铝合金焊接技术
铝合金的焊接方法
铝合金的焊接方法铝合金是一种常见的金属材料,具有轻质、强度高、导热性好等特点,在工业和日常生活中广泛应用。
而焊接是铝合金加工中常用的连接方法之一。
以下将详细介绍铝合金的焊接方法。
铝合金的焊接方法主要有氩弧焊、点焊、激光焊、摩擦焊和爆炸焊等。
其中,氩弧焊是最常用的方法。
1. 氩弧焊:氩弧焊是铝合金焊接中最常用的方法,它利用惰性气体(如氩气)保护电弧和熔融池,防止气氛中的氧气和水分污染焊接区域,并控制熔融金属的冷却速度。
在氩气的保护下,焊接过程中没有明火和烟雾产生,焊缝质量较高。
2. 点焊:点焊是利用电阻产生的热量将铝合金件连接在一起。
该方法适用于连接较薄的铝合金板材,如汽车制造中的焊接。
3. 激光焊:激光焊是使用高能量激光束将铝合金熔化,从而实现焊接。
激光焊具有焊接速度快、热影响区小和焊缝质量高等优点,适用于各种铝合金焊接。
4. 摩擦焊:摩擦焊是通过在接触面上施加压力和产生热量,将铝合金摩擦热熔融并加以压实。
该方法适用于焊接铝合金和其他金属之间的连接。
5. 爆炸焊:爆炸焊是利用爆炸产生的高温和高压将两个铝合金件连接在一起。
该方法适用于焊接较大尺寸的铝合金构件。
除了上述常见的焊接方法外,还有一些特殊的焊接方法,如熔覆焊、滚焊和冷焊等。
在进行铝合金焊接时,需要注意以下几点:1. 选择合适的焊接材料和焊接工艺,根据焊接材料的种类、厚度和焊接强度要求等因素确定焊接方法。
2. 预处理焊缝,包括去除焊接区域的氧化皮、油污和杂质,以保证焊接质量。
3. 选择合适的焊接电流和焊接速度,以避免产生焊接缺陷,如焊接裂纹和气孔等。
4. 控制焊接区域的温度,避免过热和过冷引起的焊接缺陷。
5. 使用适当的焊接保护措施,如惰性气体保护和冷却液冷却,以确保焊接质量。
总结起来,铝合金的焊接方法有多种,每种方法都适用于不同的焊接需求。
在选择和使用焊接方法时,需要考虑材料的性质、焊接强度要求和工艺条件等因素。
正确选择和使用焊接方法,可以保证焊接质量,提高铝合金制品的性能和使用寿命。
铝合金焊接工艺
1)焊后将焊件放入40~50℃的热水槽中浸渍,最好用流动的热水,用硬毛刷刷焊缝及焊缝附近 残留熔剂、熔渣的地方,直至清除干净。
2)将焊件浸入硝酸溶液中。当室温为25°以上时,溶液浓度15%~25%,浸渍时间为10~15min。 室温为10~15℃时,溶液浓度20%~25%,浸渍时间为15min。
3)将焊件置于流动热水(温度为40~50℃)的槽中浸渍5~10min。 4)用冷水将焊件冲洗5min。 5)将焊件自然晾干,也可放在干燥箱中烘干或用热空气吹干。
氩气流对焊接区的冲刷使接头冷却加快,改善了接头的组织和性能,适于全位置焊接。由于不用 熔剂,焊前清理的要求比其他焊接方法严格。
焊接铝合金较适宜的工艺方法是交流TIG焊和交流脉冲TIG焊,其次是直流反接TIG焊。通常,用交 流焊接铝合金时可在载流能力、电弧可控性以及电弧清理作用等方面实现最佳配合,故大多数铝合金 的TIG焊都采用交流电源。
1)气孔产生原因。氩气纯度低或氩气管路内有水分、漏气等;焊丝或母材坡口附近焊前未清理 干净或清理后又被污物、水分等沾污;焊接电流和焊速过大或过小;熔池保护欠佳,电弧不稳,电弧 过长,钨极伸出过长等。
防止措施: 保证氩气的管路,选择认真清理焊丝、焊件,清理后及时焊接,并防止再次污染。更 新送气管路,选择合适的气体流量,调整好钨极伸出长度;正确选择焊接工艺参数。必要时,可以采 取预热工艺,焊接现场装挡风装置,防止现场有风流动。
铝合金焊接方法与技巧
铝合金焊接方法与技巧
铝合金焊接是一种常见的金属加工方式,常用于制作汽车零部件、建筑材料等。
然而,由于铝合金的低熔点和高导热性,使得铝合金焊
接比其他金属更为复杂。
以下是关于铝合金焊接方法和技巧的一些介绍。
1. 焊接前的准备。
在焊接前,必须对铝合金进行清洗。
铝合金
上的油脂、污垢和氧化层会影响焊接效果。
要使用无水酒精或其他清
洁剂进行清洗,然后使用砂纸将铝合金表面打磨光滑。
2. 选择合适的电极。
铝合金焊接需要使用专门的铝合金电极或
者钨极。
在选择电极时,应根据所要焊接的铝合金的种类和厚度来确
定电极的规格和类型。
3. 控制焊接温度。
焊接铝合金需要控制焊接温度,太高或者太
低都会影响焊接效果。
一般来说,焊接温度应该在580℃左右,使用焊接温度计来检测并控制温度。
4. 选择合适的焊接方法。
铝合金可以使用TIG焊、MIG焊和等离子焊等多种焊接方法。
选择合适的焊接方法要考虑其适用范围、焊接
效果和设备成本等因素。
5. 确保焊接技巧正确。
铝合金焊接需要掌握一些专门的技巧。
例如,要保持正确的焊接位置和角度,应使用适当的焊接电流和电压,以及适当的送丝速度等等。
总之,铝合金焊接需要注意焊接前的准备、选择合适的电极和焊
接方法、控制焊接温度,以及掌握正确的焊接技巧。
通过以上的介绍,我们可以更好地理解和掌握铝合金焊接这种技术。
铝合金焊接方法
铝合金焊接方法
铝合金是一种常见的金属材料,具有轻质、高强度和耐腐蚀等优点,因此在航
空航天、汽车制造、建筑等领域得到广泛应用。
而铝合金的焊接技术也是非常重要的,正确的焊接方法能够保证焊接接头的质量和可靠性。
本文将介绍几种常见的铝合金焊接方法。
首先,我们来介绍氩弧焊。
氩弧焊是一种常见的铝合金焊接方法,通过使用氩
气作为保护气体,形成惰性气氛,防止铝合金在高温下氧化。
氩弧焊可以使用直流或交流电源,焊接电流通常较小,焊接速度较慢,但可以获得较好的焊接质量。
其次,激光焊接是一种高效的铝合金焊接方法。
激光焊接利用高能激光束对铝
合金进行熔化和连接,焊接速度快,热影响区小,可以实现高质量的焊接接头。
激光焊接需要专门的设备和技术支持,成本较高,适用于对焊接质量要求较高的领域。
另外,摩擦搅拌焊是一种新型的铝合金焊接方法。
摩擦搅拌焊利用摩擦热原理,将铝合金材料在固态状态下搅拌摩擦,形成均匀的焊接接头。
摩擦搅拌焊不需要外加焊接材料和保护气体,可以避免氧化和气孔等缺陷,焊接接头质量高,适用于对焊接质量要求严格的场合。
最后,超声波焊接是一种非常精密的铝合金焊接方法。
超声波焊接利用超声波
振动产生的摩擦热,将铝合金材料熔化并连接在一起。
超声波焊接的优点是焊接速度快,热影响小,适用于对焊接位置和焊接质量要求高的场合。
综上所述,铝合金焊接方法有多种,每种方法都有其特点和适用范围。
在实际
应用中,需要根据具体的焊接要求和条件选择合适的焊接方法,以确保焊接接头的质量和可靠性。
希望本文能够对铝合金焊接技术有所帮助。
铝合金焊接技术和应用研究
铝合金焊接技术和应用研究铝合金是一种广泛应用于工业领域的材料。
铝合金具有轻质、高强度、耐腐蚀等优点,在航空、汽车、船舶等领域得到了广泛应用。
铝合金的焊接技术也随着使用领域的不断扩大而得到了更多的研究和应用。
一、铝合金焊接技术概述铝合金焊接技术主要包括氩弧焊、TIG焊、MIG焊、激光焊等不同种类。
其中,氩弧焊是目前应用最为广泛的一种焊接技术。
氩弧焊具有焊缝质量好、成本低等优点,可用于航空、航天、汽车等领域的铝合金结构件的焊接。
TIG焊是一种适用于薄壁铝合金材料的焊接技术。
TIG焊具有功率控制、热输入量小、焊接速度快等优点,在航空、电子等领域得到广泛应用。
MIG焊是近年来发展起来的一种新型铝合金焊接技术。
MIG焊具有焊缝良好、成本低等优点,在汽车、电子、造船等领域的铝合金焊接中得到了广泛应用。
激光焊是一种适用于高要求、高精度、高效率的铝合金焊接技术。
激光焊是一种非接触式焊接技术,具有热影响区小、精度高、速度快等优点。
目前,激光焊用于航空、航天、汽车、电子等领域的高精度铝合金焊接中。
二、铝合金焊接技术的应用研究在航空领域,铝合金结构件的焊接质量直接关系到航空器的飞行安全。
目前,航空领域广泛应用TIG焊和高能激光焊技术。
高能激光焊具有焊缝几乎无顶部缺陷、堆焊率高等优点,是目前最为理想的航空领域铝合金结构件的焊接技术。
在汽车领域,铝合金的轻量化特性得到广泛应用。
铝合金车身结构件的焊接技术是汽车工业发展的重要技术之一。
目前,汽车领域广泛应用MIG焊、TIG焊和激光焊技术。
相较于氩弧焊来说,MIG焊和TIG焊在铝合金车身结构件的焊接中具有更好的适应性和焊缝品质。
在电子领域,铝合金是电子外壳的常用材料。
铝合金外壳的焊接技术直接关系到电子设备的密封性和机械强度。
目前,电子领域广泛应用TIG焊、激光焊技术。
相较于TIG焊来说,激光焊具有焊缝更细、威胁成像性好等优点,更适用于电子外壳的高密度、高精度焊接。
三、铝合金焊接技术的未来发展趋势随着新材料、新工艺的不断涌现,铝合金焊接技术也将不断发展。
铝合金型材焊接方法
铝合金型材焊接方法
铝合金型材是一种常见的结构材料,广泛应用于汽车、航空、电子、
建筑和家具等领域。
为了更好地利用和加工铝合金型材,我们需要掌
握铝合金型材的焊接方法。
下面我将介绍有关铝合金型材焊接的一些
常用方法。
1. TIG焊接法
TIG焊接法是一种常用的铝合金型材焊接方法。
该方法利用钨极电弧
加热,将铝焊丝加热到熔化状态并填充到焊缝中。
TIG焊接法的优点
在于可以产生高质量的焊接,焊缝美观,同时使铝合金型材更加耐腐
蚀和耐热。
这种方法需要高度熟练的焊接技能和适当的工具设备才能
完成。
2. MIG焊接法
MIG焊接法是另一种常用的铝合金型材焊接方法,它使用惰性气体保
护焊缝并加热铝材料。
MIG焊接法的优点在于速度快,输出电流稳定,适合大量生产。
而且,该方法也具有易于控制和实现自动化等优点。
3. 气焊法
气焊法也可用于铝合金型材的焊接,但应注意避免出现氧化问题。
在气焊焊接铝合金型材时,我们需要特别注意材料清洁度,使用高纯度的焊条和适当的助剂,以及在阳光下的安置轨迹等。
总之,铝合金型材的焊接方法各有特点,我们需要根据具体情况和要求选择正确的焊接工艺。
同时,我们还应该掌握焊接技能和使用适当的装备和设备,以确保焊接质量和工作效率。
铝板焊接方式
铝板焊接方式
铝板焊接可以采用多种方式,以下是一些常见的焊接方式:
1.熔化极氩弧焊:该方法适用于中等厚度和大厚度的铝及铝合金板材的焊接,采
用直流反接。
焊接速度快,焊接接头热影响区和焊件的变形量小,且具有广泛的适用范围。
2.非熔化极氩弧焊:适用于铝及铝合金的焊接,需要掌握机器调节、材料选择以
及铝板焊接的特殊要求。
3.钨极氩弧焊:在氩气保护下施焊,热量集中,稳定性高,适用于在工业中获得
广泛应用。
4.低温钎焊:需要处理表面氧化膜,选择熔点偏低的钎料进行焊接,例如
WEWELDING53低温铝焊条或303的低温铝焊条。
5.激光焊接:这是一种高端的焊接技术,将激光束聚焦在铝板表面,使其快速加
热并熔化。
6.电阻焊:适用于铝合金的点焊,只能用于5mm以下的板材叠焊或Φ10mm
以下的棒材叠焊。
7.摩擦焊:适用于铝合金的搅拌摩擦焊,综合性能良好。
除此之外,还有TIG氩弧焊、MIG/MAG CO2气体保护焊、气焊、红外线焊接和热棒焊等多种方式可供选择。
具体选择哪种方式进行铝板焊接,需要根据实际情况和焊接要求进行综合考虑。
铝合金焊接工艺材料方案
铝合金焊接工艺材料方案铝合金焊接是一种常见的金属焊接方式,广泛应用于航空航天、汽车制造、建筑工程等领域。
为了保证焊接质量,选择合适的焊接工艺和材料至关重要。
本文将从铝合金焊接的一般工艺、材料选择和方案等方面进行论述。
一、铝合金焊接的一般工艺铝合金焊接主要有以下几种工艺可供选择:氩弧焊、氩气保护焊、摩擦搅拌焊、激光焊接等。
根据焊接件的形状和要求,选择合适的焊接工艺是必须的。
1. 氩弧焊氩弧焊是最常用的铝合金焊接方法之一,它使用惰性气体——氩气作为保护气体,以减少氧气和水分的接触,从而防止氧化和腐蚀。
在氩弧焊中,电弧产生高温,使焊接区域熔化,并通过填充材料达到焊接的目的。
2. 氩气保护焊氩气保护焊是一种先进的焊接工艺,它通过喷射氩气来保护焊接区域,提供合适的保护环境。
与氩弧焊相比,氩气保护焊的焊接速度更快,且产生的氧化物减少,焊点质量更高。
3. 摩擦搅拌焊摩擦搅拌焊是近年来快速发展的一种焊接工艺。
它通过旋转工具头在接触面上施加压力和旋转力,使得铝合金表面发生塑性变形并形成焊缝。
摩擦搅拌焊的优点在于焊接速度快、焊接变形小,并且不需要额外填充材料。
4. 激光焊接激光焊接是高能激光束直接照射焊接材料,使其瞬间加热并熔化,然后自然冷却形成焊缝的工艺。
激光焊接具有高焊接速度、小热影响区和焊缝质量高等优点,适用于对焊接速度和外观要求较高的情况。
二、铝合金焊接材料选择铝合金焊接材料的选择应根据具体的焊接工艺和应用环境来确定。
1. 焊接电极焊接电极是常用的填充材料,其选择要考虑到与母材的相容性,以及焊接后的强度、韧性和耐腐蚀性。
常见的焊接电极有纯铝电极、铝合金电极和硅含量低的铝合金电极等。
2. 保护气体保护气体在铝合金焊接过程中起到很重要的作用。
常用的保护气体是惰性气体,如纯氩气和氩气加少量氦气的混合气体。
保护气体能有效地减少氧化和腐蚀,提高焊接质量。
三、铝合金焊接方案铝合金焊接方案的制定需考虑多个因素,包括焊接材料、工艺和设备等。
铝及铝合金的焊接
铝及铝合金的焊接导言:铝及铝合金是目前工业中广泛应用的材料,其具有轻质、导热性好、耐腐蚀等优点,被广泛用于航空、汽车、建筑等领域。
然而,铝及铝合金的焊接过程相对较为复杂,需要注意焊接技术、焊接参数以及焊接材料的选择等方面的问题。
本文将从这些方面对铝及铝合金的焊接进行探讨。
一、焊接技术1. 熔化极氩弧焊(GTAW)熔化极氩弧焊是铝及铝合金焊接中常用的技术之一。
其特点是焊接过程中产生的热量较小,对基材影响小,焊缝质量较高。
在熔化极氩弧焊中,焊工需要注意控制电弧长度、氩气流量和焊接速度等参数,以确保焊接质量。
2. 金属惰性气体保护焊(MIG)金属惰性气体保护焊是另一种常用的铝及铝合金焊接技术。
在该技术中,焊丝通过喷射的惰性气体(如氩气)进行保护,防止氧气和水蒸气等对焊接过程的干扰。
金属惰性气体保护焊适用于大批量生产,焊接速度快,效率高。
二、焊接参数1. 电弧电流电弧电流是影响焊接质量的重要参数之一。
对于铝及铝合金的焊接,一般需要较大的电弧电流,以确保焊接区域能够达到足够高的温度,从而保证焊缝的质量。
2. 电弧电压电弧电压也是影响焊接质量的重要参数。
过高或过低的电弧电压都会影响焊缝的质量。
过高的电弧电压容易导致熔融过深,过低的电弧电压则容易导致焊缝质量不合格。
3. 焊接速度焊接速度是焊接过程中需要控制的另一个重要参数。
过快的焊接速度会导致焊缝质量不佳,焊接强度降低;过慢的焊接速度则容易导致熔融过深,产生热影响区过大。
三、焊接材料选择1. 焊丝对于铝及铝合金的焊接,一般选择铝合金焊丝作为填充材料。
铝合金焊丝具有良好的流动性和机械性能,可以保证焊缝的质量。
在选择焊丝时,需要根据焊接材料和焊接要求进行合理的选择。
2. 气体保护剂在焊接过程中,需要使用惰性气体对焊接区域进行保护,以防止氧气和水蒸气的干扰。
常用的气体保护剂有纯氩气、氩气和氦气的混合气体等。
选择合适的气体保护剂可以提高焊接质量。
结语:铝及铝合金的焊接是一项复杂而重要的工艺,需要掌握合适的焊接技术、合理的焊接参数以及选择适当的焊接材料。
铝合金管的焊接特点及焊接工艺
铝合金管的焊接特点及焊接工艺焊接特点
铝合金管的焊接具有以下特点:
1. 热导性高:铝合金具有较高的热导性,容易导致焊接区域温度过高或焊接速度过快,需要控制好焊接参数和技术。
2. 氧化性强:铝合金容易与氧发生反应生成氧化物,焊接时容易产生氧化皮,需要在焊接前清除氧化皮并采取防护措施。
3. 熔点低:铝合金的熔点相对较低,焊接时需要注意控制焊接温度,避免过高或过低的焊接温度影响焊接质量。
4. 焊缝收缩大:铝合金焊接后,焊缝会产生较大的收缩量,容易导致焊缝变形和应力集中,需要采取适当的焊接工艺和措施。
焊接工艺
铝合金管的焊接工艺可分为以下几种常见方法:
1. 氩弧焊:氩弧焊是常用的铝合金管焊接方法之一。
通过在焊接区域引入氩气,形成保护气体,避免氧与铝合金发生反应,从而减少氧化皮的产生。
2. TIG焊接:TIG焊接是一种手工氩弧焊接的方法,适用于对焊缝质量和外观要求较高的情况。
焊接过程中需要手持焊枪,同时控制焊接参数和焊接速度。
3. 焊锡焊接:对于较薄的铝合金管,可以采用焊锡焊接。
焊锡焊接是一种较为简单的焊接方法,但焊接强度较低,适用于一些低要求的应用场景。
4. 摩擦搅拌焊接:摩擦搅拌焊接是一种新兴的铝合金管焊接方法,通过机械方式在焊接区域进行摩擦和搅拌,形成焊缝。
该方法具有焊接速度快、焊接强度高等优点。
以上是铝合金管的焊接特点及焊接工艺的介绍,希望对您有所帮助。
铝合金焊接方法及注意事项
铝合金被广泛的运用在工业产品上,因为它具有很好的物理性能,不过由于焊接方法及焊接工艺参数的选取不当,造成铝合金零件焊接后因应力过于集中产生严重变形,或因为焊缝气孔、夹渣、未焊透等缺陷,导致焊缝金属裂纹或材质疏松,严重影响了产品质量及性能。
一、焊前准备
1坡口的处理
单边坡口55。
,双边坡口35o o降低缺陷的产生几率。
1.1焊前清理工作
清理焊缝区域的杂质,用不锈钢刷或丙酮清洗。
清理完毕后立即施焊。
1.2预热温度和层间温度的控制
预热温度控制在80℃-120°C之间,层间温度控制在60℃-100OC之间。
温度过高会使裂纹的产生机率增加。
2.合理选择规范参数
根据焊接特性来试验和确定参数。
2.1焊接电流较大
热输入量不够,易出现未熔合的问题。
2.2送丝速度要适当调高
焊接电流提高,送丝速度也相应提高。
2.3焊接速度的选择
建议采用较大的焊接电流和较慢的焊接速度。
2.4焊枪角度的选择
焊枪角度在90。
左右,过大和过小都会造成焊接缺陷。
二、铝合金焊接方法
1、铝极氮弧焊
设备较复杂,不合适露天条件下操作。
2.电阻点焊、缝焊
焊接电流大、生产率高,适用于大批量生产的零、部件。
3.脉冲氮弧焊
焊件变形小、热影响区小,特别适用于薄板。
三、铝合金焊接注意事项
1.清理铝合金表面,用丙酮或钢丝刷清理。
2、防止焊不透,收弧时要用小电流收弧填坑。
3、根据板材的厚度来焊接
4、焊枪的电缆不要太长。
铝合金焊接技术
铝合金焊接技术铝合金焊接技术作为一项重要的金属加工技术,在现代工业生产中具有广泛的应用。
本文将探讨铝合金焊接技术的基本原理、焊接方法、应用领域以及发展趋势。
一、铝合金焊接技术的基本原理铝合金焊接技术是指将铝合金工件通过加热、熔化和冷却的过程,使焊接材料与母材形成连续、均匀的接头。
其基本原理包括两个方面,即热流动与材料相互作用。
1.1 热流动在焊接过程中,通过加热电弧或燃气火焰等热源,形成足够高的温度,使焊接材料和母材达到熔化状态,热流从焊接源及附近传入工件中。
热流的传递与热导率、热容量以及焊接速度等因素有关,热流的流动路径也会影响焊接接头的质量。
1.2 材料相互作用焊接材料与母材在高温下发生相互作用,主要包括材料的熔化、扩散和固化等过程。
焊接材料熔化后,与母材相互渗透,形成焊缝。
同时,焊接过程中还会发生固态相变和晶体结构变化等现象,对焊接接头的性能产生影响。
二、铝合金焊接技术的方法铝合金焊接技术主要有电弧焊、气体保护焊和激光焊等多种方法。
下面将介绍其中几种常用的焊接方法。
2.1 电弧焊电弧焊是利用电弧热量熔化焊接材料并使其与母材连接的方法。
常见的电弧焊包括手工弧焊、氩弧焊和等离子焊等。
电弧焊具有生产效率高、适用范围广的特点,广泛应用于汽车、航空航天、船舶等行业。
2.2 气体保护焊气体保护焊是通过在焊接过程中引入保护气体,避免焊接区域的氧气和氮气与焊接材料发生反应,造成氧化和氮化等缺陷,同时提供稳定的熔化介质。
常见的气体保护焊包括TIG焊、MIG焊和MAG焊等。
2.3 激光焊激光焊是利用激光束产生的高能量密度照射工件,在短时间内使焊接区域熔化、冷却和凝固。
激光焊具有热影响区小、焊缝细、焊接速度快等优点,适用于要求高精度和高速焊接的场合。
三、铝合金焊接技术的应用领域铝合金焊接技术广泛应用于各个行业,特别是重要工程领域和高端制造业。
以下列举几个常见的应用领域。
3.1 航空航天航空航天领域对材料的强度、轻量化和耐腐蚀性要求较高,铝合金焊接技术被广泛应用于飞机机身、发动机以及航天器的制造和维修。
铝合金焊接技术
铝合金焊接技术
1. 铝合金焊接的基本原理
铝合金焊接的基本原理是利用高温将铝合金材料融化并连接在一起。
由于铝合金的熔点较低,所以在焊接过程中需要使用适当的焊接温度和焊接材料。
2. 常用的铝合金焊接方法
2.1. 氩弧焊
氩弧焊是最常用的铝合金焊接方法之一。
它使用氩气作为惰性气体,通过电弧将铝合金加热至熔点,并使用特殊的焊丝填充材料来连接两个铝合金部件。
2.2. 熔覆焊
熔覆焊是一种将铝合金涂层覆盖在基材上的焊接方法。
通过熔
化铝合金涂层,可以将铝合金材料与基材牢固地连接在一起,提高
材料的耐腐蚀性能和表面硬度。
2.3. 摩擦搅拌焊
摩擦搅拌焊是一种新兴的铝合金焊接方法。
它利用旋转工具在
铝合金材料之间施加摩擦热,并通过机械搅拌将铝合金连接在一起。
这种方法可以实现非常强的焊接连接,并且避免了传统焊接方法中
的气孔和裂纹等问题。
3. 铝合金焊接技术的应用领域
铝合金焊接技术在航空航天、汽车制造、建筑结构和电子设备
等领域广泛应用。
它可以用于制造飞机、汽车车身、桥梁和电子设
备外壳等关键部件,以提高产品的轻量化和耐用性。
结论
铝合金焊接技术是一种重要的制造技术,它使得铝合金材料可以得到有效地连接和利用。
在选择合适的焊接方法时,需要考虑具体应用场景和焊接要求。
铝合金焊接技术的不断进步将为工业制造和建筑业等行业带来更多发展机遇。
铝合金焊接方法与技巧
铝合金焊接方法与技巧铝合金焊接是一种常用的金属焊接技术,用于连接铝合金构件或修复铝合金构件。
由于铝合金具有较低的熔点和导热性能,以及易被氧化的特性,所以焊接过程中需要特别注意一些方法和技巧。
首先,铝合金焊接需要使用适当的焊接方法,常见的有氩弧焊、电阻焊、摩擦搅拌焊等。
1. 氩弧焊是一种常用的铝合金焊接方法,它使用氩气作为保护气体,并通过电极电弧加热和融化焊接区域。
在氩气保护下,焊接区域不会与外部空气接触,从而减少氧化。
氩弧焊通常需要较高的电流和电压,以保证足够的热量和良好的焊缝质量。
2. 电阻焊是一种利用电阻加热的铝合金焊接方法。
在连接处施加一定的压力,使两个金属表面产生热量,从而熔化并形成焊缝。
在电阻焊接过程中,应尽量减少金属表面的氧化,可以使用保护气体或覆盖剂来保护焊接区域。
3. 摩擦搅拌焊是一种无焊锡铝合金的焊接方法,通过高速摩擦产生的热量使焊接面熔化,并通过机械搅拌的方式实现焊接。
摩擦搅拌焊具有焊接速度快、焊缝质量高、无需补充填料等优点,适用于大尺寸铝合金构件的焊接。
在铝合金焊接中,还需要注意一些具体的焊接技巧,以确保焊接质量和提高工作效率。
1. 清洁:铝合金易被氧化,焊接前应将焊接区域进行彻底的清洁,除去氧化层、涂层和油脂等,可以使用无油溶剂进行清洁。
焊接区域越干净,焊接质量越好。
2. 预热:铝合金焊接时通常需要进行预热,以减少热应力和避免裂纹的产生。
预热温度应根据具体材料和焊接厚度进行调整,通常在150C至250C之间。
3. 保护:铝合金焊接时容易受氧化和氢的污染,应使用适当的保护措施。
在氩弧焊中,使用高纯度的氩气作为保护气体,并保持一定的气体流量。
在摩擦搅拌焊中,可以使用惰性气体如氮气进行保护。
4. 合适的填料:根据具体应用需求选择合适的焊接填料,通常使用和基材相似或相容性好的铝合金填料。
填料应保证与基材的相容性,并且适合所需的力学和化学性能要求。
5. 控制焊接参数:焊接参数的选择对焊接质量起到关键作用,包括电流、电压、焊接速度等。
铝及铝合金的焊接方法
铝及铝合金的焊接方法铝及铝合金是相当常见的材料,因为具有较高的强度和良好的耐腐蚀性能,被广泛应用于汽车制造、航空航天、建筑、船舶以及机电设备等领域。
然而,由于铝及铝合金的化学性质和结构特点,其焊接较为困难,需要特殊的焊接方法和技术,本文将重点介绍铝及铝合金的焊接方法。
1. TIG焊接法氩弧焊接(TIG)法是目前铝及铝合金最常用的焊接方法之一,其特点在于能够焊接很薄的材料,焊接质量高,且不会产生太多的热变形,但是需要较高的技术要求和操作技巧。
在进行TIG焊接时,需要将铝材预热,以避免冷裂的产生,同时选择合适的氩弧电流和焊接速度,以达到最佳的焊接效果。
2. MIG焊接法惰性气体保护焊(MIG)法是另一种常用的铝及铝合金焊接方法,其特点在于可以快速地焊接大量的材料,但是需要高度精密的焊接设备和较高水平的技术人员。
在进行MIG焊接时,需要选择合适的气体,并将焊接区域清洁干净,以防止氧化皮和其他杂质的干扰,同时适当控制焊接速度和电流,以获得最佳的焊接效果。
3. 拉丝焊接法拉丝焊接法比较适用于较大的铝合金部件的焊接,在进行拉丝焊接时使用的是特殊的焊接材料,可以有效地降低氧化皮的生成,并且具有相对较高的耐腐蚀性能。
在进行拉丝焊接时,需要选用合适的焊接材料、清洁焊接区域,并注意适当的拉丝速度和焊接电流,以获得最佳的焊接效果。
4. 超声波焊接法超声波焊接法适用于薄壁铝及铝合金零件的焊接,其物理原理在于利用高频震动产生的热能将零件焊接在一起。
在进行超声波焊接时,需要选择合适的焊接设备、正确选择焊接参数,以避免过热损伤,并采用合适的夹具,以保证焊接部件的稳定性。
总之,铝及铝合金的焊接方法有多种,每种方法都有其适用的焊接材料、焊接工艺和操作技巧,只有选择适合的焊接方法才能获得最佳的焊接效果。
无论采用何种焊接方法,其关键在于对焊接材料、焊接设备、焊接工艺以及焊接操作等方面全局的认真考虑和细致的把握。
铝合金焊接工艺
广州蓝能电子中频点焊机
由于芯棒与工件的接触面远大于电极与工件的接触面,熔核将偏向与电极接触的 工件一侧。如果两工件的厚度不同,将厚件置于芯棒接触的一侧,则可减轻熔核 偏移程度。 当需要在封闭容器上焊接工件,而芯棒又无法伸入容器时,可以用Zn、Pb、 A1或其他较被焊金属熔点低的金属填满整个容器后进行焊接(图3f)。当容器壁厚 较大时,也可以用砂子或石蜡等不导电材料作为填料。焊接应采用强条件,以免 长时间加热使低熔点金属或石蜡熔化,导致电极压塌工件。 在大量生产中,单面多点点焊获得广泛应用。这时可采用由一个变压器供 电,各对电极轮流压住工件的形式(图4a),也可采用各对电极均由单独的变压器 供电,全部电极同时压住工件的形式(图4b)。后一形式具有较多优点,应用也 较广泛。其优点有:各变压器可以安置得离所连电极最近,因而其功率及尺寸能 显著减速小;各个焊点的工艺参数可以单独调节;全部焊点可能同时焊接,生产 率高;全部电极同时压住工件,可减少变形;多台变压器同时通电,能保证三相 负载平衡。
2.2 氧化膜的清除 材料表面上的氧化膜不能用上述有机溶剂清除,必须用机械或化学的 方法进行清除。
广州蓝能电子中频点焊机
机械方法: 当产量很小,或组合件的尺寸不允许用化学方法还原氧化物时,使用机 械的方法去除氧化物。 机械方法有机械切削、吹砂处理或用于铸件的喷丸处理和锉刀、细钢丝 刷以及铝丝绒清理等方法。 为防止损伤工件表面,钢丝直径不得超过0.2mm,钢丝长度不得短于 40mm,刷子压紧于工件的力不得超过5~20N,而且清理后须在不超过2~ 3h内进行焊接。手工或电动的细钢丝刷清理方法是最常用的方法。 化学方法: 用酸或碱溶解材料表面,也可以与除油工序同时进行。 最常用的方法是: 在5%~10%的氢氧化钠溶液(约7℃)中浸泡30~60s后用清水冲洗,然后在约 15%的硝酸水溶液(常温)中浸泡约2min,用清水冲洗后,再用温水冲洗干 净,最后进行干燥处理。最好在临焊前进行化学清理,即使集中清理,也应 只清理当天能够焊完的预定数量。在这种情况下。材料的坡口表面临焊前最 好也用钢丝刷进行清理。
铝合金焊接技术要点及注意事项
铝合金焊接技术要点及注意事项铝及铝合金焊接特点及焊接工艺铝合金由于重量轻、强度高、耐腐蚀性能好、无磁性、成形性好及低温性能好等特点而被广泛地应用于各种焊接结构产品中,采用铝合金代替钢板材料焊接,结构重量可减轻50 %以上。
因此,铝及铝合金除广泛的应用于航空、航天和电工等领域外,同时还越来越多的应用于石油化学工业。
但是铝及铝合金在焊接过程中,易出现氧化、气孔、热裂纹、烧穿和塌陷等问题。
此类材质是被公认为焊接难度较大的被焊接材料,特别是小径薄壁管的焊接更难掌握。
因此,解决铝及铝合金的这些焊接缺陷是施工过程中必须解决的问题。
1铝及铝合金的焊接特点铝材及铝合金焊接时由固态转变为液态时,没有明显的颜色变化,因此在焊接过程中给操作者带来不少困难。
因此,要求焊工掌握好焊接时的加热温度,尽量采用平焊,在引(熄)弧板上引(熄)弧等。
特别注意以下几点:1.1强的氧化能力铝与氧的亲和力很强,在空气中极易与氧结合生成致密而结实的AL2O3薄膜,厚度约为.1μm,熔点高达2050℃,远远超过铝及铝合金的熔点,而且密度很大,约为铝的1.4倍。
在焊接过程中,氧化铝薄膜会阻碍金属之间的良好结合,并易造成夹渣。
氧化膜还会吸附水分,焊接时会促使焊缝生成气孔。
这些缺陷,都会降低焊接接头的性能。
为了保证焊接质量,焊前必须严格清理焊件表面的氧化物,并防止在焊接过程中再氧化,对熔化金属和处于高温下的金属进行有效的保护,这是铝及铝合金焊接的一个重要特点。
具体的保护措施是:a焊前用机械或化学方法清除工件坡口及周围部分和焊丝表面的氧化物;b焊接过程中要采用合格的保护气体进行保护;c在气焊时,采用熔剂,在焊接过程中不断用焊丝挑破熔池表面的氧化膜。
1.2铝的热导率和比热大,导热快尽管铝及铝合金的熔点远比钢低,但是铝及铝合金的导热系数、比热容都很大,比钢大一倍多,在焊接过程中大量的热能被迅速传导到基体金属内部,为了获得高质量的焊接接头,必须采用能量集中、功率大的热源,有时需采用预热等工艺措施,才能实现熔焊过程。
《铝合金焊接》课件
铝合金焊接的应用领域
航空航天
铝合金焊接在制造飞机和航天器的结构上发挥着重要作用,确保它们具有足够的强度和耐久 性。
汽车制造
大量的铝合金在汽车制造中使用,焊接技术可以有效地连接不同部件,提高整车的轻量化和 燃油经济性。
建筑行业
铝合金焊接在建筑结构中的应用越来越多,因为铝合金具有耐腐蚀、轻质和较高的强度,非 常适合用于建筑材料。
2
焊接强度不足
采用合适的焊接材料、增加焊接面积和改进焊接工艺,可以提高焊接强度。
3
变形问题
通过控制焊接过程中的热量和采用适当的预应力补偿措施,来减少焊接变形。
铝合金焊接的发展趋势
未来的铝合金焊接将更加智能化和自动化,利用机器学习和机器人技术来提 高焊接质量和效率。同时,新的焊接方法和材料将不断涌现,以适应不断发 展的行业需求。
《铝合金焊接》PPT课件
欢迎来到本次关于铝合金焊接的课件。在本课件中,我们将介绍铝合金焊接 的技术简介、应用领域、常见焊接方法、关键注意事项、常见问题及解决方 法、发展趋势,以及总结和展望。
铝合金焊接技术简介
铝合金焊接技术是将铝合金的不同部件通过焊接工艺连接在一起。这种技术 广泛应用于航空航天、汽车制造和建筑行业,因为铝合金具有轻,需要掌握合适的焊接参数, 以避免过热或过快冷却。
3 保持稳定
焊接时保持手部和焊枪的稳定,以确保焊接 质量和安全。
4 防止氧化
铝合金容易氧化,使用适当的保护剂或惰性 气体来防止氧化。
铝合金焊接常见问题及解决方法
1
焊接缺陷
通过优化焊接参数和使用适当的焊接方法,来减少焊接缺陷的出现。
总结和展望
在本课件中,我们对铝合金焊接进行了详细的介绍。通过掌握铝合金焊接技 术,我们可以为航空航天、汽车制造和建筑行业带来更高的效率和质量。期 待未来铝合金焊接领域的持续发展和创新。
铝合金的焊接方法和材料选用大全
深度好文,铝合金的焊接方法和材料选用大全铝合金的焊接方法很多,各种方法有其不同的应用场合。
除了传统的熔焊、电阻焊、气焊方法外,其他一些焊接方法(如等离子弧焊、电子束焊、真空扩散焊等)也可以容易地将铝合金焊接在一起。
1.铝合金常用焊接方法的特点及适用范围铝合金常用焊接方法的特点及适用范围见表1。
应根据铝及铝合金的牌号、焊件厚度、产品结构以及对焊接性的要求等选择。
(1)气焊氧-乙炔气焊火焰的热功率低,热量较分散,因此焊件变形大、生产率低。
用气焊焊接较厚的铝焊件时需预热,焊后的焊缝金属不但晶粒粗大、组织疏松,而且容易产生氧化铝夹杂、气孔及裂缝等缺陷。
这种方法只用于厚度范围在0.5~10㎜的不重要铝结构件和铸件的焊补上。
(2)钨极氩弧焊这种方法是在氩气保护下施焊,热量比较集中,电弧燃烧稳定,焊缝金属致密,焊接接头的强度和塑性高,在工业中获得起来越广泛的应用。
钨极氩弧焊用于铝合金是一种较完善的焊接方法,但钨极氩弧焊设备较复杂,不宜在室外露天条件下操作。
(3)熔化极氩弧焊自动、半自动熔化极氩弧焊的电弧功率大,热量集中,热量影响区小,生产效率比手工钨极氩弧焊可提高2~3倍。
可以焊接厚度在50㎜以下的纯铝及铝合金板。
例如,焊接厚度30㎜的铝板不必预热,只焊接正、反两层就可获得表面光滑、质量优良的焊缝。
半自动熔化极氩弧焊适用于定位焊缝、断续的短焊缝及结构形状不规则的焊件,用半自动氩弧焊焊炬可方便灵活地进行焊接,但半自动焊的焊丝直径较细,焊缝的气孔敏感性较大。
(4)脉冲氩弧焊1)钨极脉冲氩弧焊用这种方法可明显改善小电流焊接过程的稳定性,便于通过调节各种工艺参数来控制电弧功率和焊缝成形。
焊件变形小、热影响区小,特别适用于薄板、全位置焊接等场合以及对热敏感性强的锻铝、硬铝、超硬铝等的焊接。
2)熔化极脉冲氩弧焊可采用的平均焊接电流小,参数调节范围大,焊件的变形及热影响区小,生产率高,抗气孔及抗裂性好,适用于厚度在2~10㎜铝合金薄板的全位置焊接。
铝合金的焊接
铝合金的焊接铝合金是一种常用的材料,由于其重量轻、强度高、耐腐蚀、导热性能好等特点,而在航空、汽车、建筑等领域得到了广泛的应用。
而焊接是铝合金加工和制造过程中不可或缺的一环。
下面我们将围绕铝合金的焊接展开详细阐述。
一、铝合金的特点铝合金是一种非常活泼的金属,容易氧化和热分解,在空气中形成致密的氧化膜,而该氧化膜的熔点高于金属本身,使得它的焊接会比较困难。
二、焊接前准备工作1.清洁:焊接前一定要将铝合金表面清洁干净,去除表面油、污物和氧化层等脏东西。
可以采用机械方法、溶液法、气枪喷射等方法进行清洗。
2.预热:在室温下,铝合金的塑性很好,但一旦低于室温,塑性就会变差,这就要求在焊接前预热,提高焊接过程中金属的塑性。
三、铝合金焊接方法1.氩弧焊:氩弧焊是铝合金的常用焊接方法之一。
需要使用氩气气体保护,保证焊接部位不会被污染,同时低电位电弧用于焊接。
氩弧焊具有高接头质量,焊后成型好的优点,而且在宽厚度范围内适用,焊接速度快。
2.电阻点焊:电阻点焊的原理是通过电流和压力的作用,在铝合金表面产生局部熔化,然后将两个金属片压在一起,之后对接处进行冷却。
电阻点焊适用于板材之间的连接。
3.激光焊接:激光焊接是一种激光束焊接工艺。
激光束可以使金属表面迅速升温,并高温熔化,达到焊接的目的。
激光焊接具有焊接深度大、热影响区小、焊接质量高等优点。
四、要注意的问题1.焊接位置的选择:在进行铝合金的焊接时,需要注意对焊接位置、焊接温度、焊接速度等参数进行选择,以保证焊接效果。
2.防止氧化:由于铝合金非常容易被氧化,因此需要注意防止氧化的问题,这样才能保证焊接的质量。
3.掌握焊接技巧:对于铝合金的焊接需要掌握一定的焊接技巧,如熟练掌握焊接速度、技巧等,才能保证焊接质量。
总的来说,铝合金的焊接需要注意的问题比较多,不过只要掌握了相关技术和细节,就能够做到焊接质量的保证。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钛合金焊接技术
日期:08-12-10 09:00:09 作者:鲜雪强川航机务部
由于钛合金低重量、强度高、耐腐蚀性优异,又具有与先进复合材料在热学、电化学方面的相容性,一直是航空、宇航工业上应用的重要结构材料。
焊接作为钛合金加工中的重要手段,在提高材料利用率、减轻结构重量、降低成本等方面有独特的优势,因此有必要研究飞机结构修理中的钛合金焊接技术。
关键词:焊接、疲劳性能、残余应力、疲劳寿命
一、钛合金焊接的重要性
疲劳断裂是材料在交变载荷(或应力)作用下发生的破损断裂。
国内外研究表明,飞机结构疲劳破坏是飞机主要破坏形式。
早期设计的飞机只考虑静强度问题,直到上个世纪五十年代,随着航空事业的不断发展,飞机性能不断提高,飞机的使用要求不断严格,飞机在使用过程中疲劳破坏与安全可靠性之间的矛盾逐渐暴露出来。
焊接是一种运用(多种情况下为局部)加热或加压手段、添加或不添加填充材料将构件不可拆卸的连接在一起,或在基材表面堆敷覆盖层的加工工艺。
焊接技术广泛的应用于国民经济的各个部门,如机械工程、桥梁工程、压力容器船舶工程、航空航天等领域。
焊接结构在现代工业中应用越来越广泛,无论是在航天领域还是在一般的工程领域,无论是小部件还是大型结构,都在不断扩大焊接结构的比重。
例如,飞机中央翼焊接下壁板是关键承力构件,承受机翼传来的弯矩、扭矩、剪力和油箱压力的作用;在国外第四代战斗机中钛合金含量已达到40%左右。
而对于钛合金焊接结构疲劳特性与寿命评估技术的研究则是为实现钛合金结构在先进飞机上的合理使用,所必不可少的前提条件之一。
二、焊接区域材料性能的确定
焊接接头由焊缝、热影响区、母材组成,是一种非均质材料,各向异性。
热影响区是焊缝到母材的过渡区域,其材料性能也介于焊缝和母材之间。
在焊接结构分析过程中,焊接接头材料性能的确定是一个很重要的问题,直接影响到分析结果。
从严格意义上讲,焊缝、热影响区都是各向异性的,但在现阶段的研究中,几乎全将这两个区域材料看作各向同性材料来处理,这种方法虽然能够满足工程需要,但以理论的眼光看显得相当粗略。
在实际工作中,通常将焊接接头看作分块均匀介质。
具体做法无外乎以下几种:(1)母材、热影响区、焊缝具有相同的材料性能;(2)母材和热影响区具有相同的材料性能,而焊缝具有不同的材料性能;(3)母材、热影响区、焊缝具有不同的材料性能;(4)母材和焊缝具有相同的材料性能,而热影响区具有不同的材料性能;(5)焊缝和热影响区具有相同的材料性能,而母材具有不同的材料性能。
国内外研究者采用上述方法对不同的焊接件进行了研究。
Z.L.Zhang,M.Hauge等人在确定带缺口焊接件真实应力-应变曲线的拉伸试验方法的研究中,将焊接接头看作由母材、热影响区和焊缝三个不同区域组成的各向异性体,这三个不同区域的材料都为各向同性材料。
国外研究者M.C.BURSTOW和I.C.HOWARD在焊接件延性裂纹扩张的损伤力学模型研究过程中,假设焊接接头由母材和焊缝两部分组成,且这两个区域材料性能为各向同性体,取得了令人满意的结果。
国内也有学者采用同样的假设方法,对关于非均质焊接接头中J积分断裂判据进行研究,将有限元计算结果与实测值进行了比较,并分析了产生误差的原因。
国外的研究者曾经同时用上述几种方法对点焊接头进行了分析,显示了不同的材料区域分块方法对计算结果的影响,并讲计算结果与试验所得真实数据进行了比较,结果表明对于此种材料在一定的焊接参数下所得到的点焊接头,方法(4)的误差最小。
三、焊接件疲劳性能的研究
对焊接接头疲劳性能的研究是对焊接件性能进行评估的一个重要方面。
这是由于应力集中和具有较差的材料性能,焊接接头经常是焊接结构中的最薄弱区域,此外,很难精确的确定焊缝区和热影响区材料的性能。
疲劳性能评估的方法总的来说可以分为两类:名义应力法和断裂力学的方法,由于焊接件本身的结构特点,下面对适合于焊接件的评估方法进行了简单介绍。
当前焊接件疲劳性能的评估方法基于经验和结构特征,即根据不同的焊接结构几何形状和加载状况,将焊接件进行分类。
疲劳寿命用名义应力法进行评估,现阶段对于名义应力的获得,大都采用结构应力或热点应力的方法,此种方法简单的说就是通过焊趾附近距离焊趾不同长度处两点的应力值线性推广得到热点应力值。
线性推广的方法有很多种,在用此方法时应该注意:(1)一般用没有偏移的理想的焊接接头进行有限元分析,应该用最大主应力来表达热点应力;(2)计算热点应力时,单元网格应足够精细,网格长度比不大于3。
用20节点块元时,单元大小为t×t×t(t为板厚),用8节点和4节点板壳元时,取t×t和0.5t×0.5t;(3)用板壳元的表面应力作为热点应力。
也有许多人采用由0.4t和1t处的应力值进行线性推广的方法。
热点应力法在现阶段得到了广泛的应用,非常适用于对某一类给定结构的焊接件进行评估,这种方法当然也有其局限性,那就是很难精确确定焊接结构的结构应力,计算结果经常受到单元尺寸和载荷类型的影响。
国外研究者G.Savaidis和M.Vormwald运用热点应力法对客车底部焊接结构进行了数值模拟和试验研究,研究表明国际焊接学会关于简化焊接结构有限单元网格的方法具有足够的精确度,热点应力法计算结果表明失效一般发生在焊趾或热影响区,与试验结果完全吻合,同时作者也指出由于分析结果依赖于热点应力的定义方法,并不能将本文的研究结果推广到一般的工程应用中去。
国外研究者P.Dong提出了一种与单元大小无关的热点应力定义方法,并用此方法对焊接接头的疲劳性能进行数值了模拟,取得了较好的结果。
由于焊接接头的特殊结构,我们也可以用断裂力学的方法对焊接结构进行研究。
一些研究者提出了假设半径的方法,认为具有相同深度和圆角半径的裂纹和缺口具有相同的疲劳极限,此种方法假设断裂处缺口半径为1mm,缺点是有限元模型的建立比较困难,假设半径的引进对于某些焊接件几何形状的影响比较显著;国外研究者V Dattoma和C Pappalettere用缺口应力强度因子的方法对焊接结构疲劳强度进行了研究。
国外研究者David Taylor等分别利用上述两种方法对焊接试件进行了研究,并将试验结果与理论计算结果进行比较。
四、残余应力
金属材料在焊接时,焊缝及其附近局部区域的金属在热循环作用下,产生了复杂的拘束和压缩塑性变形,在随后的冷却过程中难以恢复。
当冷却到室温后,可能有一部分热应力被保留在接头中成为残余应力,同时也可能伴随着产生收缩和弯曲等残余变形。
焊接残余应力分为薄板和厚板两种情况,多年来人们对残余应力的研究主要集中在薄板残余应力的测量和分布。
在实际中残余应力的获得可以用应力释放法、X射线法等方法测量得到;如果对精确度要求不太高,可以用工程估算方法计算得到焊接残余应力及其分布;随着计算机技术的发展,用有限元法对焊接残余应力进行模拟是一种很有前途的计算残余应力方法,此种方法结果精度比较高,但是有限元模拟过程是一个很复杂的过程,在焊接力学界,对焊接过程的热传导和力学过程进行三维仿真已成为当今最具有挑战性的课题。
残余应力和变形的存在是影响结构或构件脆性断裂强度、疲劳强度、结构稳定性等的重要因素,尤其是对疲劳寿命的影响得到了广泛的关注。
随着人们对残余应力的研究,发现焊接残余应力对焊接件的疲劳有明显的影响,尤其是对于高周疲劳性能的研究更为明显。
以往研究残余应力对疲劳性能的影响有两种不同的处理方法。
一种是所谓的平均应力观点,即把残余应力作为平均应力来处理,通过古德曼关系等来估算残余应力对疲劳寿命的影响,也有人认为焊接残余应力对疲劳寿命的影响只与外加载荷的应力幅有关。
另一种是断裂力学观点,即认为残余应力的存在降低了构件的应力强度因子,通过所谓的有效强度因子来估算残余应力对裂纹扩展速率的影响,从而估算焊件的疲劳寿命。
现阶段的研究,大多只是说明了残余应力的存在使疲劳寿命增加或者减少,很少有人对残余应力和外加载荷作用下的焊接试件疲劳寿命进行定量的计算。
残余应力的存在经常减少疲劳寿命,随之而产生了许多消除残余应力的方法。
常用的消除残余应力的方法有热处理方法、振动时效方法、锤击方法、爆炸处理等方法。
国内研究者分别测定了经过热处理和没有经过热处理的焊接件的残余应力,发现经过热处理焊接试件的残余应力明显减小。
国内研究者用振动处理技术消除大型储罐接管焊缝的残余焊接应力,对该方法的处理效果进行了试验研究,并与传统的热处理方法进行了比较,说明了对于储罐接管振动处理的方法优于热处理。
国内研究者建立锤击作用的有限元数学模型,利用该模型对白口铸铁焊补时锤击消除焊接残余应力进行实例分析。
结果表明,在合适的焊接规范和工艺下,锤击不仅能消除白口铸铁焊缝部位的应力,而且能够促进热影响区拉伸残余应力的释放,甚至可以获得一定压
应力值。
国内研究者对爆炸处理消除奥氏体不锈钢焊接残余应力前后焊接接头常规机械性能进行对比试验研究,发现爆炸处理在显著消除焊接残余应力的同时,对材料机械性能影响不大。
五、结束语
钛合金焊接件在加工完成之后,通过在真空炉中进行退火处理,很大程度上减小了焊接残余应力,又由于焊接结构件存在应力集中,使残余应力对疲劳寿命的影响程度减小,因此认为应力集中区域是焊接试件的危险区域。
焊接结构材料的性能是变化的,严格的说焊缝区、热影响区、母材处的材料具有不同的性能,热影响区材料的性能界于焊缝和母材之间,是材料性能的一个过渡区域,由于自身结构的特殊性,出现了焊缝与焊缝的交叉,这个区域的材料由于在加工过程中反复受热,此处的材料性能与焊缝处不同。