C .2D .例5、(2020届山东省潍坊市高三上期末)已知点P 为双曲线()2222:10,0x y C a b a b-=>>右支上一点,12,F F 分别为C 的左,右焦点,直线1PF 与C 的一条渐近线垂直,垂足为H ,若114PF HF =,则该双曲线的离心率为( ) A .15 B .21 C .53D .73例6、(2020·浙江省温州市新力量联盟高三上期末)已知双曲线22212x y a -=的一条渐近线的倾斜角为6π,则双曲线的离心率为( ) A .233B .263C .3D .2题型二、求离心率的范围求离心率的值关键是找到不等关系,解出a 与c 的关系,进而求出离心率的范围。
求解圆锥曲线离心率问题的两种途径
思路探寻离心率是圆锥曲线的基本性质之一.圆锥曲线的离心率问题常以填空或选择题的形式出现,题目的难度适中.这类问题的常见命题形式有:(1)求椭圆、双曲线的离心率;(2)求圆锥曲线离心率的取值范围、最值.本文主要探讨一下求解圆锥曲线离心率问题的两种途径:构造齐次方程和利用离心率公式.一、构造齐次方程在求解圆锥曲线的离心率问题时,我们通常可根据已知的条件和圆锥曲线的方程,得到关于a 2、b 2、c 2或a 、b 、c 的等量关系.那么我们就可以结合椭圆、双曲线的方程中参数a 、b 、c 之间的关系a 2+b 2=c 2或a 2-b 2=c 2,将关于a 2、b 2、c 2或a 、b 、c 的等量关系进行变形,构造出关于a 、b 、c 齐次方程,将问题转化为求c 2a 2,进而求得圆锥曲线的离心率e .例1.已知点A 、B 是椭圆C :x 2a 2+y2b2=1()a >b >0长轴上的两个顶点,点P 在椭圆上(异于A 、B 两点).若直线PA 、PB 斜率之积为a -4c3a,则椭圆的离心率为().A.13B.14C.23D.34解:设点P 的坐标为()m ,n ,则m 2a 2+n 2b 2=1,m 2-a 2=-a 2n 2b 2,设A ()-a ,0,B ()a ,0,则k PA ∙k PB =n m +a ∙n m -a =n 2m 2-a 2=n 2-a 2n 2b 2=-a 2b2=-a -4c 3a ,整理得3c 2+4ac -4a 2=0,即3e 2+4e -4=0,解得e =23或e =-2(舍去),故答案为选项C .解答本题,需先根据椭圆的方程和直线的斜率公式建立关于a 、b 、c 的方程;然后根据椭圆的a 、b 、c 之间的关系a 2+b 2=c 2,将所得的关系式变形为关于a 、c 的齐次方程3c 2+4ac -4a 2=0,通过解方程求得e 的值.例2.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)与过原点的直线l 交于P 、Q 两点(P 在第一象限),过点P 作l 的垂线,与双曲线交于另一个点A ,直线QA 与x 轴交于点B ,若点B 的横坐标为点Q 横坐标的两倍,则双曲线的离心率为______.解:由题意可知,直线PQ 的斜率存在且不为零,设直线PQ :y =kx ()k ≠0,设点P ()t ,kt ,得点Q ()-t ,-kt ,点B ()-2t ,0,∵AP ⊥PQ ,∴k AP =-1k,∴直线AP :y -kt =-1k()x -t ,又∵k AQ =k BQ =kt -2t +t=-k,∴直线AQ :x =-1ky -2t ,由ìíîïïy -kt =-1k()x -t ,x =-1k y -2t ,可得ìíîïïïïx =-3k 2t +tk 2-1,y =kt ()3+k 2k 2-1,即A æèççöø÷÷-t ()3k 2+1k 2-1,kt ()k 2+3k 2-1,∵点A 在双曲线上,∴t 2()3k 2+12a 2()k 2-12-k 2t 2()k 2+32b 2()k 2-12=1,又∵P 在双曲线上,∴t 2a 2-k 2t 2b 2=1,∴t 2=a 2b 2b 2-a 2k 2,可得b 2()3k 2+12()k2-12()b 2-a 2k2-k 2a 2()k 2+32()b 2-a 2k 2()k2-12=1,化简得b 2()8k 4+8k 2=a 2k 2()8k 2+8,50思路探寻∵k≠0,∴b2=a2,∴a2=c2-a2,可得c2a2=2,即双曲线的离心率e=2.本题较为复杂,我们需首先结合直线AP、PQ的方程和双曲线的方程建立关于k、t、b、a的关系式;然后结合双曲线中a、b、c之间的关系a2+b2=c2,通过消元、代换,得到关于a、c的齐次方程,进而求得离心率e的值.二、利用公式法公式法是求解圆锥曲线离心率问题的重要方法,主要是利用离心率公式e=c a来求圆锥曲线的离心率.在解题时,可先灵活运用圆锥曲线的定义、几何性质列出关于a、b、c的关系式;然后通过移项、化简等方式,将关系式转化为关于a、c的关系式;最后根据公式e=c a求出离心率的值.例3.如图1,已知F1、F2分别是曲线C:x2a2-y2b2=1(a>0,b>0)的左右焦点,过点F2的直线与双曲线C的右支交于点P、Q两点,若PQ⊥PF1,||PQ=||PF1,则双曲线C的离心率为().图1A.6-3B.5-22C.5+22D.1+22解:因为PQ⊥PF1,||PQ=||PF1,由双曲线的定义可得||PF1-||PF2=||PQ-||PF2=||QF2=2a,||QF1-||QF2=2a,所以||QF1=4a,由∠F1QF2=π4,得||F1F2=2c,在△QF1F2中,由余弦定理可得16a2+4a2-2×4a×2a=4c2,化简得e==5-22.故答案为选项C.我们根据已知条件,利用双曲线的定义、余弦定理得到a、c等量关系式,即可根据离心率公式直接求得双曲线的离心率.例4.如图2,已知F1、F2分别为双曲线C:x2a2-y2b2=1(a>0,b>0)的左右焦点,过点F1的直线与双曲线交左支于A、B两点,且||AF1=2||BF1,以点O为圆心,OF2为半径的圆经过点B,则椭圆C的离心率为_____.图2解:由题意可得∠F1BF2=90°,设||BF1=m,||BF2=m+2a,||AF1=2m,则||AF2=2m+2a,||AB=3m,在Rt△ABF2中,由勾股定理可得()2a+m2+()3m2=()2m+2a2,解得m=23a,则||BF1=2a3,||BF2=8a3,在Rt△F1BF2中,由勾股定理可得æèöø2a32+æèöø8a32=()2c2,化简得c=,所以椭圆的离心率为e=ca=.在解答本题时,要先仔细研究图形,结合圆的几何性质以及椭圆的定义找出a、b、c之间的关系;然后利用勾股定理得到关于a、c的关系式;最后将其代入圆锥曲线的离心率公式中,就能得到椭圆的离心率.相比较而言,公式法比较直接、简单,但需灵活运用圆锥曲线的性质和定义;而齐次化法较为复杂,运用该方法解题运算量较大.同学们需反复练习,领悟其中的要义,从而高效地解答问题.(作者单位:云南省曲靖市第二中学)51。
圆锥曲线离心率专题 历年真题
圆锥曲线离心率专题历年真题1.题目:已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b<0)$的右焦点为F,若过点F且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是?答案:D.(2,+∞)改写:双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b<0)$的右焦点为F。
过点F且倾斜角为60°的直线与双曲线的右支有且只有一个交点,求此双曲线离心率的取值范围。
答案为D.(2,+∞)。
2.题目:过双曲线M:$x-\frac{y^2}{b^2}=1$的左顶点A作斜率为1的直线l,若l与双曲线M的两条渐近线分别相交于B、C,且$|AB|=|BC|$,则双曲线M的离心率是?答案:$\frac{10}{3}$改写:双曲线M:$x-\frac{y^2}{b^2}=1$的左顶点为A。
作斜率为1的直线l过点A,与双曲线M的两条渐近线分别相交于B、C,且$|AB|=|BC|$,求双曲线M的离心率。
答案为$\frac{10}{3}$。
3.题目:方程$2x-5x+2=$的两个根可分别作为()A.一椭圆和一双曲线的离心率C.一椭圆和一抛物线的离心率B.两抛物线的离心率D.两椭圆的离心率答案:无法确定改写:方程$2x-5x+2=$的两个根可分别作为哪些图形的离心率?答案无法确定。
4.题目:已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的一条渐近线方程为$y=x$,则双曲线的离心率为?答案:$\frac{\sqrt{3}}{3}$改写:已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的一条渐近线方程为$y=x$,求双曲线的离心率。
答案为$\frac{\sqrt{3}}{3}$。
5.题目:已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>2)$的两条渐近线的夹角为$\frac{\pi}{3}$,则双曲线的离心率为?答案:D.$\frac{3}{\sqrt{23}}$改写:已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>2)$的两条渐近线的夹角为$\frac{\pi}{3}$,求双曲线的离心率。
圆锥曲线中求离心率的值与范围的问题(共28张PPT)
分析:在椭圆内的所有焦点三角形,当顶点 P 与短轴重合时,此时面积最大 Smax b
解析:注意,凡是经过原点的直线与椭圆或双曲线相交于两点时,这两点的位置是对
的,本题目中 ABF2 和 AF1F2 是全等的,因此 SABF2 SAF1F2 故当点 A 位于短轴的交点处时,面积最大 Smax bc
这两个区域内直线斜率的取值范围。
求离心率范围问题
②过焦点的直线与双曲线交点个数问题
例
12:已知双曲线 x2 a2
y2 b2
1的右焦点为
F,若过点
F
且倾斜角为 60
的直线与双曲线
的右支有且只有一个交点,则此双曲线离心率的取值范围为_________.
解析:过双曲线的右焦点可能与右支的交点个数为 1 个或 2 个,取决于这条直线和右渐
2a PF2 PF2
注意 PF2 为焦半径,因此 a c PF2 a c
所以不等关系就能找出来了,解不等式可得 2 1 e 1
离心率范围问题
(2)焦点三角形顶角的取值范围:当 P 点处于 B 位置时,顶角最大,例:
例
10:设
P
是椭圆
x2 a2
y2 b2
1上一点,且 F1PF2
求离心率范围问题
和求离心率的值相似,求解离心率的取值范围问题依旧是需要建立一个不等 关系,且不等关系中含有 a,b, c 或数字的形式,至于如何建立不等关系,可总结为四
种思考方向:
1.从圆锥曲线本身所具有的不等关系入手,以椭圆为例:
(1)焦半径的取值范围为 a c PF1 a c .
求离心率范围问题
例
7:椭圆
x2 a2
高考复习圆锥曲线中的离心率问题(含详细答案)
圆锥曲线中的离心率问题(答案)圆锥曲线中的离心率问题(答案)一、直接求出a 、c ,求解e 已知标准方程或a 、c 易求时,可利用离心率公式ace =来求解。
来求解。
例1. 过双曲线C :)0b (1by x 222>=-的左顶点A 作斜率为1的直线l ,若l 与双曲线M的两条渐近线分别相交于点B 、C ,且|AB|=|BC|,则双曲线M 的离心率是(的离心率是( )A. 10B. 5C. 310D. 25 分析:这里的1b ,c 1a 2+==,故关键是求出2b ,即可利用定义求解。
,即可利用定义求解。
解:易知A (-1,0),则直线l 的方程为1x y +=。
直线与两条渐近线bx y -=和bx y =的交点分别为B )1b b ,1b 1(++-、C )1b b ,1b 1(--,又|AB|=|BC|,可解得9b 2=,则10c =故有10ac e ==,从而选A 。
二、变用公式,整体求出e 例2. 已知双曲线)0b ,0a (1by a x 2222>>=-的一条渐近线方程为x 34y =,则双曲线的离心率为(心率为( )A. 35B. 34C. 45D. 23 分析:本题已知=a b 34,不能直接求出a 、c ,可用整体代入套用公式。
,可用整体代入套用公式。
解:由22222222k 1a b 1a b a ab a ace +=+=+=+==(其中k 为渐近线的斜率)。
这里34a b =,则35)34(1a c e 2=+==,从而选A 。
三、第二定义法三、第二定义法由圆锥曲线的统一定义(或称第二定义)知离心率e 是动点到焦点的距离与相应准线的距离比,特别适用于条件含有焦半径的圆锥曲线问题。
距离比,特别适用于条件含有焦半径的圆锥曲线问题。
例 3. 在给定椭圆中,过焦点且垂直于长轴的弦长为2,焦点到相应准线的距离为1,则该椭圆的离心率为(则该椭圆的离心率为( )A. 2B. 22C. 21D. 42解:由过焦点且垂直于长轴的弦又称为通径,设焦点为F ,则x F M ^轴,知|MF|是通径的一半,则有22|MF |=。
圆锥曲线离心率及范围问题
因为 MH
OF2 ,所以, OF2
MH
OM
MF2 , MH
ab c
,即 M
点纵坐标为
ab c
,
将M
点纵坐标带入圆的方程中可得
x2
a2b2 c2
b2
,解得 x
b2 c
,M
b2
c
,
ab c
,
将M
b4
点坐标带入双曲线中可得
a2c2
a2 c2
1,
化简得 b4 a4 a2c2 , c2 a2 2 a4 a2c2 , c2 3a2 , e c 3 ,选 D. a
PF2 F1 60 ,则 C 的离心率为(
A.1 3 2
B. 2 3
) C. 3 1 2
D. 3 1
【答案】 3 1
【解析】设椭圆焦点在 x 轴上,则椭圆方程为
x2 a2
y2 b2
1a
0, b
0.
因为 F2PF1 90 , PF2F1 60 , F1F2 2c ,所以 PF2 c , PF1 3c
因为 MF1 3 MF2 , M 在双曲线上,所以根据双曲线性质可知 MF1 MF2 2a , 即 3 MF2 MF2 2a , MF2 a 因为圆 x2 y2 b2 的半径为 b , OM 是圆 x2 y2 b2 的半径,所以 OM b , 因为 OM b, MF2 a,OF2 c, a2 b2 c2 , 所以 OMF2 90 ,三角形 OMF2 是直角三角形,
设 F1 为椭圆右焦点, F2 为椭圆左焦点,则 PF1 PF2 2a ,所以 3 1 c 2a ,
所以 e c 2 2 3 1 3 1.故选 D. a 3 1 3 1 3 1
圆锥曲线的离心率练习题含答案
圆锥曲线的离心率练习题含答案1. 题目 1已知一个椭圆的长轴长度为 10cm,短轴长度为 8cm。
求该椭圆的离心率。
解答首先,我们知道椭圆的离心率 e 的计算公式如下:e = √(1 - (b^2 / a^2))其中,a 表示椭圆的长轴长度,b 表示椭圆的短轴长度。
代入已知数据进行计算:e = √(1 - (8^2 / 10^2))= √(1 - 64 / 100)= √(1 - 0.64)≈ √0.36≈ 0.6所以,该椭圆的离心率约为 0.6。
2. 题目 2已知一个抛物线的焦点到准线的距离为 4cm,准线的长度为6cm。
求该抛物线的离心率。
解答对于抛物线,焦点到准线的距离等于离心距离的两倍。
离心率e 的计算公式如下:e = 离心距离 / (2 * p)其中,p 表示抛物线的准线距离。
代入已知数据进行计算:离心距离 = 4cmp = 6cme = 4 / (2 * 6)= 4 / 12= 0.33所以,该抛物线的离心率为 0.33。
3. 题目 3已知一个双曲线的焦点到准线的距离为 5cm,准线的长度为12cm。
求该双曲线的离心率。
解答对于双曲线,焦点到准线的距离等于离心距离的两倍。
离心率e 的计算公式如下:e = 离心距离 / (2 * p)其中,p 表示双曲线的准线距离。
代入已知数据进行计算:离心距离 = 5cmp = 12cme = 5 / (2 * 12)≈ 0.21所以,该双曲线的离心率约为 0.21。
以上是关于圆锥曲线离心率的练习题及答案。
圆锥曲线的离心率问题
圆锥曲线的离心率问题大家知道,圆锥曲线的离心率问题是近几年高考的热点内容,可以毫不夸张地说,不管是高考,还是高三的诊断考试,基本上是每卷都有出现。
这类问题归结起来主要包括:①已知圆锥曲线满足某一条件,求圆锥曲线的离心率;②已知圆锥曲线满足某一条件,求圆锥曲线离心率的取值范围。
从题型上看,属于5分小题,可能是选择题,也可能是填空题;从考试的深难度来看,属于中、高档题。
那么如何解答这类问题呢?下面通过对典型例题的解析来回答这个问题。
【典例1】解答下列问题:1、已知1F 、2F 是椭圆两个焦点,过1F 且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若∆AB 2F 是正三角形,则这个椭圆的离心率是( )(2016—2017成都实外西区期中考试)A2B 3C 3D 2 2、已知双曲线C :2222x y a b-=1(a >0,b >0)的左,右焦点分别为1F ,2F ,抛物线2y =2px(p >0)与双曲线有相同的焦点,设P 为抛物线与双曲线C 的一个交点,且cos ∠P 1F 2F =57,则双曲线C 的离心率为( )(2019成都市高三三诊) AB或3 C 2或D 2或3〖解析〗1、【考点】①椭圆的定义与几何性质;②椭圆离心率的定义与求法;③正三角形的定义与性质;【解答思路】题中没有确定焦点在X 轴还是Y 轴,按理应该分两种情况分别考虑,但椭圆离心率只与长半轴和半焦距有关,这样两种情况求出的结果是一致的,为使问题简化,这里只考虑焦点在X 轴上的情况。
由正三角形的定义与性质结合椭圆的定义分别求出a ,c 的值,然后根据椭圆离心率的公式e=ca求出结果; 【详细解答】如图Q ∆AB 2F 是正三角形,A 1F ⊥X∴∠A 2F 1F =.30,⇒|A 2F |=2|A 1F |,设|A 2F | =2, 则|A 1F |=1,在Rt ∆A 1F 2F 中,Q tan .30= 112||||AF F F = 12c =3,∴ c=2,Q |A 1F |+ |A 2F |=1+2=3=2a ,2a 23232、【考点】①双曲线的定义与几何性质;②双曲线离心率的定义与求法;③抛物线的定义与性质;④曲线交点的定义与求法;【解答思路】题中给出了双曲线方程,已经明确焦点在X 轴上,根据问题条件结合双曲线,抛物线的定义与性质分别求出a ,c 的值,然后由双曲线离心率的公式e= ca求出结果; 【详细解答】如图,过1F 作垂直于X 轴的直线l ,过P 作PQ ⊥l 于Q ,Q 抛物线2y =2px (p >0)与 双双曲线C 有相同的焦点,P 是抛物线与 双曲线C的一个交点,∴|PQ|=|P 2F |, ∠QP 1F =∠2F 1F P , Q cos ∠P 1F 2F =57,∴cos ∠QP 1F =1||||PQ PF =21||||PF PF =57, ⇒|P 2F |=57|P 1F |,设|P 1F |=7,则|P 2F |=5,⇒|P 1F |-|P 2F |=7-5=2=2a ,⇒a=1,Q 在∆P 1F 2F 中, |2F P|2= |P 1F |2+||1F 2F |2-2|P 1F ||1F 2F | cos ∠P 1F 2F ,∴25=49+42c -2⨯7⨯2c ⨯57,⇒2c -5c+6=0,⇒c=2或c=3,∴ e= c a = 21或e= c a= 31⇒e=2或e=3。
圆锥曲线:离心率问题 高考数学
C. 2
√
B. 3
1
2
3
4
5
6
D. 5 − 1
7
8
9
10
)
试卷讲评课件
【详解】令双曲线的焦距为,依题意,
∣ ∣−∣ ∣=
,解得
∣ ∣+∣ ∣= −
∣ ∣= −
,
∣ ∣= −
在△ 中,∠ = ∘ ,由余弦定理得
故 ⋅ =
⋅
= = ①,
+ −
−
−
∵ + = ,即 =
②,
②代入①整理得:
= =
−
=
=
,
.
故选:.
【点评】本题考查椭圆的简单几何性质,是基础题.
1
2
3
4
5
6
(1)表示边:圆锥曲线的定义、正弦定理、余弦定理、勾股定理、成比
例线段.
(2)表示坐标的方法:向量、函数解析式、曲线解析式,点差法.
(3)常见角度关系:公共角、补角、余角.
【例题分析】
考向一 直接求、的值或利用、的关系求离心率
试卷讲评课件
x2
例1.( ⋅湖北·二模)已知椭圆C:
m
2
试卷讲评课件
2.双曲线
(1)
x2
双曲线的标准方程: 2
a
y2
− 2
b
=
y2
1或 2
a
−
x2
学霸教你学数学:圆锥曲线的离心率
学霸教你学数学:圆锥曲线的离心率圆锥曲线的离心率问题,必须熟练掌握基本的关系、性质、公式:椭圆:a^2=b^2+c^2;双曲线:c^2=a^2+b^2;离心率公式:e=c/a.一、圆锥曲线离心率的计算B解析:此题考查了双曲线的离心率。
离心率的计算、离心率的范围和几何意义是圆锥曲线小题考查的重点,这道题目直接计算。
y=b/c *(x+c) y=b/a * x联立得Q的横坐标X p=ac/(c-a)y=b/c *(x+c) y=-b/a * x联立得P的横坐标X q=-ac/(c+a)PQ中点的坐标为( a^2*c/(c^2-a^2) , b*c^2/(c^2-a^2) )得到PQ的中垂线为y=-c/b(x-a^2*c/(c^2-a^2))+b*c^2/(c^2-a^2)这条直线经过点(3c,0)代入即得e=sqrt(6)/2.二、圆锥曲线离心率范围的计算这里有几个需要注意的地方:1、准线方程,(+-)a^2/c;2、圆锥曲线上的点到焦点的距离,焦点弦的弦长公式,e(x-a^2/c)(右焦点),e(x+a^2/c)(左焦点);3、解离心率的根本方法:零齐次化,将不等式中的未知量乘除a或c化为c/a的形式,那么不等式就变成了仅关于e的不等式,就可以解出e的范围。
解析:根据上面的注意点可以知道:|MN|=2a^2/c, 2|F1F2|=4c,根据不等式解出e的范围是[(1/2)^(1/2),1).三、运用几何关系构造离心率满足的不等式解析:中垂线很容易让我们想到线段相等,所以在这道题目中运用这个性质是一个关键。
在这张简陋的草图上我们可以看见PF2=F1F2=2c,我们又用到了准线方程x=a^2/c,所以说准线方程很重要。
这里的一个最后的难点就是如何看“在准线上存在那么一个点P”,如果存在那么一个点P,就可以构成一个以PF2为直角边的直角三角形,在直角三角形中斜边大于直角边,由此得到式a^2/c-c<2c,我们进一步来看一下边界的情况如果P是准线和x轴的交点,那么就是斜边等于直角边的状况。
求圆锥曲线的离心率的值或取值范围问题第一中学【高考】数学
b tan 60 3,e 1 ( b )2 2
a
a
圆锥曲线中求离心率的值或取值范围
小结:从以上例题的求解过程,我们可以体会到求圆锥曲 线的离心率或取值范围,解题的关键是将问题中的几何条件 用坐标表示或转化为代数条件,然后构造方程或不等式求解 ,这是平面解析几何的基本思想。在求解圆锥曲线离心率的 值或取值范围时,一定要认真分析题设条件,合理建立等量 关系或不等关系,记住一些常见结论、不等关系。当然,这 类问题的题型不止今天讲的这几种,还有其他的,我今天讲 这几道例题只是起一个抛砖引玉的作用,希望同学们在今后 做题时不断总结归纳,选择简便的方法解题,尤其注意数形 结合的数学思想在解题中的应用。
∵ 的值,再求2出离心率;
∴
圆锥曲线中求离心率的值或取值范围
a a a 圆锥曲线中求离心率的值或取值范围
圆锥曲线中求离心率的值或取值范围
圆锥曲线中求离心率的值或取值范围
2 e 5 ∴ ,故选 B. 圆锥曲线中求离心率的值或取值范围
圆锥曲线中求离心率的值或取值范围
圆锥曲线中求离心率的值或取值范围
2 2
y2 b2
1(a
0,b
0)右支上
任意一点,F1,F2分别是双曲线的左、右焦点,e是双曲线
的离心率,则PF1 ex0 a c a, PF2 ex0 a c a.
圆锥曲线中求离心率的值或取值范围
B
圆锥曲线中求离心率的值或取值范围
B
16.每一个人要有做一代豪杰的雄心斗志!应当做个开创一代的人。 ④20世纪90年代以来,“新经济”、互联网经济不断发展; 18、人少言寡语不一定大智大勇,谈笑风生不一定是不严肃。 导读:本文是关于名人名言励志语录的文章,如果觉得很不错,欢迎点评和分享! 31、痛过之后就不会觉得痛了,有的只会是一颗冷漠的心。
圆锥曲线离心率问题
圆锥曲线的离心率问题离心率是圆锥曲线的一个重要几何性质,一方面刻画了椭圆,双曲线的形状,另一方面也表现了参数a, c 之间的联系。
一、基础知识:1、离心率公式:e c(此中c为圆锥曲线的半焦距)a(1)椭圆:e 0,1(2)双曲线:e 1,+2、圆锥曲线中a,b, c的几何性质及联系(1)椭圆:a2b2c2,① 2a :长轴长,也是同一点的焦半径的和:PF1PF22a②2b :短轴长③ 2c :椭圆的焦距(2)双曲线:c2b2a2① 2a :实轴长,也是同一点的焦半径差的绝对值:PF1PF22a②2b :虚轴长③ 2c :椭圆的焦距3、求离心率的方法:求椭圆和双曲线的离心率主要环绕找寻参数 a, b, c 的比率关系(只要找出此中两个参数的关系即可),方法往常有两个方向:(1)利用几何性质:假如题目中存在焦点三角形(曲线上的点与两焦点连线构成的三角形),那么可考虑追求焦点三角形三边的比率关系,从而两条焦半径与 a 有关,另一条边为焦距。
从而可求解(2)利用坐标运算:假如题目中的条件难以挖掘几何关系,那么可考虑将点的坐标用 a,b,c 进行表示,再利用条件列出等式求解2、离心率的范围问题:在找寻不等关系时往常可从以下几个方面考虑:(1)题目中某点的横坐标(或纵坐标)能否有范围要求:比如椭圆与双曲线对横坐标的范围有要求。
假如问题环绕在“曲线上存在一点”,则可考虑该点坐标用 a, b, c 表示,且点坐标的范围就是求离心率范围的打破口(2)若题目中有一个中心变量,则能够考虑离心率表示为某个变量的函数,从而求该函数的值域即可(3)经过一些不等关系获得对于a, b, c的不等式,从而解出离心率注:在求解离心率范围时要注意圆锥曲线中对离心率范围的初始要求:椭圆: e 0,1 ,双曲线: e 1,+二、典型例题:例 1:设F1, F2 x 2 y 21 a b 0 的左、右焦点,点P分别是椭圆 C : 2b 2a在椭圆 C 上,线段PF1的中点在y 轴上,若PF1F230o,则椭圆的离心率为()A.3B.3C.1D.1 363 6思路:此题存在焦点三角形VPF1 F2,由线段PF1的中点在y 轴上,O 为F1F2中点可得PF2∥ y 轴,从而 PF2 F1F2,又因为PF1F2 30o,则直角三角形VPF1F2中,PF1 : PF2 : F1F2 2:1:3,且2a PF1 PF2 ,2 cc 2c F1 F2 3 F1F2,因此e2a PF1 PF2 3a答案: A小炼有话说:在圆锥曲线中,要注意O 为F1F2中点是一个隐含条件,如果图中存在其余中点,则有可能与O搭配形成三角形的中位线。
求解圆锥曲线离心率问题的两种思路
探索探索与与研研究究离心率是圆锥曲线的重要性质之一.圆锥曲线的离心率公式为e =ca,a 是指双曲线的实半轴长、椭圆的长半轴长,c 是指双曲线和椭圆的半焦距.由于抛物线的离心率e =1,双曲线的离心率e >1,椭圆的离心率0<e <1,所以圆锥曲线的离心率主要是指椭圆和双曲线的离心率.求圆锥曲线的离心率,关键是求a 、c 的值或其比值.下面谈一谈求解圆锥曲线问题的两种思路.一、构建齐次式在求圆锥曲线的离心率时,可根据题目中所给的条件和几何关系,利用圆锥曲线的公式、定义、方程等建立含有a ,b ,c 的齐次式;再在该式的左右两边同时除以c 2,得到关于c a 或ba的方程,解该方程即可求得离心率.例1.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,右顶点为B ,若椭圆C的中心到直线AB 的距离为F 1F 2|,求椭圆C 的离心率.解:因为直线AB 过右顶点为A ,上顶点为B ,所以直线AB 的方程为:x a +yb=1.又椭圆C 的中心到直线AB 的距离为d =||ab a 2+b 2=c ,而c 2=a 2-b 2,则||ab a 2+b2a 2-b 2,在上式的两边同除以a 2,整理可得2æèöøb a 4+3æèöøb a 2-2=0,得æèöøb a 2=12,解得e ==.利用点到直线的距离公式,建立一个关于a ,b ,c 的齐次式,就可以将问题转化为解方程问题.在求离心率的过程中,还要注意圆锥曲线离心率公式的变形式,e =椭圆)、e =双曲线).二、利用平面几何知识当遇到一些有关焦点三角形、直线的倾斜角、点到直线的距离、两点之间的距离、线段的中点、平行线段、垂直线段等的离心率问题时,我们可以根据题意画出相应的几何图形,巧妙利用平面几何知识,如椭圆或双曲线的定义、三角形中位线的性质、点到直线的距离公式、勾股定理、正余弦定理等来建立关于双曲线的实半轴长、椭圆的长半轴长、半焦距的关系式,从而求得圆锥曲线的离心率.例2.设F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1()a >b >0的左、右焦点,点P 在椭圆C 上,线段PF 1的中点在y 轴上,若∠PF 1F 2=30°,则椭圆的离心率为.解:因为线段PF 1的中点在y 轴上,O 为F 1F 2的中点,所以PF 2∥y 轴,从而可知PF 2⊥F 1F 2,因为∠PF 1F 2=30°,则直角三角形PF 1F 2中,||PF 1:||PF 2:||F 1F 2=2:1:3,又因为点P 在椭圆C 上,则2a =||PF 1+||PF 2,2c =||F 1F 2,所以e =c a =2c 2a =||F 1F2||PF 1+||PF 2=.由题意可知△PF 1F 2为椭圆的焦点三角形,于是以椭圆的定义为突破口,在直角三角形PF 1F 2中,利用勾股定理来建立三角形PF 1F 2三边之间的关系式,从而求得椭圆的离心率.在求与焦点三角形有关的离心率问题时,要注意离心率与焦半径之间的关系:e =c a =2c 2a =||F 1F 2||PF 1+||PF 2(椭圆),e =c a =2c 2a =||F 1F 2||||PF 1-||PF 2(双曲线).总之,在求解圆锥曲线的离心率时,不仅要灵活运用圆锥曲线的方程、定义、几何性质和平面几何图形的性质,还要学会运用数形结合思想、方程思想来辅助解题,这样才能有效地提升解题的效率.(作者单位:福建省柘荣县第一中学)袁晓光52。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题:椭圆的离心率问题
一、直接求出a c ,或求出a 与b 的比值,以求解e 。
在椭圆中,a c e =,22
2
22221a
b a b a a
c a c e -=-===
1.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于2
2.已知椭圆两条准线间的距离是焦距的2倍,则其离心率为
2
2 3.若椭圆经过原点,且焦点为)0,3(),0,1(21F F ,则椭圆的离心率为
2
1 4.已知矩形ABCD ,AB =4,BC =3,则以A 、B 为焦点,且过C 、D 两点的椭圆的离心率为
12。
5.若椭圆)0(,122
22>>=+b a b y a x 短轴端点为P 满足21PF PF ⊥,则椭圆的离心率为=e 22。
6..已知)0.0(12
1>>=+n m n
m 则当mn 取得最小值时,椭圆12222=+n y m x 的的离心率为23
7.椭圆22
221(0)x y a b a b
+=>>的焦点为1F ,2F ,两条准线与x 轴的交点分别为M N ,,若
12MN F F 2≤,则该椭圆离心率的取值范围是12⎫
⎪⎪
⎣⎭
8.已知F 1为椭圆的左焦点,A 、B 分别为椭圆的右顶点和上顶点,P 为椭圆上的点,当PF 1⊥F 1A ,PO ∥AB (O 为椭圆中心)时,椭圆的离心率为=
e 2
2。
是椭圆22
a x +22b
y =1(a >b >0)上一点,21F F 、是椭圆的左右焦点,已知,2,122
1αα=∠=∠F PF F PF
,321α=∠PF F 椭圆的离心率为=e 13-
10.已知21F F 、是椭圆的两个焦点,P 是椭圆上一点,若
75,151221=∠=∠F PF F PF , 则椭圆的离心率为
3
6
11.在给定椭圆中,过焦点且垂直于长轴的弦长为2,焦点到相应准线的距离为1,则该椭圆的离心率为
2
2 12.设椭圆22
22b
y a x +=1(a >b >0)的右焦点为F 1,右准线为l 1,若过F 1且垂直于x 轴的弦的长等于
点F 1到l 1的距离,则椭圆的离心率是2
1。
13.椭圆12222=+b
y a x (a>b>0)的两顶点为A (a,0)B(0,b),若右焦点F 到直线AB 的距离等于21
∣AF∣,
则椭圆的离心率是36。
14.椭圆122
22=+b
y a x (a>b>0)的四个顶点为A 、B 、C 、D ,若四边形ABCD 的内切圆恰好过焦点,则
椭圆的离心率是
2
1
5- 15.已知直线L 过椭圆122
22=+b
y a x (a>b>0)的顶点A (a,0)、B(0,b),如果坐标原点到直线L 的距
离为
2
a
,则椭圆的离心率是36
16.在平面直角坐标系中,椭圆22
22x y a b
+=1( a b >>0)的焦距为2,以O 为圆心,a 为半径作圆,
过点2,0a c ⎛⎫ ⎪⎝⎭作圆的两切线互相垂直,则离心率e =2
17.设椭圆22221(0)x y a b a b +=>>的离心率为1
e 2
=,右焦点为(0)F c ,,
方程20ax bx c +-= 的两个实根分别为1x 和2x ,则点12()P x x ,( A )
A.必在圆2
2
2x y +=内
B.必在圆22
2x y +=上 C.必在圆2
2
2x y +=外
D.以上三种情形都有可能
二、构造a c ,的齐次式,解出e
1.已知椭圆的焦距、短轴长、长轴长成等差数列,则椭圆的离心率是
5
3 2.以椭圆的右焦点F 2为圆心作圆,使该圆过椭圆的中心并且与椭圆交于M 、N 两点,椭圆的左焦点为F 1,直线MF 1与圆相切,则椭圆的离心率是13-
3.以椭圆的一个焦点F 为圆心作一个圆,使该圆过椭圆的中心O 并且与椭圆交于M 、N 两点,如果∣MF∣=∣MO∣,则椭圆的离心率是13-
4.设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三
5.已知F 1、F 2F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是
6.设12F F 、分别是椭圆()22
2210x y a b a b
+=>>的左、右焦点,P (c
为半焦距)的点,且122F F F P =
三、寻找特殊图形中的不等关系或解三角形。
1.已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取
值范围是(0,
2
2.已知21F F 、是椭圆的两个焦点,P 是椭圆上一点,且
9021=∠PF F ,椭圆离心率e 的取值范围为⎪
⎪⎭
⎫
⎢
⎣⎡1,22 3.已知21F F 、是椭圆的两个焦点,P 是椭圆上一点,且
6021=∠PF F ,椭圆离心率e 的取值范围为⎪⎭
⎫⎢⎣⎡1,21
4.设椭圆122
22=+b
y a x (a>b>0)的两焦点为F 1、F 2,若椭圆上存在一点Q ,使∠F 1QF 2=120º,椭圆
离心率e
的取值范围为12
e ≤< 5.在ABC △中,AB BC =,7
cos 18
B =-.若以A B ,为焦点的椭圆经过点
C ,则该椭圆的离
心率e =3
8.
6.设12F F ,分别是椭圆22
221x y a b
+=(0a b >>)的左、右焦点,若在其右准线上存在,P 使线段
1PF 的中垂线过点2F
,则椭圆离心率的取值范围是1⎫
⎪⎪⎣⎭
7.如图,正六边形ABCDEF 的顶点A 、D 为一椭圆的两个焦点,其余四个顶点B 、C 、E 、F 均在椭圆上,则椭圆离心率的取值范围是13-。