高考原创押题卷(二)数学(文)试题Word版含解析

合集下载

2020-2021学年高考押题金卷(全国卷ⅱ)数学(文)试卷及答案解析

2020-2021学年高考押题金卷(全国卷ⅱ)数学(文)试卷及答案解析

绝密★启封前 高考押题金卷(全国卷Ⅱ)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

注意事项:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。

3.考试结束,监考员将试题卷、答题卡一并收回。

第Ⅰ卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.已知全集,U R =且{}{}2|12,|680,A x x B x x x =->=-+<则()U C A B I 等于(A )[1,4)- (B )(2,3] (C )(2,3) (D )(1,4)-2.已知i z i 32)33(-=⋅+(i 是虚数单位),那么复数z 对应的点位于复平面内的(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限3.若()()()()2,1,1,1,2//a b a b a mb ==-+-r r r r r r,则m =()A .12 B .2 C .-2 D .12- 4.甲、乙等4人在微信群中每人抢到一个红包,金额为三个1元,一个5元,则甲、乙的红包金额不相等的概率为() (A)14(B)12(C)13(D)345.已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=()()A 7()B 5()C -5()D -76.下列函数中,与函数()3x xe ef x --=的奇偶性、单调性均相同的是()A .ln(y x =+B .2y x = C .tan y x =D .xy e =(7)若正整数N 除以正整数m 后的余数为n ,则记为(mod )N n m ≡,例如104(mod 6)≡,如图程序框图的算法源于我国古代《孙子算经》aaaa中的“孙子定理”的某一环节,执行该框图,输入2a =,3b =,5c =,则输出的N =()(A)6(B)9(C)12(D)218.已知函数,且f (a )=-3,则f (6-a )=(A )-74(B )-54(C )-34(D )-149.设x ,y 满足约束条件,1,x y a x y +≥⎧⎨-≤-⎩且z x ay =+的最小值为7,则a =(A )-5 (B )3 (C )-5或3 (D )5或-310.四棱锥P ABCD -的三视图如图所示,其五个顶点都在同一球面上,若四棱锥P ABCD -的侧面积等于4(12)+,则该外接球的表面积是(A) 4π (B)12π (C)24π (D)36π11.直线l 过双曲线12222=-by a x 的右焦点,斜率k=2.若l 与双曲线的两个交点分别在左右两支上,则双曲线的离心率e 的范围是()A.e>2B.1<e<3C.e>5D.1<e<512.已知函数2y x =的图象在点()200,x x 处的切线为l ,若l 也与函数ln y x =,)1,0(∈x 的图象相切,则0x 必满足()A .012x <<0 B .012x <<1C .2220<<x D 0x <<第Ⅱ卷注意事项:须用黑色墨水签字笔在答题卡上作答。

2022年高考数学临考押题卷(二)(新高考卷)含答案

2022年高考数学临考押题卷(二)(新高考卷)含答案

○………………内………………○………………装………………○………………订………………○………………线………………○………………○………………外………………○………………装………………○………………订………………○………………线………………○………………学校:______________姓名:_____________班级:_______________考号:______________________绝密★启用前|试题命制中心2022年高考临考押题卷(二)数学(新高考卷)(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、 单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1.已知集合{}2,0xA y y x ==≥,(){}ln 2B x y x ==-,则A B =( )A .[]1,2B .()1,2C .[)1,2D .(),-∞+∞2.若复数21iz =+,则|i |z -=( ) A .2B .5C .4D .53.设x ,y ∈R ,则“1x <且1y <”是“2x y +<”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.若向量a b ,满足1a =,2b =,()a ab ⊥+,则a 与b 的夹角为( )A .6πB .3πC .23πD .56π5.已知点F 为抛物线()220y px p =>的焦点,点P 在抛物线上且横坐标为8,O 为坐标原点,若△OFP 的面积为22,则该抛物线的准线方程为( )A .12x =-B .1x =-C .2x =-D .4x =-6.在边长为6的菱形ABCD 中,A π∠=,现将ABD △沿BD 折起,当三棱锥A BCD -的体积最大时,三棱锥A BCD -的外接球的表面积为( ) A .60πB .30πC .70πD .50π7.我们通常所说的ABO 血型系统是由A ,B ,O 三个等位基因决定的,每个人的基因型由这三个等位基因中的任意两个组合在一起构成,且两个等位基因分别来自于父亲和母亲,其中AA ,AO 为A 型血,BB ,BO 为B 型血,AB 为AB 型血,OO 为O 型血.比如:父亲和母亲的基因型分别为AO ,AB ,则孩子的基因型等可能的出现AA ,AB ,AO ,BO 四种结果,已知小明的爷爷、奶奶和母亲的血型均为AB 型,不考虑基因突变,则小明是A 型血的概率为( ) A .116B .18C .14D .128.已知直线20kx y k -+=与直线20x ky +-=相交于点P ,点()4,0A ,O 为坐标原点,则tan OAP ∠的最大值为( ) A .23-B .33C .1D .3 二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.5212a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数之和为2,则其中正确的是( )A .a =1B .展开式中含7x 项的系数是32-C .展开式中含1x -项D .展开式中常数项为4010.已知函数()()2sin ,0f x x a ωϕω=++>,则下列结论正确的是( ) A .若对于任意的x ∈R ,都有()1f x 成立,则1a - B .若对于任意的x ∈R ,都有()()f x f x π+=成立,则2ω=C .当3πϕ=时,若()f x 在0,2π⎡⎤⎢⎥⎣⎦上单调递增,则ω的取值范围为10,3⎛⎤⎥⎝⎦ D .当3a =-时,若对于任意的ϕ∈R ,函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上至少有两个零点,则ω的取值范围为[)4,+∞11.如图,在棱长为3的正方体1111ABCD A B C D -中,点P 是平面11A BC 内一个动点,且满足1213PD PB +=+,则下列结论正确的是( )○………………内………………○………………装………………○………………订………………○………………线………………○…………○………………外………………○………………装………………○………………订………………○………………线………………○………… 学校:______________姓名:_____________班级:_______________考号:______________________A .1B D PB ⊥B .点P 2C .直线1B P 与平面11A BC 所成角为3πD .三棱锥11P BB C -体积的最大值为362+12.我们约定双曲线()2212210,0:x y E a b a b -=>>与双曲线()22222:01x y E a bλλ-=<<为相似双曲线,其中相似比为λ.则下列说法正确的是( ) A .12E E 、的离心率相同,渐近线也相同B .以12E E 、的实轴为直径的圆的面积分别记为12S S 、,则12S S λ= C .过1E 上的任一点P 引1E 的切线交2E 于点A B 、,则点P 为线段AB 的中点D .斜率为(0)k k >的直线与12E E 、的右支由上到下依次交于点、、A B C 、D ,则AC BD >第Ⅱ卷二、 填空题:本题共4小题,每小题5分,共20分13.已知0,2πα⎛⎫∈ ⎪⎝⎭,若tan 24πα⎛⎫+= ⎪⎝⎭,则sin α=______.14.有66⨯的方格中停放三辆完全相同的红色车和三辆完全相同的黑色车,每一行每一列只有一辆车,每辆车占一格,则停放的方法数为________15.己知()f x 为R 上的奇函数,且()()20f x f x +-=,当10x -<<时,()2xf x =,则()22log 5f +的值为______.16.在空间直角坐标系O -xyz 中,三元二次方程所对应的曲面统称为二次曲面.比如方程2221x y z ++=表示球面,就是一种常见的二次曲面.二次曲而在工业、农业、建筑等众多领域应用广泛.已知点P (x ,y ,z )是二次曲面2240x xy y z -+-=上的任意一点,且0x >,0y >,0z >,则当z xy 取得最小值时,111x y z ⎛⎫- ⎪⎝⎭的最大值为______.四、解答题:本小题共6小题,共70分。

2024年新高考数学押题密卷(二)

2024年新高考数学押题密卷(二)

2024年新高考数学押题密卷(二)(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}1,2,0,2A =-,{}2,B y y x x x A ==+∈,{}2Z 60C x x x =∈-≤.则B C ⋂=()A .{}0,2B .{}0,2,6C .{}1,2,0,2-D .{}0,2,6,22.用最小二乘法得到一组数据(),(1,2,3,4,5,6)i i x y i =的线性回归方程为ˆ23yx =+,若6130i i x ==∑,则61i i y ==∑()A .11B .13C .63D .783.在ABC 中,4AB =,3AC =,且AB AC AB AC +=- ,则AB BC ⋅=()A .16B .16-C .20D .20-4.已知函数22()sin cos (),()f x x x x f x =-∈'R 是()f x 的导数,则以下结论中正确的是()A .函数π2f x ⎛⎫+ ⎪⎝⎭是奇函数B .函数()f x 与()f x '的值域相同C .函数()f x 的图象关于直线4x π=对称D .函数()f x 在区间ππ,63⎛⎫⎪⎝⎭上单调递增5.将一个棱长为4的正四面体同一侧面上的各棱中点两两连接,得到一多面体,则这个多面体的外接球的体积为()A .8πB .8π3C D .36.已知集合1111,,,,2,32323A ⎧⎫=--⎨⎬⎩⎭,若,,a b c A ∈且互不相等,则使得指数函数x y a =,对数函数log b y x =,幂函数c y x =中至少有两个函数在(0,)+∞上单调递增的有序数对(,,)a b c 的个数是()A .16B .24C .32D .487.已知数列{}n a 的各项均为正数,记()12n A n a a a =+++ ,()231n B n a a a +=+++ ,()342n C n a a a +=+++ ,*n ∈N ,设甲:{}n a 是公比为q 的等比数列;乙:对任意*n ∈N ,()A n ,()B n ,()C n 三个数是公比为q 的等比数列,则()A .甲是乙的充分不必要条件B .甲是乙的必要不充分条件C .甲是乙的充要条件D .甲是乙的既不充分又不必要条件8.设O 为坐标原点,直线l 过抛物线2:2(0)C x py p =>的焦点10,4F ⎛⎫⎪⎝⎭,且与C 交于,M N 两点,其中M 在第一象限,则下列正确的是()A .C 的准线为14x =-B .1344MF NF MF NF ++⋅的最小值为38C .以MN 为直径的圆与x 轴相切D .若(0,)Q p 且MQ MF =,则180ONQ OMQ ∠+∠>二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数12,z z ,则下列命题正确的是()A .若12=z z ,则12=±z z B .若21z z =,则2121z z z =C .若1z 是非零复数,且2112z z z =,则12z z =D .若1z 是非零复数,则1110z z +≠10.已知函数()()2e xf x x ax b =++,下列结论正确的是()A .若函数()f x 无极值点,则()f x 没有零点B .若函数()f x 无零点,则()f x 没有极值点C .若函数()f x 恰有一个零点,则()f x 可能恰有一个极值点D .若函数()f x 有两个零点,则()f x 一定有两个极值点11.正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则()A .当0λ=,1μ=时,AP 与平面ABC 所成角为π4B .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥C .当1λ=,12μ=时,平面1AB P ⊥平面1A ABD .若1AP =,则点P 的轨迹长度为π2第二部分(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分。

2020年泄露天机高考押题卷文科数学2(含答案)

2020年泄露天机高考押题卷文科数学2(含答案)

(1)求数列{an} 的通项公式;
(2)记 bn
log2
1 a2a1 log2
a2n1
,求数列{bn}的前 n
项和 Tn
.
18.(12 分)经调查, 3 个成年人中就有一个高血压,那么什么是高血压?血压多少是正常
的?经国际卫生组织对大量不同年龄的人群进行血压调查,得出随年龄变化,收缩压的正常 值变化情况如下表:

A.
B.
C.
D.
4.在 ABC 中, B 90 , AB (1, 2) , AC (3, ) , ( )
A.1
B. 2
C. 3
D. 4
5.在 ABC 中, a , b , c 分别是角 A , B , C 的对边, (a b c)(a c b) 2ab ,则
1
班级
角 C 的正弦值为( )
封 座位号

绝密 ★ 启用前
2020 年普通高等学校招生全国统一考试
文 科 数 学(二)
注意事项:
1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答题前,考生务 必将自己的姓名、考生号填写在答题卡上。
2、回 答 第Ⅰ 卷 时 ,选 出 每 小题 的 答 案 后 ,用 铅 笔 把答 题 卡 上 对 应题 目 的 答 案 标 号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。写在试卷上无效。
B. n 999
C. n 999
D. n 999
8.已知单位圆有一条直径 AB ,动点 P 在圆内,则使得 AP AB 2 的概率为( )
1
1
2
2
A.
B.
C.
D.
2
4
4
4
9.长方体 ABCD A1B1C1D1 , AB 4 , AD 2 , AA1 5 ,则异面直线 A1B1 与 AC1 所

2023-2024高考模拟压轴卷(二) 数学试卷(含答案解析)

2023-2024高考模拟压轴卷(二) 数学试卷(含答案解析)

2024年普通高等学校招生全国统一考试模拟试题数学(二)本试卷共4页,19小题,满分150分.考试用时120分钟.注意事项:1.答题前,考生先将自己的姓名、准考证号码、考场号、座位号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区.2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知点()06,P y 在焦点为F 的抛物线2:2(0)C y px p =>上,若152PF =,则p =( )A.3B.6C.9D.122.电影《孤注一郑》的上映引发了电信诈骗问题的热议,也加大了各个社区反电信诈骗的宣传力度.已知某社区共有居民480人,其中老年人200人,中年人200人,青少年80人,若按年龄进行分层随机抽样,共抽取36人作为代表,则中年人比青少年多( )A.6人B.9人C.12人D.18人3.已知0a b c >>>,则下列说法一定正确的是( )A.a b c >+ B.2a bc <C.2ac b >D.2ab bc b ac+>+4.已知向量()()2,3,1,2a b =-=- ,则a b + 在a b - 方向上的投影向量为( )A.816,1717⎛⎫-⎪⎝⎭ B.1220,1717⎛⎫- ⎪⎝⎭ C.1220,1717⎛⎫- ⎪⎝⎭ D.2020,1717⎛⎫- ⎪⎝⎭5.已知某正六棱柱的体积为()A.18+B.18+C.24+D.24+6.已知甲、乙两地之间的路线图如图所示,其可大致认为是()()cos 03πf x x x =……的图像.某日小明和小红分别从甲、乙两地同时出发沿着路线相向而行,当小明到达乙地时,小红也停止前行.若将小明行走轨迹的点记为(),a b ,小红行走轨迹的点记为(),c d ,且满足3π2ac +=,函数()2g a bd =-,则()g a 的一个单调递减区间为()A.4π0,3⎛⎫ ⎪⎝⎭ B.π5π,33⎛⎫ ⎪⎝⎭ C.4π8π,33⎛⎫⎪⎝⎭D.()2π,3π7.已知椭圆22:1(09,)9x y C m m m+=<<∈Z 的左、右焦点分别为12,F F ,点P 在C 上但不在坐标轴上,且12PF F 是等腰三角形,其中一个内角的余弦值为78,则m =( )A.4B.5C.6D.88.已知函数()()e eln e 1xmf x m x x=++-的定义域为()0,∞+,若()f x 存在零点,则m 的取值范围为()A.1,e∞⎡⎫+⎪⎢⎣⎭B.(]0,eC.10,e⎛⎤ ⎥⎝⎦D.[)e,∞+二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知1232i,4i z z =+=-,则( )A.12z z +的虚部为-1B.1243z z -是纯虚数C.12z z 在复平面内所对应的点位于第一象限D.214iz z =+10.已知()7270127(43)13(13)(13)x a a x a x a x -=+-+-++- ,则( )A.4945a =B.77141ii a==-∑C.136024622a a a a +++=+D.613135722a a a a +++=-11.设()M x 是定义在*N 上的奇因函数,是指x 的最大奇因数,比如:()()33,63M M ==,()81M =,则( )A.对()()*,212k M k M k ∈-N …B.()()2M k M k =C.()()()1263931M M M +++= D.()126363M +++= 三、填空题:本题共3小题,每小题5分,共15分.12.已知集合{}2450,{}A xx x B x x m =-->=>∣∣,若0m =,则()A B ⋂=R ð__________;若A B ⋃=R ,则m 的取值范围为__________.13.某校拟开设“生活中的数学”“音乐中的数学”“逻辑推理论”“彩票中的数学”和“数学建模”5门研究性学习课程,要求每位同学选择其中2门进行研修,记事件A 为甲、乙两人至多有1门相同,且甲必须选择“音乐中的数学”,则()P A =__________.14.定义:对于函数()f x 和数列{}n x ,若()()()10n n n n x x f x f x +-+=',则称数列{}n x 具有“()f x 函数性质”.已知二次函数()f x 图像的最低点为()0,4-,且()()121f x f x x +=++,若数列{}n x 具有“()f x 函数性质”,且首项为1的数列{}n a 满足()()ln 2ln 2n n n a x x =+--,记{}n a 的前n 项和为n S ,则数列52n n S ⎧⎫⎛⎫⋅-⎨⎬⎪⎝⎭⎩⎭的最小值为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)公众号《全元高考》,且()2tan tan tan b B a B A B =-+.已知函数()在 ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,其中c =(1)求C ;(2)求a 2+b 2的取值范围.16.(15分)ln x f x x a x ⎛⎫=-⎪⎝⎭.(1)讨论()f x 的最值;(2)若1a =,且()e x k xf x x-…,求k 的取值范围.17.(15分)在如图①所示的平面图形中,四边形ACDE 为菱形,现沿AC 进行翻折,使得AB ⊥平面ACDE ,过点E 作EF ∥AB ,且12EF AB =,连接,,FD FB BD ,所得图形如图②所示,其中G 为线段BD 的中点,连接FG .(1)求证:FG ⊥平面ABD ;(2)若2AC AD ==,直线FG 与平面BCD,求AB 的值.18.(17分)某汽车销售公司为了提升公司的业绩,现将最近300个工作日每日的汽车销售情况进行统计,如图所示.(1)求a 的值以及该公司这300个工作日每日汽车销售量的平均数(同一组中的数据用该组区间的中点值作代表);(2)以频率估计概率,若在所有工作日中随机选择4天,记汽车销售量在区间[200,250)内的天数为X ,求X 的分布列及数学期望;公众号《全元高考》公众号《全元高考》(3)为增加销售量,公司规定顾客每购买一辆汽车可以进行一次抽奖活动,规则如下:抽奖区有,A B 两个盒子,其中A 盒中放有9张金卡、1张银卡,B 盒中放有2张金卡、8张银卡,顾客在不知情的情况下随机选择其中一个盒子进行抽奖,直到抽到金卡则抽奖结束(每次抽出一张卡,然后放回原来的盒中,再进行下次抽奖,中途可更换盒子),卡片结果的排列对应相应的礼品.已知顾客小明每次抽奖选择两个盒子的概率相同,求小明在首次抽奖抽出银卡的条件下,第二次从另外一个盒子中抽奖抽出金卡的概率.19.(17分)已知双曲线2222:1(0,0)x y C a b a b -=>>的左顶点为A ,直线1:2l y x =-与C 的一条渐近线平行,且与C 交于点B ,直线AB 的斜率为13.(1)求C 的方程;(2)已知直线()2:28l y x m m =+≠与C 交于,P Q 两点,问:是否存在满足EA EP EP EQ EA EQ ⋅=⋅=⋅ 的点()00,E x y ?若存在,求2200x y -的值;若不存在,请说明理由.数学(二)一、选择题1.A 【解析】由抛物线的定义可知15622p PF =+=,解得3p =.故选A 项.2.B 【解析】设中年人抽取x 人,青少年抽取y 人,由分层随机抽样可知20080,48036480x ==36y,解得15,6x y ==,故中年人比青少年多9人.故选B 项.3.D 【解析】当3,2,1a b c ===时,a b c =+,且2ac b <,故A ,C 项错误;因为0a b >>,0a c >>,所以2a bc >,故B 项错误;()()()20ab bc b ac b c a b +-+=-->,故D 项正确.故选D项.4.C 【解析】由题意得()()1,1,3,5a b a b +=--=- ,则a b + 在a b - 方向上的投影向量为2()()1220(),1717||a b a b a b a b +⋅-⎛⎫-=- ⎪-⎝⎭,故选C 项.5.D 【解析】设该正六棱柱的底面边长为a ,高为h ,其外接球的半径为R,易知34ππ3R =,则R ==①26h ⋅⋅=②,联立①②,因为h ∈Z ,解得1,4a h ==,所以正六棱柱的表面积212624S ah =⋅+=.故选D 项.6.A 【解析】依题意得cos ,cos cos 3πcos 22a a b a d c ⎛⎫===-=- ⎪⎝⎭,且03π,03π3π,2a a⎧⎪⎨-⎪⎩…………解得03πa ……,则()2cos 2cos2cos 2cos 1222a a a g a a =+=+-,令cos 2at =,则[]1,1t ∈-,因为2221y t t =+-在区间11,2⎛⎫-- ⎪⎝⎭内单调递减,在区间1,12⎛⎫- ⎪⎝⎭内单调递增,所以()g a 在区间4π8π0,,2π,33⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭内单调递减.故选A 项.7.B 【解析】依题意得126PF PF +=,设12F F n =,不妨设点P 在第一象限,则112PF F F n ==,则26(06)PF n n =-<<,故222122(6)7cos 28n n n PF F n ∠+--==或()22221(6)7cos 268n n n PF F n n ∠+--==-,解得4n =或2411n =,又2,2n m m ⎛⎫∈+= ⎪⎝⎭Z 9,所以4,5n m ==.故选B 项.8.C 【解析】由题意得0m >,令()0f x =,则()ln ln ee ln e eln x mx x m x +++=+.令()e e x g x x =+,易知()g x 单调递增,所以()()ln ln g x m g x +=,即ln ln x m x +=,即ln ln m x x =-.令()ln h x x x =-,则()1xh x x'-=,当()0,1x ∈时,()0h x '>,()h x 单调递增,当()1,x ∞∈+时,()()0,h x h x '<单调递减,又()11h =-,当0x →时,()h x ∞→-,所以ln 1m -…,解得10em <….故选C 项.二、多选题9.BC 【解析】127i z z +=+的虚部为1,故A 项错误;124311i z z -=为纯虚数,故B 项正确;()()1232i 4i 145i z z =+-=+,其在复平面内所对应的点()14,5位于第一象限,故C项正确;24i 14i i iz -==--=,144z +=+,故D 项错误.故选BC 项.10.AC 【解析】依题意得()77(43)[313]x x -=+-,所以4347C 33527a =⨯=⨯=945,故A 项正确;令13x =,得03a =,令0x =,得7704i i a ==∑,所以777143i i a ==-∑,故B 项错误;令23x =,得7012345672a a a a a a a a =-+-+-+-①,又7012345674a a a a a a a a =+++++++②,由①+②可得77135024642222a a a a ++++==+,故C 项正确;同理,由②-①得136135722a a a a +++=-,故D 项错误.故选AC 项.11.ABD 【解析】由题意得()()2M k M k =,故B 项正确;()()()2,2121M k M k k M k k k =-=-……,故A 项正确;516312363632632+++++=⨯=⨯ ,所以()()123636363M M ++++== ,故D 项正确;()()()()1263[1M M M M +++=+ ()()][()()36324M M M M ++++++ ()][()6213631M M =+++++()()()1023121M M M ⎤⎡++=++⎦⎣ ()()][()()33124M M M M ++++++ ()108642030]222222M ==+++++=614136514-=-,故C 项错误.故选ABD 项.三、填空题12.()50,14x x ∞⎧⎫<--⎨⎬⎩⎭… 【解析】集合{1A xx =<-∣或54x ⎫>⎬⎭,所以R A =ð504B x x ⎧⎫=<⎨⎬⎩⎭….若A B ⋃=R ,结合数轴可知1m <-,故m 的取值范围为(,1)∞--.13.925【解析】若甲、乙两人的选课都不相同则共有1243C C 4312=⨯=种;若甲、乙两人的选课有1门相同,则共有2114432C C C 24+=种.故()225512249C C 25P A +==.14.-5112【解析】由题意知()24(0)f x ax a =->,又()()()12121f x f x a x x +-=+=+,所以1a =,则()24f x x =-.由题意得()()2ln 2ln 2ln2n n n n n x a x x x +=+--=-,由()()()10n n n n x x f x f x +-+=',得()()1n n n n f x x x f x +='-,即2214422n n n n n nx x x x x x +-+=-=,又()()2211222,222n n n n nnx x x x x x +++-+=-=,所以()()21212222n n n n x x x x ++++=--,则1122ln 2ln 22n n n nx x x x ++++=--,即12n n a a +=,故{}n a 是以1为首项,2为公比的等比数列,所以12,21n n n n a S -==-.令n n c S =.()552122n n n ⎛⎫⎛⎫-=-⋅- ⎪ ⎪⎝⎭⎝⎭,则()111822n n nc c n -+-=-⋅-,故当8n …时,1n n c c +<,当9n …时,1n n c c +>,故()9min 5112n c c ==-.四、解答题15.解:(1)因为()()tan tan πtan A B C C +=-=-,所以2tan tan tan b B a B C=+,由正弦定理得sin 2tan sin tan tan B BA B C==+()2sin cos 2sin cos sin cos cos sin sin B C B CB C B C B C ==++2sin cos sin B C A因为sin 0,sin 0A B ≠≠,所以2cos 1C =,则1cos 2C =,又()0,πC ∈,所以π3C =.(2)由余弦定理得223a b ab =+-,因为222a b ab +…,所以22222222,22a b a b a b ab a b +++-+-=…即226a b +….当且仅当a b ==.又223a b ab +=+,且0ab >,所以223a b +>.综上,22a b +的取值范围为(]3,6.16.解:(1)由题意得()f x 的定义域为()0,∞+,()11,ax f x a x x-=-='当()0,0,a x ∞∈+…时,()0f x '<,所以()f x 在区间()0,∞+内单调递减,无最值;当0a >时,令()0f x '=,得1x a=,当10,x a ⎛⎫∈ ⎪⎝⎭时,()()0,f x f x '<单调递减,当1,x a ∞⎛⎫∈+⎪⎝⎭时,()()0,f x f x '>单调递增.故当1x a =时,()f x 取得最小值,且最小值为11ln f a a ⎛⎫=+ ⎪⎝⎭,无最大值.综上,当0a …时,()f x 无最值;当0a >时,()f x 的最小值为1ln a +,无最大值.(2)当1a =时,由()e x k xf x x -…,得e ln x k xx x x--…,整理得2e ln x k x x x x +-…,即2ln e x x x x xk +-….令()2ln e x x x x xh x +-=,则()h x '()()()2221ln 1e ln e e x xx x x x x x x +---+-=()()ln 1e x x x x --=,由(1)知,当1a =时,()ln f x x x =-的最小值为()110f =>,即ln 0x x ->恒成立,所以当()0,1x ∈时,()()0,h x h x '>单调递增;当()1,x ∞∈+时,()()0,h x h x '<单调递减.故当1x =时,()h x 取得最大值()21e h =,即2e k …,故k 的取值范围为2,e ∞⎡⎫+⎪⎢⎣⎭.17.(1)证明:连接CE 交AD 于点O ,连接GO .在菱形ACDE 中,CE AD ⊥,因为AB ⊥平面,ACDE CE ⊂平面ACDE ,所以CE AB ⊥,又,,AB AD A AB AD ⋂=⊂平面ABD ,所以CE ⊥平面ABD .因为,G O 分别为,BD AD 的中点,所以1,2GO AB GO =∥AB ,又1,2EF AB EF =∥AB ,所以GO EF ∥,所以四边形GOEF 为平行四边形,所以FG ∥EO ,所以FG ⊥平面ABD .(2)解:在菱形ACDE 中,因为AC AD =,所以ACD 和ADE 都是正三角形,取ED 的中点H ,连接AH ,则AH AC ⊥,又AB ⊥平面ACDE ,所以,AB AC AB AH ⊥⊥,即,,AB AC AH 两两垂直.以A 为坐标原点,,,AB AC AH 所在直线分别为,,x y z 轴,建立如图所示的空间直角坐标系,设2(0)AB a a =>,则1(0,2,0),(2,0,0),(,,2C B a D F a G a ⎛- ⎝则()2,2,0,(0,1BC a CD =-=-,30,,2FG ⎛= ⎝ .设平面BCD 的法向量为(),,m x y z =,则220,0,m BC ax y m CD y ⎧⋅=-+=⎪⎨⋅=-=⎪⎩ 取1z =,则m ⎫=⎪⎪⎭.记直线FG 与平面BCD 所成角为θ,则||sin |cos ,|||||FG m FG m FG m θ⋅=〈〉===解得1a =,即AB 的值为2.18.解:(1)依题意得(0.0010.0020.00320.006)50 1.a ++++⨯=解得0.004a =.所求平均数为250.1750.15125⨯+⨯+⨯0.21750.32250.22750.05150+⨯+⨯+⨯=.(2)依题意得14,5X B ⎛⎫~ ⎪⎝⎭,则()4425605625P X ⎛⎫=== ⎪⎝⎭,()314142561C 55625P X ⎛⎫==⨯⨯= ⎪⎝⎭()222414962C ,55625P X ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭()33414163C 55625P X ⎛⎫==⨯= ⎪⎝⎭()41145625P X ⎛⎫=== ⎪⎝⎭X 01234P 25662525662596625166251625故()14455E X =⨯=.(3)设“选到A 盒”为事件1A ,“选到B 盒”为事件2A ,,摸到金卡”为事件1B ,,摸到银卡”为事件2B ,因为12,B B 是对立事件,所以()119121*********P B =⨯+⨯=.()()2191.20P B P B =-=由题意得()()1212P A P A ==,所以()()()12122P A B P A B P B ==∣()()()2112111102,9920P B A P A P B ⨯==∣则()()2212819P A B P A B =-=∣∣.故所求的概率89123791091045P =⨯+⨯=.19.解:(1)易知C 的一条渐近线方程为y x =,则a b =.设(),2B t t -,又(),0,0A a a ->,直线AB 的斜率为13,所以213t t a -=+,解得62a t +=,则62,22a a B ++⎛⎫ ⎪⎝⎭,代入222x y a -=中,解得4a =.故C 的方程为2211616x y -=.(2)因为EA EP EP EQ ⋅=⋅ ,所以()0EP EA EQ ⋅-= ,即0EP QA ⋅=,所以PE AQ ⊥,同理可得,AE PQ EQ AP ⊥⊥.设()()1122,,,P x y Q x y ,联立221,16162.x y y x m ⎧-=⎪⎨⎪=+⎩整理得2234160x mx m +++=,由题意知()22Δ1612160m m =-+>,且8m ≠,解得m <-m >8m ≠,所以21212416,33m m x x x x ++=-=.过点A 与2l 垂直的直线的方程为122y x =--,设该直线与C 的右支交于另一点H ,联立221,161612,2x y y x ⎧-=⎪⎪⎨⎪=--⎪⎩整理得238800x x --=,解得203x =或4x =-(舍去).所以2016,33H ⎛⎫- ⎪⎝⎭.因为(1122016,33PH AQ x y x ⎛⎫⋅=---⋅+ ⎪⎝⎭)22121220801644333y x x x x y ⋅=+----(122121220801642333y y x x x x x =+---+()()1212)225(1m x m x m x x -++=--+()()()22128016164802)54233333m m x x m m m m +⎛⎫++--=-⨯-+⋅-+- ⎪⎝⎭222216580168801603333333m m m m m m m -=--+++--=所以PH AQ ⊥,同理可证QH AP ⊥.又AH PQ ⊥,所以H 与E 重合.因为H 在C 上,所以220016x y -=.故存在点E 满足EA EP EP EQ EA EQ ⋅=⋅=⋅ ,且220ij x y -的值为16.。

高三数学下学期押题卷二文试题

高三数学下学期押题卷二文试题

卜人入州八九几市潮王学校2021届高三下学期押题卷〔二〕数学〔文〕〔考试时间是是:120分钟试卷总分值是:150分〕本套试卷分第一卷〔选择题〕和第二卷〔非选择题〕两局部。

考生答题时,将答案答在答题卡上,在套本套试卷上答题无效。

在在考试完毕之后以后,将本套试卷和答题卡一起交回。

本卷须知:2.每一小题在选出答案以后,需要用2B 铅笔把答题卡上对应题目之答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上答题无效。

第一卷一、选择题:本大题一一共12个小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的. 1.集合{lg(32)}A xy x ==-,2{4}B x x =≤,那么A B =〔〕A.3{2}2xx -≤< B.{2}<x x C.3{2}2x x -<< D.{2}≤x x2.假设ii 12ia t +=+〔i 为虚数单位,,a t R ∈〕,那么t a +等于〔〕 A.-2B.-1C.1D.2==+∈αααππα2tan ,35cos 12sin 12),2,4(.3则〔〕根据上表可得回归方程13.1-=x y,那么m=5.三国时代吴国数学家赵爽所注周髀算经中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红〔朱〕色及黄色,其面积称为朱实、黄实,利用勾股股勾朱实黄实弦实,化简,得勾股弦.设勾股形中勾股比为,假设向弦图内随机抛掷1000颗图钉〔大小忽略不计〕,那么落在黄色图形内的图钉数大约为〔〕 A.866B.500C.300D.134 6.数列{}n a 为等差数列,其前n 项和为n S ,7825a a -=,那么11S 为〔〕A.110B.55C.50D.不能确定7.某几何体的三视图如下列图,那么该几何体的外表积为〔〕 某几何体的三视图如下列图,那么该几何体的外表积为〔〕 A .36+12πB .36+16πC .40+12πD .40+16π8.如图,直线2x +2y ﹣3=0经过函数f 〔x 〕=sin 〔ωx +φ〕〔ω>0,|φ|<π〕图象的最高点M 和最低点N ,那么〔〕A .ω=,φ=B .ω=π,φ=0C .ω=,φ=﹣D .ω=π,φ=9.,设,y=log b c ,,那么x ,y ,z 的大小关系正确的选项是〔〕A .z >x >yB .z >y >C .x >y >D .x >z >y10.函数22sin 33([,0)(0,])1441x y x xππ=∈-+的图像大致是〔〕 A.B.C.D. 11.抛物线2:4C y x =,过焦点F 3的直线与C 相交于,P Q 两点,且,P Q 两点在准线上的投影分别为,M N 两点,那么MFN S ∆=〔〕A.83 B.833 C.163D.163312.函数f 〔x 〕=3204610xe x x x x ⎧⎪⎨⎪⎩,<,-+,≥,那么函数g 〔x 〕=2[f 〔x 〕]2-3f 〔x 〕-2的零点个数为A .2B .3C .4D .5第二卷〔非选择题局部,一共90分〕二.填空题:本大题一一共4小题,每一小题5分,一共20分.13.向量=〔3,﹣1〕,=〔2,1〕,那么在方向上的投影为________.14.假设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,2bsin2A=3asinB ,且c=2b ,那么等于15.九章算术卷第五商功中,有问题“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈.问积几何?〞,意思是:“今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈;上棱长2丈,无宽,高1丈〔如图〕. 问它的体积是多少〞这个问题之答案是〔〕16.设直线l :3x+4y+4=0,圆C :〔x ﹣2〕2+y 2=r 2〔r >0〕,假设圆C 上存在两点P ,Q ,直线l 上存在一点M ,使得∠PMQ=90°,那么r 的取值范围是.三.解答题:本大题一一共6小题,一共70分.解容许写出文字说明、证明过程或者演算步骤. 17.〔12分〕数列{a n }的前n 项和S n =n 〔n +1〕+2,其中n ∈N *.〔Ⅰ〕求数列{a n }的通项公式;〔Ⅱ〕假设2a ,2+k a ,23+k a 〔k ∈N *〕为等比数列{b n }的前三项,求数列{b n }的通项公式.18.如下列图,在四棱锥P ﹣ABCD 中,底面ABCD 为矩形,PA⊥平面ABCD ,PA=AD ,E ,F 分别为PD ,BC 的中点.〔1〕求证:AE⊥PC;1234〔2〕G为线段PD上一点,假设FG∥平面AEC,求的值.19.〔12分〕为了保障全国第四次经济普查顺利进展,国家统计局从东部选择,从中部选择、,从西部选择宁夏,从直辖中选择作为国家综合试点地区,然后再逐级确定普查区域,直到基层的普查小区.在普查过程中首先要进展宣传培训,然后确定对象,最后入户登记.由于种种情况可能会导致入户登记不够顺利,如有些对象对普查有误解,配合不够主动;参与普查工作的技术人员对全新的操作平台运用还不够纯熟等,这为正式普查提供了珍贵的试点经历.在某普查小区,一共有50家企事业单位,150家个体经营户,普查情况如表所示:普查对象类别顺利不顺利合计企事业单位40 50个体经营户50 150 合计〔1〕写出选择5个国家综合试点地区采用的抽样方法;〔2〕补全上述列联表〔在答题卡填写上〕,并根据列联表判断是否有90%的把握认为“此普查小区的入户登记是否顺利与普查对象的类别有关〞;〔3〕根据该试点普查小区的情况,为保障第四次经济普查的顺利进展,请你从统计的角度提出一条建议.附:K2=P〔K2≥k0〕k020.椭圆C的中点在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线x2=8y的焦点.〔1〕求椭圆C的方程;〔2〕点P〔2,3〕,Q〔2,﹣3〕在椭圆上,点A、B是椭圆上不同的两个动点,且满足∠APQ=∠BPQ,试问直线AB的斜率是否为定值,请说明理由.21.(本小题总分值是12分)函数f(x)=+a ln x(a≠0,a∈R).(1)假设a =1,求函数f (x )的极值和单调区间;(2)假设在区间(0,e]上至少存在一点x 0,使得f (x 0)<0成立,务实数a 的取值范围.请考生在第〔22〕、〔23〕两题中任选一题答题,假设多做,那么按所做的第一题记分,答题时需要用2B 铅笔在答题卡上把所选题目的题号涂黑,把答案填在答题卡上.22.〔本小题总分值是10分〕选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线C 的参数方程为(r>0,φ为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为)3sin(πθρ-,假设直线l 与曲线C 相切.(Ⅰ)求曲线C 的极坐标方程;(Ⅱ)在曲线C 上取两点M ,N 与原点O 构成△MON,且满足∠MON=,求△MON 面积的最大值. 23.〔本小题总分值是10分〕选修4-5:不等式选讲()|23||21|f x x x =+--.〔Ⅰ〕求不等式()2f x <的解集;〔Ⅱ〕假设存在x R ∈,使得()|32|f x a >-成立,务实数a 的取值范围.文科数学参考答案及评分HY 〔二〕一、选择题:本大题一一共12个小题,每一小题5分,一共60分,在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的.1、D 【解析】因为3{lg(32)}{320}{}2A xy x x x x x ==-=->=<,{22}B x x =-≤≤.所以{2}A B x x =≤,故答案选D .2.B.【解析】因为ii i i (12i)=i -2t 12i a t a t t +=⇒+=⋅++,那么122t a a t =⎧⇒=-⎨=-⎩.所以 1t a +=-,故答案选B .3.B 5.【答案】D由题意,大正方形的边长为2,中间小正形的边长为,那么所求黄色图形内的图钉数大约为,应选D.6.B 【解析】78111622(6)(7)5a a a d a d a d a -=+-+=+=,1111161111552a a S a +=⨯==.故答案选B .7.【考点】L!:由三视图求面积、体积.【分析】几何体为棱柱与半圆柱的组合体,作出直观图,代入数据计算. 【解答】解:由三视图可知几何体为长方体与半圆柱的组合体, 作出几何体的直观图如下列图:其中半圆柱的底面半径为2,高为4,长方体的棱长分别为4,2,2, ∴几何体的外表积S=π×22×2++2×4+2×4×2+2×4+2×2×2=12π+40.应选C .8.【解答】解:因为M .N 分别是图象的最高点和最低点得M .N 的纵坐标为1和﹣1,带入直线2x +2y ﹣3=0得M .N 横坐标为和,故M 〔,1〕.N 〔,﹣1〕.得==2,故T =4=,故ω=.M 代入f 〔x 〕得1=sin 〔φ〕,故φ=2k π+,所以φ=2k π+,k ∈Z .因为|φ|<π,所以φ=,应选:A . 9.【解答】解:∵,∴=﹣log b a=﹣×=,2a>3,a >log 23>1,∈〔0,1〕.y=log b c <0,>>=,∴z>x >y . 应选:A .10.A 【解析】因为函数22sin ()11x y f x x==+可化简为222sin ()1x xf x x =+可知函数为奇函数关于原点对称,可排除答案C ;同时有42224sin 2cos 2cos ''()(1)x x x x x xy f x x ++==+3222(2sin cos cos )(1)x x x x x x x ++=+,那么当(0,)2x π∈'()0f x >,可知函数在2x π=处附近单调递增,排除答案B 和D ,故答案选A . 11.B 【解析】由题意可得直线:3(1)PQ y x =-与抛物线24y x =联解得:231030x x -+=,所以点(3,3)P ,123(,3Q ,那么23833MN ==MNF ∆中,MN 边上的高2h =,那么183832233MNFS ∆=⨯⨯=,故答案选B . 方法二:不防设交点P 在x 轴上方,由抛物线焦点弦性质得||||PFPM =,||||QF QN =且1121||||PF QF p +==,||||||||1||||||||2PM QN PF QF PM QN PF QF --==++,故||4PF =,4||3QF =, 所以114383||(4)222323MNFS MN p ∆=⨯⨯=⨯+⨯⨯=,故答案选B . 12.【答案】B 【解析】依题意,当0x ≥时,()()2'1212121f x x x x x =-=-,故当()0,1x ∈时,()'0f x <,当()1,x ∈+∞时,()'0f x >,且()11f =-,作出函数()f x 的大致图象如下所示;令()()()22320g x f x f x =--=⎡⎤⎣⎦,解得()()122f x f x ==-或,观察可知,函数()g x 一共有3个零点,应选B.二.填空题:本大题一一共4小题,每一小题5分,一共20分. 13.【答案】【考点】平面向量数量积的运算 【解析】【解答】解:=6﹣1=5,||=,∴在方向上的投影为||cos <cos>=||===.故答案为:.14.【解答】解:由2bsin2A=3asinB ,利用正弦定理可得:4sinBsinAcosA=3sinAsinB , 由于:sinA≠0,sinB≠0, 可得:cosA=,又c=2b ,可得:a2=b2+c2﹣2bccosA=b2+4b2﹣2b•2b•=2b2,那么=.15.5立方丈将该几何体分成一个直三棱柱,两个四棱锥,即1131221315 23V=⨯⨯⨯+⨯⨯⨯⨯=,16.【解答】解:圆C:〔x﹣2〕2+y2=r2,圆心为:〔2,0〕,半径为r,∵在圆C上存在两点P,Q,在直线l上存在一点M,使得∠PMQ=90°,∴在直线l上存在一点M,使得过M作圆的两条切线,切线夹角大于等于90,∴只需MC⊥l时,使得过M作圆的两条切线,切线夹角大于等于900即可∵C到直线l:3x+4y+4=0的间隔2,那么r.个答案为:[,+∞〕.三.解答题:本大题一一共6小题,一共70分.解容许写出文字说明、证明过程或者演算步骤.17.【解答】解:〔Ⅰ〕当n=1时,S1=a1=4,………………〔2分〕当n≥2时,由题意,得S n=n〔n+1〕+2,①S n﹣1=〔n﹣1〕n+2,②由①﹣②,得a n=2n,其中n≥2.………………〔5分〕所以数列{a n}的通项公式………………〔7分〕〔Ⅱ〕由题意,得.………………〔9分〕即[2〔k+2〕]2=4×2〔3k+2〕.解得k=0〔舍〕或者k=2.………………〔10分〕所以公比.………………〔11分〕所以.………………〔12分〕18.【解答】〔1〕证明:∵AP⊥平面ABCD,∴AP⊥CD,在矩形ABCD中,CD⊥AD,又AP∩AD=A,∴CD⊥平面PAD,∵AE⊂平面PAD,∴CD⊥AE,在△PAD中,E为PD中点,PA=AD,∴AE⊥PD,又CD∩PD=D,CD,PD⊂平面PCD,∴AE⊥平面PCD,∵PC⊂平面PCD,∴AE⊥PC〔2〕解:取AP中点M,连接MF,MG,ME.在△PAD中,M,E分别为PA,PD的中点那么ME为△PAD的中位线∴,又,∴ME∥FC,ME=FC,∴四边形MECF为平行四边形,∴MF∥EC,又MF⊄平面AEC,EC⊂平面AEC,∴MF∥平面AEC,又FG∥平面AEC,MF∩FG=F,MF,FG⊂平面MFG,∴平面MFG∥平面AEC,又平面MFG∩平面PAD=MG,平面AEC∩平面PAD=AE,∴MG∥AE,又∵M为AP中点,∴G为PE中点,又E为PD中点,∴,即.19.【解答】解:〔1〕根据样本是由差异比较明显的几局部组成,所以应用分层抽样法;…2分〔2〕根据题意填写上列联表如下,普查对象类别顺利不顺利合计企事业单位40 10 50个体经营户100 50 150 合计140 60 200…5分将列联表中的数据代入公式计算K2=≈75>06,所以有90%的把握认为“此普查小区的入户登记是否顺利与普查对象的类别有关〞;…10分建议:加大宣传力度,消除误解因素,尤其要做好个体经营户的思想工作.…12分20.解:〔1〕∵椭圆C的中点在原点,焦点在x轴上,∴设椭圆C的方程为,a>b>0,离心率等于,它的一个顶点恰好是抛物线x2=8y的焦点,∴b=2,,∵a2=b2+c2,∴a=4,∴椭圆C的方程为.……………5分〔2〕当∠APQ=∠BPQ时,PA,PB的斜率之和为0,设直线PA的斜为k,那么PB的斜率为﹣k,设A〔x1,y1〕,B〔x2,y2〕,设PA的直线方程为y﹣3=k〔x﹣2〕,由,消去y并整理,得:〔3+4k2〕x2+8〔3﹣2k〕kx+4〔3﹣2k2〕﹣48=0,∴,设PB的直线方程为y﹣3=﹣k〔x﹣2〕,同理,得=,……………8分∴,,k AB====,∴AB的斜率为定值.……………12分21.解:(1)当a=1时,f′(x)=-+=.令f′(x)=0,得x=1.(1分)又f(x)的定义域为(0,+∞),由f′(x)<0得0<x<1,由f′(x)>0得,xx=1时,f(x)获得极小值f(1)=1,无极大值,f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1).(3分)(2)假设在区间(0,e]上存在一点x0,使得f(x0)<0成立,即f(x)在区间(0,e]上的最小值小于0.由得,f′(x)=-+=,且a≠0,令f′(x)=0,得x=,(4分)当x=<0,即a<0时,f′(x)<0恒成立,即f(x)在区间(0,e]上单调递减,(5分)故f(x)在区间(0,e]上的最小值为f(e)=+a lne=+a,(6分)由+a<0,得a<-,即a∈.(7分)当x=>0,即a>0时,①假设e≤,那么f′(x)≤0对x∈(0,e]恒成立,所以f(x)在区间(0,e]上单调递减,(8分)故f(x)在区间(0,e]上的最小值为f(e)=+a lne=+a>0,显然,f(x)在区间(0,e]上的最小值小于0不成立.(9分)②假设0<<e,即a>时,那么有xf′(x)-0+f(x)极小值所以f(x)由f=a+a ln=a(1-ln a)<0,得1-ln a<0,解得a>e,即a∈(e,+∞).(11分)综上可知,a∈∪(e,+∞).(12分)22.【解析】(Ⅰ)由题意可知直线l的直角坐标方程为y=x+2,曲线C是圆心为,半径为r的圆,直线l与曲线C相切,可得:r ==2;可知曲线C 的方程为+=4,所以曲线C 的极坐标方程为ρ2-2ρcosθ-2ρsinθ=0,即ρ=4sin.(5分) (Ⅱ)由(Ⅰ)不妨设M(ρ1,θ),N ,(ρ1>0,ρ2>0),S △MON =sin ,=ρ1·ρ2=4sin ·sin=2sinθcosθ+2cos 2θ =sin2θ+cos2θ+=2sin +,当θ=时,S △MON =2+,所以△MON 面积的最大值为2+.(10分)23.【解析】〔Ⅰ〕不等式()2f x <等价于32(23)(21)2x x x ⎧<-⎪⎨⎪-++-<⎩或者3122(23)(21)2x x x ⎧-≤≤⎪⎨⎪++-<⎩ 或者12(23)(21)2x x x ⎧>⎪⎨⎪+--<⎩,解得32x <-或者302x -≤<, 所以不等式()2f x <的解集是(,0)-∞; 〔Ⅱ〕()|(23)(21)|4f x x x ≤+--=,max ()4f x ∴=,|32|4a ∴-<,解得实数a 的取值范围是2(,2)3-.。

高考文科数学押题卷(带答案)

高考文科数学押题卷(带答案)

文科数学押题卷(二)一、选择题:本大题共12小题, 每小题5分, 共60分。

在每小题给出的四个选项中, 只有一项是符合题目要求的。

1.已知集合A ={x |x ≤2}, B ={0, 1, 2, 3}, 则A ∩B =( )A .{0, 1}B .{0, 1, 2}C .{1, 2}D .{0, 1, 2, 3}2.已知复数z =1-2i(1+i )2, 则z 的虚部为( )A .-12B .12C .-12iD .12i3.某商家今年上半年各月的人均销售额(单位:千元)与利润率统计表如下:月份 1 2 3 4 5 6 人均销售额 6 5 8 3 4 7 利润率(%) 12.6 10.4 18.5 3.0 8.1 16.3根据表中数据, 下列说法正确的是( )A .利润率与人均销售额成正相关关系B .利润率与人均销售额成负相关关系C .利润率与人均销售额成正比例函数关系D .利润率与人均销售额成反比例函数关系4.已知a =⎝⎛⎭⎫13π, b =⎝⎛⎭⎫1312, c =π12, 则下列不等式正确的是( ) A .a >b >c B .b >a >c C .c >a >b D .c >b >a5.已知某空间几何体的三视图如图所示, 其中正视图和侧视图是边长为3的正三角形,则该几何体的体积为( )A .πB .π2C .3π8D .π46.已知△ABC 的内角A , B , C 的对边分别为a , b , c , 若cos A =-35, cos B =45, a =20, 则c =( )A .10B .7C .6D .5 7.函数f (x )=ln|x |·sin x 的图象大致为( )A B C D8.执行如图所示的程序框图, 则输出的k 值为( )A .4B .6C .8D .109.已知F 1, F 2为椭圆C :x2a2+y2b2=1(a >b >0)的左、右焦点, B 为C 的短轴的一个端点,直线BF 1与C 的另一个交点为A , 若△BAF 2为等腰三角形, 则|AF1||AF2|=( )A .13B .12C .23 D .310.数学中有很多公式都是数学家欧拉(Leonhard Euler)发现的, 它们都叫欧拉公式, 分散在各个数学分支之中, 任意一个凸多面体的顶点数V 、棱数E 、面数F 之间, 都满足关系式V -E +F =2,这个等式就是立体几何中的“欧拉公式”。

(全优试卷)普通高等学校招生全国统一考试押题卷文科数学(二)Word版含解析

(全优试卷)普通高等学校招生全国统一考试押题卷文科数学(二)Word版含解析

绝密★启用前2018年普通高等学校招生全国统一考试押题卷文科数学(二)本试题卷共2页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B铅笔将答题卡上试卷类型A后的方框涂黑。

2、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1A B C D【答案】D【解析】D.2A B C D【答案】A【解析】,,A.3A B C D【答案】C【解析】C.4A B C D.1【答案】BB.5A.5 B.6 C.7 D.8【答案】A6.《九章算术》卷5《商功》记载一个问题“今有圆堡瑽,周四丈八尺,高一丈一尺.问积几何?答曰:二千一百一十二尺.术曰:周自相乘,以高乘之,十二而一”.这里所说的圆堡瑽就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一”,ABCD【答案】A【解析】A.7ABCD【答案】D【解析】8.的距离的最小值是()ABCD【答案】D【解析】为1,则圆上一点PD.9为18ABC D【答案】A【解析】根据不等式组得到可行域是一个封闭的四边形区域,目标函数化为有最大值,故答案为:A.10则该双曲线的离心率是()A B C.2 D【答案】B【解析】中点坐标公式可代入双曲线方程可由于B.11.围是()A B C D【答案】D【解析】D.12.值范围为()ABCD【答案】A【解析】令,则当()0,2x ∈时,()0f x '>,当()2,x ∈+∞时,()0f x '<,所以()2k f >或()1k f <-,即25ek >或e k <-,故选A . 第Ⅱ卷本卷包括必考题和选考题两部分。

高三数学押题II卷 文含解析 试题

高三数学押题II卷 文含解析 试题

2021年普通高等招生全国统一考试模拟试题制卷人:歐陽文化、歐陽理複;制卷時間:二O二二年二月七日文科数学〔Ⅱ〕第一卷〔一共60分〕一、选择题:本大题一一共12个小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的.1. 设集合,,那么集合为〔〕A. B. C. D.【答案】B【解析】由题意可得:,那么集合为.此题选择B选项.2. 假设复数〔,〕满足,那么的值是〔〕A. B. C. D.【答案】C【解析】由题意可得:,那么:,解得:,那么.此题选择C选项.3. 假设,,那么的值是〔〕A. B. C. D.【答案】A【解析】由题意可得:,结合两角和差正余弦公式有:.此题选择A选项.4. 抛掷一枚质地均匀的骰子两次,记事件两次的点数均为偶数且点数之差的绝对值为2,那么〔〕A. B. C. D.【答案】A【解析】连续两次抛掷一枚骰子,记录向上的点数,根本领件总数n=6×6=36,两次的点数均为偶数且点数之差的绝对值为2包含的根本领件有:(2,4),(4,2), (4,6),(6,4),一共有4个,∴两次的点数均为偶数且点数之差的绝对值为2的概率:.此题选择B选项.点睛:有关古典概型的概率问题,关键是正确求出根本领件总数和所求事件包含的根本领件数.(1)根本领件总数较少时,用列举法把所有根本领件一一列出时,要做到不重复、不遗漏,可借助“树状图〞列举.(2)注意区分排列与组合,以及计数原理的正确使用.5. 定义平面上两条相交直线的夹角为:两条相交直线交成的不超过:,当其离心率时,对应双曲线的渐近线的夹角的取值范围为〔〕A. B. C. D.【答案】D【解析】由题意可得:,设双曲线的渐近线与轴的夹角为,双曲线的渐近线为,那么,结合题意相交直线夹角的定义可得双曲线的渐近线的夹角的取值范围为.此题选择D选项.6. 某几何体的三视图如下图,假设该几何体的体积为,那么它的外表积是〔〕A. B.C. D.【答案】A【解析】由三视图可知,该几何体是由四分之三圆锥和一个三棱锥组成的组合体,其中:由题意:,据此可知:,,,它的外表积是.此题选择A选项.点睛:三视图的长度特征:“长对正、宽相等,齐〞,即正视图和侧视图一样高、正视图和俯视图一样长,侧视图和俯视图一样宽.假设相邻两物体的外表相交,外表的交线是它们的分界限,在三视图中,要注意实、虚线的画法.正方体与球各自的三视图一样,但圆锥的不同.7. 函数在区间的图象大致为〔〕A. B. C. D.【答案】A【解析】由题意,那么且,函数为非奇非偶函数,选项C,D错误;当时,,那么函数值,排除选项B.此题选择A选项.8. 函数假设,那么为〔〕A. 1B.C.D.【答案】D【解析】由题意可得:,解得:.此题选择D选项.9. 执行以下图的程序框图,假设输入的,,的值分别为0,1,1,那么输出的的值是〔〕A. 81B.C.D.【答案】C【解析】根据流程图运行程序,首先初始化数值,x=0,y=1,n=1 ,进入循环体:x=n y=1,y= =1,时满足条件y2≥x,执行n=n+1=2 ,进入第二次循环,x=n y=2,y= = ,时满足条件y2≥x,执行n=n+1=3 ,进入第三次循环,x=n y=2,y= =,时不满足条件y2≥x,输出 .10. 数列是首项为1,公差为2的等差数列,数列满足关系,数列的前项和为,那么的值是〔〕A. B. C. D.【答案】B【解析】由题意可得:,且:,两式做差可得:,那么:,据此可得:.此题选择B选项.点睛:数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜测出数列的一个通项公式;②将递推关系式整理、变形,变成等差、等比数列,或者用累加法、累乘法、迭代法求通项.11. 假设函数在区间内单调递增,那么实数的取值范围为〔〕A. B. C. D.【答案】A【解析】很明显,且恒成立,即:由均值不等式的结论:,据此有:,解得:.此题选择A选项.12. 函数的图象如下图,令,那么以下关于函数的说法中不正确的选项是〔〕A. 函数图象的对称轴方程为B. 函数的最大值为C. 函数的图象上存在点,使得在点处的切线与直线平行D. 方程的两个不同的解分别为,,那么的最小值为【答案】C【解析】由函数的最值可得,函数的周期,当时,,令可得,函数的解析式 .那么:结合函数的解析式有,而,选项C错误,根据三角函数的性质考察其余选项正确.此题选择C选项.第二卷〔一共90分〕二、填空题〔每一小题5分,满分是20分,将答案填在答题纸上〕13. 向量,,假设向量,一共线,且,那么的值是__________.【答案】-8【解析】由题意可得:或者,那么:或者 .14. 点,,假设圆上存在点使,那么的最小值为__________.【答案】16【解析】圆的方程即:,设圆上的点P的坐标为,那么:,计算可得:,,由正弦函数的性质有:,求解关于实数的不等式可得:,那么的最小值为16.点睛:计算数量积的三种方法:定义、坐标运算、数量积的几何意义,要灵敏选用,和图形有关的不要忽略数量积几何意义的应用.15. 设,满足约束条件那么的最大值为__________.【答案】【解析】绘制不等式组表示的平面区域,结合目的函数的几何意义可得目的函数在点处获得最大值.16. 在平面五边形中,,,,,,,当五边形的面积时,那么的取值范围为__________.【答案】【解析】由题意可设:,那么:,那么:当时,面积由最大值;当时,面积由最大值;结合二次函数的性质可得:的取值范围为.三、解答题〔本大题一一共6小题,一共70分.解容许写出文字说明、证明过程或者演算步骤.〕17. 在中,角,,所对的边分别为,,,且.〔1〕求角;〔2〕假设,的面积为,为的中点,求的长.【答案】〔1〕.〔2〕.【解析】试题分析:(1)利用题意结合余弦定理首先求得.那么.(2)利用题意首先求得,然后结合余弦定理可得.试题解析:〔1〕由,得.由正弦定理,得,即.又由余弦定理,得.因为,所以.〔2〕因为,所以为等腰三角形,且顶角.故,所以.在中,由余弦定理,得.解得.18. 如下图的几何体中,四边形为菱形,,,,,平面平面,,为的中点,为平面内任一点.〔1〕在平面内,过点是否存在直线使?假如不存在,请说明理由,假如存在,请说明作法;〔2〕过,,三点的平面将几何体截去三棱锥,求剩余几何体的体积.【答案】〔1〕见解析;〔2〕.【解析】试题分析:(1)利用线面平行的判断定理结合题意可知点G存在;(2)利用题意将所要求解的多面体的体积进展分解可得几何体的体积.试题解析:〔1〕过点存在直线使,理由如下:由题可知为的中点,又为的中点,所以在中,有.假设点在直线上,那么直线即为所求作直线,所以有;假设点不在直线上,在平面内,过点作直线,使,又,所以,即过点存在直线使.〔2〕连接,,那么平面将几何体分成两局部:三棱锥与几何体〔如下图〕.因为平面平面,且交线为,又,所以平面.故为几何体的高.又四边形为菱形,,,,所以,所以.又,所以平面,所以,所以几何体的体积.19. 某校为缓解高三学生的高考压力,经常举行一些心理素质综合才能训练活动,经过一段时间是的训练后从该年级800名学生中随机抽取100名学生进展测试,并将其成绩分为、、、、五个等级,统计数据如下图〔视频率为概率〕,根据图中抽样调查的数据,答复以下问题:〔1〕试估算该校高三年级学生获得成绩为的人数;〔2〕假设等级、、、、分别对应100分、90分、80分、70分、60分,要求当学生获得的等级成绩的平均分大于90分时,高三学生的考前心理稳定,整体过关,请问该校高三年级目前学生的考前心理稳定情况是否整体过关?〔3〕以每个学生的心理都培养成为安康状态为目的,决定对成绩等级为的16名学生〔其中男生4人,女生12人〕进展特殊的一对一帮扶培训,从按分层抽样抽取的4人中任意抽取2名,求恰好抽到1名男生的概率..【答案】〔1〕.〔2〕见解析;〔3〕.【解析】试题分析:(1)利用题意首先求得该校学生获得成绩等级为的概率,然后求解人数约为448人;(2)利用平均分是数值可得该校高三年级目前学生的“考前心理稳定整体〞已过关.(3)利用分层抽样的结论结合古典概型公式可得恰好抽到1名男生的概率为.试题解析:〔1〕从条形图中可知这100人中,有56名学生成绩等级为,故可以估计该校学生获得成绩等级为的概率为,那么该校高三年级学生获得成绩等级为的人数约有.〔2〕这100名学生成绩的平均分为〔分〕,因为,所以该校高三年级目前学生的“考前心理稳定整体〞已过关.〔3〕按分层抽样抽取的4人中有1名男生,3名女生,记男生为,3名女生分别为,,.从中抽取2人的所有情况为,,,,,,一共6种情况,其中恰好抽到1名男生的有,,,一共3种情况,故所求概率.点睛:两个防范一是在频率分布直方图中,小矩形的高表示频率/组距,而不是频率;二是利用频率分布直方图求众数、中位数和平均数时,应注意三点:①最高的小长方形底边中点的横坐标即是众数;②中位数左边和右边的小长方形的面积和是相等的;③平均数是频率分布直方图的“重心〞,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.20. 椭圆:的离心率为,且过点,动直线:交椭圆于不同的两点,,且〔为坐标原点〕〔1〕求椭圆的方程.〔2〕讨论是否为定值.假设为定值,求出该定值,假设不是,请说明理由.【答案】〔1〕.〔2〕.【解析】试题分析:(1)由题意求得,,故所求的椭圆方程为.(2)联立直线与椭圆的方程,利用根与系数的关系结合题意可证得为定值. 试题解析:〔1〕由题意可知,所以,即,①又点在椭圆上,所以有,②由①②联立,解得,,故所求的椭圆方程为.〔2〕设,由,可知.联立方程组消去化简整理得,又由题知,即,整理为.将③代入上式,得.化简整理得,从而得到.21. 设函数.〔1〕试讨论函数的单调性;〔2〕假如且关于的方程有两解,〔〕,证明. 【答案】〔1〕见解析;〔2〕见解析.【解析】试题分析:(1)求解函数的导函数,分类讨论可得:①假设,那么当时,数单调递减,当时,函数单调递增;②假设,函数单调递增;③假设,那么当时,函数单调递减,当时,函数单调递增.(2)原问题即证明,构造新函数,结合新函数的性质和题意即可证得结论.试题解析:〔1〕由,可知.因为函数的定义域为,所以,①假设,那么当时,,函数单调递减,当时,,函数单调递增;②假设,那么当在内恒成立,函数单调递增;③假设,那么当时,,函数单调递减,当时,,函数单调递增.〔2〕要证,只需证.设,因为,所以为单调递增函数.所以只需证,即证,只需证.〔*〕又,,所以两式相减,并整理,得.把代入〔*〕式,得只需证,可化为.令,得只需证.令〔〕,那么,所以在其定义域上为增函数,所以.综上得原不等式成立.请考生在22、23两题中任选一题答题,假如多做,那么按所做的第一题记分.22. 选修4-4:坐标系与参数方程在直角坐标系中,曲线:〔为参数,〕,在以坐标原点为极点,轴的非负半轴为极轴的极坐标系中,曲线:.〔1〕试将曲线与化为直角坐标系中的普通方程,并指出两曲线有公一共点时的取值范围;〔2〕当时,两曲线相交于,两点,求的值.【答案】〔1〕见解析;〔2〕.【解析】试题分析:(1)由题意计算可得曲线与化为直角坐标系中的普通方程为,;的取值范围是;(2)首先求解圆心到直线的间隔,然后利用圆的弦长计算公式可得.试题解析:〔1〕曲线:消去参数可得普通方程为.曲线:,两边同乘.可得普通方程为.把代入曲线的普通方程得:,而对有,即,所以故当两曲线有公一共点时,的取值范围为.〔2〕当时,曲线:,两曲线交点,所在直线方程为.曲线的圆心到直线的间隔为,所以.23. 选修4-5:不等式选讲函数.〔1〕在给出的直角坐标系中作出函数的图象,并从图中找出满足不等式的解集;〔2〕假设函数的最小值记为,设,且有,试证明:.【答案】〔1〕.〔2〕见解析.【解析】试题分析:(1)将函数写成分段函数的形式解不等式可得解集为.(2)整理题中所给的算式,构造出合适均值不等式的形式,然后利用均值不等式的结论证明题中的不等式即可,注意等号成立的条件.试题解析:〔1〕因为所以作出图象如下图,并从图可知满足不等式的解集为.〔2〕证明:由图可知函数的最小值为,即.所以,从而,从而.当且仅当时,等号成立,即,时,有最小值,所以得证.制卷人:歐陽文化、歐陽理複;制卷時間:二O二二年二月七日。

高考数学(文)原创终极押题卷(新课标Ⅱ卷)(解析版)

高考数学(文)原创终极押题卷(新课标Ⅱ卷)(解析版)

下列说法错误的是(

A. 2018 年 6 月 CPI 环比下降 0.1% ,同比上涨 1.9% B. 2018 年 3 月 CPI 环比下降 1.1%,同比上涨 2.1% C. 2018 年 2 月 CPI 环比上涨 0.6%,同比上涨 1.4% D. 2018 年 6 月 CPI 同比涨幅比上月略微扩大 0.1 个百分点 【答案】 CXXK 【分析】对照表中数据逐项检验即可 .
8,公比
8 84 85 86 87 88 8 84 1 85 18
8 1 89 84 ,故选 D. 7
数学试题 第 2 页(共 14 页)
5.程序框图如下图所示,若上述程序运行的结果
1320 ,则判断框中应填入(

【解析】根据题意,函数 f x 是定义在 R 上的偶函数,则 f 3 f 3 , f log 313 f log 313 ,有
可得 AD CD
52 4 2 3 ,故三棱锥 D ABC 的外接球的半径 R
32 42 32 2
2
34 4π
34π.故选 C .
2
34 ,则其表面积为
2
数学试题 第 5 页(共 14 页)
第Ⅱ卷
二、填空题(本题共 4 小题,每小题 5 分,共 20 分)
xy0 13.若实数 x, y 满足 2 x y 6 0 ,则 z 2 x y 的最大值为 ______________.
A. 1,0
B. 0,1
C. 1,0,1 【答案】 B 【解析】
D. 1,2

,则
,故选 B.
2.已知 i 为虚数单位 ,复数 z 1 i ,则 z
1 的实部与虚部之差为
(
)
z

2020年全国普通高等学校统一招生考试(新课标II卷)押题猜想卷 文科数学(解析版)

2020年全国普通高等学校统一招生考试(新课标II卷)押题猜想卷 文科数学(解析版)

2020年全国普通高等学校统一招生考试(新课标II 卷)押题猜想卷数 学(文)第I 卷 选择题(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}16,M x x x N =<<∈,{}1,2,3N =-,那么M N =I ( )A .{}1,2,3,4B .{}1,2,3,4,5C .{}2,3D .{}2,3,4 【答案】C【解析】 {}{}16,2,3,4,5M x x x N =<<∈=Q ,因此,{}2,3M N =I ,故选:C.2. 复数i i 1z =-的虚部为( ) A .12 B .12- C .1i 2 D .1i 2- 【答案】B【解析】i i 1z =-(1)(1)(1)i i i i --=-+--111222i i -==-, 所以复数z 的虚部为12-. 故选:B3.函数()3cos x x f x x x -=+在-22ππ⎡⎤⎢⎥⎣⎦,的图像大致为( ) A . B .C .D .【答案】A【解析】因为()33()()()cos cos()x x x x f x f x x x x x ----==-=--+-+- 又定义域关于原点对称,故该函数为奇函数,排除B 和D. 又21124f ππ⎛⎫=-> ⎪⎝⎭,故排除C . 故选:A.4.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.现齐王与田忌各出上等马、中等马、下等马一匹,共进行三场比赛,规定:每一场双方均任意选一匹马参赛,且每匹马仅参赛一次,胜两场或两场以上者获胜.则田忌获胜的概率为( )A .13B .16C .19D .136【答案】B【解析】设齐王的上等马、中等马、下等马分别为A ,B ,C ,设田忌的上等马、中等马、下等马分别为a ,b ,c ,每一场双方均任意选一匹马参赛,且每匹马仅参赛一次,胜两场或两场以上者获胜.基本事件有:(Aa ,Bb ,)Cc ,(Aa ,Bc ,)Cb ,(Ab ,Bc ,)Ca ,(Ab ,Bc ,)Ca ,(Ac ,Bb ,)Ca ,(Ac ,Ba ,)Cb ,共6个,田忌获胜包含的基本事件有:(Ac ,Ba ,)Cb ,只有1个,∴田忌获胜的概率为16p =. 故选:B. 5.已知向量,a b v v 满足5,4,61a b b a ==-=v v v v ,则a v 与b v 的夹角θ=( )A .150°B .120°C .60°D .30°【答案】B【解析】由||b a -=r r ()2226126125254cos 1661b a a a b b θ-=⇒-⋅+=⇒-⨯⨯+=r r r r r r . 解得1cos 2θ=-.因为[]0,180θ∈︒,故θ=120°. 故选:B6.已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线为y =,则双曲线的离心率为( )A B .2 C D 【答案】D【解析】∵双曲线2222x y a b-=1(a >0,b >0)的一条渐近线为y =,∴b a=∴双曲线的离心率为e c a === 故选:D .7.已知ABC ∆的三个内角,,A B C 所对的边分别为,,a b c ,ABC ∆的外接圆的面积为3π,且222cos cos cos A B C -+1sin sin A C =+,则ABC ∆的最大边长为( )A .2B .3CD .【答案】B【解析】ABC ∆的外接圆的面积为23R R ππ=∴=222cos cos cos 1sin sin A B C A C -+=+则2221sin 1sin 1sin 1sin sin A B C A C --++-=+222sin sin sin sin sin 0A B C A C -++=,根据正弦定理:2220a c b ac +-+=根据余弦定理:22212cos cos 1202a c b ac B ac B B +-==-∴=-∴∠=︒故b 为最长边:2sin 3b R B ==故选B .8.一个算法的程序框图如图所示,若该程序输出的结果是34,则判断框中应填入的条件是( )A .i>5B .i<5C .i>4D .i<4【答案】D【解析】经判断此循环为“直到型”结构,判断框为跳出循环的语句,第一次循环:110112122S i =+==+=⨯,;第二次循环:1122132233S i =+==+=⨯,;第三次循环:2133143344S i =+==+=⨯,,此时退出循环,根据判断框内为跳出循环的语句,4i ∴<?,故选D .9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为( )A .22 B 3C 5D .72【答案】C【解析】在正方体1111ABCD A B C D -中,//CD AB ,所以异面直线AE 与CD 所成角为EAB ∠,设正方体边长为2a ,则由E 为棱1CC 的中点,可得CE a =,所以5BE a =, 则55tan 22BE a EAB AB a ∠===.故选C.点睛:求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角;(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值.10.关于函数()sin cos f x x x =+有下述四个结论:①()f x 是周期函数;②()f x 的最小值为2-;③()f x 的图象关于y 轴对称;④()f x 在区间42ππ⎛⎫ ⎪⎝⎭,单调递增.其中所有正确结论的编号是( ) A .①②B .①③C .②③D .②④【答案】B【解析】①()()()2sin 2cos 2sin cos f x x x x x πππ+=+++=+ ()()2f x f x π∴+=,()f x ∴是周期为2π的周期函数,故①正确;②()f x Q 的周期是2π,所以分析[]0,2x π∈时函数的值域,当[)0,x Îp 时,()sin cos 24f x x x x π⎛⎫=+=+ ⎪⎝⎭ ,5,444x πππ⎡⎫+∈⎪⎢⎣⎭Q ,sin 42x π⎛⎤⎛⎫∴+∈- ⎥ ⎪ ⎝⎭⎝⎦, ()f x ∴的值域是(-,当[],2x ππ∈时,()sin cos 4f x x x x π⎛⎫=-+=+ ⎪⎝⎭,59,444x πππ⎡⎤+∈⎢⎥⎣⎦,cos 42x π⎡⎤⎛⎫∴+∈-⎢⎥ ⎪⎝⎭⎣⎦, ()f x ∴的值域是⎡-⎣,综上可知函数()f x 的值域是⎡-⎣,最小值是-1,故②不正确;③()()()()sin cos sin cos f x x x x x f x -=-+-=+=()f x ∴是偶函数,关于y 轴对称,故③正确;④由②知,当,42x ππ⎡⎤∈⎢⎥⎣⎦时,()4f x x π⎛⎫=+ ⎪⎝⎭ , 3,424x πππ⎡⎤+∈⎢⎥⎣⎦ ,而sin y x =在423,ππ⎡⎤⎢⎥⎣⎦上单调递减,故④不正确. 综上可知,正确编号是①③.故选:B11.已知1F ,2F 为椭圆E :()222210x y a b a b+=>>的左右焦点,在椭圆E 上存在点P ,满足212PF F F =且2F 到直线1PF 的距离等于b ,则椭圆E 的离心率为( )A .13B .12C .23D .34【答案】B【解析】 由已知得2122PF F F c ==,根据椭圆的定义可得121222PF PF a PF a c +=⇒=-,又2F 到直线1PF 的距离等于b ,即2F H b =,由等腰三角形三线合一的性质可得:21F H PF ⊥,可列方程:()()22222220a c b c a ac c -+=⇒--=()()120202a c a c a c e ⇒-+=⇒-=⇒=,故选:B. 12.已知是定义在R 上的奇函数,满足()()20f x f x -+=,且当[)0,1x ∈时,()1x f x x =-,则函数()()2sin g x f x x π=+在区间()3,5-上的所有零点之和为( )A .13B .18C .15D .17【答案】C【解析】由()()20f x f x -+=知()f x 关于()1,0成中心对称.又()f x Q 为奇函数,则()f x 周期为2.易知,()()()()10,350,10===-=f f f f作出函数()f x 在区间()3,5-图像如图所示.所以()2sin x x ϕπ=-在()3,5-间,所有零点之和为()()()8404210123415+++-+-+-+++++=.故选C第II 卷 非选择题(共90分)二、填空题:本大题共4小题,每题5分,共20分.13.曲线C :2()ln f x x x =+在点(1,(1))f 处的切线方程为__________.【答案】320x y --=【解析】 由题可得:1'()2f x x x =+(),1f =1,'(1)3,f ∴=∴切线方程为:y-1=3(x-1) 即320x y --=,故答案为:320x y --=14.已知实数,x y 满足1,20,1,x y x y y +≥⎧⎪--≤⎨⎪≤⎩则y x 的最小值为( ) A .3-B .3C .13-D .13【答案】C【解析】如图所示:画出可行域 00y y k x x -==-,看作点到原点的斜率 根据图像知,当31,22x y ==-时,有最小值为13-15.已知0,2πα⎛⎫∈ ⎪⎝⎭且4tan 23α=,则tan 4tan 4παπα⎛⎫+ ⎪⎝⎭⎛⎫- ⎪⎝⎭的值等于________. 【答案】9-【解析】由(0,)2πα∈,且4tan 23α=, 得22tan 413tan αα=-,解得tan 2α=-(舍),1tan 2α=. ∴22tan 11tan()1tan 11tan 42()()9tan 111tan tan()141tan 2απαααπαααα++++-==-=-=-----+. 故答案为:9-.16.已知长方体1111ABCD A B C D -中,11132AA AB AD ===,,,则直线1AA 与平面1A BD 所成的角为______.【答案】60o【解析】设A 到平面1A BD 的距离为h ,在长方体1111ABCD A B C D -中,11132AA AB AD ===,, 则()221113322A D ⎛⎫=+= ⎪⎝⎭,312BD =+=,115142AB =+= 在1A BD ∆中,由余弦定理15134cos 22BA D +-∠==,所以1sin BA D ∠=所以111sin 1222A BD S BA D =⋅∠= 因为11A ABD A A BD V V --=,即111133ABD A BD S AA S h ∆⋅⋅=⋅⋅,解得h = 设直线1AA 与平面1A BD 所成的角为θ,则1sin h AA θ== 所以60θ=o .故答案为:60o 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17—21题为必考题,每个考生都必须作答.22、23题为选考题,考生根据要求作答.(一)必考题:共60分17.已知数列{}n a 是一个公差为()0d d ≠的等差数列,前n 项和为245,,,n S a a a 成等比数列,且515=-S . (1)求数列{}n a 的通项公式;(2)求数列{n S n}的前10项和. 【答案】(1)6n a n =-;(2)552-. 【解析】(1)由a 2、a 4、a 5成等比数列得:()()2111(3)4a d a d a d +=++,即5d 2=-a 1d , 又∵d ≠0,可得a 1=-5d ; 而51545152S a d ⨯=+=-,解得d =1,所以a n =a 1+(n -1)d =n -6, 即数列{a n }的通项公式为a n =n -6. (2)因为()2111122n n n n n S na d ⋅--=+=,所以112n S n n -=, 令n n S c n =,则112n n c c +-=为常数,∴{c n }是首项为-5,公差为12的等差数列,所以n S n⎧⎫⎨⎬⎩⎭的前10项和为109155510222⨯-⨯+⨯=-. 18.2019年9月24日国家统计局在庆祝中华人民共和国成立70周年活动新闻中心举办新闻发布会指出,1952年~2018年,我国GDP 从679.1亿元跃升至90.03万亿元,实际增长174倍;人均CDP 从119元提高到6.46万元,实际增长70倍.全国各族人民,砥砺奋进,顽强拼搏,实现了经济社会的跨越式发展.特别是党的十八大以来,在以习近平同志为核心的党中央坚强领导下,党和国家事业取得历史性成就、发生历史性变革,中国特色社会主义进入新时代.如图是全国2012年至2018年GDP 总量y (万亿元)的折线图. 注:年份代码1~7分别对应年份2012~2018.(1)由折线图看出,可用线性回归模型拟合y 与年份代码t 的关系,请用相关系数加以说明; (2)建立y 关于t 的回归方程(系数精确到0.01),预测2019年全国GDP 的总量. 附注:参考数据:71492.01i i y ==∑,70.29y =,712131.99i i i t y ==∑()()271172165.15iii i t t y y ==--≈∑∑.参考公式:相关系数()()()()12211niii nniii i t t y y r t t y y ===--=--∑∑∑回归方程y a bt =+$$$中斜率和截距的最小二乘估计公式分别为()()()121niii nii tty y b tt==--=-∑∑$,$ay bt =-$. 【答案】(1)详见解析(2)y 关于t 的回归方程为$46.85 5.86y t =+;预测2019年全国GDP 总量约为93.73万亿元【解析】(1)由折线图中的数据和附注中参考数据得4t =,()72128ii tt=-=∑,()()777111iii iii i i t t y y t y t y===--=-∑∑∑2131.994492.01163.95=-⨯=,所以163.950.99165.15r =≈,因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系.(2)由70.29y =及(1)得()()()71721163.955.8628iii ii tty y btt===≈--=-∑∑$, $70.29 5.86446.85ay bt ≈-⨯==-$, 所以y 关于t 的回归方程为$46.85 5.86y t =+.将2019年对应的代码8t =代入回归方程得$46.85 5.86893.73y =+⨯=. 所以预测2019年全国GDP 总量约为93.73万亿元. 19. 如图,在四棱锥中,底面为梯形,,,,平面,分别是的中点. (Ⅰ)求证:平面;(Ⅱ)若与平面所成的角为,求线段的长.【答案】(Ⅰ)见解析; (Ⅱ).【解析】(Ⅰ)连接交与,连接.因为为的中点,,所以.又因为,所以四边形为平行四边形, 所以为的中点,因为为的中点, 所以. 又因为,,所以平面.(Ⅱ)由四边形为平行四边形,知,所以为等边三角形,所以, 所以,即,即.因为平面,所以. 又因为,所以平面,所以为与平面所成的角,即,所以.20.已知抛物线22(0)y px p =>,过点(2,0)C -的直线l 交抛物线于,A B 两点,坐标原点为O ,12OA OB ⋅=u u u r u u u r.(1)求抛物线的方程;(2)当以AB 为直径的圆与y 轴相切时,求直线l 的方程. 【答案】(1)24y x =;(2)320x y ++=或320x += 【解析】(Ⅰ)设l :x =my -2,代入y 2=2px ,得y 2-2pmy +4p =0.(*)设A(x 1,y 1),B(x 2,y 2),则y 1+y 2=2pm ,y 1y 2=4p ,则221212244y y x x p==. 因为12OA OB ⋅=u u u r u u u r,所以x 1x 2+y 1y 2=12,即4+4p =12, 得p =2,抛物线的方程为y 2=4x . …5分 (Ⅱ)由(Ⅰ)(*)化为y 2-4my +8=0. y 1+y 2=4m ,y 1y 2=8. …6分设AB 的中点为M ,则|AB|=2x m =x 1+x 2=m(y 1+y 2)-4=4m 2-4, ① 又222121(1)(1632)AB m y m m =+-=+- ② 由①②得(1+m 2)(16m 2-32) =(4m 2-4)2,解得m 2=3,m =所以,直线l 的方程为20x ++=,或20x -+=. …12分21.已知函数3211()1(,)32f x x ax bx a b =+++∈R ,其导函数设为()g x . (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若函数()f x 有两个极值点1x ,2x ,试用,a b 表示()()12f x f x +;(Ⅲ)在(Ⅱ)的条件下,若()g x 的极值点恰为()f x 的零点,试求()f x ,()g x 这两个函数的所有极值之和的取值范围.【答案】(Ⅰ)见解析;(Ⅱ)()()31226a f x f x ab +=-+;(Ⅲ)(,0)-∞ . 【解析】(Ⅰ)()2g x x ax b =++,24a b ∆=-.若0∆≤,()0g x ≥,()f x 在(),-∞+∞上单调递增;若>0∆,方程()0g x =有两个不等实根12a x -=,22a x -=()f x 在()1,x -∞上单调递增,在()12,x x 上单调递减,在()2,x +∞上单调递增 ;(Ⅱ)因()f x 有两个极值点1x ,2x ,由(Ⅰ)知240a b ∆=->,且12x x a +=-,222122x x a b +=-,()()120g x g x ==.于是,()()()()()()221212121212223363x x a b f x f x g x g x x x x x +=++++++ ()()322222636a b a a b a ab =-+-+=-+. (Ⅲ)由()22224a a g x x ax b x b ⎛⎫=++=++- ⎪⎝⎭,则()g x 的极值点为2a x =-.于是,02a f ⎛⎫-= ⎪⎝⎭,即33102482a a ab -+-+=.显然,0a ≠,则226a b a=+.由(Ⅱ)知,240a b ∆=->,24a b <,则22264a a a +<,解得0a <或a > 于是,()()321222066a a f x f x a a ⎛⎫+=-++= ⎪⎝⎭. 故()f x ,()g x 的所有极值之和为()22222246412a a a a b h a a a-=+-=-+=,因()226a h a a-'=-,若a >()0h a '<,()h a在)+∞上单调递减,故()0h a h<=.若0a <,知a >时有()0h a '<,则()h a在(,-∞上单调递增,在()上单调递减,故()(h a h ≤=. 因此,当0a <时,所求的取值范围为,2⎛-∞- ⎝⎦.当a >时,所求的取值范围为(),0-∞, 综上,()f x ,()g x 这两个函数的所有极值之和的取值范围是(),0-∞ .(二)选考题:共10分.请考生在22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.在平面直角坐标系xOy 中,曲线C的参数方程为2sin x y αα⎧=⎪⎨=⎪⎩(α为参数),将直线621=0x y --上所有点的横坐标伸长到原来的2倍,纵坐标缩短到原来的13倍得到直线l '. (1)求直线l '的普通方程;(2)设P 为曲线C 上的动点,求点P 到直线l '的距离的最小值及此时点P 的坐标. 【答案】(1)直线l '的普通方程为7x y -=; (2)点P 到直线l '的距离的最小值为2,此时点P 的坐标为(3,1)-. 【解析】(1)设直线l '上的点为(,)x y '',由题可知212133x x x x y y y y =⎧⎧=⎪⎪⇒⎨''⎨='⎪=⎩'⎪⎩,又621=0x y --,所以33210x y ''--=,即70x y ''--=, 因此直线l '的普通方程为:70x y --=;(2)点,2sin )P αα到直线l '的距离d ==, 所以当2()6k k Z παπ=-+∈时,min 2d ==,此时(3,1)P -. 23.已知函数()|3|2f x x =+-. (1)解不等式|()|4f x <;(2)若x R ∀∈,2()|1|41f x x t t ≤--+-恒成立,求实数t 的取值范围. 【答案】(1)()9,3-;(2)[1,3] 【解析】(1)函数()|3|2f x x =+-,不等式||()4f x <即为()44f x -<< 即4324x -<+-<,即有2|3|6x -<+<.因为|3|0x +>恒成立 所以|3|6x +<,即636x +﹣<<,可得93x ﹣<< 则原不等式的解集为()9,3-.(2)若x R ∀∈,2()|1|41f x x t t ≤--+-恒成立,可得2|3||1|41x x t t +--≤-++恒成立 由|3||1||(3)(1)|4x x x x +--≤+--=,可得2414t t -++≥,即2430t t -+≤. 解得13t ≤≤.则实数t 的取值范围是[1,3].。

2024年新高考数学押题试卷2(含解析答案)

2024年新高考数学押题试卷2(含解析答案)

2024年新高考数学押题试卷(二)注意事项:1.答卷前,考生务必要填涂答题卷上的有关项目.2.选择题每小题选出答案后,用2B 铅笔把答案涂在答题卷相应的位置上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内;如需改动、先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.4.请考生保持答题卷的整洁,考试结束后,将答题卷交回.第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知i ⋅z =5-2i ,则z 在复平面内对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限 2.设 的取值范围为()A ={x ∈-2<x <3},Z B ={x 4x -a ≥0},且A B ={12},则,a A .(0,1]C .(0,4B .(0,1)]D .(0,4) 3.为了了解小学生的体能情况,抽取了某小学四年级100名学生进行一分钟跳绳次数测试,将所得数据整理后,绘制如下频率分布直方图.根据此图,下列结论中错误的是()A .x =0.015B .估计该小学四年级学生的一分钟跳绳的平均次数超过125C .估计该小学四年级学生的一分钟跳绳次数的中位数约为119D .四年级学生一分钟跳绳超过125次以上优秀,则估计该小学四年级优秀率为35%ππ24.若α∈4⎫⎛-,- ⎪⎝⎭3π12,且cos 2α+cos 2⎛+2α⎫=- ⎪⎝,则tan α=(⎭)C .-B .-A .23D .-5.设,为双曲线C :的左、右焦点,Q 为双曲线右支上一点,点P (0,2).当1F 2F 2213xy -=1QF PQ+取最小值时,的值为( ) 2QFA B CD22+6.安排5名大学生到三家企业实习,每名大学生只去一家企业,每家企业至少安排1名大学生,则大学生甲、乙到同一家企业实习的概率为( )A .B .C .D .153103256257.对于数列,若存在正数,使得对一切正整数,都有,则称数列是有界的.若这样{}n a M n n a M ≤{}n a 的正数不存在,则称数列是无界的.记数列的前项和为,下列结论正确的是( ) M {}n a {}n a n n S A .若,则数列是无界的 B .若,则数列是有界的 1n a n={}n a sin n a n n ={}n a C .若,则数列是有界的D .若,则数列是有界的 ()1nn a =-{}n S 212n a n =+{}n S8.如图,中,,为的中点,将沿折叠成三棱锥ABC A 90BAC ∠=︒AB AC ==D BC ABC A AD ,则当该三棱锥体积最大时它的外接球的表面积为( )A BCD -A .B .C .D .π2π3π4π二、选择题:本题共4小题,每小题5分,共20分。

2020届全国Ⅱ卷高考压轴卷数学文科试卷(Word版含解析)

2020届全国Ⅱ卷高考压轴卷数学文科试卷(Word版含解析)

参考答案
1. 【答案】A 【解析】 可解出集合 A,然后进行交集的运算即可.
【详解】A={0,1,2,3},B={x∈R|﹣2<x<2};
∴A∩B={0,1}.
故选:A.
2. 【答案】A 【解析】
z
=
1−i 1+ 2i
=
(1− i)(1− 2i) (1+ 2i)(1− 2i)
=
−1− 3i 5
=

1 5
5. 【答案】B
7 / 17
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
【解析】
由题意得: −a = (1, −1) , b − a = (2, m −1)
−a = 2 , b − a = 4 + (m −1)2
( ) cos = (−a) b − a =
2 − m +1
= 2 ,解得: m = 1
已知数列{an}满足 a1 = −2 , an+1 = 2an + 4 .
(1)证明:an + 4 是等比数列;
3 / 17
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
(2)求数列{an}的前 n 项和 Sn. 18. (本小题 12 分)
如图所示,在三棱柱 ABC - A1B1C1 中,侧棱 AA1 ⊥ 底面 ABC, AB ⊥ BC ,D 为 AC 的中 点, AA1=AB=2, BC=3.
1
A.
B. 1
C. 3
3
D. -1
5.
已知向量 a
= (−1,1) , b
= (1, m) ,若向量 −a
与b
−a
的夹角为 4
,则实数 m

2020届高考原创押题卷(二)数学文科试题(有答案)(精校版)

2020届高考原创押题卷(二)数学文科试题(有答案)(精校版)

2019年高考原创押题卷(二)数 学 (文 科)时间:120分钟 满分:150分第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={-1,0,1,2},B =xy =2-x 2x +1,则A ∩B =( )A.{}0,1B.{}-1,0,1C.{}0,1,2D.{}-1,0,1,2 2.若z =1+i ,则2+iz -z的实部为( )A.12 B .1 C .-12D .-1 3.为估计椭圆x 24+y 2=1的面积,利用随机模拟的方法产生200个点(x ,y ),其中x ∈(0,2),y ∈(0,1),经统计有156个点落在椭圆x 24+y 2=1内,则由此可估计该椭圆的面积约为 ( )A .0.78B .1.56C .3.12D .6.24 4.已知△ABC 中,点D 为BC 的中点,若向量AB →=(1,2),|AC →|=1,则AD →·DC →=( ) A .1 B .2 C .-1 D .-25.中国古代三国时期的数学家赵爽,创作了一幅“勾股弦方图”,通过数形结合,给出了勾股定理的详细证明.如图2­1所示,在“勾股弦方图”中,以弦为边长得到的正方形ABCD 是由4个相等的直角三角形和中间的那个小正方形组成,这一图形被称作“赵爽弦图”.若正方形ABCD 与正方形EFGH 的面积分别为25,1,则cos 2∠BAE = ( )A.725B.925C.1625D.2425图2­16.若函数f ()x =x +abx 2+c的图像如图2­2所示,则下列判断正确的是( )图2­2A .a >0,b >0,c >0B .a =0,b >0,c >0C .a =0,b <0,c >0D .a =0,b >0,c <07.已知某几何体的三视图如图2­3所示,则该几何体的表面积是( )图2­3A .8+2πB .8+3πC .8+3+3πD .8+23+3π 8.若0<a <b <1,则a b ,b a ,log b a ,log 1a b 的大小关系为( )A .a b >b a >log b a >log 1a bB .b a >a b >log 1a b >log b aC .log b a >a b >b a >log 1a bD .log b a >b a >a b >log 1ab9.已知数列{}a n 满足a n =5n -2n ,且对任意n ∈N *,恒有a n ≤a k .执行如图2­4所示的程序框图,若输入的x 值依次为a k ,a k +1,a k +2,输出的y 值依次为12,12,12,则图中①处可填( )图2­4A .y =2x -2B .y =x 2+3x -16C .y =||2x +3+1D .y =x 2+7x -1210.已知点P 为圆C :x 2+y 2-2x -4y +a =0与抛物线D :x 2=4y 的一个公共点,若存在过点P 的直线l 与圆C 及抛物线D 都相切,则实数a 的值为( )A .2 B. 2 C .3 D .-511.如图2­5所示,在三棱锥A - BCD 中,△ACD 与△BCD 都是边长为2的正三角形,且平面ACD ⊥平面BCD ,则该三棱锥外接球的体积为( )图2­5A.16π3B.20π3C.323π27D.2015π2712.已知正数a ,b ,c ,d ,e 成等比数列,且1c +d -1a +b =2,则d +e 的最大值为( )A.39 B.33 C.239 D.13第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答,第22题、23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.13.已知等差数列{}a n 的公差d ≠0,若a 21+a 2=1,a 22+a 3=1,则a 1=________.14.若对任意实数k ,直线kx +y -2+a =0恒过双曲线C :y 2a 2-x 2=1(a >0)的一个焦点,则双曲线C 的离心率是________.15.已知不等式组⎩⎪⎨⎪⎧x -y +1≥0,x +y -1≥0,3x -y -3≤0表示的平面区域为D ,若存在(x 0,y 0)∈D ,使得y 0+1≥k (x 0+1),则实数k 的取值范围是________.16.已知f (x )=⎩⎪⎨⎪⎧ln x ,x >0,-x 2-ax ,x ≤0,若方程f ()x =x +a 有2个不同的实根,则实数a 的取值范围是________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)如图2­6所示,在△ABC 中,cos 2A -C 2=14+sin A sin C ,BC =2,点E 为AC 中点,边AC 的垂直平分线DE 与边AB 交于点D . (1)求角B 的大小; (2)若ED =62,求角A 的大小.图2­618.(本小题满分12分)汽车尾气中含有一氧化碳(CO),碳氢化合物(HC)等污染物,是环境污染的主要因素之一,汽车在使用若干年之后排放的尾气中的污染物会出现递增的现象,所以国家根据机动车使用和安全技术、排放检验状况,对达到报废标准的机动车实施强制报废.某环保组织为了解公众对机动车强制报废标准的了解情况,随机调查了100人,所得数据制成如下列联表:(1)若从这100人中任选1人,选到了解机动车强制报废标准的人的概率为35,问是否有95%的把握认为“对机动车强制报废标准是否了解与性别有关”?图2­7(2)该环保组织从相关部门获得某型号汽车的使用年限与排放的尾气中CO 浓度的数据,并制成如图2­7所示的折线图,若该型号汽车的使用年限不超过15年,可近似认为排放的尾气中CO 浓度y %与使用年限t 线性相关,试确定y 关于t 的回归方程,并预测该型号的汽车使用12年排放尾气中的CO 浓度是使用4年的多少倍.附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )(n =a +b +c +d )b ^=,a ^=-b ^t19.(本小题满分12分)如图2­8所示,PA 垂直于正方形ABCD 所在平面,点E 是线段PC 上一点,AB =3,BE =6,且BE ⊥PC.(1)试在AB 上找一点F ,使EF ∥平面PAD ,并求AFFB 的值;(2)求三棱锥P - BEF 的体积.图2­820.(本小题满分12分)已知圆x 2+y 2-2x =0关于椭圆C :x 2a 2+y 2b2=1()a>b>0的一个焦点对称,且经过椭圆的一个顶点. (1)求椭圆C 的方程;(2)若直线l :y =kx +1与椭圆C 交于A ,B 两点,已知O 为坐标原点,以线段OA ,OB 为邻边作平行四边形OAPB ,若点P 在椭圆C 上,求k 的值及平行四边形OAPB 的面积.21.(本小题满分12分)已知函数f ()x =ln ()x +1+a ||x -1. (1)若当x ≥1时,f ()x +2a<0恒成立,求实数a 的取值范围; (2)讨论f ()x 的单调性.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号. 22.(本小题满分10分)选修4-4:坐标系与参数方程平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =-1+22t ,y =22t(t ∈R ).以直角坐标系原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρ2cos 2θ+4ρ2sin 2θ=3. (1)求出直线l 的普通方程及曲线C 1的直角坐标方程;(2)若直线l 与曲线C 1交于A ,B 两点,点C 是曲线C 1上与A ,B 不重合的一点,求△ABC 面积的最大值.23.(本小题满分10分)选修4-5:不等式选讲 已知实数a ,b 满足a 2+4b 2=4. (1)求证:a 1+b 2≤2;(2)若对任意a ,b ∈R ,||x +1-||x -3≤ab 恒成立,求实数x 的取值范围.参考答案·数学(文科)2019年高考原创押题卷(二)1.A 2.A3.D [解析] 满足⎩⎪⎨⎪⎧0<x <2,0<y <1的点()x ,y 构成长为2,宽为1的长方形区域,面积为2,设椭圆与两正半轴围成的面积为S ,则S 2≈156200,所以椭圆的面积4S ≈156200×2×4=6.24,故选D.4.C [解析] 由点D 为BC 中点,得AD →·DC →=12(AB →+AC →)·12BC →=12()AB →+AC →·12(AC →-AB →)=14()AC →2-AB →2=14×()1-5=-1,故选C. 5.A [解析] 由图可知a >b ,且a 2+b 2=25,()a -b 2=1,所以a =4,b =3,sin ∠BAE =b a 2+b 2=35,所以cos 2∠BAE =1-2sin 2∠BAE =1-2×⎝⎛⎭⎫352=725,故选A.6.D [解析] 由f ()0=0可得a =0,所以选项A 不正确;若b >0,c >0,则bx 2+c >0恒成立,f ()x 的定义域是R ,与图像相矛盾,所以选项B 不正确;若b <0,c >0,当x >0时,由bx 2+c <0得x >-cb ,即x >-c b时恒有f ()x <0,这与图像相矛盾,所以选项C 不正确.故选D.7.D [解析] 由三视图可知该几何体是由一个半圆柱和一个三棱柱构成的组合体,其表面积由两个半圆,圆柱的半个侧面,棱柱的两个侧面及棱柱的两个底面组成,故该几何体的表面积S =π×12+π×1×2+2×2×2+2×12×3×2=8+23+3π,故选D.8.D [解析] 因为0<a <b <1,所以0<a b <b b <b a <1,log b a >log b b =1,log 1a b <0,所以log b a >b a >a b >log 1a b ,故选D.9.A [解析] 由a n =5n -2n 可得a n +1-a n =5-2n ,当n ≤2时,a n +1-a n >0,当n ≥3时,a n +1-a n <0,所以a n ≤a 3,即k =3,因为a 3=7,a 4=4,a 5=-7,所以输入的x 值依次为7,4,-7.当x =4或-7时,y =12,所以只需把x =7代入选项中各函数,得到y =12的就是正确选项.对于选项A ,当x =7时,y =2×7-2=12,故选A.10.C [解析] 由题意可知直线l 为圆C 及抛物线D 在点P 处的公切线,因为点P 在抛物线D 上,所以设点P ⎝⎛⎭⎫t ,t 24.由x 2=4y ,得y =x 24,y ′=x 2,所以直线l 的斜率k 1=t2,又圆心C 的坐标为()1,2,所以直线PC 的斜率k 2=t 24-2t -1=t 2-84()t -1,由k 1k 2=t 3-8t8t -8=-1,解得t =2,所以点P 的坐标为()2,1,代入方程x 2+y 2-2x -4y +a =0,得a =3,故选C.11.D [解析] 取CD 的中点E ,设三棱锥A - BCD 外接球的球心为O ,△ACD 与△BCD 外接圆的圆心分别为O 1,O 2,则O 1E =13AE =13×32×CD =33,则四边形OO 1EO 2是边长为33的正方形,所以三棱锥A - BCD外接球的半径R =OC =OE 2+CE 2=()2O 1E 2+⎝⎛⎭⎫12CD 2=⎝⎛⎭⎫632+12=153,所以该三棱锥外接球的体积V =43πR 3=2015π27,故选D.12.A [解析] 设该数列的公比为q ,则q >0,由1c +d -1a +b =2可得1c +d -q 2c +d =2,所以c +d =1-q 22.由c +d >0可得0<q <1,d +e =()c +d q =q -q 32.设f ()q =q -q 32,则f ′()q =1-3q 22,所以f ()q 在⎝⎛⎭⎫0,33上单调递增,在⎝⎛⎭⎫33,1上单调递减,所以f ()q ≤f ⎝⎛⎭⎫33=39,故选A.13.-1或2 [解析] a 21+a 2=1,a 22+a 3=1,两式相减得()a 2+a 1()a 2-a 1+a 3-a 2=0,即d ()a 2+a 1+d =0,因为d ≠0,所以a 2+a 1=-1,即a 2=-1-a 1,代入a 21+a 2=1,得a 21-a 1-2=0,解得a 1=-1或a 1=2.14.53[解析] 直线kx +y -2+a =0恒过定点()0,2-a ,该点就是双曲线C 的一个焦点,所以a 2+1=()2-a 2,解得a =34,故双曲线C 的离心率e =a 2+1a 2=53.15.k ≤2 [解析] 不等式组表示的平面区域D 为图中阴影部分所示,A (0,1),B (1,0),C (2,3).由()x 0,y 0∈D ,y 0+1≥k (x 0+1),得y 0+1x 0+1≥k .y +1x +1表示点()x ,y ,(-1,-1)连线的斜率,数形结合,得12≤y +1x +1≤2,所以k ≤2.16.{a |a =-1或0≤a <1或a >1} [解析] 当直线y =x +a 与曲线y =ln x 相切时,设切点坐标为(t ,ln t ),则切线斜率k =(ln x )′x =t =1t = 1 ,所以t =1,切点为()1,0,代入y =x +a ,得a =-1.当x ≤0时,由f ()x =x +a ,得()x +1()x +a =0.①当a =-1时,ln x =x +a ()x >0有1个实根,此时()x +1()x +a =0()x ≤0有1个实根,满足条件;②当a <-1时,ln x =x +a ()x >0有2个实根,此时()x +1()x +a =0()x ≤0有1个实根,不满足条件;③当a >-1时,ln x =x +a ()x >0无实根,此时要使()x +1()x +a =0()x ≤0有2个实根,应有-a ≤0且-a ≠-1,即a ≥0且a ≠1.综上得实数a 的取值范围是{a |a =-1或0≤a <1或a >1}. 17.解:(1)由cos 2A -C 2=14+sin A sin C ,得1+cos ()A -C 2=14+sin A sin C ,整理得cos ()A -C -2sin A sin C =-12,即cos ()A +C =-12,2分所以cos B =-cos(A +C )=12,又0<B <π,所以B =π3.5分(2)连接DC ,由DE 垂直平分边AC ,得AD =DC ,∠DCE =∠DAE ,所以CD =AD =DE sin A =62sin A .8分在△BCD 中,由BC sin ∠BDC =CD sin B 及∠BDC =2A ,得2sin 2A =CD sin π3,所以CD =3sin 2A ,10分所以62sin A =3sin 2A ,解得cos A =22.因为A 是三角形的内角,所以A =π4.12分18.解:(1)设“从100人中任选1人,选到了解机动车强制报废标准的人”为事件A ,1分 由已知得P (A )=b +35100=35,所以a =25,b =25,p =40,q =60.4分K 2的观测值k =100×(25×35-25×15)240×60×50×50≈4.167>3.841,5分故有95%的把握认为“对机动车强制报废标准是否了解与性别有关”.6分(2)由折线图中所给数据计算,得t =15×(2+4+6+8+10)=6,y =15×(0.2+0.2+0.4+0.6+0.7)=0.42,∑i =15()t i -t 2=16+4+0+4+16=40,∑i =15()t i -t ()y i -y =(-4)×(-0.22)+(-2)×(-0.22)+0×(-0.02)+2×0.18+4×0.28=2.8, 8分故b ^==2.840=0.07,a ^=-b ^t =0.42-0.07×6=0, 10分所以所求回归方程为y ^=0.07t.故预测该型号的汽车使用12年排放尾气中的CO 浓度为0.84%,因为使用4年排放尾气中的CO 浓度为0.2%,所以预测该型号的汽车使用12年排放尾气中的CO 浓度是使用4年的4.2倍. 12分19.解:(1)如图所示,在平面PCD 内,过E 作EG ∥CD 交PD 于G , 连接AG ,在AB 上取点F ,使AF =EG.∵EG ∥CD ∥AF ,EG =AF , ∴四边形FEGA 为平行四边形, ∴FE ∥AG . 3分又AG ⊂平面PAD ,FE ⊄平面PAD , ∴EF ∥平面PAD ,∴F 即为所求的点. 5分又PA ⊥平面ABCD ,∴PA ⊥BC ,又BC ⊥AB ,PA ∩AB =A ,∴BC ⊥平面PAB ,∴PB ⊥BC , ∴PC 2=BC 2+PB 2=BC 2+AB 2+PA 2.设PA =x ,则PB =9+x 2,PC =18+x 2,由PB ·BC =BE·PC ,得9+x 2×3=18+x 2× 6 , ∴x =3,即PA =3,∴PC =33,CE =3, ∴PE PC =23,∴AF AB =GE CD =PE PC =23,∴AFFB=2. 8分(2)三棱锥P - BEF 的体积就是三棱锥E-PBF 的体积,点C 到平面PBF 的距离BC =3,由PE PC =23,可得点E到平面PBF 的距离为2. 10分∵△PBF 的面积S =12×BF ×PA =12×1×3=32,∴三棱锥P - BEF 的体积V =13×32×2=1.12分20.解:(1)圆x 2+y 2-2x =0关于圆心()1,0对称,与坐标轴的交点为()0,0,()2,0, 所以椭圆C 的一个焦点为()1,0,一个顶点为()2,0,所以a =2,c =1,b 2=a 2-12=3, 故椭圆C 的方程为x 24+y 23=1. 4分(2)联立⎩⎪⎨⎪⎧y =kx +1,3x 2+4y 2=12,得()3+4k 2x 2+8kx -8=0, 此时Δ=64k 2+32()3+4k 2>0. 6分设A ()x 1,y 1,B ()x 2,y 2,P ()x 0,y 0,则x 0=x 1+x 2=-8k 3+4k 2,y 0=y 1+y 2=k ()x 1+x 2+2=-8k 23+4k 2+2=63+4k 2.因为点P 在椭圆C 上,所以x 204+y 203=1,即16k 2()3+4k 22+12()3+4k 22=1,整理得k 2=14,k =±12. 9分点O到直线l的距离d =11+k 2=255,||AB =1+k 2·()x 1+x 22-4x 1x 2=1+k 2·64k 2()3+4k 22-4×(-8)3+4k 2=46()1+k 2()2k 2+13+4k 2=352,所以△OAB 的面积S 1=12·d ·||AB =12×255×352=32, 所以平行四边形OAPB 的面积S 2=2S 1=3. 12分21.解:(1)当x ≥1时,f ()x +2a<0恒成立,即ln (x +1)+a ()x +1<0恒成立,即a<-ln ()x +1x +1恒成立.设g ()x =-ln ()x +1x +1,则g′()x =ln ()x +1-1()x +12. 2分 令ln ()x +1-1=0,得x =e -1,所以g ()x 在(]1,e -1上单调递减,在(e -1,+∞)上单调递增,所以g ()x ≥g ()e -1=-1e ,所以a<-1e,即实数a 的取值范围是⎝⎛⎭⎫-∞,-1e . 5分 (2)函数f(x)的定义域为(-1,+∞).①当x ≥1时,f ()x =ln ()x +1+a ()x -1,f ′()x =1x +1+a , 由x ≥1可得a<1x +1+a ≤12+a. 当a ≥0时,f′()x >0,f ()x 在[)1,+∞上单调递增;当12+a ≤0,即a ≤-12时,f′()x ≤0,f ()x 在[)1,+∞上单调递减;当-12<a<0时,由f′()x <0得x>-1-1a ,由f ′()x >0得1≤x<-1-1a, 所以f ()x 在⎝⎛⎭⎫-1-1a ,+∞上单调递减,在⎣⎡⎭⎫1,-1-1a 上单调递增.7分 ②当-1<x<1时,f ()x =ln ()x +1-a ()x -1,f ′()x =1x +1-a ,由-1<x<1可得1x +1-a>12-a.当12-a ≥0,即a ≤12时,f′()x >0,f ()x 在(-1,1)上单调递增; 当12-a<0,即a>12时,由f′()x <0得-1+1a <x<1,由f′()x >0得-1<x<-1+1a, 所以f ()x 在⎝⎛⎭⎫-1+1a ,1上单调递减,在⎝⎛⎭⎫-1,-1+1a 上单调递增.9分 综上可得,当a ≤-12时,f ()x 在(-1,1)上单调递增,在[1,+∞)上单调递减;当-12<a<0时,f ()x 在-1,-1-1a 上单调递增,在-1-1a ,+∞上单调递减;当0≤a ≤12时,f ()x 在(-1,+∞)上单调递增;当a>12时,f ()x 在-1,-1+1a 上单调递增,在-1+1a ,1上单调递减,在(1,+∞)上单调递增.12分 22.解:(1)将⎩⎨⎧x =-1+22t ,y =22t消去t ,得直线l 的普通方程为x -y +1=0.2分 由ρ2cos 2θ+4ρ2sin 2θ=3,得ρ2cos 2θ+3ρ2sin 2θ=3,把⎩⎪⎨⎪⎧ρcos θ=x ,ρsin θ=y 代入上式,得曲线C 1的直角坐标方程为x 2+3y 2=3,即x 23+y 2=1.4分 (2)联立⎩⎪⎨⎪⎧x -y +1=0,x 23+y 2=1,得⎩⎪⎨⎪⎧x =0,y =1或⎩⎨⎧x =-32,y =-12,不妨设A ()0,1,B ⎝⎛⎭⎫-32,-12,所以||AB =⎝⎛⎭⎫0+322+⎝⎛⎭⎫1+122=322. 6分 因为点C 是曲线C 1上一点,设C(3cos φ,sin φ),则点C 到直线l 的距离d =||3cos φ-sin φ+12=⎪⎪⎪⎪2cos ⎝⎛⎭⎫φ+π6+12≤32=322,8分 当cos ⎝⎛⎭⎫φ+π6=1时取等号.所以△ABC 面积S =12·d ·||AB ≤12×322×322=94, 即△ABC 面积的最大值为94.10分 23.解:(1)证明:a 1+b 2≤|a|1+b 2=2||a 4+4b 24≤a 2+4+4b 24=2.4分 (2)由a 2+4b 2=4及a 2+4b 2≥24a 2b 2=4||ab ,可得||ab ≤1,所以ab ≥-1,当且仅当a =2,b =-22或a =-2,b =22时取等号.6分 因为对任意a ,b ∈R ,||x +1-||x -3≤ab 恒成立,所以||x +1-||x -3≤-1.当x ≤-1时,||x +1-||x -3=-4,不等式||x +1-||x -3≤-1恒成立;当-1<x <3时,||x +1-||x -3=2x -2,由⎩⎪⎨⎪⎧-1<x <3,2x -2≤-1,得-1<x ≤12; 当x ≥3时,||x +1-||x -3=4,不等式||x +1-||x -3≤-1不成立.9分综上可得,实数x 的取值范围是xx ≤12.10分。

高考押题卷文科数学(二)Word版含解析

高考押题卷文科数学(二)Word版含解析
∴ .··············12分
18.(本小题满分12分)
【答案】(1) , ;(2) .
【解析】(1)由题意可知,
(百辆),···························2分
(百辆),···························4分
所以通过B路口的车流量的方差为 (百辆2).
故前5天通过A路口车流量的平均值为 百辆和通过B路口的车流量的方差为 (百辆2);
··············································6分
(2)根据题意可得, ,·······················8分
所以 ,
所以A路口车流量和B路口的车流量的线性回归方程为 ,·······10分
9.【答案】A
【解析】将直线l的方程与圆C的方程联立得 ,化简得 ,解得x=0或 ,所以 , ,所以 , ,根据 ,所以 ,化简 ,解得 或 .故选A.
10.【答案】C
【解析】根据题意可得,函数 的定义域为 ,所以①为正确;因为 ,当 时, ,所以函数 在 为单调递减函数,当 或 时, ,在 , 为单调递增函数,又 在 , 上为正,在 上为负,所以函数在 上取得最小值,所以④正确,②错误. ,可见 是非奇非偶函数,所以③错误.故选C.
A. B. C. D.
12.已知正方体 的棱长为1,E为棱 的中点,F为棱 上的点,且满足 ,点F、B、E、G、H为面MBN过三点B、E、F的截面与正方体 在棱上的交点,则下列说法错误的是()
A.HF//BE
B.
C.∠MBN的余弦值为
D.△MBN的面积是
第Ⅱ卷
本卷包括必考题和选考题两部分。第13~21题为必考题,每个试题考生都必须作答。第22~23题为选考题,考生根据要求作答。

高考数学押题卷二文

高考数学押题卷二文

智才艺州攀枝花市创界学校2021年高考数学押题卷〔二〕文本卷须知:2、答复第一卷时,选出每一小题之答案后,用铅笔把答题卡上对应题目之答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在试卷上无效。

3、答复第二卷时,将答案填写上在答题卡上,写在试卷上无效。

4、在考试完毕之后,将本套试卷和答题卡一起交回。

第一卷一、选择题:一共12小题,每一小题5分,一共60分.在每个小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的. 1.集合2{log (1)0}A x x =-<,那么R C A =〔〕A.(,1]-∞B.[2,)+∞C.(,1)(2,)-∞+∞D.(,1][2,)-∞+∞ 2.假设复数z 满足(23)13i z +=,那么复平面内表示z 的点位于〔〕B.第二象限C.第三象限D.第四象限11()22x f x e x =--的图象大致为〔〕A.B.C.D.4.在ABC ∆中,90B ∠=︒,(1,2)AB =,(3,)AC λ=,λ=〔〕A.1B.2C.3D.45.在ABC ∆中,a ,b ,c 分别是角A ,B ,C 的对边,()()2a b c a c b ab +-++=,那么角C 的正弦值为〔〕A.1232D.16.双曲线221mxny -=〔0mn >〕的一条渐近线方程为12y x =,那么它的离心率为〔〕 5 B.525或者52D.5或者527.执行如下列图的程序框图,假设输出的值是1-,那么判断框中可以填入的条件是〔〕 A.999n ≥B.999n ≤C.999n <D.999n >8.单位圆有一条直径AB ,动点P 在圆内,那么使得2AP AB ⋅≤的概率为〔〕A.12B.14C.24ππ- D.24ππ+ 1111ABCD A B C D -,4AB =,2AD =,15AA 11A B 与1AC 所成角的余弦值为〔〕A.25B.35C.45D.1210.将函数()sin 2cos 2f x x x =+图象上所有点向左平移38π个单位长度,得到函数()g x 的图象,那么()g x 图象的一个对称中心是〔〕A.(,0)3πB.(,0)4πC.(,0)6πD.(,0)2π11.()f x 是定义在R 上偶函数,对任意x R ∈都有(3)()f x f x +=且(1)4f -=,那么(2020)f 的值是〔〕A.2B.3C.4D.5抛物线C :22xpy =〔0p >〕的焦点F 的直线交该抛物线于A 、B 两点,假设4AF BF=,O 为坐标原点,那么AF OF=〔〕A.54B.3C.4D.5第二卷本卷包括必考题和选考题两局部。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考原创押题卷(二)数学(文科)时间:120分钟 满分:150分第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={-1,0,1,2},B =xy =2-x 2x +1,则A ∩B =( )A.{}0,1 B.{}-1,0,1 C.{}0,1,2D.{}-1,0,1,22.若z =1+i ,则2+iz -z的实部为( )A.12 B .1 C .-12 D .-1 3.为估计椭圆x 24+y 2=1的面积,利用随机模拟的方法产生200个点(x ,y ),其中x ∈(0,2),y ∈(0,1),经统计有156个点落在椭圆x 24+y 2=1内,则由此可估计该椭圆的面积约为 ( )A .0.78B .1.56C .3.12D .6.24 4.已知△ABC 中,点D 为BC 的中点,若向量AB →=(1,2),|AC →|=1,则AD →·DC →=( ) A .1 B .2 C .-1 D .-2 5.中国古代三国时期的数学家赵爽,创作了一幅“勾股弦方图”,通过数形结合,给出了勾股定理的详细证明.如图2­1所示,在“勾股弦方图”中,以弦为边长得到的正方形ABCD 是由4个相等的直角三角形和中间的那个小正方形组成,这一图形被称作“赵爽弦图”.若正方形ABCD 与正方形EFGH 的面积分别为25,1,则cos 2∠BAE = ( ) A.725 B.925 C.1625 D.2425图2­16.若函数f ()x =x +abx 2+c的图像如图2­2所示,则下列判断正确的是( )图2­2A .a >0,b >0,c >0B .a =0,b >0,c >0C .a =0,b <0,c >0D .a =0,b >0,c <07.已知某几何体的三视图如图2­3所示,则该几何体的表面积是( )图2­3A .8+2πB .8+3πC .8+3+3πD .8+23+3π 8.若0<a <b <1,则a b ,b a ,log b a ,log 1a b 的大小关系为( )A .a b >b a >log b a >log 1a bB .b a >a b >log 1a b >log b aC .log b a >a b >b a >log 1a bD .log b a >b a >a b >log 1ab9.已知数列{}a n 满足a n =5n -2n ,且对任意n ∈N *,恒有a n ≤a k .执行如图2­4所示的程序框图,若输入的x 值依次为a k ,a k +1,a k +2,输出的y 值依次为12,12,12,则图中①处可填( )图2­4A .y =2x -2B .y =x 2+3x -16C .y =||2x +3+1D .y =x 2+7x -12 10.已知点P 为圆C :x 2+y 2-2x -4y +a =0与抛物线D :x 2=4y 的一个公共点,若存在过点P 的直线l 与圆C 及抛物线D 都相切,则实数a 的值为( )A .2 B. 2 C .3 D .-511.如图2­5所示,在三棱锥A ­ BCD 中,△ACD 与△BCD 都是边长为2的正三角形,且平面ACD ⊥平面BCD ,则该三棱锥外接球的体积为( )图2­5A.16π3B.20π3C.323π27D.2015π2712.已知正数a ,b ,c ,d ,e 成等比数列,且1c +d -1a +b =2,则d +e 的最大值为( )A.39 B.33 C.239 D.13第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答,第22题、23题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分,共20分.13.已知等差数列{}a n 的公差d ≠0,若a 21+a 2=1,a 22+a 3=1,则a 1=________.14.若对任意实数k ,直线kx +y -2+a =0恒过双曲线C :y 2a 2-x 2=1(a >0)的一个焦点,则双曲线C 的离心率是________.15.已知不等式组⎩⎪⎨⎪⎧x -y +1≥0,x +y -1≥0,3x -y -3≤0表示的平面区域为D ,若存在(x 0,y 0)∈D ,使得y 0+1≥k (x 0+1),则实数k 的取值范围是________.16.已知f (x )=⎩⎪⎨⎪⎧ln x ,x >0,-x 2-ax ,x ≤0,若方程f ()x =x +a 有2个不同的实根,则实数a 的取值范围是________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)如图2­6所示,在△ABC 中,cos 2A -C 2=14+sin A sin C ,BC =2,点E 为AC 中点,边AC 的垂直平分线DE 与边AB 交于点D . (1)求角B 的大小; (2)若ED =62,求角A 的大小.图2­618.(本小题满分12分)汽车尾气中含有一氧化碳(CO),碳氢化合物(HC)等污染物,是环境污染的主要因素之一,汽车在使用若干年之后排放的尾气中的污染物会出现递增的现象,所以国家根据机动车使用和安全技术、排放检验状况,对达到报废标准的机动车实施强制报废.某环保组织为了解公众对机动车强制报废标准的了解情况,随机调查了100人,所得数据制成如下列联表:(1)若从这100人中任选1人,选到了解机动车强制报废标准的人的概率为35,问是否有95%的把握认为“对机动车强制报废标准是否了解与性别有关”?图2­7(2)该环保组织从相关部门获得某型号汽车的使用年限与排放的尾气中CO 浓度的数据,并制成如图2­7所示的折线图,若该型号汽车的使用年限不超过15年,可近似认为排放的尾气中CO 浓度y %与使用年限t 线性相关,试确定y 关于t 的回归方程,并预测该型号的汽车使用12年排放尾气中的CO 浓度是使用4年的多少倍. 附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )(n =a +b +c +d )b ^=,a ^=-b ^t19.(本小题满分12分)如图2­8所示,PA 垂直于正方形ABCD 所在平面,点E 是线段PC 上一点,AB =3,BE =6,且BE ⊥PC.(1)试在AB 上找一点F ,使EF ∥平面PAD ,并求AFFB 的值;(2)求三棱锥P ­ BEF 的体积.图2­820.(本小题满分12分)已知圆x 2+y 2-2x =0关于椭圆C :x 2a 2+y 2b2=1()a>b>0的一个焦点对称,且经过椭圆的一个顶点. (1)求椭圆C 的方程;(2)若直线l :y =kx +1与椭圆C 交于A ,B 两点,已知O 为坐标原点,以线段OA ,OB 为邻边作平行四边形OAPB ,若点P 在椭圆C 上,求k 的值及平行四边形OAPB 的面积.21.(本小题满分12分)已知函数f ()x =ln ()x +1+a ||x -1. (1)若当x ≥1时,f ()x +2a<0恒成立,求实数a 的取值范围; (2)讨论f ()x 的单调性.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(本小题满分10分)选修4­4:坐标系与参数方程平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =-1+22t ,y =22t(t ∈R ).以直角坐标系原点O为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρ2cos 2θ+4ρ2sin 2θ=3.(1)求出直线l 的普通方程及曲线C 1的直角坐标方程;(2)若直线l 与曲线C 1交于A ,B 两点,点C 是曲线C 1上与A ,B 不重合的一点,求△ABC 面积的最大值.23.(本小题满分10分)选修4­5:不等式选讲 已知实数a ,b 满足a 2+4b 2=4. (1)求证:a 1+b 2≤2;(2)若对任意a ,b ∈R ,||x +1-||x -3≤ab 恒成立,求实数x 的取值范围.参考答案·数学(文科)2017年高考原创押题卷(二)1.A 2.A3.D [解析] 满足⎩⎪⎨⎪⎧0<x <2,0<y <1的点()x ,y 构成长为2,宽为1的长方形区域,面积为2,设椭圆与两正半轴围成的面积为S ,则S 2≈156200,所以椭圆的面积4S ≈156200×2×4=6.24,故选D.4.C [解析] 由点D 为BC 中点,得AD →·DC →=12(AB →+AC →)·12BC →=12()AB →+AC →·12(AC →-AB →)=14()AC →2-AB →2=14×()1-5=-1,故选C. 5.A [解析] 由图可知a >b ,且a 2+b 2=25,()a -b2=1,所以a =4,b =3,sin ∠BAE =ba 2+b 2=35,所以cos 2∠BAE =1-2sin 2∠BAE =1-2×⎝⎛⎭⎫352=725,故选A.6.D [解析] 由f ()0=0可得a =0,所以选项A 不正确;若b >0,c >0,则bx 2+c >0恒成立,f ()x 的定义域是R ,与图像相矛盾,所以选项B 不正确;若b <0,c >0,当x >0时,由bx 2+c <0得x >-cb ,即x >-cb时恒有f ()x <0,这与图像相矛盾,所以选项C 不正确.故选D.7.D [解析] 由三视图可知该几何体是由一个半圆柱和一个三棱柱构成的组合体,其表面积由两个半圆,圆柱的半个侧面,棱柱的两个侧面及棱柱的两个底面组成,故该几何体的表面积S =π×12+π×1×2+2×2×2+2×12×3×2=8+23+3π,故选D.8.D [解析] 因为0<a <b <1,所以0<a b <b b <b a <1,log b a >log b b =1,log 1a b <0,所以log b a >b a >a b >log 1ab ,故选D.9.A [解析] 由a n =5n -2n 可得a n +1-a n =5-2n ,当n ≤2时,a n +1-a n >0,当n ≥3时,a n +1-a n <0,所以a n ≤a 3,即k =3,因为a 3=7,a 4=4,a 5=-7,所以输入的x 值依次为7,4,-7.当x =4或-7时,y =12,所以只需把x =7代入选项中各函数,得到y =12的就是正确选项.对于选项A ,当x =7时,y =2×7-2=12,故选A.10.C [解析] 由题意可知直线l 为圆C 及抛物线D 在点P 处的公切线,因为点P 在抛物线D 上,所以设点P ⎝⎛⎭⎫t ,t 24.由x 2=4y ,得y =x 24,y ′=x 2,所以直线l 的斜率k 1=t2,又圆心C的坐标为()1,2,所以直线PC 的斜率k 2=t 24-2t -1=t 2-84()t -1,由k 1k 2=t 3-8t8t -8=-1,解得t =2,所以点P 的坐标为()2,1,代入方程x 2+y 2-2x -4y +a =0,得a =3,故选C.11.D [解析] 取CD 的中点E ,设三棱锥A ­ BCD 外接球的球心为O ,△ACD 与△BCD 外接圆的圆心分别为O 1,O 2,则O 1E =13AE =13×32×CD =33,则四边形OO 1EO 2是边长为33的正方形,所以三棱锥A ­ BCD 外接球的半径R =OC =OE 2+CE 2=()2O 1E 2+⎝⎛⎭⎫12CD 2=⎝⎛⎭⎫632+12=153,所以该三棱锥外接球的体积V =43πR 3=2015π27,故选D.12.A [解析] 设该数列的公比为q ,则q >0,由1c +d -1a +b =2可得1c +d -q 2c +d =2,所以c +d =1-q 22.由c +d >0可得0<q <1,d +e =()c +d q =q -q 32.设f ()q =q -q 32,则f ′()q =1-3q 22,所以f ()q 在⎝⎛⎭⎫0,33上单调递增,在⎝⎛⎭⎫33,1上单调递减,所以f ()q ≤f ⎝⎛⎭⎫33=39,故选A. 13.-1或2 [解析] a 21+a 2=1,a 22+a 3=1,两式相减得()a 2+a 1()a 2-a 1+a 3-a 2=0,即d ()a 2+a 1+d =0,因为d ≠0,所以a 2+a 1=-1,即a 2=-1-a 1,代入a 21+a 2=1,得a 21-a 1-2=0,解得a 1=-1或a 1=2.14.53 [解析] 直线kx +y -2+a =0恒过定点()0,2-a ,该点就是双曲线C 的一个焦点,所以a 2+1=()2-a 2,解得a =34,故双曲线C 的离心率e =a 2+1a 2=53.15.k ≤2 [解析] 不等式组表示的平面区域D 为图中阴影部分所示,A (0,1),B (1,0),C (2,3).由()x 0,y 0∈D ,y 0+1≥k (x 0+1),得y 0+1x 0+1≥k .y +1x +1表示点()x ,y ,(-1,-1)连线的斜率,数形结合,得12≤y +1x +1≤2,所以k ≤2.16.{a |a =-1或0≤a <1或a >1} [解析] 当直线y =x +a 与曲线y =ln x 相切时,设切点坐标为(t ,ln t ),则切线斜率k =(ln x )′x =t =1t = 1 ,所以t =1,切点为()1,0,代入y =x +a ,得a =-1.当x ≤0时,由f ()x =x +a ,得()x +1()x +a =0.①当a =-1时,ln x =x +a ()x >0有1个实根,此时()x +1()x +a =0()x ≤0有1个实根,满足条件;②当a <-1时,ln x =x +a ()x >0有2个实根,此时()x +1()x +a =0()x ≤0有1个实根,不满足条件;③当a >-1时,ln x =x +a ()x >0无实根,此时要使()x +1()x +a =0()x ≤0有2个实根,应有-a ≤0且-a ≠-1,即a ≥0且a ≠1.综上得实数a 的取值范围是{a |a =-1或0≤a <1或a >1}. 17.解:(1)由cos 2A -C 2=14+sin A sin C ,得1+cos ()A -C 2=14+sin A sin C ,整理得cos ()A -C -2sin A sin C =-12,即cos ()A +C =-12,2分所以cos B =-cos(A +C )=12,又0<B <π,所以B =π3.5分(2)连接DC ,由DE 垂直平分边AC ,得AD =DC ,∠DCE =∠DAE ,所以CD =AD =DEsin A =62sin A.8分 在△BCD 中,由BC sin ∠BDC =CD sin B 及∠BDC =2A ,得2sin 2A =CD sin π3,所以CD =3sin 2A ,10分所以62sin A =3sin 2A ,解得cos A =22.因为A 是三角形的内角,所以A =π4.12分18.解:(1)设“从100人中任选1人,选到了解机动车强制报废标准的人”为事件A ,1分 由已知得P (A )=b +35100=35,所以a =25,b =25,p =40,q =60.4分K 2的观测值k =100×(25×35-25×15)240×60×50×50≈4.167>3.841,5分故有95%的把握认为“对机动车强制报废标准是否了解与性别有关”.6分(2)由折线图中所给数据计算,得t =15×(2+4+6+8+10)=6,y =15×(0.2+0.2+0.4+0.6+0.7)=0.42,∑i =15()t i -t 2=16+4+0+4+16=40,∑i =15()t i -t ()y i -y =(-4)×(-0.22)+(-2)×(-0.22)+0×(-0.02)+2×0.18+4×0.28=2.8, 8分故b ^==2.840=0.07,a ^=-b ^t =0.42-0.07×6=0, 10分所以所求回归方程为y ^=0.07t.故预测该型号的汽车使用12年排放尾气中的CO 浓度为0.84%,因为使用4年排放尾气中的CO 浓度为0.2%,所以预测该型号的汽车使用12年排放尾气中的CO 浓度是使用4年的4.2倍. 12分19.解:(1)如图所示,在平面PCD 内,过E 作EG ∥CD 交PD 于G , 连接AG ,在AB 上取点F ,使AF =EG.∵EG ∥CD ∥AF ,EG =AF , ∴四边形FEGA 为平行四边形, ∴FE ∥AG. 3分又AG ⊂平面PAD ,FE ⊄平面PAD , ∴EF ∥平面PAD ,∴F 即为所求的点. 5分又PA ⊥平面ABCD ,∴PA ⊥BC ,又BC ⊥AB ,PA ∩AB =A ,∴BC ⊥平面PAB ,∴PB ⊥BC , ∴PC 2=BC 2+PB 2=BC 2+AB 2+PA 2.设PA =x ,则PB =9+x 2,PC =18+x 2,由PB ·BC =BE·PC ,得9+x 2×3=18+x 2×6 ,∴x =3,即PA =3,∴PC =33,CE =3, ∴PE PC =23,∴AF AB =GE CD =PE PC =23,∴AF FB =2. 8分(2)三棱锥P ­ BEF 的体积就是三棱锥E­PBF 的体积,点C 到平面PBF 的距离BC =3,由PE PC =23,可得点E 到平面PBF 的距离为2. 10分 ∵△PBF 的面积S =12×BF ×PA =12×1×3=32,∴三棱锥P ­ BEF 的体积V =13×32×2=1.12分20.解:(1)圆x 2+y 2-2x =0关于圆心()1,0对称,与坐标轴的交点为()0,0,()2,0, 所以椭圆C 的一个焦点为()1,0,一个顶点为()2,0,所以a =2,c =1,b 2=a 2-12=3, 故椭圆C 的方程为x 24+y 23=1. 4分(2)联立⎩⎪⎨⎪⎧y =kx +1,3x 2+4y 2=12,得()3+4k 2x 2+8kx -8=0, 此时Δ=64k 2+32()3+4k 2>0. 6分设A ()x 1,y 1,B ()x 2,y 2,P ()x 0,y 0,则x 0=x 1+x 2=-8k 3+4k 2,y 0=y 1+y 2=k ()x 1+x 2+2=-8k 23+4k 2+2=63+4k 2.因为点P 在椭圆C 上,所以x 204+y 203=1,即16k 2()3+4k 22+12()3+4k 22=1, 整理得k 2=14,k =±12. 9分 点O 到直线l 的距离d =11+k 2=255,||AB =1+k 2·()x 1+x 22-4x 1x 2=1+k 2·64k 2()3+4k 22-4×(-8)3+4k 2=46()1+k 2()2k 2+13+4k 2=352,所以△OAB 的面积S 1=12·d ·||AB =12×255×352=32, 所以平行四边形OAPB 的面积S 2=2S 1=3.12分21.解:(1)当x ≥1时,f ()x +2a<0恒成立,即ln (x +1)+a ()x +1<0恒成立,即a<-ln ()x +1x +1恒成立.设g ()x =-ln ()x +1x +1,则g′()x =ln ()x +1-1()x +12. 2分 令ln ()x +1-1=0,得x =e -1,所以g ()x 在(]1,e -1上单调递减,在(e -1,+∞)上单调递增, 所以g ()x ≥g ()e -1=-1e ,所以a<-1e,即实数a 的取值范围是⎝⎛⎭⎫-∞,-1e . 5分 (2)函数f(x)的定义域为(-1,+∞).①当x ≥1时,f ()x =ln ()x +1+a ()x -1,f ′()x =1x +1+a , 由x ≥1可得a<1x +1+a ≤12+a. 当a ≥0时,f′()x >0,f ()x 在[)1,+∞上单调递增;当12+a ≤0,即a ≤-12时,f′()x ≤0,f ()x 在[)1,+∞上单调递减;当-12<a<0时,由f′()x <0得x>-1-1a ,由f ′()x >0得1≤x<-1-1a, 所以f ()x 在⎝⎛⎭⎫-1-1a ,+∞上单调递减,在⎣⎡⎭⎫1,-1-1a 上单调递增.7分 ②当-1<x<1时,f ()x =ln ()x +1-a ()x -1,f ′()x =1x +1-a ,由-1<x<1可得1x +1-a>12-a.当12-a ≥0,即a ≤12时,f′()x >0,f ()x 在(-1,1)上单调递增;当12-a<0,即a>12时,由f′()x <0得-1+1a <x<1,由f′()x >0得-1<x<-1+1a, 所以f ()x 在⎝⎛⎭⎫-1+1a ,1上单调递减,在⎝⎛⎭⎫-1,-1+1a 上单调递增.9分 综上可得,当a ≤-12时,f ()x 在(-1,1)上单调递增,在[1,+∞)上单调递减;当-12<a<0时,f ()x 在-1,-1-1a 上单调递增,在-1-1a ,+∞上单调递减;当0≤a ≤12时,f ()x 在(-1,+∞)上单调递增;当a>12时,f ()x 在-1,-1+1a 上单调递增,在-1+1a,1上单调递减,在(1,+∞)上单调递增.12分22.解:(1)将⎩⎨⎧x =-1+22t ,y =22t消去t ,得直线l 的普通方程为x -y +1=0.2分 由ρ2cos 2θ+4ρ2sin 2θ=3,得ρ2cos 2θ+3ρ2sin 2θ=3,把⎩⎪⎨⎪⎧ρcos θ=x ,ρsin θ=y 代入上式,得曲线C 1的直角坐标方程为x 2+3y 2=3,即x 23+y 2=1.4分 (2)联立⎩⎪⎨⎪⎧x -y +1=0,x 23+y 2=1,得⎩⎪⎨⎪⎧x =0,y =1或⎩⎨⎧x =-32,y =-12,不妨设A ()0,1,B ⎝⎛⎭⎫-32,-12, 所以||AB =⎝⎛⎭⎫0+322+⎝⎛⎭⎫1+122=322. 6分因为点C 是曲线C 1上一点,设C(3cos φ,sin φ), 则点C 到直线l 的距离d =||3cos φ-sin φ+12=⎪⎪⎪⎪2cos ⎝⎛⎭⎫φ+π6+12≤32=322,8分 当cos ⎝⎛⎭⎫φ+π6=1时取等号.所以△ABC 面积S =12·d ·||AB ≤12×322×322=94, 即△ABC 面积的最大值为94.10分 23.解:(1)证明:a 1+b 2≤|a|1+b 2=2||a 4+4b 24≤a 2+4+4b 24=2.4分 (2)由a 2+4b 2=4及a 2+4b 2≥24a 2b 2=4||ab ,可得||ab ≤1,所以ab ≥-1,当且仅当a =2,b =-22或a =-2,b =22时取等号.6分 因为对任意a ,b ∈R ,||x +1-||x -3≤ab 恒成立,所以||x +1-||x -3≤-1.当x ≤-1时,||x +1-||x -3=-4,不等式||x +1-||x -3≤-1恒成立;当-1<x <3时,||x +1-||x -3=2x -2,由⎩⎪⎨⎪⎧-1<x <3,2x -2≤-1,得-1<x ≤12; 当x ≥3时,||x +1-||x -3=4,不等式||x +1-||x -3≤-1不成立.9分综上可得,实数x 的取值范围是xx ≤12.10分。

相关文档
最新文档