数学必修五线性规划
高中数学必修五 3.4简单线性规划的应用-课件
第十五页,编辑于星期日:二十三点 五十三分。
2.某家具厂有方木材90m3,木工板600m3,准备加工成书桌和书橱出售,已知生产每张书 桌需要方木料0.1m3、木工板2m3;生产每个书橱需要方木料0.2m3,木工板1m3,出售 一张书桌可以获利80元,出售一张书橱可以获利120元;
x y 4
作直线 l0:2x y 0,
3
D
将直线 l0平移,平移到过A点 2
与 l0 的平行线 l1 重合时,可使 1
A
C
z 2x y 达到最小值,
当 l0平移过C点时,与 l0 -2
的平行线 l2 重合时,可使
z 2x y 达到最大值。
所以,zmin 2 3 1 7
-1 0 -1 -2 -3
当 生 产 100 张 书 桌 , 400 张 书 橱 时 利 润 最 大 为 z=80×100+120×400=56000元
A(100,400)
x+2y-900=0
x
300
900
2x+y-600=0
(2)若只生产书桌可以生产300张,用完木工板,可获利 24000元;
(3)若只生产书橱可以生产450张,用完方木料,可获利54000元。
第十六页,编辑于星期日:二十三点 五十三分。
3 某纺纱厂生产甲、乙两种棉纱,已知生产甲种棉纱1
吨需耗一级子棉2吨、二级子棉1吨;生产乙种棉纱需
耗一级子棉1吨、二级子棉2吨,每1吨甲种棉纱的 利润是600元,每1吨乙种棉纱的利润是900元,工厂
在生产这两种棉纱的计划中要求消耗一级子棉不超过
300吨、二级子棉不超过250吨.甲、乙两种棉纱应各 生产多少(精确到吨),能使利润总额最大?
人教版高中数学必修五第三章 不等式第3节《线性规划的实际应用》课件
例2 已知甲、乙两煤矿每年的产量分别为 200万吨和300万吨,需经过东车站和西车站 两个车站运往外地.东车站每年最多能运280万 吨煤,西车站每年最多能运360万吨煤,甲煤 矿运往东车站和西车站的运费价格分别为1元/ 吨和1.5元/吨,乙煤矿运往东车站和西车站的 运费价格分别为0.8元/吨和1.6元/吨.煤矿应 怎样编制调运方案,能使总运费最少?
DOaAPC Nhomakorabea目标函数为:z=a+3b
B
由图形知:-11/3≤z≤1
即 -11/3≤a+3 b≤1
解线性计划应用问题的一般步骤: 1、理清题意,列出表格; 2、设好变元,列出线性束缚条件(不 等式组) 与目标函数; 3、准确作图; 4、根据题设精度计算。
件的解(x,y)叫可行解; 2x+y=3 可行域 :由所有可行解组
2x+y=12
成的集合叫做可行域; 最优解 :使目标函数取得 最大或最小值的可行解叫 线性计划问题的最优解。
可行域
(1,1)
(5,2)
复习线性计划
解线性计划问题的一般步骤: 第一步:在平面直角坐标系中作出可行域; 第二步:在可行域内找到最优解所对应的点; 第三步:解方程的最优解,从而求出目标函数 的最大值或最小值。
探索结论
例1 某纺纱厂生产甲、乙两种棉纱,已知生 产甲种棉纱1吨需耗一级子棉2吨、二级子 棉1吨;生产乙种棉纱需耗一级子棉1吨、 二级子棉2吨,每1吨甲种棉纱的利润是 600元,每1吨乙种棉纱的利润是900元, 工厂在生产这两种棉纱的计划中要求消耗 一级子棉不超过300吨、二级子棉不超过 250吨.甲、乙两种棉纱应各生产多少(精确 到吨),能使利润总额最大?
资源
产品 甲种棉纱 乙种棉纱 资源限 (吨)x (吨)y 额(吨)
高中数学_线性规划知识复习
高中必修5线性规划最快的方法简单的线性规划问题一、知识梳理1. 目标函数: P=2x+y是一个含有两个变量x和y的函数,称为目标函数.2.可行域:约束条件所表示的平面区域称为可行域.3. 整点:坐标为整数的点叫做整点.4.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题.只含有两个变量的简单线性规划问题可用图解法来解决.5. 整数线性规划:要求量取整数的线性规划称为整数线性规划.二、疑难知识导析线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科.主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定的条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务.1.对于不含边界的区域,要将边界画成虚线.2.确定二元一次不等式所表示的平面区域有多种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一侧为所求的平面区域.若直线不过原点,通常选择原点代入检验.3. 平移直线y=-kx+P时,直线必须经过可行域.4.对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点.5.简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.积储知识:一. 1.点P(x0,y0)在直线Ax+By+C=0上,则点P坐标适合方程,即Ax0+By0+C=02. 点P(x0,y0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax0+By0+C>0;当B<0时,Ax0+By0+C<03. 点P(x0,y0)在直线Ax+By+C=0下方(左下或右下),当B>0时,Ax0+By0+C<0;当B<0时,Ax0+By0+C>0 注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同, (2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反, 即:1.点P(x1,y1)和点Q(x2,y2)在直线 Ax+By+C=0的同侧,则有(Ax1+By1+C)(Ax2+By2+C)>02.点P(x1,y1)和点Q(x2,y2)在直线 Ax+By+C=0的两侧,则有(Ax1+By1+C)( Ax2+By2+C)<0二.二元一次不等式表示平面区域:①二元一次不等式Ax+By+C>0(或<0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域. 不.包括边界;②二元一次不等式Ax+By+C≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域且包括边界;注意:作图时,不包括边界画成虚线;包括边界画成实线.三、判断二元一次不等式表示哪一侧平面区域的方法:方法一:取特殊点检验; “直线定界、特殊点定域原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x0,y0),从Ax0+By0+C的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.特殊地,当C≠0时,常把原点作为特殊点,当C=0时,可用(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。
高中数学必修5:简单的线性规划问题 知识点及经典例题(含答案)
简单的线性规划问题【知识概述】线性规划是不等式应用的一个典型,也是数形结合思想所体现的一个重要侧面.近年的考试中,通常考查二元一次不等式组表示的平面区域的图形形状以及目标函数的最大值或最小值,或求函数的最优解等问题.通过这节课的学习,希望同学们能够掌握线性规划的方法,解决考试中出现的各种问题.解决线性规划的数学问题我们要注意一下几点1.所谓线性规划就是在线性约束条件下求线性目标函数的最值问题;2.解决线性规划问题需要经历两个基本的解题环节(1)作出平面区域;(直线定”界”,特“点”定侧);(2)求目标函数的最值.(3)求目标函数z=ax+by最值的两种类型:①0b>时,截距最大(小),z的值最大(小);②0b>时,截距最大(小),z的值最小(大);【学前诊断】1.[难度] 易满足线性约束条件23,23,0,x yx yxy+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩的目标函数z x y=+的最大值是()A.1B.32C.2D.32.[难度] 易设变量,x y满足约束条件0,0,220,xx yx y≥⎧⎪-≥⎨⎪--≤⎩则32z x y=-的最大值为( )A.0B.2C.4D.63. [难度] 中设1m >,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为( )A.(1,1 B.(1)+∞ C .(1,3) D .(3,)+∞【经典例题】例1. 设变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =+的最大值为( )A.5B.4C.1D.8例2. 若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为( )A.4B.3C.2D.1例3. 设,x y 满足约束条件2208400,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数(0,0)z abx y a b =+>>的最小值为8,则a b +的最小值为____________.例4. 在约束条件下0,0,,24,x y x y s x y ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩当35s ≤≤时,目标函数32z x y =+的最大值的变化范围是( )A.[]6,15B.[]7,15 C.[]6,8 D.[]7,8例5. 设不等式组1230x x y y x ≥⎧⎪-+≥⎨⎪≥⎩,所表示平面区域是1,Ω平面区域2Ω与1Ω关于直线3490x y --=对称,对于1Ω中任意一点A 与2Ω中的任意一点B ,AB 的最小值等于( )A.285B.4C.125D.2例6.对于实数,x y ,若11,21,x y -≤-≤则21x y -+的最大值为_________.例7.在约束条件22240x y x y +++≤下,函数32z x y =+的最大值是___________.例8. 已知函数2()2(,)f x x ax b a b =++∈R ,且函数()y f x =在区间()0,1与()1,2内各有一个零点,则22(3)z a b =++的取值范围是( ).A.2⎫⎪⎪⎝⎭B.1,42⎛⎫ ⎪⎝⎭C.()1,2D.()1,4 例9. 奇函数()f x 在R 上是减函数,若,s t 满足不等式22(2)(2)f s s f t t -≤--,则当14s ≤≤时,t s的取值范围是( ). A.1,14⎡⎫-⎪⎢⎣⎭ B.1,14⎡⎤-⎢⎥⎣⎦ C.1,12⎡⎫-⎪⎢⎣⎭ D.1,12⎡⎤-⎢⎥⎣⎦例10. 某加工厂用某原料由甲车间加工出A 产品,由乙车间加工出B 产品.车间加工一箱原料需耗费工时10小时可加工出7千克A 产品,每千克 A 产品获利40元.乙车间加工一箱原料需耗费工时6小时可加工出4千克B 产品,每千克B 产品获利50元.甲、乙两车间每天共能完成至多70多箱原料的加工,每天甲、乙车间耗费工时总和不得超过480小时,甲、乙两车间每天获利最大的生产计划为(A )甲车间加工原料10箱,乙车间加工原料60箱(B )甲车间加工原料15箱,乙车间加工原料55箱(C )甲车间加工原料18箱,乙车间加工原料50箱(D )甲车间加工原料40箱,乙车间加工原料30箱【本课总结】线性规划是不等式和直线与方程的综合应用,是数形结合的和谐载体,也是高考中的重要考点,近几年的高考题中考查的频率较高,一般以考查基本知识和方法为主,属于基础类题,难度一般不高.1. 解决线性规划问题有一定的程序性:第一步:确定由二元一次不等式表示的平面区域;第二步:令z=0画直线0:0l ax by +=;第三步:平移直线0l 寻找使直线a z y x b b=-+截距取最值(最大或最小)的位置(最优解).第四步:将最优解坐标代入线性目标函数z ax by =+求出最值2. 解决线性规划问题要特别关注线性目标函数z ax by =+中b 的符号,若b >0,则使函数a z y x b b=-+的截距取最大(小)值的点,可使目标函数z ax by =+取最大(小)值,若b <0,则使函数a z y x b b=-+的截距取最大(小)值的点,可使目标函数z ax by =+取最小(大)值, b <0的情况是很多同学容易出现的盲点.3. 线性规划问题要重视数形结合思想的运用,善于将代数问题和几何问题相互转化,由线性规划问题引申的其它数形结合题目也要灵活掌握,如:将平面区域条件引申为:22240x y x y +++≤表示圆面等,将目标函数引申为:2224z x y x y =+++表示动点到定点的距离的最值问题;21y z x +=-表示动点与定点连线的斜率的最值问题等. 4. 线性规划问题首先作出可行域,若为封闭区域(即几条直线围成的区域)则一般在区域顶点处取得最大或最小值5. 线性规划中易错点提示(1)忽视平面区域是否包括边界.一般最优解都处于平面区域的边界顶点处,若平面区域不包含边界,则可能不存在最值.(2)忽视对线性目标函数z ax by =+中b 的符号的区分.(3)代数问题向其几何意义的转化困难.【活学活用】1. [难度] 中若不等式组⎪⎪⎩⎪⎪⎨⎧≤+≥≤+≥-ay x y y x y x 0220表示的平面区域是一个三角形,则a 的取值范围是( ) A.4,3⎡⎫+∞⎪⎢⎣⎭ B.(]0,1 C.41,3⎡⎤⎢⎥⎣⎦ D.(]40,1,3⎡⎫+∞⎪⎢⎣⎭2. [难度] 中 设变量x y ,满足约束条件1133x y x y x y ⎧--⎪+⎨⎪-<⎩,,.≥≥则目标函数4z x y =+的最大值为( ) A .4B .11C .12D .143. [难度] 中 已知变量x 、y 满足约束条件 20,1,70,x y y x x x y -+≤⎧⎪≥⎨⎪+-≤⎩则的取值范围是( ) A .9,65⎡⎤⎢⎥⎣⎦ B .9,5⎛⎤-∞ ⎥⎝⎦∪[)6,+∞ C .(],3-∞∪[)6,+∞ D .[3,6]。
高中数学必修5-线性规划-课件完美课件
由
x
y
y 1 0 2x 1 0
求得
x
y
0 1
故
C(0,1)
故 z 的最小值为 zmin=3×0-2×1=-2 故 z 范围[-2,3]
线性规划问题的解决步骤:
1、根据约束条件(不等式组)作可行域 2、对目标函数变形为y=kx+b的形式,
找截距与z的关系 3、令z=0, 先作出过原点的直线,定下直线形状 4、对直线进行平移,找出最优的点 5、联立边界直线方程,求出点坐标 6、将点坐标代入,求出最值
33
令z=0,作过原点的直线2x+3y=0, 对直线进行平移,可知直线经过M点时截距最大,z最大
由 x x 2 4 y80 得 x y 4 2 ,故 M ( 4 , 2 )
故zmax=2×4+3×2 =14(万元) 答:生产4件甲产品和2件乙产品时,获利最大, 最大利润为14万元
实战演练 (选自2010年广东高考文数)
解:设工产 厂x件 品 每, 天y 乙 生 件产 ,品 甲 每z万 天元 利, 润 则
4 x 16
4 x
y
2
12 y
8
即
x 4
y x
3 2y
8
x
N
x
N
y N
y N ห้องสมุดไป่ตู้
目标函数为:z=2x+3y
作出可行域为:
因为z=2x+3y,故y= 2 x z 故直线的截距最大时z最大
简单的线性规划问题
复习回顾
线性规划问题的有关概念: ·线性约束条件:
关于x、y的_一__次__不__等__式_组_
·可行域:
根据约束条件(不等式组)画出的平面区域 ·目标函数:
高中数学线性规划知识复习
高中必修5线性规划最快的方法简单的线性规划问题 一、知识梳理1. 目标函数: P =2x+y是一个含有两个变 量 x 和y 的 函数,称为目标函数.2.可行域:约束条件所表示的平面区域称为可行域.3. 整点:坐标为整数的点叫做整点.4.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题.只含有两个变量的简单线性规划问题可用图解法来解决.5. 整数线性规划:要求量取整数的线性规划称为整数线性规划. 二、疑难知识导析线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科.主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定的条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务. 1.对于不含边界的区域,要将边界画成虚线.2.确定二元一次不等式所表示的平面区域有多种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一侧为所求的平面区域.若 直 线 不 过 原点,通 常 选 择 原 点 代入检验.3. 平 移 直 线 y=-k x +P时,直线必须经过可行域.4.对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点.5.简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.积储知识:一. 1.点P(x 0,y 0)在直线Ax+By+C=0上,则点P 坐标适合方程,即Ax 0+By 0+C=02. 点P(x 0,y 0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax 0+By 0+C>0;当B<0时,Ax 0+By 0+C<03. 点P(x 0,y 0)在直线Ax+By+C=0下方(左下或右下),当B>0时,Ax 0+By 0+C<0;当B<0时,Ax 0+By 0+C>0 注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同,(2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反, 即:1.点P(x 1,y 1)和点Q(x 2,y 2)在直线 Ax+By+C=0的同侧,则有(Ax 1+By 1+C )( Ax 2+By 2+C)>02.点P(x 1,y 1)和点Q(x 2,y 2)在直线 Ax+By+C=0的两侧,则有(Ax 1+By 1+C )( Ax 2+By 2+C)<0二.二元一次不等式表示平面区域:①二元一次不等式Ax+By+C>0(或<0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域. 不.包括边界; ②二元一次不等式Ax+By+C ≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域且包括边界;注意:作图时,不包括边界画成虚线;包括边界画成实线. 三、判断二元一次不等式表示哪一侧平面区域的方法: 方法一:取特殊点检验; “直线定界、特殊点定域原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.特殊地,当C ≠0时,常把原点作为特殊点,当C=0时,可用(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。
人教B版高中数学必修五课件3.5.2简单线性规划
由53xx+ +25yy= =210500, , 解得xy==7111059900,
.
设点 A 的坐标为2700,970,点 B 的坐标为71090,11590, 则不等式组(※)所表示的平面区域是四边形的边界及其内部 (如图中阴影部分).
令 z=0,得 7x+10y=0,即 y=-170x.
解决简单线性规划的方法为图解法,就是用一组平行直线 与某平面区域相交,研究直线在y轴上截距的最大值或最小值, 从而求某些函数的最值.
2x+y≤40 1.若变量 x,y 满足xx+≥20y≤50
y≥0
,则 z=3x+2y 的最大
值是( ) A.90 C.70
B.80 D.40
【解析】 由题意,满足二元一次不等式组的解的可行域 如图所示.
高中数学课件
(金戈铁骑 整理制作)
3.5.2 简单线性规划
1.在平面直角坐标系中,所有的点被直线x+y-1=0分成 三类:即点在直线上,点在直线的区域,上点方在直线的区域.
2下.方二元一次不等式组表示的平面区域是其中的每个二元一
次不等式表示的平面区域的. 公共部分
线性规划中的基本概念
名称
目标函 数
由 z=3x+2y,得 y=-32x+2z.要求 z 的最大值,可求2z的 最大值,即求斜率为-32的直线在可行域内在 y 轴上截距的 最大值.
如上图,显然直线过 A 点时,在 y 轴上截距最大. 联立2x+x+2yy==4500 ,得xy= =1200 , ∴A(10,20),∴z=3x+2y 的最大值为 z=3×10+2×20 =70. 【答案】 C
x≥1
,所表示的平面区
域如图所示(阴影部分)
当直线 z=2x+y 经过可行域上的点 A 时,截距最大,即 z 最大, 解方程组x3-x+4y5=y=-235 ,得 A 的坐标为(5,2). 所以 zmax=2×5+2=12. 当直线 z=2x+y 经过可行域上的点 B 时,截距最小,即 z 最小. 解方程组xx- =41y=-3 ,得 B 的坐标为(1,1). 所以 zmin=2x+y=2×1+1=3.
推荐高中数学必修5优质课件:简单的线性规划问题 精品
(2)v=x-y 5表示可行域内的点 P(x,y)到定点 D(5,0)的斜率, 由图可知,kBD 最大,kCD 最小,
又 C(3,8),B(3,-3), 所以 v 最大值=3--35=32, v 最小值=3-8 5=-4.
[类题通法] 非线性目标函数最值问题的求解方法
②
y x
表示点(x,y)与原点(0,0)连线的斜率;
y-b x-a
表示点(x,y)与
点(a,b)连线的斜率.这些代数式的几何意义能使所求问题得 以转化,往往是解决问题的关键.
[对点训练] 2.已知变量x,y满足约束条件
xx- ≥y1+,2≤0,
x+y-7≤0.
则
y x
的最
大值是________,最小值是________.
[对点训练] x-4y≤-3,
1.设 z=2x+y,变量 x、y 满足条件3x+5y≤25, x≥1,
求 z 的最大值和最小值.
[解] 作出不等式组表示的平面区域,即可行域,如图所示.把 z =2x+y 变形为 y=-2x+z,则得到斜率为-2,在 y 轴上的截距为 z, 且随 z 变化的一组
平行直线.由图可以看出,当 直线 z=2x+y 经过可行域上的点 A 时,截距 z 最大,经过点 B 时,截距 z 最小. 解方程组x3-x+4y5+y-3=250=,0, 得 A 点坐标为(5,2), 解方程组xx= -14,y+3=0, 得 B 点坐标为(1,1), ∴z 最大值=2×5+2=12,z 最小值=2×1+1=3.
[解析] 由约束条件作出可行域(如图所示),目标函数z=
y x
表示坐标(x,y)与原点(0,0)连线的斜率.由图可知,点C与O
高中数学必修5优质课件:简单的线性规划问题
[例2] 设x,y满足条件xx-+yy+≥50≥,0, x≤3.
(1)求u=x2+y2的最大值与最小值; (2)求v=x-y 5的最大值与最小值.
第八页,编辑于星期日:二十三点 三十九分。
[解] 画出满足条件的可行域如图所示, (1)x2+y2=u表示一组同心圆(圆心为原点O),且对同一圆上的 点x2+y2的值都相等,由图可知:当(x,y)在可行域内取值时, 当且仅当圆O过C点时,u最大,过(0,0)时,u最小.又C(3,8),所
第三十页,编辑于星期日:二十三点 三十九分。
3.已知实数 x、y 满足yy≤ ≥2-x,2x, x≤3,
则目标函数 z=x-2y 的最小
值是________. 解析:不等式组表示的平面区域如下图中阴
影部分所示.目标函数可化为 y=12x-21z,
作直线 y=12x 及其平行线,知当此直线经
过点 A 时,-12z 的值最大,即 z 的值最小.又 A 点坐
第二十页,编辑于星期日:二十三点 三十九分。
作出二元一次不等式组所表示的平面区域,即可行域, 如图.作直线 l:
3 000x+2 000y=0,即 3x+2y=0. 平移直线 l,从图中可知,当直线 l 过 M 点时,目标函数 取得最大值.联立x5+ x+y=2y=3009,00,
第二十一页,编辑于星期日:二十三点 三十九 分。
最优解
线性规划问题
意义
目标函数是关于x,y的二元一次解析式 满足线性约束条件 的解(x,y) 所有 可行解 组成的集合 使目标函数取得最大值或 最小值 的可 行解 在线性约束条件下,求线性目标函数的 最大值或最小值问题
第二页,编辑于星期日:二十三点 三十九分。
高考数学必修五 第三章 3.3.2 第1课时线性规划的有关概念及图解法
3.3.2 简单的线性规划问题第1课时 线性规划的有关概念及图解法学习目标 1.了解线性规划的意义.2.理解约束条件、目标函数、可行解、可行域、最优解等基本概念.3.掌握线性规划问题的图解法,并能应用它解决一些简单的实际问题.引例 已知x ,y 满足条件⎩⎪⎨⎪⎧x +2y ≤8,4x ≤16,4y ≤12,x ≥0,y ≥0.①该不等式组所表示的平面区域如图阴影部分所示,求2x +3y ②的最大值.以此为例,尝试通过下列问题理解有关概念. 知识点一 线性约束条件及目标函数1.在上述问题中,不等式组①是一组对变量x ,y 的约束条件,这组约束条件都是关于x ,y 的一次不等式,故又称线性约束条件.2.在上述问题中,②是要研究的目标,称为目标函数.因为它是关于变量x ,y 的一次解析式,这样的目标函数称为线性目标函数. 知识点二 线性规划问题一般地,在线性约束条件下求线性目标函数的最大值或最小值问题,统称为线性规划问题. 知识点三 可行解、可行域和最优解满足线性约束条件的解(x ,y )叫做可行解.由所有可行解组成的集合叫做可行域.其中,使目标函数取得最大值或最小值的可行解叫做线性规划问题的最优解.在上述问题的图中,阴影部分叫可行域,阴影区域中的每一个点对应的坐标都是一个可行解,其中能使②式取最大值的可行解称为最优解.1.可行域内每一个点都满足约束条件.(√)2.可行解有无限多个,最优解只有一个.(×)3.不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.(×)类型一 最优解问题命题角度1 问题存在唯一最优解例1 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≤8,4x ≤16,4y ≤12,x ≥0,y ≥0,该不等式组所表示的平面区域如图阴影部分所示,求2x +3y 的最大值.考点 线性目标最优解 题点 求线性目标函数的最值解 设区域内任一点P (x ,y ),z =2x +3y , 则y =-23x +z3,这是斜率为-23,在y 轴上的截距为z3的直线,如图.由图可以看出,当直线y =-23x +z 3经过直线x =4与直线x +2y -8=0的交点M (4,2)时,截距z3的值最大,此时2x +3y =14.反思与感悟 图解法是解决线性规划问题的有效方法,基本步骤(1)确定线性约束条件,线性目标函数; (2)作图——画出可行域;(3)平移——平移目标函数对应的直线z =ax +by ,看它经过哪个点(或哪些点)时最先接触可行域或最后离开可行域,确定最优解所对应的点的位置;(4)求值——解有关的方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值. 跟踪训练1 已知1≤x +y ≤5,-1≤x -y ≤3,求2x -3y 的取值范围. 考点 线性目标最优解 题点 求线性目标函数的最值解 作出二元一次不等式组⎩⎪⎨⎪⎧1≤x +y ≤5,-1≤x -y ≤3所表示的平面区域(如图阴影部分所示)即为可行域.设z =2x -3y ,变形得y =23x -13z ,则得到斜率为23,且随z 变化的一组平行直线.-13z 是直线在y 轴上的截距, 当直线截距最大时,z 的值最小, 由图可知,当直线z =2x -3y 经过可行域上的点A 时,截距最大, 即z 最小.解方程组⎩⎪⎨⎪⎧x -y =-1,x +y =5,得A 点坐标为(2,3),∴z min =2x -3y =2×2-3×3=-5.当直线z =2x -3y 经过可行域上的点B 时,截距最小, 即z 最大.解方程组⎩⎪⎨⎪⎧x -y =3,x +y =1,得B 点坐标为(2,-1).∴z max =2x -3y =2×2-3×(-1)=7.∴-5≤2x -3y ≤7,即2x -3y 的取值范围是[-5,7]. 命题角度2 问题的最优解有多个例2 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤2,y ≥0,若目标函数z =ax +y 的最大值有无数个最优解,求实数a 的值.考点 线性规划中的参数问题 题点 无数个最优解问题解 约束条件所表示的平面区域如图(阴影部分),由z =ax +y ,得y =-ax +z .当a =0时,最优解只有一个,过A (1,1)时取得最大值;当a >0,y =-ax +z 与x +y =2重合时,最优解有无数个,此时a =1; 当a <0,y =-ax +z 与x -y =0重合时,最优解有无数个,此时a =-1. 综上,a =1或a =-1.反思与感悟 当目标函数取最优解时,如果目标函数与平面区域的一段边界(实线)重合,则此边界上所有点均为最优解.跟踪训练2 给出平面可行域(如图阴影部分所示),若使目标函数z =ax +y 取最大值的最优解有无穷多个,则a 等于( )A.14B.35C.4D.53考点 线性规划中的参数问题 题点 无数个最优解问题 答案 B解析 由题意知,当直线y =-ax +z 与直线AC 重合时,最优解有无穷多个,则-a =5-21-6=-35,即a =35,故选B.类型二 生活中的线性规划问题例3 营养专家指出,成人良好的日常饮食应该至少提供0.075 kg 的碳水化合物,0.06 kg 的蛋白质,0.06 kg 的脂肪.1 kg 食物A 含有0.105 kg 碳水化合物,0.07 kg 蛋白质,0.14 kg 脂肪,花费28元;而1 kg 食物B 含有0.105 kg 碳水化合物,0.14 kg 蛋白质,0.07 kg 脂肪,花费21元.为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A 和食物B 各多少kg? 将已知数据列成下表:考点 实际生活中的线性规划问题 题点 线性规划在实际问题中的应用解 设每天食用x kg 食物A ,y kg 食物B ,总成本为z ,则⎩⎪⎨⎪⎧ 0.105x +0.105y ≥0.075,0.07x +0.14y ≥0.06,0.14x +0.07y ≥0.06,x ≥0,y ≥0,即⎩⎪⎨⎪⎧7x +7y ≥5,7x +14y ≥6,14x +7y ≥6,x ≥0,y ≥0.目标函数为z =28x +21y .作出二元一次不等式组所表示的平面区域,如图阴影部分所示,把目标函数z =28x +21y 变形为y =-43x +z21,它表示斜率为-43,且随z 变化的一族平行直线,z21是直线在y 轴上的截距,当截距最小时,z 的值最小.由图可知,当直线z =28x +21y 经过可行域上的点M 时,截距最小,即z 最小.解方程组⎩⎪⎨⎪⎧7x +7y =5,14x +7y =6,得M 点的坐标为⎝⎛⎭⎫17,47. 所以为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A 17 kg ,食物B 47 kg.反思与感悟 (1)目标函数z =ax +by (b ≠0)在y 轴上的截距zb 是关于z 的正比例函数,其单调性取决于b 的正负.当b >0时,截距z b 越大,z 就越大;当b <0时,截距zb 越小,z 就越大.(2)求解的最优解,和目标函数与边界函数的斜率大小有关.跟踪训练3 某厂拟用集装箱托运甲、乙两种货物,集装箱的体积、重量、可获利润和托运能力等限制数据列在下表中,那么为了获得最大利润,甲、乙两种货物应各托运的箱数为________.考点 生活实际中的线性规划问题题点 线性规划在实际问题中的应用 答案 4,1解析 设甲、乙两种货物应各托运的箱数为x ,y ,则⎩⎪⎨⎪⎧5x +4y ≤24,2x +5y ≤13,x ≥0,x ∈N ,y ≥0,y ∈N .目标函数z =20x +10y ,画出可行域如图阴影部分所示.由⎩⎪⎨⎪⎧2x +5y =13,5x +4y =24,得A (4,1). 易知当直线z =20x +10y 平移经过点A 时,z 取得最大值,即甲、乙两种货物应各托运的箱数分别为4和1时,可获得最大利润.1.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤2x ,x +y ≤1,y ≥-1,则x +2y 的最大值是( )A.-52B.0C.53D.52考点 线性目标最优解 题点 求线性目标函数的最值答案 C解析 画出可行域如图阴影部分(含边界)所示.设z =x +2y ,即y =-12x +12z ,平行移动直线y =-12x +12z ,当直线y =-12x +z 2过点B ⎝⎛⎭⎫13,23时,z 取最大值53,所以(x +2y )max =53. 2.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =2x +3y 的最小值为( )A.6B.7C.8D.23 考点 线性目标最优解 题点 求线性目标函数的最值 答案 B解析 作出可行域如图阴影部分(含边界)所示.由图可知,z =2x +3y 经过点A (2,1)时,z 有最小值,z 的最小值为7.3.在如图所示的坐标平面的可行域内(阴影部分且包括边界),目标函数z =x +ay 取得最小值的最优解有无数个,则a 的值为( )A.-3B.3C.-1D.1 考点 线性规划中的参数问题 题点 无数个最优解问题答案 A解析 -1a =2-14-1=13,∴a =-3.4.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥2,2x +y ≤4,4x -y ≥-1,则目标函数z =3x -y 的取值范围是( )A.⎣⎡⎦⎤-32,6 B.⎣⎡⎦⎤-32,-1 C.[-1,6]D.⎣⎡⎦⎤-6,32 考点 线性目标最优解 题点 求目标函数的取值范围 答案 A解析 作出不等式表示的平面区域,如图阴影部分(含边界)所示,由z =3x -y ,可得y =3x -z ,则-z 为直线y =3x -z 在y 轴上的截距,截距越大,z 越小,结合图形可知,当直线y =3x -z 平移到B 时,z 最小,平移到C 时,z 最大,可得B ⎝⎛⎭⎫12,3,z min =-32,C (2,0),z max =6,∴-32≤z ≤6. 5.给出平面区域如图阴影部分所示,若使目标函数z =ax +y (a >0)取得最大值的最优解有无穷多个,则a 的值为________.考点 线性规划中的参数问题 题点 无数个最优解问题 答案 35解析 将z =ax +y 变形,得y =-ax +z .当它与直线AC 重合时,z 取最大值的点有无穷多个. ∵k AC =-35,∴-a =-35,即a =35.1.用图解法解决简单的线性规划问题的基本步骤(1)寻找线性约束条件,线性目标函数;(2)作图——画出约束条件(不等式组)所确定的平面区域和目标函数所表示的平行直线系中的任意一条直线l ;(3)平移——将直线l 平行移动,以确定最优解所对应的点的位置;(4)求值——解有关的方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值.2.作不等式组表示的可行域时,注意标出相应的直线方程,还要给可行域的各顶点标上字母,平移直线时,要注意线性目标函数的斜率与可行域中边界直线的斜率进行比较,确定最优解.3.在解决与线性规划相关的问题时,首先考虑目标函数的几何意义,利用数形结合方法可迅速解决相关问题.一、选择题1.若点(x ,y )位于曲线y =|x |与y =2所围成的封闭区域内,则2x -y 的最小值为( ) A.-6 B.-2 C.0 D.2 考点 线性目标最优解 题点 求线性目标函数的最值 答案 A解析 如图,曲线y =|x |与y =2所围成的封闭区域如图中阴影部分(含边界)所示,令z =2x -y ,则y =2x -z ,作直线y =2x ,在封闭区域内平行移动直线y =2x ,当经过点A (-2,2)时,z 取得最小值,此时z =2×(-2)-2=-6. 2.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +3y -3≥0,2x -y -3≤0,x -y +1≥0,则x +y 的最大值为( )A.9B.157C.1D.715考点 线性目标最优解 题点 求线性目标函数的最值 答案 A解析 画出可行域如图阴影部分(含边界)所示,令z =x +y ,则y =-x +z .当直线y =-x +z 过点A 时,z 最大.由⎩⎪⎨⎪⎧2x -y -3=0,x -y +1=0,得A (4,5),∴z max =4+5=9.3.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧3x +y -6≥0,x -y -2≤0,y -3≤0,则目标函数z =y -2x 的最小值为( )A.-7B.-4C.1D.2 考点 线性目标最优解 题点 求线性目标函数的最值 答案 A解析 可行域如图阴影部分(含边界)所示,令z =0,得直线l 0:y -2x =0,平移直线l 0知, 当直线l 0过D 点时,z 取得最小值.由⎩⎪⎨⎪⎧y =3,x -y -2=0,得D (5,3). ∴z min =3-2×5=-7,故选A.4.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x -5y +10≤0,x +y -8≤0,则目标函数z =3x -4y 的最大值和最小值分别为( )A.3,-11B.-3,-11C.11,-3D.11,3考点 线性目标最优解 题点 求线性目标函数的最值 答案 A解析 作出可行域如图阴影部分(含边界)所示,由图可知z =3x -4y 经过点A 时,z 有最小值,经过点B 时,z 有最大值.易求得A (3,5),B (5,3).∴z max =3×5-4×3=3,z min =3×3-4×5=-11. 5.已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =2x +y 的最小值为1,则a 等于( )A.14B.12C.1D.2 考点 线性规划中的参数问题 题点 线性规划中的参数问题 答案 B解析 作出不等式组表示的可行域,如图阴影部分(含边界)所示.易知直线z =2x +y 过交点B 时,z 取最小值,由⎩⎪⎨⎪⎧ x =1,y =a (x -3),得⎩⎪⎨⎪⎧x =1,y =-2a ,∴z min =2-2a =1,解得a =12,故选B.6.已知⎩⎪⎨⎪⎧x ≥1,x -y +1≥0,2x -y -2≤0,若z =ax +y 的最小值是2,则a 的值为( )A.1B.2C.3D.4考点 线性规划中的参数问题 题点 线性规划中的参数问题 答案 B解析 作出可行域,如图中阴影部分所示,又z =ax +y 的最小值为2,若a >-2,则(1,0)为最优解,解得a =2;若a ≤-2,则(3,4)为最优解,解得a =-23,舍去,故a =2.7.已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y确定.若M (x ,y )为D 上的动点,点A的坐标为(2,1),则z =OM →·OA →的最大值为( ) A.3 B.4 C.3 2 D.4 2 考点 线性目标最优解 题点 求线性目标函数的最值 答案 B解析 由线性约束条件 ⎩⎪⎨⎪⎧0≤x ≤2,y ≤2,x ≤2y ,画出可行域如图阴影部分(含边界)所示,目标函数z =OM →·OA →=2x +y ,将其化为y =-2x +z ,结合图形可知,当目标函数的图象过点(2,2)时,z 最大,将点(2,2)代入z =2x +y ,得z 的最大值为4.8.已知A (2,5),B (4,1).若点P (x ,y )在线段AB 上,则2x -y 的最大值为( ) A.-1 B.3 C.7 D.8 考点 线性目标最优解 题点 求线性目标函数的最值 答案 C解析 作出线段AB ,如图所示,作直线2x -y =0并将其向下平移至直线过点B (4,1)时,2x -y 取最大值,为2×4-1=7. 二、填空题9.已知-1≤x +y ≤4且2≤x -y ≤3,则z =2x -3y 的取值范围是________.(答案用区间表示) 考点 线性目标最优解 题点 求线性目标函数的最值 答案 [3,8]解析 作出不等式组⎩⎪⎨⎪⎧-1≤x +y ≤4,2≤x -y ≤3表示的可行域,如图中阴影部分(含边界)所示. 在可行域内平移直线2x -3y =0,当直线经过x -y =2与x +y =4的交点A (3,1)时,目标函数有最小值, z min =2×3-3×1=3;当直线经过x +y =-1与x -y =3的交点B (1,-2)时,目标函数有最大值, z max =2×1+3×2=8. 所以z ∈[3,8].10.在线性约束条件⎩⎪⎨⎪⎧x +3y ≥12,x +y ≤10,3x +y ≥12下,z =2x -y 的最小值是________.考点 线性目标最优解 题点 求线性目标函数的最值 答案 -7解析 如图作出线性约束条件⎩⎪⎨⎪⎧x +3y ≥12,x +y ≤10,3x +y ≥12下的可行域,包含边界.三条直线中x +3y =12与3x +y =12交于点A (3,3), x +y =10与x +3y =12交于点B (9,1), x +y =10与3x +y =12交于点C (1,9),作一族与直线2x -y =0平行的直线l :2x -y =z .即y =2x -z ,然后平行移动直线l ,直线l 在y 轴上的截距为-z ,当l 经过点C 时,-z 取最大值,此时z 最小,即z min =2×1-9=-7.11.某公司租赁甲、乙两种设备生产A ,B 两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A 类产品50件,B 类产品140件,则所需租赁费最少为________元. 考点 生活实际中的线性规划问题 题点 线性规划在实际问题中的应用 答案 2 300解析 设需租赁甲种设备x 台,乙种设备y 台,则⎩⎪⎨⎪⎧5x +6y ≥50,10x +20y ≥140,x ∈N ,y ∈N .目标函数为z =200x +300y .作出其可行域(图略),易知当x =4,y =5时,z =200x +300y 有最小值2 300. 三、解答题12.设x ,y 满足⎩⎪⎨⎪⎧2x +y ≥4,x -y ≥-1,x -2y ≤2,求z =x +y 的取值范围.考点 线性目标最优解 题点 求线性目标函数的最值解 作出约束条件表示的可行域,如图所示,z =x +y 表示直线y =-x +z 过可行域时,在y 轴上的截距,当目标函数平移至过可行域内的A 点时,z 有最小值.联立⎩⎪⎨⎪⎧2x +y =4,x -2y =2,解得A (2,0).z min =2,z 无最大值.∴x +y ∈[2,+∞).13.某运输公司接受了向抗洪救灾地区每天送至少180 t 支援物资的任务.该公司有8辆载重为6 t 的A 型卡车与4辆载重为10 t 的B 型卡车,有10名驾驶员,每辆卡车每天往返的次数为A 型卡车4次,B 型卡车3次;每辆卡车每天往返的成本费A 型为320元,B 型为504元.请为公司安排一下,应如何调配车辆,才能使公司所花的成本费最低? 考点 生活实际中的线性规划问题 题点 线性规划在实际问题中的应用解 设需A 型、B 型卡车分别为x 辆和y 辆.列表分析数据.由表可知x ,y 满足线性约束条件⎩⎪⎨⎪⎧x +y ≤10,24x +30y ≥180,0≤x ≤8,0≤y ≤4,x ,y ∈N ,且目标函数z =320x +504y .作出可行域,如图阴影部分(含边界)所示.可知当直线z =320x +504y 过A (7.5,0)时,z 最小,但A (7.5,0)不是整点,继续向上平移直线z =320x +504y ,可知点(8,0)是最优解.这时z min =320×8+504×0=2 560(元),即用8辆A 型车,成本费最低.所以公司每天调出A 型卡车8辆时,花费成本最低. 四、探究与拓展14.若平面区域⎩⎪⎨⎪⎧x +y -3≥0,2x -y -3≤0,x -2y +3≥0夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是( )A.355B. 2C.322 D. 5考点 线性目标最优解 题点 求线性目标函数的最值 答案 B解析 画出不等式组所表示的平面区域如图(阴影部分)所示,由⎩⎪⎨⎪⎧ x -2y +3=0,x +y -3=0,得A (1,2), 由⎩⎪⎨⎪⎧2x -y -3=0,x +y -3=0,得B (2,1).由题意可知当斜率为1的两条直线分别过点A 和点B 时,阴影部分夹在这两条直线之间,且与这两条直线有公共点,所以这两条直线为满足条件的距离最小的一对直线,即|AB |=(1-2)2+(2-1)2= 2.故选B.15.已知变量x ,y 满足的约束条件为⎩⎪⎨⎪⎧x +2y -3≤0,x +3y -3≥0,y -1≤0.若目标函数z =ax +y (其中a >0)仅在点(3,0)处取得最大值,求a 的取值范围.考点 线性规划中的参数问题 题点 线性规划中的参数问题 解 依据约束条件,画出可行域.∵直线x +2y -3=0的斜率k 1=-12,目标函数z =ax +y (a >0)对应直线的斜率k 2=-a , 若符合题意,则需k 1>k 2.即-12>-a ,得a >12.。
高一数学必修5简单线性规划课件
作业: P103 4 P105 3
感谢聆听!
在平面直角坐标系中作出不等式组表示的平面区域
x 4y 3
3
x
5
y
25
y x 1
x 1
x4y30
x
O
3x5y25 0
在不等式组表示的平面区域内
问题1:x 有无最大(小)值? 问题2:y 有无最大(小)值?
问题3:z=2x+y 有无最大(小)值?
y
y2x12
y2x3 A(5.00, 2.00)
z axby中z叫做目标函数
前面例题中的不等式组叫约束条件,有时约束条件是等式.
满足约束条件的解(x,y)叫可行解,所有的可行解构 成的集合,叫做可行域.
使目标函数最大或最小的可行解,叫做最优解.
一般地,求线性目标函数在约束条件下的最优解问题, 叫做线性规划问题.
解线性规划问题的步骤:
(1)画:画出线性约束条件所表示的可行域; (2)移:在线性目标函数所表示的一组平行 线中,利用平移的方法找出与可行域有公共 点且纵截距最大或最小的直线; (3)求:通过解方程组求出最优解; (4)答:作出答案。
问题: 设z=2x-y,式中变量x,y满足下列条件
x 4y 3
3
x
5
y
25
求z的 最x 大1 值和最小值.
-z表示 直线y=2x-z在y轴上的截距
y x 1
C
•B
O
A(5,2) C (1, 22 )
5
zmin
212212 55
zm ax25212
x4y30
•AHale Waihona Puke 3x5y25 0x
求z=3x+5y的最大值和最小值, 使式中的x,y满足以下不等式组
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性规划
【例1】若变量,x y满足约束条件
2
1
1
y x
x y
y
≤
⎧
⎪
+≤
⎨
⎪≥-
⎩
,则2
z x y
=+的最大值是()
A.
5
2
-B.0 C.
5
3
D.
5
2
练习1-1 设实数,x y满足约束条件
3240
40
640
x y
x y
x y
-+≥
⎧
⎪
+-≤
⎨
⎪--≤
⎩
,则2
z x y
=+的最小值为()
A.-5 B.-8 C.5 D.8
练习1-2 若整数x,y满足不等式组
250
270
0,0
x y
x y
x y
+->
⎧
⎪
+->
⎨
⎪≥≥
⎩
,则34
x y
+的最小值为()
A.13 B.16 C.17 D.18
练习1-3 设变量x y ,满足1x y +≤,则2x y +的最大值和最小值分别为( )
A.1,-1
B.2,-2
C.1,-2
D.2,-1
练习1-4 设实数,x y 满足约束条件021x x y x y ≥⎧⎪≥⎨⎪-≤⎩
,则322x y +的最大值是( )
A .64
B .32
C .22
D .1
练习1-5 如果实数,,x y 满足条件10,220,10,x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则2123z x y =-+的最大值为( ) A .1 B .
34 C .0 D .47
练习1-6 已知实数,x y 满足不等式组204803260x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩
,则56z x y =+-的最大值为 .
【例2】 已知实数,x y 满足不等式组032363412x x y x y ≤≤⎧⎪-≤⎨⎪+≤⎩
,则21x y z x +-=+的取值范围是( ) A .74,
16⎡⎤-⎢⎥⎣⎦ B .[]4,1- C .17,416⎡⎤⎢⎥⎣⎦ D .1,14⎡⎤⎢⎥⎣⎦
练习2-1 若实数,x y 满足约束条件1358x y x x y ≥-⎧⎪≥⎨⎪+≤⎩,则2y z x =-的取值范围为 .
练习2-2 设,x y满足约束条件
2560,
4970,
32100,
x y
x y
x y
-+≥
⎧
⎪
+-≥
⎨
⎪+-≤
⎩
则目标函数
3
2
y
z
x
+
=
+
的取值范围是______.
练习2-3 已知实数,x y满足条件
50
30
x y
x y
y
-≤
⎧
⎪
+-≥
⎨
⎪-≤
⎩
,若不等式()()2
22
m x y x y
+≤+恒成立,则实数m
的最大值是____________.
【例3】若实数,x y满足不等式组
2
24
x y
x y
x y
+≥
⎧
⎪
-≤
⎨
⎪-≥
⎩
,则22
(1)
x y
++的取值范围是.
练习3-1 已知,x y 满足约束条件1020x y x y y -+≥⎧⎪+≤⎨⎪≥⎩
,求()22(1)1z x y =++-的最小值是
练习3-2 对满足不等式组10400x x y x y +≥⎧⎪+-≤⎨⎪-≤⎩
的任意实数,x y ,224z x y x =+-的最小值是( )
A .2-
B .0
C .1
D .6
练习3-3 若点()1,1在不等式组024033m nx y mx ny nx y m -+≥⎧⎪--≤⎨⎪≥-⎩
所表示的平面区域内,则22m n +的取值范围是
_________
练习3-4 不等式组230330210x y x y x y +-≤⎧⎪-+≥⎨⎪-+≤⎩
的解集记为D ,有下面四个命题:
1:(,),231p x y D x y ∀∈+≥-;2:(,),253p x y D x y ∃∈-≥-;
311:(,),23
y p x y D x -∀∈≤-;224:(,),21p x y D x y y ∃∈++≤. 其中的真命题是( )
A .12,p p
B .23,p p
C .24,p p
D .34,p p
【例4】设实数,x y 满足约束条件10330390x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩
,已知z ax y =+的最大值是23a +,则实数a 的
取值范围是( )
A .[3,1]-
B .[1,3]-
C .(,1]-∞-
D .(3,)+∞
练习4-1 若实数,x y 满足不等式组22000x y x y m y ++≥⎧⎪++≤⎨⎪≥⎩
,且2z y x =-的最小值等于2-,则实数m 的值
等于( )
A .1-
B .1
C .2-
D .2
练习4-2 已知实数,x y 满足约束条件2000x y x y y x k -≥⎧⎪-≤⎨⎪+-≥⎩
,若3z x y =+的最小值为4,
则实数k =( ) A .2 B .1 C .
125 D .45
练习4-3 设y x ,满足约束条件⎪⎩
⎪⎨⎧≥≥≥-≤--0,00023y x y x y x ,若目标函数)0(2>+=m y m x z 的最大值为2,则)3sin(π+
=mx y 的图象向右平移6π后的表达式为___________.
练习4-4 设x ,y 满足不等式组60210320x y x y x y +-≤⎧⎪--≤⎨⎪--≥⎩
,若z ax y =+的最大值为24a +,最小值为1a +,
则实数a 的取值范围为( )
A .[]1,2-
B .[]2,1-
C .[]3,2--
D .[]
3,1-
练习4-5 不等式组2,6,20x x y x y ≥⎧⎪+≥⎨⎪-≤⎩所表示的平面区域为Ω,若直线10ax y a -++=与Ω有公共点则实数a 的取值范围是 .
【例5】 设实数,x y 满足2102146x y x y x y +≤⎧⎪+≤⎨⎪+≥⎩
,则xy 的最大值为( )
A .
252 B . 492
C . 12
D .14
练习5-1 已知实数y x ,满足条件⎪⎩
⎪⎨⎧≤+≥≥200y x y x ,则不等式22≥+y x 成立的概率为( ) A .2
1 B .41 C . 43 D .81
练习5-2
已知实数,x y 满足1354y x x x y ≤-⎧⎪≤⎨⎪+≥⎩,则2x y 的最小值是_________
练习5-3
已知实数
,x y 满足20501144x y x y y x ⎧⎪-≥⎪+-≤⎨⎪⎪≥+⎩,则()22222x y y x y +++的取值范围是________。