固态相变

合集下载

固态相变

固态相变

按相变方式分类
相变过程的实质
1、结构:同素异构、多形性、马氏体、
块状转变、 2、成分:调幅分解
3、有序化程度:有序化转变
4、结构和成分:贝氏体转变、共析、脱 溶沉淀
注意
同一种材料在不同条件下可发生不同的相变,从而获得不同的组织
和性能。
共析碳钢
平衡转变:珠光体组织,硬度约为HRC23;
快速冷却:马氏体组织,硬度达HRC60以上。
A1-4%Cu合金
平衡组织:抗拉强度仅为150MPa; 不平衡脱溶沉淀:抗拉强度可达350MPa。
由此可见,通过改变加热与冷却条件,使之发生某种转变继而获得
某种组织,则可在很大程度上改变材料的性能。
金属固态相变的一般特征
大多数固态相变(除调幅分解)都是通 过形核和长大过程完成的。因此,液态 结晶理论及其基本概念原则上仍适用于 固态相变。但是,由于相变是在“固态”
固体相变
重点内容:
① 相变的分类及相变分析;
② 液-固相变过程的热力学和动力学分析,晶 体生长过程动力学; ③ 固态相变的特点,固态相变的形核与晶核 长大。
1.基本概念 相变:指当外界条件如温度、压力等发生变化 时,物相在某一特定条件下发生的突变。 *狭义相变:过程前后相的化学组成不变, 即不发生化学反应。 如:单元系统中,晶体I晶体Ⅱ *广义相变:包括过程前后相组成的变化。 相变表现:1)从一种结构转变为另一种结构; 2)化学成分的不连续变化; 3)物质物理性能的突变。 应用:相变可以控制材料的结构和性质。
P T 1 T P
一般类型: 晶体的熔化、升华; 液体的凝固、气化; 气体的凝聚以及晶体中的多数晶型转变等。
结果:有相变潜热,并伴随有体积改变。

5. 固态相变

5. 固态相变

综合起来,均匀形核必须具有的条件为: 1) 必须过冷,过冷度越大形核驱动力越大; 2) 必须具备与一定过冷度相适应能量起伏和结构起伏 。
形成半径为r的球形晶核时,系统自由焓的变 化为: △G=(4π/3)r3△GV+4πr2γαβ + (4π/3) r3△GE
=(4π/3)r3(△GV+△GE)+4πr2γαβ △GV: 单位体积自由能之差 (负值) △GE:单位体积应变能之差 (正值)
晶核最易在界隅形成,其次在界棱,最后是界面。
晶界面形核时晶核形状
三晶粒相交的棱边
29
四晶粒相交的隅角
只有晶界两侧界面都不共 格时,晶核才类似球形。
通常新相在大角度晶界形 核时,一侧可能与母相具 有一定的取向关系形成平 直的共格或半共格界面, 以降低界面能、减少形核 功;另一侧必为非共格界 面,为减少相界面面积, 故呈球冠状。
非扩散型相变: 原子(或离子)仅作有规则的
迁移使点阵发生改组。马氏体转变
固态相变不一定都属于单纯的扩散型或非扩散型。
3.
按相变方式分类
有核相变和无核相变
(1)有核相变:有形核阶段,新相核心可均匀形 成,也可择优形成。大多数固态相变属于此类。 (2)无核相变:无形核阶段,通过扩散偏聚的方 式进行。以成分起伏作为开端,新旧相间无明显界 面,如调幅分解。
T
G T 2
2

G T 2 p
2

p
G p 2
2

G p 2 T
2

T
G G Tp Tp
一是新相在位错线上形核,新相形成处,位错消失, 释放的弹性应变能量使形核功降低而促进形核;

固态相变

固态相变

1. 固态相变与液固相变在形核、长大规律和组织等方面的主要区别。

答:固态相变形核要求有一个临界过冷度△Tc,只有当过冷度△T>△Tc时才满足相变热力学条件。

这是固态相变形核与液-固相变的根本区别。

相同:形核和长大规律相同,驱动力相同都存在相变阻力都是系统自组织的过程。

异处:不同点:(1)液-固相变驱动力为自由焓之差△G 相变,阻力为新相的表面能△G表,基本能连关系为:△G = △G 相变+△G表,而固态相变多了一项畸变能△G畸,基本能连关系为:△G = △G 相变+△G界面+△G畸(2)固态相变比液-固相变困难,需要较大的过冷度。

固态相变阻力增加了应变能等,即固态相变中形核困难.3.固态相变时为什么常常首先形成亚稳过渡相。

佳美试卷P31P33(1)能量方面,所需要驱动力,平衡相大于过渡相,过渡相的界面能和应变能要低,形成有利于降低相变阻力。

(2)成分和结构方面。

过渡相在成分和结构更接近母相,两相易于形成共格或半共格界面,减少界面能,降低形核功,形核容易进行。

4.如何理解脱溶颗粒在粗化过程中的“小粒子溶解”和“大粒子长大”现象。

(1)粗化过程驱动力是界面能的降低当沉淀相越小,其中每个原子分到的界面能越多,化学势越高,与它处于平母相中的溶质原子浓度越高即c(r2)>c(r1)。

由此可见,在大粒子r1和小粒子r2之间体中存在浓度梯度,因此必然有一个扩散流,在浓度梯度的作用下,大粒子通过吸收基体中的溶质而不断长大,小粒子要不断溶解收缩,放出溶质原子来维持这个扩散流。

所以出现了大粒子长大、小粒子溶解的现象(2)粗化过程中,小粒子溶解,大粒子长大,粒子总数减小,r增加。

小粒子溶解更快。

温度T升高,扩散系数D增大,使dr/dt增大。

所以当温度升高,大粒子长大更快,小粒子溶解更快。

5.如何理解调幅分解在热力学上无能垒,但在实际转变过程中有阻力。

(1)应变能,溶质溶剂原子尺寸不同(2)梯度能,原子化学键结合(3)相间点阵畸变6.调幅分解与形核长大型脱溶转变的主要区别。

材料科学基础第8章固态相变

材料科学基础第8章固态相变
促进扩散 (3)空位形核 新相生成处空位消失,提供能量 空位群可凝结成位错 (过饱和固溶体的脱溶析出过程中, 空位作用更明显。)
第二节 固态相变的形核与长大
二 非均匀形核(能量条件) 2 非均匀形核的能力变化 △ G=-V△Gv+S+ V-△GD △GD-晶体缺陷导致系统降低的能量。
第三节 固态相变的晶核长大
三 常见固态相变类型 相变名称
同素异构转变 多型性转变 脱溶转变 共析转变 包析转变 马氏体转变 贝氏体转变 调幅分解 有序化转变
相变特征
同一种元素通过形核与长大发生晶体结构的变化 合金中晶体结构的变化 过饱和固溶体脱溶分解出亚稳定或稳定的第二相 一个固相转变为两个结构不同的固相 两个不同结构的固相转变为一个新的固相,组织中一般 有某相残余 新旧相之间成分不变、切变进行、有严格位向关系、有 浮凸效应 兼具马氏体和扩散转变的特点,借助铁的切变和碳的扩 散进行 非形核转变,固溶体分解成结构相同但成分不同的两相 合金元素原子从无规则排列到有规则排列,担结构不变。
3.惯习现象
* 新相沿特定的晶向在母相特定晶面上形成。
惯习方向 (母相) 惯习面
原因:沿应变能最小的方向和界面能最低的界 面发展。
4 母相晶体缺陷促进相变
缺陷类型
点… 线… 晶格畸变、自由能高,促进形核及相变。 面…
5 易出现过渡相
* 固态相变阻力大,直接转变困难 协调性中间产物(过渡相) +Fe3C +(3Fe+C) 例 M +Fe3C
第二节 固态相变的形核与长大
三 晶核的长大
(3)相变动力学 f第三节 过饱和固溶体的分解
一 脱溶(时效)转变
1 概念:脱溶转变 2 脱溶转变过程 相的名称-形貌-尺寸-结构-点阵常数-共格关系 -强化作用 3 脱溶动力学

材料科学基础-固态相变

材料科学基础-固态相变
f(τ)=1-exp(-KIu3τ4/4)
固态相变
非均匀形核的形核率及受扩散控制的长 大速率随时间而变化,此类相变的动力 学用Avrami方程描述:f(τ)=1exp(-Bτn)固态相变
2. 等温转变动力学图
100%
T2
T3



积 50%


0
温 度
固态相变
T1>T2>T3 T1
时间 T1 T2 T3 时间
扩散型相变, 非扩散型相变 扩散型相变
脱溶沉淀、调幅分解、共析转变等
非扩散型相变
原子(或离子)仅作有规则的迁移使点阵 发生改组。 马氏体转变
固态相变不一定都属于单纯的扩散型
或非扩散型。 见表8-1
固态相变
3. 按相变方式分类 有核相变和无核相变 无核相变
通过扩散偏聚的方式进行的相变,为无核相变。 调幅分解
C曲线的鼻子温度
固态相变
r △G
△G在r=r*时达到极大值,这里 r*=-2γαβ/(△GV+△GE)
固态相变
形成临界晶核必须
△G
首先克服形核势垒
4πr2γαβ
△G*, △G*称为临
界晶核的形核功
△G*= 16
3
3
GV GE 2
γαβ、 △GE减小,均
可降低△G*,有利
于新相形核。
△G* 0
r*
4πr3(△GV+△GE)/3
T
2G Tp
2G Tp
固态相变
由于
2G T 2
p
S T
p
cp T
2G p 2
T
V
2G Tp
V

材科基考点强化(第12讲 固态相变)

材科基考点强化(第12讲  固态相变)

一、固态转变基本类型由于金属(合金)的结构和组织在固态下可以进行多种多样的形势转变,因此具有性能方面的多变性。

包括同素异形转变、脱溶、有序化转变等等,甚至回复、再结晶也属于固态转变。

分类:①扩散型相变;②非扩散型相变(切变型);③过渡型相变。

例1(名词解释):调幅分解例2(名词解释):一级相变、二级相变二、固态相变一般特点固态相变大多数为形核和生长的方式,由于此过程是在固态中进行,原子扩散速率甚低,且因新、旧相的比体积不同,其形核和生长不仅有界面能,还有因比体积差而产生的应变能,故固态相变往往不能达到平衡状态,而是通过非平衡转变形成亚稳相,且因形成时条件的不同,可能有不同的过渡相。

固态相变形成的亚稳相类型有多种,如固溶体脱溶产物、马氏体和贝氏体等。

固态相变要走转变阻力小、做功少的道路。

考点1:固态转变驱动力新旧两相自由能之差;阻力:新旧两相产生相界面引起界面自由能升高;新旧两相间因为比容不同导致的畸变能。

例:固态相变中,应变能产生的原因分析。

考点2:形核特点①非均匀形核;②核心的取向关系;③共格界面与半共格界面。

考点3:成长特点①惯习现象;②共格成长与非共格成长;③存在脱溶贯序。

例1(名词解释)惯习现象例2(名词解释):脱溶贯序考点4:新生组织形态应变能主导时优先形成饼状、圆片状;其次是针状;最后是球状。

界面能主导时,优先形成球状、其次是针状、最后是片状。

P.S. 脱溶基本完成后,新相、母相基本达到平衡浓度、再延长时间或者提高温度会发生新相聚集长大和形貌转化。

界面能主导:小粒子溶解、大粒子生长,半径越来越大,Δp=2σ/r (压应力)变小,脱溶相变稳定,向球形转变,脱溶相弯处向平处扩散;应变能主导:球状→立方状→棒状片状→编织组织。

例1:例题根据如图所示的析出物能够得到何种结论?例2:固态相变与液—固相变在形核、长大规律方面有何特点?分析这些特点对所形成的组织会产生什么影响?考点5:过渡相所谓过渡相是指成分或结构或两者都处于新旧相之间的一种亚稳态相。

固态相变的原理及应用

固态相变的原理及应用

固态相变的原理及应用1. 引言固态相变是指物质在不改变其化学组成的情况下,在一定条件下发生物理性质的显著变化,包括液固相变、固固相变等。

本文将介绍固态相变的原理及其在科学研究和工程应用中的重要性。

2. 固态相变的原理固态相变的原理主要涉及分子间相互作用、晶体结构和热力学的变化。

以下是固态相变的一些常见原理:2.1 同质固态相变同质固态相变是指在同一物质中固态结构的变化。

它可以由温度、压力、外界场等因素引起。

•温度引起的同质固态相变:温度的升降可以改变固体分子的平均振动能量,从而改变其固态结构。

例如,冰的固态结构在低温下是稳定的,但在高温下会发生相变为液态的水。

•压力引起的同质固态相变:压力的增加可以改变固态相对稳定的结构,使其发生相变。

例如,某些材料在高压下可以发生相变为更稳定的结晶形态。

•外界场引起的同质固态相变:外界场包括电场、磁场、光场等,它们可以改变固态相之间的平衡态,从而引起相变。

2.2 异质固态相变异质固态相变是指在不同组分或不同结构的物质之间发生的相变。

以下是几个常见的异质固态相变原理:•共晶相变:指两种或多种成分在一定温度下发生相变。

例如,凝固过程中的合金共晶相变。

•共熔相变:指两种或多种成分在一定温度下熔化,并形成单一相。

例如,某些合金在特定温度下可以共熔。

•嵌段共聚物相变:指由于共聚物分子中不同段之间的相互作用力的不同,导致其发生异质结构相变的现象。

3. 固态相变的应用固态相变在科学研究和工程应用中具有广泛的应用价值。

以下是固态相变在不同领域中的一些应用:3.1 材料工程•形状记忆合金:由于固态相变的特性,一些合金材料具有形状记忆效应,可以在温度改变的条件下恢复到原来的形状。

这种特性使得形状记忆合金可以应用于医疗器械、航空航天等领域。

•热致变色材料:某些固态相变材料在温度变化时会发生颜色的变化。

这种特性使得热致变色材料可以用于温度测量和显示器件。

3.2 能源领域•储能材料:固态相变材料可以作为储能材料,通过在相变时释放储存的能量。

固态相变

固态相变

固态相变:金属和陶瓷等固态材料在温度和压力改变时,其内部或结构会发生变化,即发生从一种相状态到另一种相状态的的转变,这种转变成为固态相变。

热力学分类一级相变:想便是新旧两厢的化学势相等,但化学势的一级偏微商不等的相变二级相变:相变时新旧两相的化学势相等,且化学势的一级偏微商也相等,但化学势的二级偏微商不等的相变平衡状态分类平衡相变:在缓慢加热或冷却时所发生的能获得负荷平衡状态图的平衡组织的相变1同素异构转变和多形转变:纯金属在温度和压力改变时,由一种晶体结构转变为另一种晶体结构的过程称为同素异构转变。

2平衡脱溶沉淀:在缓慢冷却条件下,由过饱和固溶体中析出过剩相的过程3共析相变:合金在冷却时由一个固相分解为两个不同固相的转变4调幅分解:某些合金在高温下具有均匀单项固溶体,但冷却到某一温度范围时可分解成为与原固溶体结构相同但成分不同的两个微区如α→α1+α2。

5有序化转变:固溶体中,各组元原子在晶体点阵中的相对位置由无序到有序的转变(长程有序)非平衡相变:托加热或冷却速度很快,平衡相变将被抑制,固态材料可能发生某些平衡状态图上不可能反映的转变并获得被称为不平衡或亚稳态的组织的转变1伪共析相变:Fe-C为例,转变过程和转变产物类似于共析相变,但转变产物中铁素体量与渗碳体量的比值不是定值,而是随奥氏体含量变化而变化2马氏体相变:Fe-C合金为例,进一步提高冷却速度,使伪共析相变也来不及进行而将奥氏体过冷到更低温度,则由于在低温下铁原子和碳原子都已不能或不易扩散,故奥氏体只能一步发生源自扩散,不引起成分改变的方式,通过切变由γ点阵改组为α点阵的转变3贝氏体相变:铁原子不能扩散,但碳原子尚具有一定的扩散能力,因此出现了一种独特的碳原子扩散而铁原子不扩散的非平衡相变4非平衡脱溶沉淀:在室温或低于固溶度曲线MN的某一温度下溶质原子尚具有一定的扩散能力,则在上述温度等温时,过饱和α固溶体仍可能发生分解,逐渐析出新相,但在析出的初期阶段,新相的成分和结构均与平衡脱溶沉淀相有所不同原子迁移分类扩散相变:相变时,相界面的移动是通过原子近程或远程扩散而进行的相变称为扩散型相变基本特点:1相变过程中由原子扩散,相变速率受原子扩散速度所控制2新相和母相的成分往往不同3只有因新相和母相比容不同而引起的提及变化,没有宏观形状改变非扩散型相变:想必那过程中原子不发生扩散,参与转变的所有原子的运动时协调一致的相变。

固态相变的主要类型及特点

固态相变的主要类型及特点

固态相变的主要类型及特点
固态相变的主要类型和特点如下:
1. 扩散型相变:这类相变涉及原子或离子的扩散。

特点是需要较高的温度,原子或离子活动能力强,会使相的成分发生改变。

包括脱溶沉淀、调幅分解、共析转变等。

2. 非扩散型相变:这类相变中,原子或离子仅作有规则的迁移,使点阵发生改组。

其特点是迁移时相邻原子相对移动不超过原子间距,相邻原子的相对位置保持不变,可以在原子或离子不能扩散时发生。

例如马氏体转变。

3. 一级相变:自由能的一阶偏导数不相等,相变伴随着体积的膨胀或收缩,潜热的放出或吸收。

大多数相变为一级相变。

4. 二级相变:自由能的一阶偏导数相等,但自由能的二阶偏导数不相等。

其特点是材料无体积效应和热效应,如压缩系数、热膨胀系数、比定压热容突变。

大多数磁性转变和有序-无序转变为二级相变。

此外,还有调幅分解、有序化转变、块状转变等相变类型,具体可咨询专业人士获取更多信息。

固态相变.

固态相变.
第三章、固态相变导论
三、固态相变导论
3. 1 概述 3. 2 界面结构及其对新相形状的影响 3. 3 新相形核 3. 4 相变动力学 3. 5 小结
金属材料热处理原理
3. 1 概述
(1)固态转变是金属材料热处理的依据
3. 1 概述
热处理实质上是一个通过改变和控制外部环境来促使 金属材料内部原子运动,发生原子聚集状态变化,从 而获得所需组织,达到所需性能的过程。

rC =2 σ/( △Gv+ △Gd - △Ge )
⇒在晶体缺陷处形核, rC越小,易形核
34
金属材料热处理原理
成核位垒(形核功)
G*

16
3

(GV

3

GE )2
3. 2 新相形核
若△Ge和σ一定, △Gc ∝1/△Gv 2 ∝1/△T 2 ⇒ △Gc 推 越小,易形核
1 2
T P T P
S
T P
1 2
P T P T
V
P T
22
金属材料热处理原理
一级相变:两相 Gibbs自由能、化 学位相同;熵、 体积不连续变化, 有相变潜热。
因此,热处理过程中材料性能变化的根源是固态转变。
3
金属材料热处理原理
3. 1 概述
固态转变——(广义上)物质中原子或分子的聚集状态 的变化过程
对于金属材料而言,主要包括: 晶体结构———α-Fe ⇌γ-Fe 化学成分———原子扩散 有序化程度——有序⇌无序转变 能量转化———表面能、应变能、界面能 之间的转化,等等。 通常,兼而有之。
6. 晶体缺陷
晶态固体中的空位、位错、晶界等缺陷周围因点阵 畸变而储存一定的畸变能。新相极易在这些位置非 均匀形核。它们对晶核的长大过程也有一定的影响。

固态相变 (考试必备)

固态相变 (考试必备)

固态相变:金属和陶瓷等固态材料在温度和压力改变时,其内部组织或结构会发生变化,即发生从一种状态到另一种相态的转变,这种转变称之为固态相变。

固态相变的阻力有哪些:金属固态相变时的相变阻力应包括界面能和弹性应变能两项。

当界面共格时,可以降低界面能,但使弹性应变能增大。

当界面不共格时,盘(片)状新相的弹性应变能最低,但界面能较高;而球状新相的界面能最低,但弹性应变能却最大。

为什么固态相变中出现过渡相?晶体缺陷对固态相变形核有什么影响?1.当稳定的新相与母相的晶体结构差异较大时,母相往往不直接转变为自由能最低的稳定新相,而是先形成晶体结构或成分与母相比较接近,自由能比母相稍低些的亚稳定的过渡相。

此时,过渡相往往具有界面能较低的共格界面或半共格界面,以降低形核功,使形核容易进行。

2.晶体缺陷是能量起伏、结构起伏和成分起伏最大的区域,在这些区域形核时,原子扩散激活能低,扩散速度快,相变应力容易被松弛。

在固态相变中,从能量的观点来看,均匀形核的形核功最大,空位形核次之,位错形核更次之,晶界非均匀形核的形核功最小。

为什么新相形成的时候,常常呈薄片状或针状?如果新相呈球状,新相与母相之间是否存在位相关系?①金属固态相变时,因新相与母相恶比容不同,可能发生体积变化,但由于受到周围母相的约束,新相不能自由膨胀产生弹性应变能。

而片状或针状的弹性应变能最小,所以新相形成时常常呈片状或针状②存在位相关系。

许多情况下,金属固态相变时,新相与母相之间往往存在一定的位相关系,且新相呈球状时与母相的弹性应变能最大,是由新、母相的比容不同或两相界面共格或半共格关系造成的,所以必然存在一定的位相关系。

TTT曲线的建立:将不同温度下的等温转变开始时间和终了时间以及某些特定的转变量所对应的时间绘制在温度—时间半对数坐标系中,并将不同温度下的转变开始点和转变终了点以及转变50%点分别连接成曲线,则可得到过冷奥氏体等温转变图,即TTT曲线。

TTT图的作用:TTT图反映了在临界点以下温度等温或以一定冷却速度冷却时过冷奥氏体的转变规律,综合显示了合金元素等对转变动力学的影响以及等温温度或冷却速度对转变产物和性能的影响。

固态相变知识点总结

固态相变知识点总结

固态相变知识点总结相变是物质在温度、压强或其他外部条件改变时,从一种物态转变为另一种物态的现象。

固态相变是指物质从固态状态转变到其他固态状态的过程,通常包括晶体-晶体相变和晶体-非晶相变,以及液晶-固体相变等。

固态相变是材料科学和固态物理领域的重要研究课题,掌握固态相变的基本原理和规律对于材料设计、制备和性能改进具有重要意义。

本文将从固态相变的基本概念、分类和特征等方面进行总结,并通过实例来说明固态相变的重要意义和应用。

一、固态相变的基本概念1. 固态相变是指物质在固态状态下由一种晶体结构转变为另一种晶体结构的过程。

固态相变是晶体学和固态物理学的重要研究课题,可以帮助我们深入了解物质的内部结构和性质。

2. 固态相变的基本特征包括晶格结构的改变、原子位置的重新排列、晶体的晶界和缺陷等。

固态相变通常伴随着能量的吸收或释放,使得固态物质的性能和特性发生变化。

3. 固态相变的驱动力包括温度、压强、外界场等,这些外部条件的改变可以引起晶体结构和性质的改变,从而产生相变现象。

4. 固态相变可以分为等温相变和非等温相变两种类型。

等温相变指的是在恒定温度下发生的相变过程,例如固态合金的热处理过程;非等温相变指的是在变化温度下发生的相变过程,例如冰的熔化过程。

二、固态相变的分类根据相变过程中晶体结构的改变和外部条件的影响,固态相变可以分为以下几种类型:1. 晶体-晶体相变:指的是物质在固态状态下由一种晶体结构转变为另一种晶体结构的过程。

晶体-晶体相变通常伴随着晶粒形状、大小和取向的变化,对材料的组织结构和性能产生重要影响。

2. 晶体-非晶相变:指的是物质在固态状态下由晶体结构转变为非晶结构的过程。

晶体-非晶相变可以发生在非晶态金属、非晶态合金和非晶态陶瓷等材料中,对于提高材料的强度、硬度和耐腐蚀性具有重要意义。

3. 液晶-固体相变:指的是液晶分子在固态基体中发生有序排列的过程。

液晶-固体相变广泛应用于液晶显示器、液晶材料和光学器件等领域。

固态相变名词解释

固态相变名词解释

固态相变名词解释
固态相变:
固态相变是物质由一种形态变成另一种形态的过程,可分为凝固及融化两个过程。

当物质温度达到特定条件时,其内部结构发生改变,产生凝固及融化等物理现象。

固态相变一般发生在固态到液态或气态,称为融化,液态到固态,称为凝固,固态到气态,称为汽化,气态到固态,称为凝结。

凝固变态:凝固变态是某种物质由液体或气体状态变成固体状态的一种物理变化过程。

凝固变态是特定温度下,气体或液体随着温度的降低便可变成固体的物理变化。

凝固变态对比液体和气体,固体有着自己独特的结构,粒子由整体状态变为排列有序的晶格状态。

融化变态:融化变态是指某种物质由固体状态变成液体状态的一种物理变化过程。

融化时,物质中的原子和分子具有活动能,开始运动,由原来晶体状态变为液体态。

一般来说,融化变态可以受温度大小影响,温度过低会凝固,温度过高则会蒸发。

固态相变

固态相变

19
1.4 固态相变时的形核
• 1.4.1 形核和长大 • 绝大多数固态相变都是通过形核和长大完成的。 新相往往在母相某些微区内形成新相所需要的成 分和结构微小核,称为核胚。若这些核胚大过某 一临界尺寸,便能稳定存在并自发长大,成为晶 核。 • 1.4.2 均匀形核 • 若新相晶核在母相中无择向地任意均匀分布,称 为均匀形核, • 均匀形核率:Ń=Nvexp(- Q+ G*/kT)
• V—新相体积,S—新相表面积, ω --体积应变能
12
• • • • • • • •
新相形成时, ΔG总=0 则-VΔGv + Sζ + Vω=0 ω=Eε2 如新相为r的球体,则新相的临界半径为: r = 2ζ/ ΔGv - Eε2 ,代人(1)式得: ΔG总= 16ζ/3(ΔGv - Eε2 ) 而液态结晶自由能为: ΔG总= 16ζ/3ΔGv
5
• (6)调幅分解 某些高温下形成的均一固溶体缓 冷到某一温度,分解为结构与母相相同但成分不 同的微区转变: • α α 1 +α 2 • (7)有序化转变 在平衡条件下,固溶体中原子 位置由无序到有序的转变. • 1.2.1.2 非平衡转变 在快速加热或冷却的条件 下,平衡转变受到抑制所发生的不符合平衡相图 上转变类型的转变,获得不平衡或亚稳态组织。 • (1)伪共析转变 某些非共析成分的奥氏体在快 速冷却到ES线和GS线的延长线以下的区域内所发 生的共析转变,转变产物与共析转变没有本质上 的区别,但伪共析转变产物两相比列不同 •

10
• 1.3 固态相变的特点 • 固态相变与液态相变发生的都是新相由母 相中的转变,但固态相变是在固态状态下 发生的转变过程,由此固态相变与液态相 变相比既有相同的地方又有不同的地方。 • 相同的:相变驱动力都是新旧两相的自由 能差,相变都包含形核和长大两个基本过 程; • 不同的:固态相变新相和母相都是固体, 与液态相变发生的结晶有显著的不同,主 要在如下几方面。

第九章 固态相变(一)

第九章 固态相变(一)

3.晶体缺陷的影响
固态相变时母相中的晶体缺陷对相变有促进作用,这是由 于缺陷处在晶格畸变,该处原子的自由能较高。形核时,原缺 陷能可用于形核,使形核功比均匀形核功降低,故新相易在母 相的晶界、位错、层错、空位等缺陷处形核。此外晶体缺陷对 组元的扩散和新相的生长也有很大影响。实验表明,母相的晶 粒越西,晶内缺陷越多,相变速度也越快。
脱溶分解、共析转变等
连续型相变:若在很大范围内原子发生轻微的重排,相变的 起始状态和最终状态之间存在一系列连续状态,不需形核, 靠连线涨落形成新相,这种相变为连续型相变。
调幅分解
按相变时是否获得符合状态图的平衡组织可将固态相变分 为平衡转变和非平衡转变;
根据相变过程中有无原子的扩散可以将固态相变分为扩散 相变、半扩散相变和非扩散型相变。
变晶核形状和共格性等降低形核阻力,使固态相变得以进行。
当新相和母相为共格界面时,界面能很低,相变阻力主要来
自应变能,为减少应变能,新相晶核应为圆盘状或针状。当
新相和母相为非共格界面时,若比热引起的应变能不大的情
况下,相变阻力主要来自界面能,为减少界面能,新相晶核
应为球形,以降低单位体积的表面积,减少界面能。
n级相变:相变过程中新旧两相自由焓的第(n-1)偏导数相等, 而其n阶偏导数不相等。
2. 按结构变化分类 按发生相变时新相与母相在晶体结构上的差异,可以将相 变分为重构型相变和位移型相变。
重构型相变——伴随化学键的破坏,新键的形成,原子重 新排列,新相和母相在晶体学上没有明确的位向关系。所 需要克服较高的能垒,相变潜热很大,相变进行缓慢。
5. 过渡相
过渡相是指成分和结构,或两者都处于新旧两相之间的 亚稳相。
这种情况通常发生在稳定相的成分与母相相差较远,转 变温度较低,原子扩散慢,稳定相的形核困难。钢中的渗碳 体其实也是铁碳平衡中的一过渡相。

第八章 固态相变

第八章  固态相变

{111}∥{110}M ;<211>∥<011> M
Nishiyama
Greninger和Troiaon精确测量了Fe-0.8%C-22%Ni合金的奥 氏体单晶中的马氏体位向关系,发现K-S关系中的平行晶 面和平行晶向之间实际上略有偏差。得到G-T关系
{111}∥{110}M 差1° <110>∥<111> M差2 °
2.不连续脱熔 非连续脱溶也称为胞状脱溶。脱溶物中的α相和母相 α之间的浓度不连续而被称为非连续脱溶。 若α0表示原始相(母相),α1为脱溶区中的α相,β为脱
溶相。
非连续脱溶表示为:
01
相界面不但发生成分突变,且取向也发 生改变
第二十九页,编辑于星期五:十八点 十一分。
非连续脱溶与共析转变(以钢为例)的区别:
共析转变形成的(珠光体中)的两相与母相在结构和成分上 完全不同。 非连续脱溶得到的胞状组织中的两相其中必有一相的结构与 母相相同,只是溶质原子的浓度不同于母相。
非连续脱溶与连续脱溶的主要区别:
连续脱溶属于长程扩散,非连续脱溶属于短程扩散。 非连续脱溶的产物主要集中于晶界上,并形成胞状物;连 续脱溶的产物主要集中于晶粒内部,较为均匀。
第二十三页,编辑于星期五:十八点 十一分。
若形核率随时间增加,则取n〉4;若形核 率随时间而减少,则取3~4
第二十四页,编辑于星期五:十八点 十一分。
第四节 扩散型相变示例
扩散型相变种类:
脱熔转变、先共析转变、共析转变、块状转变、有序转 变和调幅分解等。 一、脱溶转变
脱溶:从过饱和固溶体中析出一个成分不同的新相火形成 溶质原子富集的亚稳区过渡相的过程称为脱溶或沉淀。 条件:凡是有固溶度变化的相图。 从单相区进入两相区时都会发生脱溶

材料科学基础_第6章_固态相变的基本原理

材料科学基础_第6章_固态相变的基本原理
26
固态相变与液态相变相比的的特点 ➢ 1.相变阻力大。 固态相变的驱动力也是新旧两相的自由能
差,这个差值越大,越有利于相变的进行 ➢ 2.新相与母相界面上原子排列易保持一定的匹配。新相与
母相界面上原子排列易保持一定的匹配的根本原因就在于 它有利于相变阻力的降低 ➢ 3.新相与母相之间存在一定的晶体学位向关系。
24
(2)共格性长大和非共格性长大 ➢ 扩散相变:新相长大是通过非共格相界面的扩散性移动。
即使在形核阶段形成了界面能低的共格界面,从而促进了 形核,但是共格界面扩散性移动困难,最后演变为非共格 界面。 ➢ 非扩散相变:新相长大是依靠相界面按切边方式进行的, 只有在维持两相的共格关系时才能长大,在形核和长大阶 段都必须维持界面的共格性。只有当新相长大到一定程度 ,由于共格应变能扩大,引起两相中较软的一相发生塑性 变形,共格性就会遭到破坏,长大停止。
25
4) 过渡相
➢ 易出现过渡相,有些反应不能进行到底,过渡相可以 长期保留。
➢ 这种情况通常发生在稳定相的成分与母相相差较远,转变 温度较低,原子扩散慢,稳定相的形核困难。钢中的渗碳 体其实也是铁碳平衡中的一过渡相。
➢ 过渡相从热力学来说不利,但从动力学来说有力,也 是减小相变阻力的重要途径之一
形核时两相保持一定的位相关系,是固态相变按 阻力最小进行的有效途径之一
22
3).长大特点
(1)惯习现象
➢ 固态相变时,新相往往以特定的晶向在母相的特定晶面
上形成,这个晶面即称为惯习面,而晶向则称为惯习方向 ,这种现象叫做惯习现象。 ➢ 在许多情况下,惯习面和惯习方向就是取向关系中母相的 晶面和晶向,但也可以是别的晶面或晶向。
是温度和时间对形核都有影响,晶核可以在等温过程中形 成。 ➢ 非热激活形核:通过快速冷却在变温过程中形核,是变温 形核。马氏体相变

固态相变——精选推荐

固态相变——精选推荐

固态相变广义来说,广义来说,物质中原子(或分子)的聚合状态发生变化的过程称为转变。

金属或合金发生转物质中原子(或分子)的聚合状态发生变化的过程称为转变。

金属或合金发生转变之后,新相与母相之间必然存在着某些差别,新相与母相之间必然存在着某些差别,这些差别或者表现在晶体结构上;这些差别或者表现在晶体结构上;这些差别或者表现在晶体结构上;或者表现或者表现在化学成分上(如调幅分解);或表现在表面能上(如粉末烧结);或表现在应变能上(冷变形金属的再结晶);或表现在界面能上;或表现在界面能上(如晶粒长大)(如晶粒长大);或几种差别兼而有之(如饱和固熔体的沉淀)。

从狭义来说,转变仅指具有晶体结构变化的相变。

固态相变的分类固态相变的类型及特征有以下几种:同素异构转变当温度或压力改变时,金属发生晶体结构的改变,但成分不变。

脱熔转变 在固熔度随温度下降而减小的合金中,经高温淬火所固定下来的过饱和固熔体,在适当条件下会发生第二相的脱熔过程,并在不同阶段形成偏聚区、亚稳定和稳定的第二相等。

有序-无序转变在一定成分范围的合金,高温时晶体结构中的原子呈无序排列,高温时晶体结构中的原子呈无序排列,而在低温时呈有序排列。

而在低温时呈有序排列。

这种转变随温度升高和下降是可逆的块型转变相变时晶体结构改变,但成分没有(或很少)改变,相变产物呈块型。

调幅分解 具有固熔体混合间隙的合金,当α →α1+α2时,它不需形核而自发地分解为晶体结构相同但成分不同的两相。

马氏体转变是一种无扩散型相变。

通过切变由一种晶体结构转变为另一种晶体结构,无成分变化。

贝氏体转变 同时具有无扩散和扩散型转变的特征,成分发生改变。

按原子迁移分类:扩散型相变,其特点是相变过程中原子进行扩散。

脱溶 共析有序化 块型转变 扩散型固态相变所涉及的各类相图无扩散型相变,其特点是相变过程中原子不扩散切变来完成。

如马氏体转变。

兼有扩散与无扩散的相变,兼有扩散与无扩散的相变,即同时具有上述两者中的某些特征,即同时具有上述两者中的某些特征,即同时具有上述两者中的某些特征,如相变时表面产生浮凸,成分发生改变,转变速率远比马氏体相变缓慢。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.加热时奥氏体形成和过冷奥氏体转变的动力学(TTT)曲线的基本形状?为什么?
过冷奥氏体等温转变曲线可综合反映过冷奥氏体在不同过冷度下的等温转变过程:转变开始和转变终了时间、转变产物的类型以及转变量与时间、温度之间的关系等。

因其形状通常像英文字母“C”,故俗称其为C曲线,亦称为TTT 图。

过冷奥氏体等温转变曲线的建立由于过冷奥氏体在转变过程中不仅有组织转变和性能变化,而且有体积膨胀和磁性转变,因此可以采用膨胀法、磁性法、金相—硬度法等来测定过冷奥氏体等温转变曲线。

因为过冷奥氏体的稳定性同时由两个因素控制:一个是旧相与新相之间的自由能差ΔG;另一个是原子的扩散系数D。

等温温度越低,过冷度越大,自由能差ΔG也越大,则加快过冷奥氏体的转变速度;但原子扩散系数却随等温温度降低而减小,从而减慢过冷奥氏体的转变速度。

高温时,自由能差ΔG起主导作用;低温时,原子扩散系数起主导作用。

处于“鼻尖”温度时,两个因素综合作用的结果,使转变孕育期最短,转变速度最大。

2.在实际相变过程中,相变发生时新相经常不是球状而是片状等一些特别的形状?
仅从界面能考虑,当界面能随取向改变而表现为各向异性时,从形核的阻力分析,新相将以片状或针状的形式从母相的惯习面或惯习方向形成来降低形核功而提高形核的速度。

但是当界面能不随取向位置的改变而改变(各向同性),也就是说新相和母相在任何方向上都能够保证原子排列能够很好的匹配,或者新相和母相在任何方向上都不能匹配,这时析出的新相往往表现出球状的形貌。

3.在实际相变过程中,相变发生时为什么往往优先形成的是亚稳相,而不是稳定相?
在具有较高过饱和度的固溶体中,往往析出的第二相是亚稳的第二相,而不是稳定态的第二相。

这是因为亚稳相可能具有比稳定相更好地与母相的原子在界面上得到匹配。

例如对Al-Cu系的研究表明在析出稳定相CuAl2之前,首先会析出盘状的GP区。

4.问题:那么是否新相在晶界的角隅最有最快的形核速度?
在实际的形核过程中形核率的大小不仅取决于形核势垒的大小,同时也与母相中的可供形核的位置的数目有关。

从可供形核的位置考虑,实际材料中的均匀形核位置,界面形核位置,棱边形核位置和角隅形核位置依次递减,而且与材料的晶粒尺寸有关。

设L为晶粒尺寸,为晶界的“有效厚度”,晶界形核位置,棱边形核位置以及角隅形核位置与均匀形核位置的比值分别为(/L),(/L)2,(/L)3。

根据上面的分析,显然当形核位置的维数降低时,形核功显著降低,然而同时形核的位置也显著降低。

假设晶粒的尺寸为50微米,晶界的厚度为0.5纳米,则上述的比例为1015:1010:105:1,表现出很大的降低。

因此实际形核过程中新相形核的位置是形核功G*和可能的形核的位置NV共同作用的结果。

当驱动力很大,界面能降低时,形核可以由均匀形核来完成,得到高密度的晶内析出物;当驱动力较小而界面能较高时往往会依附于一切可能的非均匀形核的位置来形核。

5.当新相在晶界形核时,往往观察到的结果在两侧新相并不对称,这又是什么原因?
实际第二相在晶界形成时,新相的析出往往与一侧的母相构成共格或半共格的低能界面,而与另一侧的母相形成了非共格的高能界面,这种析出与界面两侧界面的差异不仅对于析出的形核过程非常重要,而且显著影响析出相的长大过程。

6.那么在晶内的形核就是均匀形核吗?
实际上真正的形核过程除非在过冷度很大,新相与母相又能形成很好的共格界面的条件下,才有可能诱发均匀形核。

实际观察到的晶内的形核往往实际也是在位错或层错上的非均匀形核
在均匀形核过程中,由于界面能较大,往往具有较大的形核阻力(形核功),同时一般而言在母相中往往会存在大量的可供非均匀形核的形核位置,因此除非具有很大的驱动力或者在新相与母相的界面能极低的情况下才有可能观察到均匀形核。

典型的实验观察的均匀形核发生在GP区的形成和与母相晶体结构完全相同的中间相的形成过程。

7.生长方式取决于驱动力大小和界面类型
一般而言当相变的驱动力很大超过某一个临界的驱动力时,所有类型的界面都可以连续的生长;
非共格的大角度界面,连续生长的临界驱动力很低,故多连续推进;
共格界面,连续生长的临界驱动力较高,当相变的驱动力小于这个临界值,则需要以台阶扩展的方式实现新相的生长,其生长速度和相变驱动力的关系也相对比较复杂。

8.请从热力学角度分析在Ostwald粗化过程中第二相粒子的长大表现为大颗粒的长
大和小颗粒的溶解
9.在钢的组织性能控制中,细化钢的晶粒尺寸往往可以在保证钢的高强度水平的条件提高钢的韧性。

因此近年来在超细晶粒钢的研究开发上进行了大量的工作,例如高等级
管线钢和船板钢的研究开发(含碳量在0.03-0.08)。

请从固态相变学的基本原理分析对于超细晶粒钢(热轧板)开发的合金设计和工艺(加热和轧制)设计的关键技术。

超细晶粒钢是指通过特殊的冶炼和轧制方法得到的晶粒尺寸在微米级或亚微米级的新一代超强结构钢。

超细晶粒钢的强化思路具有明显的特点,即通过晶粒的超细化同时实现强韧化,完全不同于传统的以合金元素添加及热处理为主要方式的强化思路。

其强度与目前相同成分的普通钢材相比至少要高出一倍左右。

工业上的超细晶粒钢是指微米级的超细晶粒钢。

同等强度的传统钢相比,超细晶粒钢具有低碳和低碳当量以及低的杂质含量,不仅有益于其焊接性,同时也有利于改善钢的其他性能,如接头中HAZ和母材的韧性以及对氢致裂纹(HIC)、硫化物应力腐蚀裂纹(SSCC)抗力等。

超细晶粒钢中也含有少量的Nb、V、Ti等微合金元素,其主要目的是为了形成碳、氮化合物,从而有效防止晶粒长大。

由于超细晶粒钢低的S、P、N元素含量和控制加入的微合金元素,其氮化物形成元素的存在将使自由氮降低,减小了时效影响,有利于韧性的改善。

为获得超细晶粒钢,已开发出多种工艺方法:同一快速加热条件下的热处理反复多次作用、金属粉末机械研磨、控轧、控冷、TMCP、复合TMCP法等。

利用生产工艺技术是获得超细晶粒的主要手段,是超细晶粒钢具有优良强韧综合性能的决定因素,因此超细晶粒钢与传统钢所不同的是其化学成分不能用于预测钢种的强度。

10.外加应力对马氏体转变的影响主要表现为(1)外加的应力能够改变相变的驱动力;
(2)外加的应力可能改变马氏体的形貌使其适应于外加应力的特点。

11.空位在脱溶过程中的作用
在获得过饱和固溶体(高温快速冷却到室温)的同时会获得过饱和浓度的空位。

空位加快了原子扩散速度,加速形核过程。

12.TRIP钢的成分设计
为了实现残余奥氏体在形变过程中随应变量的增加逐渐转变为马氏体,就要求组织中残余奥氏体在室温具有足够的稳定性,这就需要通过成分设计来满足组织稳定性的要求。

对于低合金高强度TRIP钢,其主要的成分范围为0.1-0.4%C,1.0-2.0%Si和1.0-2.0%Mn,可以根据需要加入其它的合金元素,例如Al, Cu, P, Cr, Nb, Ni等来调整TRIP钢中的组织组成相的相对量以及组织组成相的尺寸和形貌,达到控制钢的强度和塑性综合力学性能的目的。

TRIP钢中实现残余奥氏体向马氏体转变的应变水平可以通过钢的含碳量来进行调整。

对于低碳量水平的TRIP钢,残余奥氏体向马氏体的转变发生在变形的开始阶段,从而使钢板在高强度的水平上得到优异的成形性能和良好的应变分布。

对于高含碳量设计的TRIP钢,残余奥氏体的稳定性提高,这时奥氏体向马氏体的转变所要求的应变水平可能超出钢在冲压和成型过程所能得到的应变水平,在这种情况下,转变可能发生在产品后续的变形过程中,例如在汽车事故碰撞时而使得在事故发生时吸收较大的能量。

合金元素Mn可以有效地降低钢的Ms点,从而保证在室温条件下残余奥氏体的稳定性。

因此在TRIP钢的成分设计中需要加入一定量的Mn使钢的Ms点降低到室温以下。

Si可以抑制钢中渗碳体的形成,加入Si之后在贝氏体转变过程中渗碳体的析出减少,使得为转变的奥氏体中的含碳量增加而增加了奥氏体的稳定性。

相关文档
最新文档