2018年高考数学二轮复习(江苏版) 第2部分 八大难点突破 难点5 复杂数列的通项公式与求和问题含答案

合集下载

2018年高考数学江苏专版三维二轮专题复习教学案:专题二 立体几何 Word版含答案

2018年高考数学江苏专版三维二轮专题复习教学案:专题二 立体几何 Word版含答案

江苏 新高考高考对本专题内容的考查一般是“一小一大”,小题主要考查体积和表面积的计算问题,而大题主要证明线线、线面、面面的平行与垂直问题,其考查形式单一,难度一般.第1课时立体几何中的计算(基础课) [常考题型突破]空间几何体的几组常用公式(1)柱体、锥体、台体的侧面积公式: ①S 柱侧=ch (c 为底面周长,h 为高); ②S 锥侧=12ch ′(c 为底面周长,h ′为斜高);③S 台侧=12(c +c ′)h ′(c ′,c 分别为上下底面的周长,h ′为斜高).(2)柱体、锥体、台体的体积公式: ①V 柱体=Sh (S 为底面面积,h 为高); ②V 锥体=13Sh (S 为底面面积,h 为高);③V 台=13(S +SS ′+S ′)h (不要求记忆).(3)球的表面积和体积公式: ①S 球=4πR 2(R 为球的半径); ②V 球=43πR 3(R 为球的半径).[题组练透]1.现有一个底面半径为3 cm ,母线长为5 cm 的圆锥状实心铁器,将其高温熔化后铸成一个实心铁球(不计损耗),则该铁球的半径为________cm.解析:因为圆锥底面半径为3 cm ,母线长为5 cm ,所以圆锥的高为52-32=4 cm ,其体积为13π×32×4=12π cm 3,设铁球的半径为r ,则43πr 3=12π,所以该铁球的半径是39cm.答案:392.(2017·苏锡常镇二模)已知直四棱柱底面是边长为2的菱形,侧面对角线的长为23,则该直四棱柱的侧面积为________.解析:由题意得,直四棱柱的侧棱长为(23)2-22=22,所以该直四棱柱的侧面积为S =cl =4×2×22=16 2.答案:16 23.(2017·南通、泰州一调)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,AB =3 cm ,AA 1=1 cm ,则三棱锥D 1-A 1BD 的体积为_______cm 3.解析:三棱锥D 1-A 1BD 的体积等于三棱锥B -A 1D 1D 的体积,因为三棱锥B -A 1D 1D 的高等于AB ,△A 1D 1D 的面积为矩形AA 1D 1D 的面积的12,所以三棱锥B -A 1D 1D 的体积是正四棱柱ABCD -A 1B 1C 1D 1的体积的16,所以三棱锥D 1-A 1BD 的体积等于16×32×1=32.答案:324.如图所示是一个直三棱柱(以A 1B 1C 1为底面)被一个平面所截得到的几何体,截面为ABC ,已知A 1B 1=B 1C 1=1,∠A 1B 1C 1=90°,A 1A =4,B 1B =2,C 1C =3,则此几何体的体积为________.解析:在A 1A 上取点A 2,在C 1C 上取点C 2,使A 1A 2=C 1C 2=BB 1,连结A 2B ,BC 2,A 2C 2,∴V =VA B C A BC 11122-+VB A ACC 22-=12×1×1×2+13×(1+2)2×2×22=32. 答案:325.设甲,乙两个圆柱的底面积分别为S 1,S 2,体积分别为V 1,V 2.若它们的侧面积相等且V 1V 2=32,则S 1S 2的值是________.解析:设甲,乙两个圆柱的底面半径分别为r 1,r 2,高分别为h 1,h 2,则有2πr 1h 1=2πr 2h 2,即r 1h 1=r 2h 2,又V 1V 2=πr 21h 1πr 22h 2,∴V 1V 2=r 1r 2,∴r 1r 2=32,则S 1S 2=⎝⎛⎭⎫r 1r 22=94.答案:94[方法归纳]解决球与其他几何体的切、接问题(1)解题的关键:仔细观察、分析,弄清相关元素的位置关系和数量关系.(2)选准最佳角度作出截面:要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系,达到空间问题平面化的目的.(3)认识球与正方体组合的3种特殊截面:(4)熟记2个结论:①设小圆O 1半径为r ,OO 1=d ,则d 2+r 2=R 2;②若A ,B 是圆O 1上两点,则AB =2r sin ∠AO 1B 2=2R sin ∠AOB 2.[题组练透]1.(2017·江苏高考)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.解析:设球O 的半径为R ,因为球O 与圆柱O 1O 2的上、下底面及母线均相切,所以圆柱的底面半径为R 、高为2R ,所以V 1V 2=πR 2·2R 43πR 3=32.答案:322.(2017·全国卷Ⅲ改编)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为________.解析:设圆柱的底面半径为r ,则r 2=12-⎝⎛⎭⎫122=34,所以圆柱的体积V =34×π×1=3π4.答案:3π43.已知矩形ABCD的顶点都在半径为2的球O的球面上,且AB=3,BC=3,过点D作DE垂直于平面ABCD,交球O于E,则棱锥E-ABCD的体积为________.解析:如图所示,BE过球心O,∴DE=42-32-(3)2=2,∴V E -ABCD=13×3×3×2=2 3.答案:2 34.(2017·南京、盐城一模)将矩形ABCD绕边AB旋转一周得到一个圆柱,AB=3,BC =2,圆柱上底面圆心为O,△EFG为下底面圆的一个内接直角三角形,则三棱锥O-EFG 体积的最大值是________.解析:因为将矩形ABCD绕边AB旋转一周得到一个圆柱,AB=3,BC=2,圆柱上底面圆心为O,△EFG为下底面圆的一个内接直角三角形,所以三棱锥O-EFG的高为圆柱的高,即高为AB,所以当三棱锥O-EFG体积取最大值时,△EFG的面积最大,当EF为直径,且G在EF的垂直平分线上时,(S△EFG)max=12×4×2=4,所以三棱锥O-EFG体积的最大值(V O-EFG)max=13×(S△EFG)max×AB=13×4×3=4.答案:4[方法归纳]多面体与球的切接问题的解题技巧[必备知识]将平面图形沿其中一条或几条线段折起,使其成为空间图形,把这类问题称为平面图形的翻折问题.平面图形经过翻折成为空间图形后,原有的性质有的发生了变化,有的没有发生变化,弄清它们是解决问题的关键.一般地,翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.解决这类问题就是要据此研究翻折以后的空间图形中的线面关系和几何量的度量值,这是化解翻折问题难点的主要方法.[题组练透]1.(2017·南通三模)已知圆锥的侧面展开图是半径为3,圆心角为2π3的扇形,则这个圆锥的高为________.解析:因为圆锥的侧面展开图是半径为3,圆心角为2π3的扇形,所以圆锥的母线长l =3,设圆锥的底面半径为r ,则底面周长2πr =3×2π3,所以r =1,所以圆锥的高为32-12=2 2. 答案:2 22.(2017·南京考前模拟)如图,正△ABC 的边长为2,CD 是AB 边上的高,E ,F 分别为边AC 与BC 的中点,现将△ABC 沿CD 翻折,使平面ADC ⊥平面DCB ,则棱锥E -DFC 的体积为________.解析:S △DFC =14S △ABC =14×⎝⎛⎭⎫34×22=34,E 到平面DFC 的距离h 等于12AD =12. V E -DFC =13×S △DFC×h =324. 答案:3243.(2017·全国卷Ⅰ)如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为________.解析:法一:由题意可知,折起后所得三棱锥为正三棱锥,当△ABC 的边长变化时, 设△ABC 的边长为a (a >0)cm , 则△ABC 的面积为34a 2,△DBC 的高为5-36a , 则正三棱锥的高为⎝⎛⎭⎫5-36a 2-⎝⎛⎭⎫36a 2=25-533a , ∴25-533a >0, ∴0<a <53,∴所得三棱锥的体积V =13×34a 2×25-533a =312× 25a 4-533a 5. 令t =25a 4-533a 5,则t ′=100a 3-2533a 4, 由t ′=0,得a =43,此时所得三棱锥的体积最大,为415 cm 3.法二:如图,连接OD 交BC 于点G ,由题意知,OD ⊥BC .易得OG=36BC , 设OG =x ,则BC =23x ,DG =5-x ,S △ABC =12×23x ×3x =33x 2,故所得三棱锥的体积V =13×33x 2×(5-x )2-x 2=3x 2×25-10x =3×25x 4-10x 5.令f (x )=25x 4-10x 5,x ∈⎝⎛⎭⎫0,52, 则f ′(x )=100x 3-50x 4,令f ′(x )>0,即x 4-2x 3<0,得0<x <2, 则当x ∈⎝⎛⎭⎫0,52时,f (x )≤f (2)=80, ∴V ≤3×80=415.∴所求三棱锥的体积的最大值为415. 答案:415 [方法归纳][A 组——抓牢中档小题]1.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,点E 是棱B 1B 的中点,则三棱锥B 1-ADE 的体积为________.解析:VB 1-ADE =VD -AEB 1=13S △AEB 1·DA =13×12×12×1×1=112.答案:1122.若两球表面积之比是4∶9,则其体积之比为________.解析:设两球半径分别为r 1,r 2,因为4πr 21∶4πr 22=4∶9,所以r 1∶r 2=2∶3,所以两球体积之比为43πr 31∶43πr 32=⎝⎛⎭⎫r 1r 23=⎝⎛⎭⎫233=8∶27.答案:8∶273.(2017·天津高考)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.解析:设正方体的棱长为a ,则6a 2=18,得a =3,设该正方体外接球的半径为R ,则2R =3a =3,得R =32,所以该球的体积为43πR 3=4π3×278=92π.答案:92π4.已知圆锥的母线长为10 cm ,侧面积为60π cm 2,则此圆锥的体积为________cm 3. 解析:设圆锥底面圆的半径为r ,母线长为l ,则侧面积为πrl =10πr =60π,解得r =6,则圆锥的高h =l 2-r 2=8,则此圆锥的体积为13πr 2h =13π×36×8=96π.答案:96π5.(2017·扬州期末)若正四棱锥的底面边长为2(单位:cm),侧面积为8(单位:cm 2),则它的体积为________(单位:cm 3).解析:因为正四棱锥的底面边长为2,侧面积为8,所以底面周长c =8,12ch ′=8,所以斜高h ′=2,正四棱锥的高为h =3,所以正四棱锥的体积为13×22×3=433.答案:4336.设棱长为a 的正方体的体积和表面积分别为V 1,S 1,底面半径和高均为r 的圆锥的体积和侧面积分别为V 2,S 2,若V 1V 2=3π,则S 1S 2的值为________. 解析:由题意知,V 1=a 3,S 1=6a 2,V 2=13πr 3,S 2=2πr 2,由V 1V 2=3π得,a 313πr 3=3π,得a=r ,从而S 1S 2=62π=32π.答案:32π7.(2017·苏北三市三模)如图,在正三棱柱ABC -A1B 1C 1中,已知AB =AA 1=3,点P 在棱CC 1上,则三棱锥P -ABA 1的体积为________.解析:三棱锥的底面积S △ABA 1=12×3×3=92,点P 到底面的距离为△ABC 的高h =32-⎝⎛⎭⎫322=332,故三棱锥的体积VP -ABA 1=13S △ABA 1×h =934. 答案:9348.(2017·无锡期末)已知圆锥的侧面展开图为一个圆心角为2π3,且面积为3π的扇形,则该圆锥的体积等于________.解析:设圆锥的母线为l ,底面半径为r , 因为3π=13πl 2,所以l =3,所以πr ×3=3π,所以r =1,所以圆锥的高是32-12=22,所以圆锥的体积是13×π×12×22=22π3.答案:22π39.(2017·徐州古邳中学摸底)表面积为24π的圆柱,当其体积最大时,该圆柱的底面半径与高的比为________.解析:设圆柱的高为h ,底面半径为r , 则圆柱的表面积S =2πr 2+2πrh =24π, 即r 2+rh =12,得rh =12-r 2, ∴V =πr 2h =πr (12-r 2)=π(12r -r 3), 令V ′=π(12-3r 2)=0,得r =2,∴函数V =πr 2h 在区间(0,2]上单调递增,在区间[2,+∞)上单调递减,∴r =2时,V 最大,此时2h =12-4=8,即h =4,r h =12.答案:1210.三棱锥P -ABC 中,PA ⊥平面ABC ,AC ⊥BC ,AC =BC =1,PA =3,则该三棱锥外接球的表面积为________.解析:把三棱锥P -ABC 看作由平面截一个长、宽、高分别为1、1、3的长方体所得的一部分(如图).易知该三棱锥的外接球就是对应长方体的外接球.又长方体的体对角线长为12+12+(3)2=5,故外接球半径为52,表面积为4π×⎝⎛⎭⎫522=5π. 答案:5π11.已知正三棱锥P -ABC 的体积为223,底面边长为2,则侧棱PA 的长为________.解析:设底面正三角形ABC 的中心为O ,又底面边长为2,故OA =233,由V P -ABC =13PO ·S △ABC ,得223=13PO ×34×22,PO =263,所以PA =PO 2+AO 2=2. 答案:212.(2017·苏州期末)一个长方体的三条棱长分别为3,8,9,若在该长方体上面钻一个圆柱形的孔后其表面积没有变化,则圆孔的半径为________.解析:圆柱两底面积等于圆柱的侧面积.孔的打法有三种,所以有三种情况:①孔高为3,则2πr 2=2πr ×3,解得r =3;②孔高为8,则r =8;③孔高为9,则r =9.而实际情况是,当r =8,r =9时,因为长方体有个棱长为3,所以受限制不能打,所以只有①符合.答案:313.如图所示,在体积为9的长方体ABCD -A 1B 1C 1D 1中,对角线B 1D 与平面A 1BC 1交于点E ,则四棱锥E -A 1B 1C 1D 1的体积V =________.解析:连结B 1D 1交A 1C 1于点F ,连结BD ,BF ,则平面A 1BC 1∩平面BDD 1B 1=BF ,因为E ∈平面A 1BC 1,E ∈平面BDD 1B 1,所以E ∈BF .因为F 是A 1C 1的中点,所以BF 是中线,又B 1F 綊12BD ,所以FE EB =12,故点E 到平面A 1B 1C 1D 1的距离是BB 1的13,所以四棱锥E -A 1B 1C 1D 1的体积V =13×S 四边形A 1B 1C 1D 1×13BB 1=19V 长方体ABCD -A 1B 1C 1D 1=1.答案:114.半径为2的球O 中有一内接正四棱柱(底面是正方形,侧棱垂直底面).当该正四棱柱的侧面积最大时,球的表面积与该正四棱柱的侧面积之差是________.解析:依题意,设球的内接正四棱柱的底面边长为a 、高为h ,则有16=2a 2+h 2≥22ah ,即4ah ≤162,该正四棱柱的侧面积S =4ah ≤162,当且仅当h =2a =22时取等号.因此,当该正四棱柱的侧面积最大时,球的表面积与该正四棱柱的侧面积之差是4π×22-162=16(π-2).答案:16(π-2)[B 组——力争难度小题]1.已知三棱锥S -ABC 所在顶点都在球O 的球面上,且SC ⊥平面ABC ,若SC =AB =AC =1,∠BAC =120°,则球O 的表面积为________.解析:∵AB =AC =1,∠BAC =120°, ∴BC =12+12-2×1×1×⎝⎛⎭⎫-12=3, ∴三角形ABC 的外接圆直径2r =3sin 120°=2,∴r =1.∵SC ⊥平面ABC ,SC =1, ∴该三棱锥的外接球半径R =r 2+⎝⎛⎭⎫SC 22=52,∴球O 的表面积S =4πR 2=5π. 答案:5π2.(2017·南京三模)如图,在直三棱柱ABC -A1B 1C 1中,AB =1,BC =2,BB 1=3,∠ABC =90°,点D 为侧棱BB 1上的动点.当AD +DC 1最小时,三棱锥D -ABC 1的体积为________.解析:在直三棱柱ABC -A 1B 1C 1中,BB 1⊥平面ABC ,所以BB 1⊥AB ,又因为∠ABC =90°,即BC ⊥AB ,又BC ∩BB 1=B ,所以AB ⊥平面BB 1C 1C, 因为AB =1,BC =2,点D 为侧棱BB 1上的动点,所以侧面展开,当AD +DC 1最小时,BD =1,所以S △BDC 1=12×BD ×B 1C 1=1,所以三棱锥D -ABC 1的体积为13×S △BDC 1×AB =13.答案:133.设四面体的六条棱的长分别为1,1,1,1,2和a ,且长为a 的棱与长为2的棱异面,则a 的取值范围是________.解析:如图所示,AB =2,CD =a ,设点E 为AB 的中点,则ED ⊥AB,EC⊥AB,则ED=AD2-AE2=22,同理EC=22.由构成三角形的条件知0<a<ED+EC=2,所以0<a< 2.答案:(0,2)4.如图,已知AB为圆O的直径,C为圆上一动点,PA⊥圆O所在的平面,且PA=AB=2,过点A作平面α⊥PB,分别交PB,PC于E,F,当三棱锥P-AEF的体积最大时,tan∠BAC=________.解析:∵PB⊥平面AEF,∴AF⊥PB.又AC⊥BC,AP⊥BC,∴BC⊥平面PAC,∴AF⊥BC,∴AF⊥平面PBC,∴∠AFE=90°.设∠BAC=θ,在Rt△PAC中,AF=AP·ACPC=2×2cos θ21+cos2θ=2cos θ1+cos2θ,在Rt△PAB中,AE=PE=2,∴EF=AE2-AF2,∴V P-AEF=16AF·EF·PE=16AF·2-AF2·2=26·2AF2-AF4=26·-(AF2-1)2+1≤26,∴当AF=1时,V P-AEF取得最大值26,此时AF=2cos θ1+cos2θ=1,∴cos θ=13,sin θ=23,∴tan θ= 2.答案: 2第2课时平行与垂直(能力课) [常考题型突破][例1](2017·江苏高考)如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.[证明] (1)在平面ABD 内,因为AB ⊥AD ,EF ⊥AD ,所以EF ∥AB .又因为EF ⊄平面ABC ,AB ⊂平面ABC ,所以EF ∥平面ABC .(2)因为平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,BC ⊂平面BCD ,BC ⊥BD ,所以BC ⊥平面ABD .因为AD ⊂平面ABD ,所以BC ⊥AD .又AB ⊥AD ,BC ∩AB =B ,AB ⊂平面ABC ,BC ⊂平面ABC ,所以AD ⊥平面ABC .又因为AC ⊂平面ABC ,所以AD ⊥AC .[方法归纳]1.(2017·苏锡常镇一模)如图,在斜三棱柱ABC -A1B 1C 1中,侧面AA 1C 1C是菱形,AC 1与A 1C 交于点O ,E 是棱AB 上一点,且OE ∥平面BCC 1B 1.(1)求证:E 是AB 的中点;(2)若AC 1⊥A 1B ,求证:AC 1⊥BC .证明:(1)连结BC1,因为OE ∥平面BCC 1B 1,OE ⊂平面ABC 1,平面BCC 1B 1∩平面ABC 1=BC 1,所以OE ∥BC 1 .因为侧面AA 1C 1C 是菱形,AC 1∩A 1C =O ,所以O 是AC 1中点,所以AE EB =AO OC 1=1,E 是AB 的中点. (2)因为侧面AA 1C 1C 是菱形,所以AC 1⊥A 1C,又AC1⊥A1B,A1C∩A1B=A1,A1C⊂平面A1BC,A1B⊂平面A1BC,所以AC1⊥平面A1BC,因为BC⊂平面A1BC,所以AC1⊥BC.2.(2017·苏州模拟)在如图所示的空间几何体ABCDPE中,底面ABCD是边长为4的正方形,PA⊥平面ABCD,PA∥EB,且PA=AD=4,EB=2.(1)若点Q是PD的中点,求证:AQ⊥平面PCD;(2)证明:BD∥平面PEC.证明:(1)因为PA=AD,Q是PD的中点,所以AQ⊥PD.又PA⊥平面ABCD,所以CD⊥PA.又CD⊥DA,PA∩DA=A,所以CD⊥平面ADP.又因为AQ⊂平面ADP,所以CD⊥AQ,又PD∩CD=D,所以AQ⊥平面PCD.(2)取PC的中点M,连结AC交BD于点N,连结MN,ME,在△PAC中,易知MN=12PA,MN∥PA,又PA∥EB,EB=12PA,所以MN=EB,MN∥EB,所以四边形BEMN是平行四边形,所以EM∥BN.又EM⊂平面PEC,BN⊄平面PEC,所以BN∥平面PEC,即BD∥平面PEC.[例2]ABC内接于圆O,且AB为圆O的直径,M为线段PB的中点,N为线段BC的中点.求证:(1)平面MON∥平面PAC;(2)平面PBC⊥平面MON.[证明](1)因为M,O,N分别是PB,AB,BC的中点,所以MO∥PA,NO∥AC,又MO∩NO=O,PA∩AC=A,所以平面MON∥平面PAC.(2)因为PA⊥平面ABC,BC⊂平面ABC,所以PA⊥BC.由(1)知,MO∥PA,所以MO⊥BC.连结OC,则OC=OB,因为N为BC的中点,所以ON⊥BC.又MO∩ON=O,MO⊂平面MON,ON⊂平面MON,所以BC⊥平面MON.又BC⊂平面PBC,所以平面PBC⊥平面MON.[方法归纳]1.(2017·无锡期末)在四棱锥P-ABCD中,底面ABCD为矩形,AP⊥平面PCD,E,F分别为PC,AB的中点.求证:(1)平面PAD⊥平面ABCD;(2)EF∥平面PAD.证明:(1)因为AP⊥平面PCD,CD⊂平面PCD,所以AP⊥CD,因为四边形ABCD为矩形,所以AD⊥CD,又因为AP∩AD=A,AP⊂平面PAD,AD⊂平面PAD,所以CD⊥平面PAD,因为CD⊂平面ABCD,所以平面PAD⊥平面ABCD.(2)连结AC,BD交于点O,连结OE,OF,因为四边形ABCD为矩形,所以O点为AC的中点,因为E为PC的中点,所以OE∥PA,因为OE⊄平面PAD,PA⊂平面PAD,所以OE∥平面PAD,同理可得:OF∥平面PAD,又因为OE∩OF=O,所以平面OEF∥平面PAD,因为EF⊂平面OEF,所以EF∥平面PAD.2.(2016·江苏高考)如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.证明:(1)在直三棱柱ABC-A1B1C1中,A1C1∥AC.在△ABC中,因为D,E分别为AB,BC的中点,所以DE∥AC,于是DE∥A1C1.又因为DE⊄平面A1C1F,A1C1⊂平面A1C1F,所以直线DE∥平面A1C1F.(2)在直三棱柱ABC-A1B1C1中,A1A⊥平面A1B1C1.因为A1C1⊂平面A1B1C1,所以A1A⊥A1C1.又因为A1C1⊥A1B1,A1A⊂平面ABB1A1,A1B1⊂平面ABB1A1,A1A∩A1B1=A1,所以A1C1⊥平面ABB1A1.因为B1D⊂平面ABB1A1,所以A1C1⊥B1D.又因为B1D⊥A1F,A1C1⊂平面A1C1F,A1F⊂平面A1C1F,A1C1∩A1F=A1,所以B1D ⊥平面A1C1F.因为直线B1D⊂平面B1DE,所以平面B1DE⊥平面A1C1F.[例3]圆O上,且AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直.(1)求证:平面AFC⊥平面CBF.(2)在线段CF上是否存在一点M,使得OM∥平面ADF?并说明理由.[解](1)证明:∵平面ABCD⊥平面ABEF,CB⊥AB,平面ABCD∩平面ABEF=AB,∴CB⊥平面ABEF.∵AF ⊂平面ABEF ,∴AF ⊥CB .又AB 为圆O 的直径,∴AF ⊥BF .又BF ∩CB =B ,∴AF ⊥平面CBF .∵AF ⊂平面AFC ,∴平面AFC ⊥平面CBF .(2)当M 为CF 的中点时,OM ∥平面ADF .证明如下:取CF 中点M ,设DF 的中点为N ,连结AN ,MN ,则MN 綊12CD ,又AO 綊12CD ,则MN 綊AO , ∴四边形MNAO 为平行四边形,∴OM ∥AN ,又AN ⊂平面DAF ,OM ⊄平面DAF ,∴OM ∥平面DAF .[方法归纳]与平行、垂直有关的存在性问题的解题步骤[变式训练]1.如图,四边形ABCD 是矩形,平面ABCD ⊥平面BCE ,BE ⊥EC .(1)求证:平面AEC ⊥平面ABE ;(2)点F 在BE 上,若DE ∥平面ACF ,求BF BE的值. 解:(1)证明:∵四边形ABCD 为矩形,∴AB ⊥BC ,∵平面ABCD ⊥平面BCE ,∴AB ⊥平面BCE ,∴CE ⊥AB .又∵CE ⊥BE ,AB ∩BE =B ,∴CE ⊥平面ABE ,又∵CE ⊂平面AEC ,∴平面AEC ⊥平面ABE .(2)连结BD 交AC 于点O ,连结OF .∵DE ∥平面ACF ,DE ⊂平面BDE ,平面ACF ∩平面BDE =OF .∴DE ∥OF ,又在矩形ABCD 中,O 为BD 中点,∴F 为BE 中点,即BF BE =12. 2.如图,在矩形ABCD 中,E ,F 分别为BC ,DA 的中点.将矩形ABCD 沿线段EF 折起,使得∠DFA =60°.设G 为AF 上的点.(1)试确定点G 的位置,使得CF ∥平面BDG ;(2)在(1)的条件下,证明:DG ⊥AE .解:(1)当点G 为AF 的中点时,CF ∥平面BDG .证明如下:因为E ,F 分别为BC ,DA 的中点,所以EF ∥AB ∥CD .连结AC 交BD 于点O ,连结OG ,则AO =CO .又G 为AF 的中点,所以CF ∥OG .因为CF ⊄平面BDG ,OG ⊂平面BDG .所以CF ∥平面BDG .(2)因为E ,F 分别为BC ,DA 的中点,所以EF ⊥FD ,EF ⊥FA .又FD ∩FA =F ,所以EF ⊥平面ADF ,因为DG ⊂平面ADF ,所以EF ⊥DG .因为FD =FA ,∠DFA =60°,所以△ADF 是等边三角形,DG ⊥AF ,又AF ∩EF =F ,所以DG ⊥平面ABEF .因为AE ⊂平面ABEF ,所以DG ⊥AE .[课时达标训练]1.如图,在三棱锥V -ABC 中,O ,M 分别为AB ,VA 的中点,平面VAB ⊥平面ABC ,△VAB 是边长为2的等边三角形,AC ⊥BC 且AC =BC .(1)求证:VB ∥平面MOC ;(2)求线段VC的长.解:(1)证明:因为点O,M分别为AB,VA的中点,所以MO∥VB.又MO⊂平面MOC,VB⊄平面MOC,所以VB∥平面MOC.(2)因为AC=BC,O为AB的中点,AC⊥BC,AB=2,所以OC⊥AB,且CO=1.连结VO,因为△VAB是边长为2的等边三角形,所以VO= 3.又平面VAB⊥平面ABC,OC⊥AB,平面VAB∩平面ABC=AB,OC⊂平面ABC,所以OC⊥平面VAB,所以OC⊥VO,所以VC=OC2+VO2=2.B1C1中,AC⊥BC,A1B2.(2017·南通二调)如图,在直三棱柱ABC-A与AB1交于点D,A1C与AC1交于点E.求证:(1)DE∥平面B1BCC1;(2)平面A1BC⊥平面A1ACC1.证明:(1)在直三棱柱ABC-A1B1C1中,四边形A1ACC1为平行四边形.又E为A1C与AC1的交点,所以E为A1C的中点.同理,D为A1B的中点,所以DE∥BC.又BC⊂平面B1BCC1,DE⊄平面B1BCC1,所以DE∥平面B1BCC1.(2)在直三棱柱ABC-A1B1C1中,AA1⊥平面ABC,又BC⊂平面ABC,所以AA1⊥BC.又AC⊥BC,AC∩AA1=A,AC⊂平面A1ACC1,AA1⊂平面A1ACC1,所以BC⊥平面A1ACC1.因为BC⊂平面A1BC,所以平面A1BC⊥平面A1ACC1.3.(2017·南京三模)如图,在三棱锥A-BCD中,E,F分别为棱BC,CD上的点,且BD∥平面AEF.(1)求证:EF∥平面ABD;(2)若BD⊥CD,AE⊥平面BCD,求证:平面AEF⊥平面ACD.证明:(1)因为BD∥平面AEF,BD⊂平面BCD,平面AEF∩平面BCD=EF,所以BD∥EF.因为BD⊂平面ABD,EF⊄平面ABD,所以EF∥平面ABD.(2)因为AE⊥平面BCD,CD⊂平面BCD,所以AE⊥CD.因为BD⊥CD,BD∥EF,所以CD⊥EF,又AE∩EF=E,AE⊂平面AEF,EF⊂平面AEF,所以CD⊥平面AEF.又CD⊂平面ACD,所以平面AEF⊥平面ACD.4.在四棱锥P-ABCD中,PA⊥底面ABCD,AB∥CD,AB⊥BC,AB=BC=1,DC=2,点E在PB上.(1)求证:平面AEC⊥平面PAD;(2)当PD∥平面AEC时,求PE∶EB的值.解:(1)证明:在平面ABCD中,过A作AF⊥DC于F,则CF=DF=AF=1,∴∠DAC=∠DAF+∠FAC=45°+45°=90°,即AC⊥DA.又PA⊥平面ABCD,AC⊂平面ABCD,∴AC⊥PA.∵PA⊂平面PAD,AD⊂平面PAD,且PA∩AD=A,∴AC⊥平面PAD.又AC⊂平面AEC,∴平面AEC⊥平面PAD.(2)连结BD交AC于O,连结EO.∵PD∥平面AEC,PD⊂平面PBD,平面PBD∩平面AEC=EO,∴PD∥EO,则PE∶EB=DO∶OB.又△DOC∽△BOA,∴DO∶OB=DC∶AB=2∶1,∴PE∶EB的值为2.5.(2017·扬州考前调研)如图,在四棱锥P-ABCD中,底面ABCD为梯形,CD∥AB,AB=2CD,AC交BD于O,锐角△PAD所在平面⊥底面ABCD,PA⊥BD,点Q在侧棱PC上,且PQ=2QC.求证:(1)PA∥平面QBD;(2)BD⊥AD.证明:(1)连结OQ,因为AB∥CD,AB=2CD,所以AO =2OC ,又PQ =2QC ,所以PA ∥OQ ,因为OQ ⊂平面QBD ,PA ⊄平面QBD ,所以PA ∥平面QBD .(2)在平面PAD 内过P 作PH ⊥AD 于H ,因为侧面PAD ⊥底面ABCD ,平面PAD ∩平面ABCD =AD ,PH ⊂平面PAD , 所以PH ⊥平面ABCD ,又BD ⊂平面ABCD ,所以PH ⊥BD .又PA ⊥BD ,且PA ∩PH =P ,PA ⊂平面PAD ,PH ⊂平面PAD ,所以BD ⊥平面PAD ,又AD ⊂平面PAD ,所以BD ⊥AD .6.如图,在多面体ABCDFE 中,四边形ABCD 是矩形,四边形ABEF为等腰梯形,且AB ∥EF ,AF =2,EF =2AB =42,平面ABCD ⊥平面ABEF .(1)求证:BE ⊥DF ;(2)若P 为BD 的中点,试问:在线段AE 上是否存在点Q ,使得PQ ∥平面BCE ?若存在,找出点Q 的位置;若不存在,请说明理由.解:(1)证明:如图,取EF 的中点G ,连结AG ,因为EF =2AB ,所以AB =EG ,又AB ∥EG ,所以四边形ABEG 为平行四边形,所以AG ∥BE ,且AG =BE =AF =2.在△AGF 中,GF =12EF =22,AG =AF =2, 所以AG 2+AF 2=GF 2,所以AG ⊥AF .因为四边形ABCD 为矩形,所以AD ⊥AB ,又平面ABCD ⊥平面ABEF ,且平面ABCD ∩平面ABEF =AB ,AD ⊂平面ABCD , 所以AD ⊥平面ABEF ,又AG ⊂平面ABEF ,所以AD ⊥AG .因为AD ∩AF =A ,所以AG ⊥平面ADF .因为AG ∥BE ,所以BE ⊥平面ADF .因为DF ⊂平面ADF ,所以BE ⊥DF .(2)存在点Q ,且点Q 为AE 的中点,使得PQ ∥平面BCE .证明如下:连结AC ,因为四边形ABCD 为矩形,所以P 为AC 的中点.在△ACE中,因为点P,Q分别为AC,AE的中点,所以PQ∥CE.又PQ⊄平面BCE,CE⊂平面BCE,所以PQ∥平面BCE.。

(江苏专版)18年高考数学二轮复习第2部分八大难点突破难点7函数零点、单调性、极值等综合问题学案

(江苏专版)18年高考数学二轮复习第2部分八大难点突破难点7函数零点、单调性、极值等综合问题学案

难点七 函数零点、单调性、极值等综合问题(对应学生用书第73页)函数零点、单调性、极值都是高中数学的重要内容,也都是高考的热点和重点,在每年的高考试题中这部分内容所占的比例都很大,函数与导数是高中数学的主线,它们贯穿于高中数学的各个内容,求值的问题就要涉及到方程,求取值范围的问题就离不开不等式,但方程、不等式更离不开函数,函数思想的运用是我们解决问题的重要手段,而导数是我们解决问题的一个行之有效的工具. 1.函数零点函数零点问题主要是研究函数与方程问题,方程f (x )=0的解就是函数y =f (x )的图象与x 轴的交点的横坐标,即零点.函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的. 许多有关方程的问题可以用函数的方法解决,反之,许多函数问题也可以用方程的方法来解决.在高考中重点考查函数零点个数、零点范围以及与零点有关的范围问题,有时添加函数性质进去会使得此类问题难度加大.【例1】 (2017·江苏高考)已知函数f (x )=x 3+ax 2+bx +1(a >0,b ∈R )有极值,且导函数f ′(x )的极值点是f (x )的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b 关于a 的函数关系式,并写出定义域; (2)证明:b 2>3a ;(3)若f (x ),f ′(x )这两个函数的所有极值之和不小于-72,求a 的取值范围.【导学号:56394108】[解] (1)由f (x )=x 3+ax 2+bx +1,得f ′(x )=3x 2+2ax +b =3⎝ ⎛⎭⎪⎫x +a 32+b -a 23. 当x =-a 3时,f ′(x )有极小值b -a 23.因为f ′(x )的极值点是f (x )的零点,所以f ⎝ ⎛⎭⎪⎫-a 3=-a 327+a 39-ab 3+1=0.又a >0,故b =2a 29+3a.因为f (x )有极值,故f ′(x )=0有实根, 从而b -a 23=19a (27-a 3)≤0,即a ≥3.当a =3时,f ′(x )>0(x ≠-1),故f (x )在R 上是增函数,f (x )没有极值; 当a >3时,f ′(x )=0有两个相异的实根 x 1=-a -a 2-3b 3,x 2=-a +a 2-3b 3.列表如下:12从而a >3.因此b =2a 29+3a ,定义域为(3,+∞).(2)证明:由(1)知,b a =2a a 9+3a a.设g (t )=2t 9+3t ,则g ′(t )=29-3t 2=2t 2-279t 2. 当t ∈⎝⎛⎭⎪⎫362,+∞时,g ′(t )>0, 从而g (t )在⎝⎛⎭⎪⎫362,+∞上单调递增. 因为a >3,所以a a >33, 故g (a a )>g (33)=3,即ba> 3. 因此b 2>3a .(3)由(1)知,f (x )的极值点是x 1,x 2, 且x 1+x 2=-23a ,x 21+x 22=4a 2-6b9.从而f (x 1)+f (x 2)=x 31+ax 21+bx 1+1+x 32+ax 22+bx 2+1=x 13(3x 21+2ax 1+b )+x 23(3x 22+2ax 2+b )+13a (x 21+x 22)+23b (x 1+x 2)+2=4a 3-6ab 27-4ab 9+2=0.记f (x ),f ′(x )所有极值之和为h (a ), 因为f ′(x )的极值为b -a 23=-19a 2+3a ,所以h (a )=-19a 2+3a ,a >3.因为h ′(a )=-29a -3a 2<0,于是h (a )在(3,+∞)上单调递减. 因为h (6)=-72,于是h (a )≥h (6),故a ≤6.因此a 的取值范围为(3,6].【例2】 已知函数f (x )=a x -1x2-b +ln x (a ,b ∈R ).(1)若函数f (x )在(0,+∞)上单调递增,求实数a 的取值范围; (2)若a =3,函数f (x )有3个零点,求实数b 的取值范围.[解] (1)f (x )的定义域为(0,+∞),f ′(x )=-a x2+2x3+1x.由题意可得f ′(x )≥0在(0,+∞)上恒成立,即-a x2+2x3+1x≥0,所以a x2≤2x3+1x,因为x >0,所以x 2>0,故a ≤2x+x .由基本不等式可得2x +x ≥22(当且仅当2x=x ,即x =2时等号成立),故实数a 的取值范围为(-∞,22].(2)当a =3时,f (x )=3x -1x2-b +ln x ,函数f (x )的定义域为(0,+∞),f ′(x )=-3x 2+2x 3+1x =x 2-3x +2x3=x -x -x3.由f ′(x )=0,解得x 1=1,x 2=2.当x 变化时,f ′(x ),f (x )的变化情况如下表:极小值为f (2)=32-122-b +ln 2=54-b +ln 2.要使函数f (x )有3个零点,则⎩⎪⎨⎪⎧2-b >0,54-b +ln 2<0,解得54+ln 2<b <2.故实数b 的取值范围为⎝ ⎛⎭⎪⎫54+ln 2,2. 2.利用函数的单调区间和极值点研究函数零点函数f (x )的零点,即f (x )=0的根,亦即函数f (x )的图象与x 轴交点横坐标,与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图象,讨论其图象与轴的位置关系(或者转化为两个熟悉函数交点问题).【例3】 (2016-2017学年度江苏苏州市高三期中调研考试)已知f (x )=ax 3-3x 2+1(a >0),定义h (x )=max{f (x ),g (x )}=⎩⎪⎨⎪⎧f x ,f xg x ,gx ,f x <g x ,(1)求函数f (x )的极值;(2)若g (x )=xf ′(x ),且存在x ∈[1,2]使h (x )=f (x ),求实数a 的取值范围; (3)若g (x )=ln x ,试讨论函数h (x )(x >0)的零点个数. [解] (1)∵函数f (x )=ax 3-3x 2+1, ∴f ′(x )=3ax 2-6x =3x (ax -2),令f ′(x )=0,得x 1=0或x 2=2a,∵a >0,∴x 1<x 2,列表如下:∴f (x )的极大值为f (0)=1,极小值为f ⎝ ⎛⎭⎪⎫a=a2-a 2+1=1-a2.(2)g (x )=xf ′(x )=3ax 3-6x 2,∵存在x ∈[1,2],使h (x )=f (x ),∴f (x )≥g (x )在x ∈[1,2]上有解,即ax 3-3x 2+1≥3ax 3-6x 2在x ∈[1,2]上有解, 即不等式2a ≤1x 3+3x在x ∈[1,2]上有解,设y =1x 3+3x =3x 2+1x 3(x ∈[1,2]),∵y ′=-3x 2-3x4<0对x ∈[1,2]恒成立, ∴y =1x 3+3x 在x ∈[1,2]上单调递减,∴当x =1时,y =1x 3+3x的最大值为4,∴2a ≤4,即a ≤2.(3)由(1)知,f (x )在(0,+∞)上的最小值为f ⎝ ⎛⎭⎪⎫2a=1-4a2,①当1-4a2>0,即a >2时,f (x )>0在(0,+∞)上恒成立,∴h (x )=max{f (x ),g (x )}在(0,+∞)上无零点.②当1-4a2=0即a =2时,f (x )min =f (1)=0,又g (1)=0,∴h (x )=max{f (x ),g (x )}在(0,+∞)上有一个零点.③当1-4a2<0,即0<a <2时,设φ(x )=f (x )-g (x )=ax 3-3x 2+1-ln x (0<x <1),∵φ′(x )=3ax 2-6x -1x <6x (x -1)-1x<0,∴φ(x )在(0,1)上单调递减,又φ(1)=a -2<0,φ⎝ ⎛⎭⎪⎫1e =a e 3+2e 2-3e 2>0,∴存在唯一的x 0∈⎝ ⎛⎭⎪⎫1e ,1,使得φ(x 0)=0,Ⅰ.当0<x ≤x 0时,∵φ(x )=f (x )-g (x )≥φ(x 0)=0,∴h (x )=f (x )且h (x )为减函数,又h (x 0)=f (x 0)=g (x 0)=ln x 0<ln 1=0,f (0)=1>0,∴h (x )在(0,x 0)上有一个零点;Ⅱ.当x >x 0时,∵φ(x )=f (x )-g (x )<φ(x 0)=0, ∴h (x )=g (x )且h (x )为增函数,∵g (1)=0, ∴h (x )在(x 0,+∞)上有一零点;从而h (x )=max{f (x ),g (x )}在(x 0,+∞)上有两个零点, 综上所述,当0<a <2时,h (x )有两个零点;当a =2时,h (x )有一个零点;当a >2时,h (x )无零点.【例4】 (2017·江苏省南京市迎一模模拟)已知函数f (x )=12ax 2+ln x ,g (x )=-bx ,其中a ,b ∈R ,设h (x )=f (x )-g (x ). (1)若f (x )在x =22处取得极值,且f ′(1)=g (-1)-2,求函数h (x )的单调区间; (2)若a =0时,函数h (x )有两个不同的零点x 1,x 2. ①求b 的取值范围; ②求证:x 1x 2e2>1.【导学号:56394109】[解] (1)由已知得f ′(x )=ax +1x(x >0),所以f ′⎝⎛⎭⎪⎫22=22a +2=0,所以a =-2. 由f ′(1)=g (-1)-2, 得a +1=b -2, 所以b =1.所以h (x )=-x 2+ln x +x (x >0).则h ′(x )=-2x +1x +1=2⎝ ⎛⎭⎪⎫x +12x --x(x >0),由h ′(x )>0得0<x <1,h ′(x )<0得x >1. 所以h (x )的减区间为(1,+∞),增区间为(0,1). (2)①由已知h (x )=ln x +bx (x >0). 所以h ′(x )=1x+b (x >0),当b ≥0时,显然h ′(x )>0恒成立,此时函数h (x )在定义域内递增,h (x )至多有一个零点,不合题意.当b <0时,令h ′(x )=0得x =-1b >0,令h ′(x )>0得0<x <-1b;令h ′(x )<0得x >-1b.所以h (x )极大=h ⎝ ⎛⎭⎪⎫-1b =-ln(-b )-1>0,解得-1e <b <0. 且x →0时,ln x <0,x →+∞时,ln x >0.所以当b ∈⎝ ⎛⎭⎪⎫-1e ,0时,h (x )有两个零点.②证明:由题意得⎩⎪⎨⎪⎧ln x 1+bx 1=0,ln x 2+bx 2=0,即⎩⎪⎨⎪⎧e -bx 1=x 1, ①e -bx 2=x 2, ②①×②得e -b (x 1+x 2)=x 1x 2. 因为x 1,x 2>0, 所以-b (x 1+x 2)>0, 所以e -b (x 1+x 2)=x 1x 2>1. 因为0<-b <1e ,所以e -b<1,所以x 1x 2>e -2b x 1x 2>e2x 1x 2>e 2,所以x 1x 2e2>1.【例5】 (1)讨论函数f (x )=x -2x +2e x 的单调性,并证明当x >0时,(x -2)e x+x +2>0. (2)证明:当a ∈[0,1)时,函数g (x )=e x-ax -ax2(x >0)有最小值.设g (x )的最小值为h (a ),求函数h (a )的值域.[解] (1)f (x )的定义域为(-∞,-2)∪(-2,+∞).f ′(x )=x -x +x-x -xx +2=x 2e xx +2≥0,当且仅当x =0时,f ′(x )=0,所以f (x )在(-∞,-2),(-2,+∞)上单调递增. 因此当x ∈(0,+∞)时,f (x )>f (0)=-1. 所以(x -2)e x>-(x +2),即(x -2)e x+x +2>0. (2)证明:g ′(x )=x -x+a x +x3=x +2x 3(f (x )+a ). 由(1)知,f (x )+a 单调递增.对任意a ∈[0,1),f (0)+a =a -1<0,f (2)+a =a ≥0. 因此,存在唯一x a ∈(0,2],使得f (x a )+a =0, 即g ′(x a )=0.当0<x <x a 时,f (x )+a <0,g ′(x )<0,g (x )单调递减; 当x >x a 时,f (x )+a >0,g ′(x )>0,g (x )单调递增. 因此g (x )在x =x a 处取得最小值,最小值为于是h (a )=e x ax a +2. 由⎝ ⎛⎭⎪⎫e x x +2′=x +xx +2>0,得y =exx +2单调递增, 所以,由x a ∈(0,2],得12=e 00+2<h (a )=e x a x a +2≤e 22+2=e 24. 因为y =e xx +2单调递增,对任意λ∈⎝ ⎛⎦⎥⎤12,e 24,存在唯一的x a ∈(0,2],a =-f (x a )∈[0,1),使得h (a )=λ.所以h (a )的值域是⎝ ⎛⎦⎥⎤12,e 24.综上,当a ∈[0,1)时,g (x )有最小值h (a ),h (a )的值域是⎝ ⎛⎦⎥⎤12,e 24. 【例6】 设函数f (x )=x e a -x+bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y =(e-1)x +4.(1)求a ,b 的值; (2)求f (x )的单调区间. [解] (1)因为f (x )=x e a -x +bx ,所以f ′(x )=(1-x )ea -x+b .依题设,⎩⎪⎨⎪⎧f=2e +2,f =e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1.解得⎩⎪⎨⎪⎧a =2,b =e.(2)由(1)知f (x )=x e 2-x+e x .由f ′(x )=e2-x(1-x +ex -1)及e2-x>0知,f ′(x )与1-x +ex -1同号.令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.所以,当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减; 当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增. 故g (1)=1是g (x )在区间(-∞,+∞)上的最小值, 从而g (x )>0,x ∈(-∞,+∞).综上可知,f ′(x )>0,x ∈(-∞,+∞),故f (x )的单调递增区间为(-∞,+∞). [方法总结] ①函数性质与方程综合时,要先将函数性质剖析清楚,尤其是单调性和对称性,然后再研究函数零点问题;②函数与不等式综合时,重点是要学会构造函数,利用函数单调性、最值进行研究;③函数、方程与不等式综合在一起时,要注意利用导数这个有利工具进行解答.。

(江苏专版)2018年高考数学二轮复习 第2部分 八大难点突破 难点1 与三角变换、平面向量综合的三角形问题课

(江苏专版)2018年高考数学二轮复习 第2部分 八大难点突破 难点1 与三角变换、平面向量综合的三角形问题课

【例 2】 (2017·江苏省无锡市高考数学一模)在△ABC 中,a,b,c 分别为角 A, B,C 的对边.若 acos B=3,bcos A=1,且 A-B=π6. (1)求边 c 的长; (2)求角 B 的大小. 【导学号:56394089】
[解] (1)∵acos B=3,bcos A=1,∴a×a2+2ca2c-b2=3,b×b2+2cb2c-a2=1, 化为:a2+c2-b2=6c,b2+c2-a2=2c. 相加可得:2c2=8c,解得 c=4.
(2)由 α∈0,π2,β∈0,2π得,α-β∈-π2,π2.

sin(α-β)=
1100,则
cos(α-β)=3
10 10 .
则 sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)
=255×31010- 55× 1100= 22,
若 P 是△ABC 内的一点,BA→→PP==tλ||BB→→AA→ →AABB||++||BB→→AA→ →CCCC||,,tλ>>00
⇒P 是△ABC 的内心; 若 D、E 两点分别是△ABC 的边 BC、CA 上的中点,且
D→P·P→B=D→P·P→C E→P·P→C=E→P·P→A
∴16sin2B+π6-16sin2B=8sin22B+π6, ∴ 1 - cos 2B+π3 - (1 - cos 2B) = sin2 2B+π6 , 即 cos 2B - cos 2B+π3 = sin22B+π6, ∴-2sin2B+6πsin-6π=sin22B+6π, ∴sin2B+6π=0 或 sin2B+6π=1,B∈0,152π. 解得:B=π6.
6.2 判断三角形形状 三角形的边可以看做向量的模长,三角形的内角可以看做向量的夹角,所以可 利用向量的数量积和夹角公式或者其他线性运算,结合平面几何知识来判断三 角形的形状

(江苏专版)2018年高考数学二轮复习 第2部分 八大难点突破 专项限时集训7 函数零点、单调性、极

(江苏专版)2018年高考数学二轮复习 第2部分 八大难点突破 专项限时集训7 函数零点、单调性、极

专项限时集训(七)函数零点、单调性、极值等综合问题(对应学生用书第125页)(限时:60分钟)1.(本小题满分14分)已知函数f (x )=ax 2-bx +ln x ,a ,b ∈R .(1)当b =2a +1时,讨论函数f (x )的单调性;(2)当a =1,b >3时,记函数f (x )的导函数f ′(x )的两个零点分别是x 1和x 2(x 1<x 2),求证:f (x 1)-f (x 2)>34-ln 2.【导学号:56394110】[解] (1)因为b =2a +1,所以f (x )=ax 2-(2a +1)x +ln x , 从而f ′(x )=2ax -(2a +1)+1x=2ax 2-a +x +1x=ax -x -x,x >0.2分当a ≤0时,由f ′(x )>0得0<x <1,由f ′(x )<0得x >1, 所以f (x )在区间(0,1)上单调递增,在区间(1,+∞)上单调递减.当0<a <12时,由f ′(x )>0得0<x <1或x >12a ,由f ′(x )<0得1<x <12a ,所以f (x )在区间(0,1)和区间⎝ ⎛⎭⎪⎫12a ,+∞上单调递增,在区间⎝ ⎛⎭⎪⎫1,12a 上单调递减.当a =12时,因为f ′(x )≥0(当且仅当x =1时取等号),所以f (x )在区间(0,+∞)上单调递增.当a >12时,由f ′(x )>0得0<x <12a 或x >1,由f ′(x )<0得12a <x <1,所以f (x )在区间⎝ ⎛⎭⎪⎫0,12a 和区间(1,+∞)上单调递增,在区间⎝ ⎛⎭⎪⎫12a ,1上单调递减.综上,当a ≤0时,f (x )在区间(0,1)上单调递增,在区间(1,+∞)上单调递减; 当0<a <12时,f (x )在区间(0,1)和区间⎝ ⎛⎭⎪⎫12a ,+∞上单调递增,在区间⎝ ⎛⎭⎪⎫1,12a 上单调递减;当a =12时,f (x )在区间(0,+∞)上单调递增,无单调递减区间;当a >12时,f (x )在区间⎝ ⎛⎭⎪⎫0,12a 和区间(1,+∞)上单调递增,在区间⎝ ⎛⎭⎪⎫12a ,1上单调递减.8分(2)法一:因为a =1,所以f (x )=x 2-bx +ln x (x >0),从而f ′(x )=2x 2-bx +1x,由题意知x 1,x 2是方程2x 2-bx +1=0的两个根,故x 1x 2=12.记g (x )=2x 2-bx +1,因为b >3,所以g ⎝ ⎛⎭⎪⎫12=3-b 2<0,g (1)=3-b <0, 所以x 1∈⎝ ⎛⎭⎪⎫0,12,x 2∈(1,+∞),且bx 1=2x 21+1,bx 2=2x 22+1,f (x 1)-f (x 2)=(x 21-x 22)-(bx 1-bx 2)+ln x 1x 2=-(x 21-x 22)+ln x 1x 2,因为x 1x 2=12,所以f (x 1)-f (x 2)=x 22-14x 22-ln(2x 22),x 2∈(1,+∞).令t =2x 22∈(2,+∞),φ(t )=f (x 1)-f (x 2)=t 2-12t -ln t .因为当t >2时,φ′(t )=t -22t2>0,所以φ(t )在区间(2,+∞)上单调递增,所以φ(t )>φ(2)=34-ln 2,即f (x 1)-f (x 2)>34-ln 2.14分法二:因为a =1,所以f (x )=x 2-bx +ln x (x >0),从而f ′(x )=2x 2-bx +1x,由题意知x 1,x 2是方程2x 2-bx +1=0的两个根,故x 1x 2=12.记g (x )=2x 2-bx +1,因为b >3,所以g ⎝ ⎛⎭⎪⎫12=3-b 2<0,g (1)=3-b <0, 所以x 1∈⎝ ⎛⎭⎪⎫0,12,x 2∈(1,+∞),且f (x )在(x 1,x 2)上是减函数,所以f (x 1)-f (x 2)>f ⎝ ⎛⎭⎪⎫12-f (1)=⎝ ⎛⎭⎪⎫14-b2+ln 12-(1-b )=-34+b 2-ln 2,因为b >3,所以f (x 1)-f (x 2)>-34+b 2-ln 2>34-ln 2.14分2.(本小题满分14分)(南通、泰州市2017届高三第一次调研测试)已知函数f (x )=ax 2-x -ln x ,a ∈R .(1)当a =38时,求函数f (x )的最小值;(2)若-1≤a ≤0,证明:函数f (x )有且只有一个零点; (3)若函数f (x )有两个零点,求实数a 的取值范围. [解] (1)当a =38时,f (x )=38x 2-x -ln x .所以f ′(x )=34x -1-1x =x +x -4x(x >0).令f ′(x )=0,得x =2,当x ∈(0,2)时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0, 所以函数f (x )在(0,2)上单调递减,在(2,+∞)上单调递增. 所以当x =2时,f (x )有最小值f (2)=-12-ln 2.3分(2)证明:由f (x )=ax 2-x -ln x ,得f ′(x )=2ax -1-1x =2ax 2-x -1x,x >0.所以当a ≤0时,f ′(x )=2ax 2-x -1x<0,函数f (x )在(0,+∞)上单调递减,所以当a ≤0时,函数f (x )在(0,+∞)上最多有一个零点.因为当-1≤a ≤0时,f (1)=a -1<0,f ⎝ ⎛⎭⎪⎫1e =e 2-e +a e 2>0, 所以当-1≤a ≤0时,函数f (x )在(0,+∞)上有零点. 综上,当-1≤a ≤0时,函数f (x )有且只有一个零点.7分(3)法一:由(2)知,当a ≤0时,函数f (x )在(0,+∞)上最多有一个零点. 因为函数f (x )有两个零点,所以a >0.由f (x )=ax 2-x -ln x ,得f ′(x )=2ax 2-x -1x(x >0),令g (x )=2ax 2-x -1.因为g (0)=-1<0,2a >0,所以函数g (x )在(0,+∞)上只有一个零点,设为x 0.当x ∈(0,x 0)时,g (x )<0,f ′(x )<0;当x ∈(x 0,+∞)时,g (x )>0,f ′(x )>0.所以函数f (x )在(0,x 0)上单调递减;在(x 0,+∞)上单调递增. 要使得函数f (x )在(0,+∞)上有两个零点,只需要函数f (x )的极小值f (x 0)<0,即ax 20-x 0-ln x 0<0. 又因为g (x 0)=2ax 20-x 0-1=0,所以2ln x 0+x 0-1>0,又因为函数h (x )=2ln x +x -1在(0,+∞)上是增函数,且h (1)=0, 所以x 0>1,得0<1x 0<1.又由2ax 20-x 0-1=0,得2a =⎝ ⎛⎭⎪⎫1x 02+1x 0=⎝ ⎛⎭⎪⎫1x 0+122-14,所以0<a <1.以下验证当0<a <1时,函数f (x )有两个零点.当0<a <1时,g ⎝ ⎛⎭⎪⎫1a =2a a2-1a -1=1-a a>0,所以1<x 0<1a.因为f ⎝ ⎛⎭⎪⎫1e =a e 2-1e+1=e 2-e -a e 2>0,且f (x 0)<0. 所以函数f (x )在⎝ ⎛⎭⎪⎫1e ,x 0上有一个零点.又因为f ⎝ ⎛⎭⎪⎫2a =4a a2-2a-ln 2a ≥2a -⎝ ⎛⎭⎪⎫2a -1=1>0(因为ln x ≤x -1),且f (x 0)<0.所以函数f (x )在⎝ ⎛⎭⎪⎫x 0,2a 上有一个零点.所以当0<a <1时,函数f (x )在⎝ ⎛⎭⎪⎫1e ,2a 内有两个零点.综上,实数a 的取值范围为(0,1). 下面证明:ln x ≤x -1.设t (x )=x -1-ln x ,所以t ′(x )=1-1x =x -1x(x >0).令t ′(x )=0,得x =1.当x ∈(0,1)时,t ′(x )<0;当x ∈(1,+∞)时,t ′(x )>0. 所以函数t (x )在(0,1)上单调递减,在(1,+∞)上单调递增. 所以当x =1时,t (x )有最小值t (1)=0. 所以t (x )=x -1-ln x ≥0,得ln x ≤x -1成立.14分法二:由(2)知,当a ≤0时,函数f (x )在(0,+∞)上最多有一个零点. 因为函数f (x )有两个零点,所以a >0. 由f (x )=ax 2-x -ln x =0,得关于x 的方程a =x +ln xx 2(x >0)有两个不等的实数解. 又因为ln x ≤x -1, 所以a =x +ln x x 2≤2x -1x 2=-⎝ ⎛⎭⎪⎫1x -12+1(x >0). 因为x >0时,-⎝ ⎛⎭⎪⎫1x-12+1≤1,所以a ≤1.又当a =1时,x =1,即关于x 的方程a =x +ln xx 2有且只有一个实数解. 所以0<a <1. 14分(以下解法同法一)3.(本小题满分14分)(苏北四市(淮安、宿迁、连云港、徐州)2017届高三上学期期中)设函数f (x )=ln x -ax 2+ax ,a 为正实数.(1)当a =2时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)求证:f ⎝ ⎛⎭⎪⎫1a≤0; (3)若函数f (x )有且只有1个零点,求a 的值.[解] (1)当a =2时,f (x )=ln x -2x 2+2x ,则f ′(x )=1x-4x +2,所以f ′(1)=-1,又f (1)=0,所以曲线y =f (x )在点(1,f (1))处的切线方程为x +y -1=0. 4分(2)证明:因为f ⎝ ⎛⎭⎪⎫1a =ln 1a -1a+1,设函数g (x )=ln x -x +1,则g ′(x )=1x -1=1-xx,另g ′(x )=0,得x =1,列表如下:所以g (x )所以f ⎝ ⎛⎭⎪⎫1a =ln 1a -1a+1≤0.8分(3)f ′(x )=1x -2ax +a =-2ax 2-ax -1x,x >0,令f ′(x )>0,得a -a 2+8a 4a <x <a +a 2+8a 4a ,因为a -a 2+8a 4a<0,所以f (x )在⎝ ⎛⎭⎪⎫0,a +a 2+8a 4a 上单调递增,在⎝ ⎛⎭⎪⎫a +a 2+8a 4a ,+∞上单调递减.所以f (x )≤f ⎝ ⎛⎭⎪⎫a +a 2+8a 4a .设x 0=a +a 2+8a4a,因为函数f (x )只有1个零点,而f (1)=0,所以1是函数f (x )的唯一零点.当x 0=1时,f (x )≤f (1)=0,f (x )有且只有1个零点,此时a +a 2+8a 4a=1,解得a =1.下证,当x 0≠1时,f (x )的零点不唯一.若x 0>1,则f (x 0)>f (1)=0,此时a +a 2+8a 4a >1,即0<a <1,则1a>1.由(2)知,f ⎝ ⎛⎭⎪⎫1a <0,又函数f (x )在以x 0和1a为端点的闭区间上的图象不间断,所以在x 0和1a之间存在f (x )的零点,则f (x )共有2个零点,不符合题意;若x 0<1,则f (x 0)>f (1)=0,此时a +a 2+8a 4a <1,即a >1,则0<1a<1.同理可得,要1a和x 0之间存在f (x )的零点,则f (x )共有2个零点,不符合题意.因此x 0=1,所以a 的值为1. 14分4.(本小题满分16分)(扬州市2017届高三上学期期末)已知函数f (x )=g (x )·h (x ),其中函数g (x )=e x ,h (x )=x 2+ax +a .(1)求函数g (x )在(1,g (1))处的切线方程;(2)当0<a <2时,求函数f (x )在x ∈[-2a ,a ]上的最大值;(3)当a =0时,对于给定的正整数k ,问函数F (x )=e·f (x )-2k (ln x +1)是否有零点?请说明理由.(参考数据e≈2.718,e ≈1.649,e e ≈4.482,ln 2≈0.693)【导学号:56394111】[解] (1)g ′(x )=e x,故g ′(1)=e ,g (1)=e , 所以切线方程为y -e =e(x -1),即y =e x .2分(2)f (x )=e x ·(x 2+ax +a ), 故f ′(x )=(x +2)(x +a )e x, 令f ′(x )=0,得x =-a 或x =-2.①当-2a ≥-2,即0<a ≤1时,f (x )在[-2a ,-a ]上递减,在[-a ,a ]上递增, 所以f (x )max =max{f (-2a ),f (a )}, 由于f (-2a )=(2a 2+a )e -2a,f (a )=(2a 2+a )e a,故f (a )>f (-2a ),所以f (x )max =f (a );②当-2a <-2,即1<a <2时,f (x )在[-2a ,-2]上递增,[-2,-a ]上递减,在[-a ,a ]上递增,所以f (x )max =max{f (-2),f (a )},由于f (-2)=(4-a )e -2,f (a )=(2a 2+a )e a,故f (a )>f (-2), 所以f (x )max =f (a );综上得,f (x )max =f (a )=(2a 2+a )e a.6分(3)结论:当k =1时,函数F (x )无零点;当k ≥2时,函数F (x )有零点. 理由如下:①当k =1时,实际上可以证明:e x 2e x-2ln x -2>0.F ′(x )=(x 2+2x )e x +1-2x ,显然可证F ′(x )=(x 2+2x )e x +1-2x在(0,+∞)上递增,所以存在x 0∈⎝ ⎛⎭⎪⎫1e ,12,使得F ′(x 0)=0,所以当x ∈(0,x 0)时,F (x )递减;当x ∈(x 0,+∞)时,F (x )递增,所以F (x )min =F (x 0)=2⎝ ⎛⎭⎪⎫1x 0+2-ln x 0-1,其中x 0∈⎝ ⎛⎭⎪⎫1e ,12,而φ(x )=2⎝⎛⎭⎪⎫1x +2-ln x -1递减,所以φ(x )>φ⎝ ⎛⎭⎪⎫12=2⎝⎛⎭⎪⎫ln 2-35>0,所以F (x )min >0,所以命题得证.10分下面证明F (e k )>0,可借助结论e x >x 2(x ≥2)处理,首先证明结论e x >x 2(x ≥2): 令φ(x )=e x -x 2(x ≥2),则φ′(x )=e x -2x ,故φ′(x )=e x-2x >0, 所以φ′(x )=e x-2x 在[2,+∞)上递增, 所以φ′(x )>φ′(2)>0,所以φ(x )=e x -x 2在[2,+∞)上递增, 所以φ(x )>φ(2)>0,得证.借助结论得ee k+2k +1>e k 2+2k +1>(k 2+2k +1)2=(k +1)4=(k +1)(k +1)3>2k (k +1),所以F (e k)>0,又因为函数F (x )连续,所以F (x )在⎝ ⎛⎭⎪⎫12,e k 上有零点. 16分5.(本小题满分16分)(扬州市2017届高三上学期期中)已知函数f (x )=a e xx+x .(1)若函数f (x )的图象在(1,f (1))处的切线经过点(0,-1),求a 的值; (2)是否存在负整数a ,使函数f (x )的极大值为正值?若存在 ,求出所有负整数a 的值;若不存在,请说明理由;(3)设a >0,求证:函数f (x )既有极大值,又有极小值.[解] (1)∵f ′(x )=a e x x -+x2x 2,∴f ′(1)=1,f (1)=a e +1,∴函数f (x )在(1,f (1))处的切线方程为:y -(a e +1)=x -1,又直线过点(0,-1),∴-1-(a e +1)=-1,解得:a =-1e.4分(2)若a <0,f ′(x )=a e x x -+x2x 2,当x ∈(-∞,0)时,f ′(x )>0恒成立,函数在(-∞,0)上无极值; 当x ∈(0,1)时,f ′(x )>0恒成立,函数在(0,1)上无极值;法一:在(1,+∞)上,若 f (x )在x 0处取得符合条件的极大值 f (x 0),则⎩⎪⎨⎪⎧x 0>1,f x 0>0,fx 0=0,则⎩⎪⎨⎪⎧x 0>1, ①a e x 0x0+x 0>0, ②a e x 0x 0-+x20x20=0, ③由③得:a e x 0=-x 20x 0-1,代入②得:-x 0x 0-1+x 0>0,结合①可 解得:x 0>2,再由f (x 0)=a e x 0x 0+x 0>0得:a >-x 20e x 0,设h (x )=-x 2ex ,则h ′(x )=x x -ex,当x >2时,h ′(x )>0,即h (x )是增函数,所以a >h (x 0)>h (2)=-4e2,又a <0,故当极大值为正数时,a ∈⎝ ⎛⎭⎪⎫-4e 2,0,从而不存在负整数a 满足条件.8分 法二:在x ∈(1,+∞)时,令H (x )=a e x(x -1)+x 2,则H ′(x )=(a e x+2)x , ∵x ∈(1,+∞),∴e x∈(e ,+∞),∵a 为负整数, ∴a ≤-1,∴a e x≤a e≤-e ,∴a e x+2<0,∴H ′(x )<0,∴H (x )在(1,+∞)上单调递减,又H (1)=1>0,H (2)=a e 2+4≤-e 2+4<0,∴∃x 0∈(1,2),使得H (x 0)=0, 且1<x <x 0时,H (x )>0,即f ′(x )>0;x >x 0时,H (x )<0,即f ′(x )<0; ∴f (x )在x 0处取得极大值f (x 0)=a e x 0x 0+x 0,(*)又H (x 0)=a e x 0(x 0-1)+x 20=0,∴a e x 0x 0=-x 0x 0-1代入(*)得:f (x 0)=-x 0x 0-1+x 0=x 0x 0-x 0-1<0,∴不存在负整数a 满足条件.8分(3)证明:设g (x )=a e x(x -1)+x 2,则g ′(x )=x (a e x+2), 因为a >0,所以,当x >0时,g ′(x )>0,g (x )单调递增; 当x <0时,g ′(x )<0,g (x )单调递减;故g (x )至多有两个零点. 又g (0)=-a <0,g (1)=1>0,所以存在x 1∈(0,1), 使g (x 1)=0再由g (x )在(0,+∞)上单调递增知, 当x ∈(0,x 1)时,g (x )<0,故f ′(x )=g xx 2<0,f (x )单调递减; 当x ∈(x 1,+∞)时,g (x )>0,故f ′(x )=g xx 2>0,f (x )单调递增; 所以函数f (x )在x 1处取得极小值. 当x <0时,e x<1,且x -1<0,所以g (x )=a e x (x -1)+x 2>a (x -1)+x 2=x 2+ax -a ,函数y =x 2+ax -a 是关于x 的二次函数,必存在负实数t ,使g (t )>0,又g (0)=-a <0,故在(t,0)上存在x 2,使g (x 2)=0, 再由g (x )在(-∞,0)上单调递减知, 当x ∈(-∞,x 2)时,g (x )>0,故f ′(x )=g xx 2>0,f (x )单调递增; 当x ∈(x 2,0)时,g (x )<0,故f ′(x )=g xx 2<0,f (x )单调递减; 所以函数f (x )在x 2处取得极大值. 综上,函数f (x )既有极大值,又有极小值.16分本文档仅供文库使用。

2018版高考数学理江苏专用大二轮总复习与增分策略配套课件:专题八 系列4选讲 第2讲 精品

2018版高考数学理江苏专用大二轮总复习与增分策略配套课件:专题八 系列4选讲 第2讲 精品

解析答案
(2)求矩阵A-1的特征值以及属于每个特征值的一个特征向量. 解 矩阵 A-1 的特征多项式为 f(λ)=λ--12 λ- -12=λ2-4λ+3=(λ-1)(λ-3), 令f(x)=0,得矩阵A-1的特征值为λ1=1或λ2=3,
所以
1 ξ1=-1是矩阵
A-1
的属于特征值
λ1=1
的一个特征向量,
. 1
12 3
解析答案
(2)求矩阵C,使得AC=B. 解 由AC=B得(A-1A)C=A-1B,
3 故 C=A-1B=2
-21
-2
1
1
0
-11=32-2
2 .
-3
12 3
解析答案
考情考向分析
本讲从内容上看,主要考查二阶矩阵的基本运算,考查矩阵的逆运算 及利用系数矩阵的逆矩阵求点的坐标或曲线方程等,一般以基础题目 为主,难度不大.又经常与其他知识结合,在考查基础知识的同时, 考查转化与化归等数学思想,以及分析问题、解决问题的能力.
专题八 系列4选讲
第2讲 矩阵与变换
栏目索引
1 高考真题体验 2 热点分类突破 3 高考押题精练
高考真题体验
12 3
1.(2016·江苏)已知矩阵 A=10 矩阵 AB.
-22,矩阵
B
的逆矩阵
B-1=1 0
-12,求 2

2 B=(B-1)-1=2
0 2
1 1222=01
1 41.
2
1 ∴AB=0
-14 -41
xy00.
∴x=43x0-14y0, y=-14x0-41y0.
∴xy00= =-x-xy-,3y.
代入直线方程2x+y-5=0,得2(x-y)-(x+3y)-5=0, 即x-5y-5=0,即为所求的直线方程.

2018届江苏省高三数学二轮复习专题讲座2--附加题归类分析及应对策略

2018届江苏省高三数学二轮复习专题讲座2--附加题归类分析及应对策略

2 0 (2008 江苏)在平面直角坐标系 xOy 中,设椭圆 4x +y =1 在矩阵 0 1对应的变
2 2
换作用下得到曲线 F,求 F 的方程.
矩阵与变换
3 2 (2009 江苏)求矩阵 A= 的逆矩阵. 2 1
逆矩阵
(2010 江苏)在平面直角坐标系 xOy 中,A(0,0),B(-2,0),C(-2,1),设 k≠0,
2018届高三数学附加题第二轮复习建议
cosθ -sinθ (4)旋转变换矩阵:M= . cosθ sinθ 1 0 0 0 1 0 (5)投影变换矩阵:M= ,N= ,P= 0 0 0 1 1 0
……………………. (6)切变变换矩阵: 1 k 沿 x 轴方向的切变变换矩阵:M= ; 0 1 1 0 沿 y 轴方向的切变变换矩阵:N= . k 1
(1)恒等变换矩阵(单位矩阵):E= . 0 1 a 0 1 0 (2)伸压变换矩阵:(横向)M= ;(纵向)N= ,其中 a>0,a≠1. 0 1 0 a
(3)反射变换矩阵: 0 1 -1 0 以 x 轴为反射轴:M= ;以 y 轴为反射轴:N= ; 0 -1 0 1 0 0 1 -1 以直线 y=x 为反射轴:P= ;以原点为反射点:Q= ; 1 0 0 - 1 …………………….
0 -1 0 -1x -y 例如 A= ,由于 y= ,所以 A 表示的是以原点为 0 0 x 1 1
旋转中心,逆时针方向旋转 90的旋转变换.
2018届高三数学附加题第二轮复习建议
3.应对策略注意利用函数与方程的思想解决问题. (1)已知曲线 C 的方程 F(x,y)=0,求变换后的曲线 C1 的方程 F1(x,y)=0 的过程分三步: ①利用矩阵与列向量的乘法将目标曲线 C1 上的任意 一点(x,y)的坐标用已知曲线上的对应点(x′,y′)的坐标表 x' x 示,即 M = ; y' y x f(x,y) x' -1 ②用 x,y 表示 x′,y′,即 =M = ; y' y g(x,y) ③由 F(x′,y′)=0,得 F(f(x,y),g(x,y))=0,化简 整理得 C1 的方程 F1(x,y)=0.

2018年高考数学文科江苏专版二轮专题复习与策略课件:专题讲座2 题型分类突破 精品

2018年高考数学文科江苏专版二轮专题复习与策略课件:专题讲座2 题型分类突破 精品

解决这类问题的关键是找准归纳对象.如m的位置在最高次幂的系数位 置,因而从每一个等式中最高次幂的系数入手进行归纳;p是cos2 α的系数,所 以从cos2 α的系数入手进行归纳.n却不能从cos4 α的系数入手进行归纳,因为第 ①个式子中没有cos4 α,缺少归纳的特征项.
[变式训练5] 已知f1(x)=sin x+cos x,fn+1(x)是fn(x)的导函数,即f2(x)= f1′(x),f3(x)=f2′(x),…,
160 [如图所示,把三棱锥P-ABC补成一个长方体AEBG-FPDC,易知三棱 锥P-ABC的各棱分别是长方体的面对角线,不妨令PE=x,EB=y,EA=z,则 由已知有:
xx22++yz22==113060,, y2+z2=164,
解得xy==68,, z=10,
所以VP-ABC=VAEBG-FPDC-VP-AEB-VC-ABG-VB-PDC-VA-FPC =VAEBG-FPDC-4VP-AEB =6×8×10-4×16×6×8×10=160. 故所求三棱锥P-ABC的体积为160.]
64 [∵a1,a2,a5成等比数列,∴a22=a1a5, ∴(1+d)2=1×(4d+1),∴d2-2d=0. ∵d≠0,∴d=2. ∴S8=8×1+8×2 7×2=64.]
直接法是解决计算型填空题最常用的方法,在计算过程中,我们要根据题 目的要求灵活处理,多角度思考问题,注意一些解题规律和解题技巧的灵活应 用,将计算过程简化从而得到结果,这是快速准确地求解填空题的关键.
[变式训练1] (2012·江苏高考)在平面直角坐标系xOy中,圆C的方程为x2+ y2-8x+15=0,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半 径的圆与圆C有公共点,则k的最大值是________.

(江苏专版)2018年高考数学二轮复习第2部分八大难点突破难点8函数最值、恒成立及存在性问题学案

(江苏专版)2018年高考数学二轮复习第2部分八大难点突破难点8函数最值、恒成立及存在性问题学案

难点八 函数最值、恒成立及存在性问题(对应学生用书第75页)恒成立问题和有解问题、无解问题是联系函数、方程、不等式的纽带和桥梁,也是高考的重点和热点问题,往往用到的方法是依据不等式的特点,等价变形,构造函数,借助图象观察,或参变分离,转化为求函数的最值问题来处理. F (x )>a :⎩⎪⎨⎪⎧恒成立⇔f x min >a 有解⇔f x max >a无解⇔f x max ≤a具体方法为将已知恒成立或存在性的不等式或等式由等价原理把参数和变量分离开,转化为一元已知函数的最值问题处理,关键是搞清楚哪个是变量哪个是参数,一般遵循“知道谁的范围,谁是变量;求谁的范围,谁是参数”的原则.参变分离后虽然转化为一个已知函数的最值问题,但是有些函数解析式复杂,利用导数知识无法完成,或者是不易参变分离,故可利用构造函数法.【例1】 (2017·盐城市滨海县八滩中学二模)设f (x )=e x-a (x +1).(1)若a >0,f (x )≥0对一切x ∈R 恒成立,求a 的最大值;(2)设g (x )=f (x )+ae x ,A (x 1,y 1),B (x 2,y 2)(x 1≠x 2)是曲线y =g (x )上任意两点,若对任意的a ≤-1,直线AB 的斜率恒大于常数m ,求m 的取值范围;(3)是否存在正整数a ,使得1n +3n +…+(2n -1)n <e e -1(an )n对一切正整数n 都成立?若存在,求a 的最小值;若不存在,请说明理由.【导学号:56394112】[解] (1)∵f (x )=e x-a (x +1),∴f ′(x )=e x-a , ∵a >0,f ′(x )=e x -a =0的解为x =ln a . ∴f (x )min =f (ln a )=a -a (ln a +1)=-a ln a .∵f (x )≥0对一切x ∈R 恒成立,∴-a ln a ≥0,∴a ln a ≤0,∴a max =1. (2)∵f (x )=e x-a (x +1), ∴g (x )=f (x )+ae x =e x+ae x -ax -a .∵a ≤-1,直线AB 的斜率恒大于常数m , ∴g ′(x )=e x-aex -a ≥2e x·⎝ ⎛⎭⎪⎫-a e x -a=-a +2-a =m (a ≤-1),解得m ≤3,∴实数m 的取值范围是(-∞,3].(3)设t (x )=e x-x -1,则t ′(x )=e x-1,令t ′(x )=0得:x =0. 在x <0时t ′(x )<0,f (x )递减;在x >0时t ′(x )>0,f (x )递增. ∴t (x )最小值为t (0)=0,故e x≥x +1,取x =-i 2n ,i =1,3,…,2n -1,得1-i 2n ≤e-i 2n ,即⎝ ⎛⎭⎪⎫2n -i 2n n ≤e-i 2,累加得⎝ ⎛⎭⎪⎫12n n +⎝ ⎛⎭⎪⎫32n n +…+⎝ ⎛⎭⎪⎫2n -12n n <e -2n -12+e -2n -32+…+e -12=e -121-e-n1-e -1<ee -1. ∴1n+3n+…+(2n -1)n<e e -1·(2n )n, 故存在正整数a =2.使得1n+3n+…+(2n -1)n<e e -1·(an )n. 【例2】 (2017·江苏省无锡市高考数学一模)已知函数f (x )=(x +1)ln x -ax +a (a 为正实数,且为常数).(1)若f (x )在(0,+∞)上单调递增,求a 的取值范围; (2)若不等式(x -1)f (x )≥0恒成立,求a 的取值范围.[解] (1)f (x )=(x +1)ln x -ax +a ,f ′(x )=ln x +1x+1-a ,若f (x )在(0,+∞)上单调递增,则a ≤ln x +1x+1在(0,+∞)恒成立(a >0),令g (x )=ln x +1x +1(x >0),g ′(x )=x -1x2,令g ′(x )>0,解得:x >1,令g ′(x )<0,解得:0<x <1, 故g (x )在(0,1)递减,在(1,+∞)递增, 故g (x )min =g (1)=2, 故0<a ≤2;(2)若不等式(x -1)f (x )≥0恒成立,即(x -1)[(x +1)ln x -ax +a ]≥0恒成立, ①x ≥1时,只需a ≤(x +1)ln x 恒成立, 令m (x )=(x +1)ln x (x ≥1), 则m ′(x )=ln x +1x+1,由(1)得:m ′(x )≥2,故m (x )在[1,+∞)递增,m (x )≥m (1)=0,故a ≤0,而a 为正实数,故a ≤0不合题意; ②0<x <1时,只需a ≥(x +1)ln x , 令n (x )=(x +1)ln x (0<x <1),则n ′(x )=ln x +1x+1,由(1)知n ′(x )在(0,1)递减,故n ′(x )>n ′(1)=2,故n (x )在(0,1)递增,故n (x )<n (1)=0, 故a ≥0,而a 为正实数,故a >0.【例3】 (2017·江苏省淮安市高考数学二模)已知函数f (x )=1e x ,g (x )=ln x ,其中e为自然对数的底数.(1)求函数y =f (x )g (x )在x =1处的切线方程;(2)若存在x 1,x 2(x 1≠x 2),使得g (x 1)-g (x 2)=λ[f (x 2)-f (x 1)]成立,其中λ为常数,求证:λ>e ;(3)若对任意的x ∈(0,1],不等式f (x )g (x )≤a (x -1)恒成立,求实数a 的取值范围.【导学号:56394113】[解] (1)y =f (x )g (x )=ln xe x ,y ′=1x -ln xex, x =1时,y =0,y ′=1e,故切线方程是:y =1e x -1e;(2)证明:由g (x 1)-g (x 2)=λ[f (x 2)-f (x 1)], 得:g (x 1)+λf (x 1)=g (x 2)+λf (x 2), 令h (x )=g (x )+λf (x )=ln x +λe x (x >0),h ′(x )=e x-λxx e x,令ω(x )=e x-λx ,则ω′(x )=e x-λ, 由x >0,得e x >1,①λ≤1时,ω′(x )>0,ω(x )递增, 故h ′(x )>0,h (x )递增,不成立;②λ>1时,令ω′(x )=0,解得:x =ln λ, 故ω(x )在(0,ln λ)递减,在(ln λ,+∞)递增, ∴ω(x )≥ω(ln λ)=λ-λln λ,令m (λ)=λ-λln λ(λ>1), 则m ′(λ)=-ln λ<0,故m (λ)递减, 又m (e)=0,若λ≤e,则m (λ)≥0,ω(x )≥0,h (x )递增,不成立, 若λ>e ,则m (λ)<0,函数h (x )有增有减,满足题意, 故λ>e ;(3)若对任意的x ∈(0,1],不等式f (x )g (x )≤a (x -1)恒成立, 即ln xex -a (x -1)≤0在(0,1]恒成立, 令F (x )=ln xe x -a (x -1),x ∈(0,1],F (1)=0,F ′(x )=1x -ln x e x-a ,F ′(1)=1e-a , ①F ′(1)≤0时,a ≥1e,F ′(x )≤1x -ln x -ex -1ex递减,而F ′(1)=0,故F ′(x )≥0,F (x )递增,F (x )≤F (1)=0,成立,②F ′(1)>0时,则必存在x 0,使得F ′(x )>0,F (x )递增,F (x )<F (1)=0不成立,故a ≥1e.【例4】 设函数f (x )=ax 2-a -ln x ,其中a ∈R .(1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使得f (x )>1x-e 1-x在区间(1,+∞)内恒成立(e =2.718…为自然对数的底数).[解] (1)f ′(x )=2ax -1x =2ax 2-1x(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减. 当a >0时,由f ′(x )=0,有x =12a.此时,当x ∈⎝⎛⎭⎪⎫0,12a 时,f ′(x )<0,f (x )单调递减; 当x ∈⎝⎛⎭⎪⎫12a ,+∞时,f ′(x )>0,f (x )单调递增.(2)令g (x )=1x -1ex -1,s (x )=e x -1-x ,则s ′(x )=ex -1-1.而当x >1时,s ′(x )>0,所以s (x )在区间(1,+∞)内单调递增. 又由s (1)=0,有s (x )>0, 从而当x >1时,g (x )>0.当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0.故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0. 当0<a <12时,12a >1.由(1)有f ⎝⎛⎭⎪⎫12a <f (1)=0,而g ⎝ ⎛⎭⎪⎫12a >0, 所以此时f (x )>g (x )在区间(1,+∞)内不恒成立. 当a ≥12时,令h (x )=f (x )-g (x )(x ≥1).当x >1时,h ′(x )=2ax -1x +1x 2-e 1-x>x -1x +1x 2-1x =x 3-2x +1x 2>x 2-2x +1x2>0. 因此,h (x )在区间(1,+∞)内单调递增.又因为h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0, 即f (x )>g (x )恒成立.综上,a ∈⎣⎢⎡⎭⎪⎫12,+∞.[点评] 综合构造函数,运用函数的思想,利用导数研究函数的性质(单调性和最值),达到解题的目的,是一成不变的思路,合理构思,善于从不同角度分析问题,是解题的法宝.。

2018年高考数学理科江苏专版二轮专题复习与策略专题限

2018年高考数学理科江苏专版二轮专题复习与策略专题限

专题限时集训(十八) 圆锥曲线的定义、方程与性质(建议用时:4 5分钟)1.设抛物线C 1的方程为y =120x 2,它的焦点F 关于原点的对称点为E .若曲线C 2上的点到E ,F 的距离之差的绝对值等于6,则曲线C 2的标准方程为________.【解析】 方程y =120x 2可化为x 2=20y ,它的焦点为F (0,5),所以点E 的坐标为(0,-5),根据题意,知曲线C 2是焦点在y 轴上的双曲线,设方程为y 2a 2-x 2b 2=1(a >0,b >0),则2a =6,a =3,又c =5,b 2=c 2-a 2=16,所以曲线C 2的标准方程为y 29-x 216=1. 【答案】 y 29-x 216=12.(2016·常州期末)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线经过点P (1,-2),则该双曲线的离心率为________.【导学号:19592052】5 [双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±b a x . 由点P (1,-2)在其直线上,得ba =2. ∴离心率e =1+⎝ ⎛⎭⎪⎫b a 2=1+4= 5.] 3.(2016·苏北四市摸底)已知双曲线x 2-y 2m 2=1(m >0)的一条渐近线方程为x +3y =0,则m =________.33 [双曲线x 2-y 2m 2=1(m >0)的渐近线方程为y =±mx (m >0).由题意可知m=33.]4.(2016·南京盐城一模)在平面直角坐标系xOy 中,已知抛物线C 的顶点在坐标原点,焦点在x 轴上,若曲线C 经过点P (1,3),则其焦点到准线的距离为________.92[由题意,可设曲线C 的方程为y 2=2px (p >0). 由于点P (1,3)满足y 2=2px ,即9=2p ,∴p =92. 故焦点到准线的距离为92.]5.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为43,则C 的方程为________.x 23+y 22=1 [由e =33得c a =33①.又△AF 1B 的周长为43,由椭圆定义,得4a =43,得a =3,代入①得c =1,∴b 2=a 2-c 2=2,故C 的方程为x 23+y 22=1.]6.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,则AB =________.12 [∵F 为抛物线C :y 2=3x 的焦点,∴F ⎝ ⎛⎭⎪⎫34,0,∴AB 的方程为y -0=tan 30°⎝ ⎛⎭⎪⎫x -34,即y =33x -34. 联立⎩⎨⎧y 2=3x ,y =33x -34,得13x 2-72x +316=0.∴x 1+x 2=--7213=212,即x A +x B =212.由于AB =x A +x B +p ,∴AB =212+32=12.]7.(2016·南通三模)在平面直角坐标系xOy 中,双曲线x 2a 2-y 2=1与抛物线y 2=-12x 有相同的焦点,则双曲线的两条渐近线的方程为________.y =±24x [抛物线y 2=-12x 的焦点为(-3,0), 故双曲线x 2a 2-y 2=1满足a 2+1=9,∴a 2=8. ∴a =±2 2.∴双曲线的渐近线方程y =±x a =±24x .]8.已知F 1,F 2是椭圆x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,过F 1的直线与椭圆相交于A ,B 两点,若AB →·AF 2→=0,且|AB →|=|AF 2→|,则椭圆的圆心率为________.6-3 [在Rt △ABF 2中,设AF 2=m , 则BF 2=2m , 所以4a =(2+2)m ,又在Rt △AF 1F 2中,AF 1=2a -m =22m , F 1F 2=2c ,所以(2c )2=⎝ ⎛⎭⎪⎫22m 2+m 2=32m 2,即2c =62m ,所以e =c a =2c2a =62m ⎝⎛⎭⎪⎫1+22m=6- 3.] 9.已知F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点,P是椭圆上的一点,PF ⊥x 轴,OP ∥AB (O 为原点),则该椭圆的离心率是________.【导学号:19592053】图17-222 [把x =-c 代入椭圆方程,得y =±b 2a ,∴PF =b 2a . ∵OP ∥AB ,PF ∥OB ,∴△PFO ∽△BOA , ∴PF OF =OB OA ,即b 2a c =b a ,得b =c ,e =22.]10.过抛物线y 2=2px (p >0)的焦点F 的直线l 依次交抛物线及其准线于点A ,B ,C ,若BC =2BF ,且AF =3,则抛物线的方程是________.y 2=3x [设A (x 1,y 1),B (x 2,y 2),作AM ,BN 垂直准线于点M ,N (图略),则BN =BF ,又BC =2BF ,得BC =2BN ,所以∠NCB =30°,有AC =2AM =6,设BF =x ,则2x +x +3=6⇒x =1,又x 1+p 2=3,x 2+p 2=1,且x 1x 2=p 24, 所以⎝ ⎛⎭⎪⎫3-p 2⎝ ⎛⎭⎪⎫1-p 2=p 24,解得p =32,从而抛物线方程为y 2=3x .]11.设M (x 0,y 0)为抛物线C :x 2=8y 上一点,F 为抛物线C 的焦点,以F 为圆心、FM 为半径的圆和抛物线C 的准线相交,则y 0的取值范围是________.(2,+∞) [∵x 2=8y ,∴焦点F 的坐标为(0,2),准线方程为y =-2.由抛物线的定义知MF =y 0+2.以F 为圆心、FM 为半径的圆的标准方程为x 2+(y -2)2=(y 0+2)2.由于以F 为圆心、FM 为半径的圆与准线相交,又圆心F 到准线的距离为4,故4<y 0+2,∴y 0>2.]12.如图17-3,已知直线l :y =k (x +1)(k >0)与抛物线C :y 2=4x 相交于A ,B 两点,且A ,B 两点在抛物线C 的准线上的射影分别是M ,N ,若AM =2BN ,则k =________.图17-3223 [设直线l 与曲线C 的准线的交点为E ,因为AM =2BN ,所以BE =BA ,即B 为AE 的中点,设A (x 1,y 1),B (x 2,y 2),得2x 2=x 1-1,由⎩⎨⎧y =k (x +1),y 2=4x ,得k 2x 2+(2k 2-4)x +k 2=0,所以x 2·x 1=1,即x 1-12·x 1=1,得x 1=2,y 1=22,x 2=12,y 2=2,k =223.]13.(2013·辽宁高考)已知F 为双曲线C :x 29-y 216=1的左焦点,P ,Q 为C 上的点.若PQ 的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为________.44 [由x 29-y 216=1,得a =3,b =4,c =5. ∴PQ =4b =16>2a .又∵A (5,0)在线段PQ 上,∴P ,Q 在双曲线的一支上, 且PQ 所在直线过双曲线的右焦点, 由双曲线定义知⎩⎨⎧PF -P A =2a =6,QF -QA =2a =6,∴PF +QF =28.∴△PQF 的周长是PF +QF +PQ =28+16=44.]14.椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2c .若直线y =3(x +c )与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.3-1 [已知F 1(-c,0),F 2(c,0), 直线y =3(x +c )过点F 1,且斜率为3, ∴倾斜角∠MF 1F 2=60°. ∵∠MF 2F 1=12∠MF 1F 2=30°,∴∠F 1MF 2=90°,∴MF 1=c ,MF 2=3c . 由椭圆定义知MF 1+MF 2=c +3c =2a , ∴离心率e =c a =21+3=3-1.]15.(2016·宿迁模拟)已知动点P (x ,y )在椭圆x 225+y 216=1上,若A 点的坐标为(3,0),|AM →|=1,且PM →·AM →=0,则|PM →|的最小值为________.3 [由|AM →|=1,A (3,0),知点M 在以A (3,0)为圆心,1为半径的圆上运动, ∵PM →·AM →=0且P 在椭圆上运动,∴PM ⊥AM ,即PM 为⊙A 的切线,连结P A (如图),则|PM →|=|P A →|2-|AM →|2=|P A →|2-1,∵|P A →|min =a -c =5-3=2, ∴|PM →|min = 3.]16.椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,若椭圆C 上恰好有6个不同的点P ,使得△F 1F 2P 为等腰三角形,则椭圆C 的离心率的取值范围是________.⎝ ⎛⎭⎪⎫13,12∪⎝ ⎛⎭⎪⎫12,1 [当点P 位于椭圆的两个短轴端点时,△F 1F 2P 为等腰三角形,此时有2个.若点不在短轴的端点时,要使△F 1F 2P 为等腰三角形,则有PF 1=F 1F 2=2c 或PF 2=F 1F 2=2c .此时PF 2=2a -2c .所以有PF 1+F 1F 2>PF 2,即2c +2c >2a -2c ,所以3c >a ,即c a >13,又当点P 不在短轴上,所以PF 1≠BF 1,即2c ≠a ,所以c a ≠12.13<e<1且e≠12,即⎝⎛⎭⎪⎫13,12∪⎝⎛⎭⎪⎫12,1.]所以椭圆的离心率满足。

高考数学二轮复习课件高考5个大题题题研诀窍函数与导数综合问题巧在“转”、难在“分”讲义理(含解析)

高考数学二轮复习课件高考5个大题题题研诀窍函数与导数综合问题巧在“转”、难在“分”讲义理(含解析)

函数与导数综合问题巧在“转”、难在“分”[思维流程——找突破口] [技法指导——迁移搭桥]函数与导数问题一般以函数为载体,以导数为工具,重点考查函数的一些性质,如含参函数的单调性、极值或最值的探求与讨论,复杂函数零点的讨论,函数不等式中参数范围的讨论,恒成立和能成立问题的讨论等,是近几年高考试题的命题热点.对于这类综合问题,一般是先转化(变形),再求导,分解出基本函数,分类讨论研究其性质,再根据题意解决问题.[典例] 已知函数f (x )=eln x -ax (a ∈R). (1)讨论f (x )的单调性;(2)当a =e 时,证明:xf (x )-e x+2e x ≤0. [快审题] 求什么 想什么 讨论函数的单调性,想到利用导数判断. 证明不等式,想到对所证不等式进行变形转化. 给什么 用什么 已知函数的解析式,利用导数解题.差什么 找什么 证不等式时,对不等式变形转化后还不能直接判断两函数的关系,应找出所构造函数的最值.[稳解题](1)f ′(x )=ex-a (x >0),①若a ≤0,则f ′(x )>0,f (x )在(0,+∞)上单调递增; ②若a >0,则当0<x <e a 时,f ′(x )>0,当x >ea时,f ′(x )<0,故f (x )在⎝⎛⎭⎪⎫0,e a 上单调递增,在⎝ ⎛⎭⎪⎫e a ,+∞上单调递减.(2)证明:法一:因为x >0,所以只需证f (x )≤exx-2e ,当a =e 时,由(1)知,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以f (x )max=f (1)=-e.记g (x )=exx-2e(x >0),则g ′(x )=x -1e xx 2,所以当0<x <1时,g ′(x )<0,g (x )单调递减; 当x >1时,g ′(x )>0,g (x )单调递增, 所以g (x )min =g (1)=-e.综上,当x >0时,f (x )≤g (x ),即f (x )≤exx-2e ,即xf (x )-e x+2e x ≤0. 法二:证xf (x )-e x+2e x ≤0, 即证e x ln x -e x 2-e x+2e x ≤0, 从而等价于ln x -x +2≤exe x .设函数g (x )=ln x -x +2, 则g ′(x )=1x-1.所以当x ∈(0,1)时,g ′(x )>0; 当x ∈(1,+∞)时,g ′(x )<0,故g (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 从而g (x )在(0,+∞)上的最大值为g (1)=1. 设函数h (x )=e xe x,则h ′(x )=exx -1e x2. 所以当x ∈(0,1)时,h ′(x )<0,当x ∈(1,+∞)时,h ′(x )>0,故h (x )在(0,1)上单调递减,在(1,+∞)上单调递增, 从而h (x )在(0,+∞)上的最小值为h (1)=1. 综上,当x >0时,g (x )≤h (x ), 即xf (x )-e x+2e x ≤0.[题后悟道] 函数与导数综合问题的关键(1)会求函数的极值点,先利用方程f (x )=0的根,将函数的定义域分成若干个开区间,再列成表格,最后依表格内容即可写出函数的极值;(2)证明不等式,常构造函数,并利用导数法判断新构造函数的单调性,从而可证明原不等式成立;(3)不等式恒成立问题除了用分离参数法,还可以从分类讨论和判断函数的单调性入手,去求参数的取值范围.[针对训练]已知函数f (x )=x ln x ,g (x )=ax 22,直线l :y =(k -3)x -k +2.(1)若曲线y =f (x )在x =e 处的切线与直线l 平行,求实数k 的值; (2)若至少存在一个x 0∈[1,e]使f (x 0)<g (x 0)成立,求实数a 的取值范围; (3)设k ∈Z ,当x >1时,函数f (x )的图象恒在直线l 的上方,求k 的最大值. 解:(1)由已知得,f ′(x )=ln x +1,且y =f (x )在x =e 处的切线与直线l 平行, 所以f ′(e)=ln e +1=2=k -3,解得k =5.(2)因为至少存在一个x 0∈[1,e]使f (x 0)<g (x 0)成立,所以至少存在一个x 使x ln x <ax 22成立,即至少存在一个x 使a >2ln x x成立.令h (x )=2ln x x ,当x ∈[1,e]时,h ′(x )=21-ln xx 2≥0恒成立,因此h (x )=2ln x x在[1,e]上单调递增.故当x =1时,h (x )min =0,所以实数a 的取值范围为(0,+∞).(3)由已知得,x ln x >(k -3)x -k +2在x >1时恒成立,即k <x ln x +3x -2x -1.令F (x )=x ln x +3x -2x -1,则F ′(x )=x -ln x -2x -12.令m (x )=x -ln x -2,则m ′(x )=1-1x =x -1x>0在x >1时恒成立.所以m (x )在(1,+∞)上单调递增,且m (3)=1-ln 3<0,m (4)=2-ln 4>0, 所以在(1,+∞)上存在唯一实数x 0(x 0∈(3,4))使m (x 0)=0,即x 0-ln x 0-2=0. 当1<x <x 0时,m (x )<0,即F ′(x )<0,当x >x 0时,m (x )>0,即F ′(x )>0, 所以F (x )在(1,x 0)上单调递减,在(x 0,+∞)上单调递增. 故F (x )min =F (x 0)=x 0ln x 0+3x 0-2x 0-1=x 0x 0-2+3x 0-2x 0-1=x 0+2∈(5,6).故k <x 0+2(k ∈Z),所以k 的最大值为5. [总结升华]函数与导数压轴题堪称“庞然大物”,所以征服它需要一定的胆量和勇气,可以参变量分离、可把复杂函数分离为基本函数、可把题目分解成几个小题、也可把解题步骤分解为几个小步,也可从逻辑上重新换叙.注重分步解答,这样,即使解答不完整,也要做到尽可能多拿步骤分.同时要注意分类思想、数形结合思想、化归与转化等数学思想的运用.[专题过关检测] 1.(2018·武汉调研)已知函数f (x )=ln x +a x(a ∈R). (1)讨论函数f (x )的单调性; (2)当a >0时,证明:f (x )≥2a -1a.解:(1)f ′(x )=1x -a x 2=x -ax2(x >0).当a ≤0时,f ′(x )>0,f (x )在(0,+∞)上单调递增.当a >0时,若x >a ,则f ′(x )>0,函数f (x )在(a ,+∞)上单调递增; 若0<x <a ,则f ′(x )<0,函数f (x )在(0,a )上单调递减. (2)证明:由(1)知,当a >0时,f (x )min =f (a )=ln a +1. 要证f (x )≥2a -1a ,只需证ln a +1≥2a -1a,即证ln a +1a-1≥0.令函数g (a )=ln a +1a-1,则g ′(a )=1a -1a 2=a -1a2(a >0),当0<a <1时,g ′(a )<0,当a >1时,g ′(a )>0,所以g (a )在(0,1)上单调递减,在(1,+∞)上单调递增, 所以g (a )min =g (1)=0. 所以ln a +1a-1≥0恒成立,所以f (x )≥2a -1a.2.(2018·全国卷Ⅱ)已知函数f (x )=e x-ax 2. (1)若a =1,证明:当x ≥0时,f (x )≥1;(2)若f (x )在(0,+∞)只有一个零点,求a .解:(1)证明:当a =1时,f (x )≥1等价于(x 2+1)e -x-1≤0. 设函数g (x )=(x 2+1)e -x-1,则g ′(x )=-(x 2-2x +1)e -x=-(x -1)2e -x. 当x ≠1时,g ′(x )<0,所以g (x )在(0,+∞)上单调递减.而g (0)=0,故当x ≥0时,g (x )≤0,即f (x )≥1. (2)设函数h (x )=1-ax 2e -x.f (x )在(0,+∞)上只有一个零点等价于h (x )在(0,+∞)上只有一个零点.(ⅰ)当a ≤0时,h (x )>0,h (x )没有零点; (ⅱ)当a >0时,h ′(x )=ax (x -2)e -x. 当x ∈(0,2)时,h ′(x )<0; 当x ∈(2,+∞)时,h ′(x )>0. 所以h (x )在(0,2)上单调递减, 在(2,+∞)上单调递增.故h (2)=1-4ae 2是h (x )在(0,+∞)上的最小值.①当h (2)>0,即a <e24时,h (x )在(0,+∞)上没有零点.②当h (2)=0,即a =e24时,h (x )在(0,+∞)上只有一个零点.③当h (2)<0,即a >e24时,因为h (0)=1,所以h (x )在(0,2)上有一个零点.由(1)知,当x >0时,e x>x 2,所以h (4a )=1-16a 3e 4a =1-16a3e2a2>1-16a32a4=1-1a>0,故h (x )在(2,4a )上有一个零点.因此h (x )在(0,+∞)上有两个零点.综上,当f (x )在(0,+∞)上只有一个零点时,a =e24.3.(2018·西安质检)设函数f (x )=ln x +k x(k ∈R).(1)若曲线y =f (x )在点(e ,f (e))处的切线与直线x -2=0垂直,求f (x )的单调性和极小值(其中e 为自然对数的底数);(2)若对任意的x 1>x 2>0,f (x 1)-f (x 2)<x 1-x 2恒成立,求k 的取值范围. 解:(1)由条件得f ′(x )=1x -kx2(x >0),∵曲线y =f (x )在点(e ,f (e))处的切线与直线x -2=0垂直,∴f ′(e)=0,即1e -ke 2=0,得k =e ,∴f ′(x )=1x -e x 2=x -ex2(x >0).由f ′(x )<0,得0<x <e ;由f ′(x )>0,得x >e , ∴f (x )在(0,e)上单调递减,在(e ,+∞)上单调递增, 当x =e 时,f (x )取得极小值,且f (e)=ln e +ee =2.∴f (x )的极小值为2.(2)由题意知对任意的x 1>x 2>0,f (x 1)-x 1<f (x 2)-x 2恒成立, 设h (x )=f (x )-x =ln x +k x-x (x >0), 则h (x )在(0,+∞)上单调递减,∴h ′(x )=1x -kx2-1≤0在(0,+∞)上恒成立,即当x >0时,k ≥-x 2+x =-⎝ ⎛⎭⎪⎫x -122+14恒成立,∴k ≥14.故k 的取值范围是⎣⎢⎡⎭⎪⎫14,+∞. 4.(2018·全国卷Ⅲ)已知函数f (x )=(2+x +ax 2)·ln(1+x )-2x . (1)若a =0,证明:当-1<x <0时,f (x )<0;当x >0时,f (x )>0; (2)若x =0是f (x )的极大值点,求a .解:(1)证明:当a =0时,f (x )=(2+x )ln(1+x )-2x ,f ′(x )=ln(1+x )-x1+x. 设函数g (x )=ln(1+x )-x1+x ,则g ′(x )=x1+x2.当-1<x <0时,g ′(x )<0;当x >0时,g ′(x )>0, 故当x >-1时,g (x )≥g (0)=0, 且仅当x =0时,g (x )=0,从而f ′(x )≥0,且仅当x =0时,f ′(x )=0. 所以f (x )在(-1,+∞)上单调递增. 又f (0)=0,故当-1<x <0时,f (x )<0;当x >0时,f (x )>0.(2)①若a ≥0,由(1)知,当x >0时,f (x )≥(2+x )ln(1+x )-2x >0=f (0), 这与x =0是f (x )的极大值点矛盾. ②若a <0, 设函数h (x )=f x 2+x +ax 2=ln(1+x )-2x2+x +ax2.由于当|x |<min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1,1|a |时,2+x +ax 2>0, 故h (x )与f (x )符号相同. 又h (0)=f (0)=0, 故x =0是f (x )的极大值点, 当且仅当x =0是h (x )的极大值点. h ′(x )=11+x-22+x +ax 2-2x 1+2ax2+x +ax22=x 2a 2x 2+4ax +6a +1x +1ax 2+x +22.若6a +1>0,则当0<x <-6a +14a,且|x |<min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1,1|a |时,h ′(x )>0, 故x =0不是h (x )的极大值点.若6a +1<0,则a 2x 2+4ax +6a +1=0存在根x 1<0,故当x ∈(x 1,0),且|x |<min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1,1|a |时,h ′(x )<0, 所以x =0不是h (x )的极大值点.若6a +1=0,则h ′(x )=x 3x -24x +1x 2-6x -122,则当x ∈(-1,0)时,h ′(x )>0; 当x ∈(0,1)时,h ′(x )<0. 所以x =0是h (x )的极大值点, 从而x =0是f (x )的极大值点. 综上,a =-16.。

2018版高考数学理江苏专用大二轮总复习与增分策略配套课件:第二篇 填空题的解法技巧 精品

2018版高考数学理江苏专用大二轮总复习与增分策略配套课件:第二篇 填空题的解法技巧 精品

3 例2 (1)cos2α+cos2(α+120°)+cos2(α+240°)的值为___2_____. 解析 令α=0°, 则原式=cos20°+cos2120°+cos2240°=32.
解析答案
(2) 如 图 , 在 三 棱 锥 O—ABC 中 , 三 条 棱 OA , OB , OC 两 两 垂 直 , 且 OA>OB>OC,分别经过三条棱OA,OB,OC作一个截面平分三棱锥的体 积,截面面积依次为S1,S2,S3,则S1,S2,S3的大小关系为_S_3_<_S_2<_S_1_.
例4 如图,已知球O的球面上有四点A,B,C,D,DA⊥平面ABC, AB⊥BC,DA=AB=BC= 2,则球O的体积等于____6_π___.
思维升华
解析
答案
跟踪演练 4
(1)1e64 ,2e55 ,3e66 (其中
e
e4 e5 e6
为自然对数的底数)的大小关系是_1_6_<_2_5_<_3_6_.
所以 CD=1,AD=2 2,
所以 tan C=2 2,tan A=tan B= 2,
所以ttaann CA+ttaann CB=4.
解析答案
(2)已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增 函数,若方程f(x)=m(m>0)在区间[-8,8]上有四个不同的根x1,x2,x3,x4, 则x1+x2+x3+x4=__-__8____. 解析 根据函数特点取 f(x)=sinπ4x, 再由图象可得(x1+x2)+(x3+x4)=(-6×2)+(2×2)=-8.
思维升华
解析答案
跟踪演练3 (1)(2015·湖南)若函数f(x)=|2x-2|-b有两个零点,则实数b 的取值范围是__(_0_,_2_) __. 解析 由f(x)=|2x-2|-b=0, 得|2x-2|=b. 在同一平面直角坐标系中画出y=|2x-2|与y=b 的图象,如图所示. 则当0<b<2时,两函数图象有两个交点,从而函 数f(x)=|2x-2|-b有两个零点.

2018版高考数学理江苏专用大二轮总复习与增分策略配套课件:专题二 函数与导数 第2讲 精品

2018版高考数学理江苏专用大二轮总复习与增分策略配套课件:专题二 函数与导数 第2讲 精品

解析
答案
(2)已知函数 f(x)=efxx,-x1≤,1,x>1, g(x)=kx+1,若方程 f(x)-g(x)=0 有 两个不同的实根,则实数 k 的取值范围是_(_e_-2__1_,__1_)∪__(_1_,__e_-__1_]_.
思维升华
解析
答案
跟踪演练2 (1)已知函数f(x)=ex-2x+a有零点,则a的取值范围是 _(_-__∞_,__2_l_n_2_-__2_]___.
专题二 函数与导数
第2讲 函数的应用
栏目索引
1 高考真题体验 2 热点分类突破 3 高考押题精练
高考真题体验
1 23 4
1.(2016·天津改编)已知函数 f(x)=sin2ω2x+12sin ωx-12 (ω>0,x∈R).若 f(x) 在区间(π,2π)内没有零点,则 ω 的取值范围是__0_,__18__∪__14_,__58____.
返回
热点分类突破
热点一 函数的零点 1.零点存在性定理 如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有 f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b) 使得f(c)=0,这个c也就是方程f(x)=0的根. 2.函数的零点与方程根的关系 函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图 象与函数y=g(x)的图象交点的横坐标.
解析答案
1 23 4
4.某项研究表明:在考虑行车安全的情况下,某路段车流量 F(单位时间内经 过测量点的车辆数,单位:辆/时)与车流速度 v (假设车辆以相同速度 v 行驶, 单位:米/秒),平均车长 l(单位:米)的值有关,其公式为 F=v2+76180v0+0v20l. (1)如果不限定车型,l=6.05,则最大车流量为_1__9_0_0___辆/时;

2018版高考数学理江苏专用大二轮总复习与增分策略配套课件:专题一 集合与常用逻辑用语、不等式 第2

2018版高考数学理江苏专用大二轮总复习与增分策略配套课件:专题一 集合与常用逻辑用语、不等式 第2
解析答案
考情考向分析
1.利用不等式性质比较大小,利用基本不等式求最值及线性规划问题 是高考的热点; 2.一元二次不等式常与函数、数列结合考查一元二次不等式的解法和 参数的取值范围; 3.利用不等式解决实际问题.
返回
热点分类突破
热点一 不等式的解法 1.一元二次不等式的解法 先化为一般形式ax2+bx+c>0(a≠0),再求相应一元二次方程ax2+bx+ c=0(a≠0)的根,最后根据相应二次函数图象与x轴的位置关系,确定 一元二次不等式的解集.
∴x2-x<2, 即x2-x-2<0,解得-1<x<2.
解析答案
热点二 基本不等式的应用
利用基本不等式求最大值、最小值,其基本法则是:(1)如果 x>0,y>0, xy=p(定值),当 x=y 时,x+y 有最小值 2 p(简记为:积定,和有最小值); (2)如果 x>0,y>0,x+y=s(定值),当 x=y 时,xy 有最大值14s2(简记为: 和定,积有最大值).
4.若不等式 x2+2x<ab+1a6b对任意 a,b∈(0,+∞)恒成立,则实数 x 的取 值范围是_(_-__4_,2_)__.
押题依据 “恒成立”问题是函数和不等式交汇处的重要题型,可综 合考查不等式的性质,函数的值域等知识,是高考的热点.
押题依据
解析
答案
返回
押题依据
解析
答案
1 23 4
x-2y+4≥0, 3x-y-3≤0, 3.已知实数 x,y 满足x≥12, y≥1,
5 则 z=x+2y 的最小值为___2_____.
押题依据 线性规划的实质是数形结合思想的应用,利用线性规划的方 法求一些线性目标函数的最值是近几年高考的热点.

2018版高考数学理江苏专用大二轮总复习与增分策略配套课件:专题八 系列4选讲 第1讲 精品

2018版高考数学理江苏专用大二轮总复习与增分策略配套课件:专题八 系列4选讲 第1讲 精品

1 23
解析答案
(2)△BCD∽△GBD. 证明 因为FG∥BC,故GB=CF. 由(1)可知BD=CF,所以GB=BD, 所以∠BGD=∠BDG. 由BC=CD知∠CBD=∠CDB, 又因为∠GDB=∠DBC,所以∠DGB=∠DCB, 所以△BCD∽△GBD.
1 23
解析答案
返回
例 1 如图所示,在△ABC 中,∠CAB=90°,AD⊥BC 于 D,BE 是∠ABC 的平分线,交 AC 于 E,交 AD 于 F,求证:DAFF=AEEC.
思维升华
解析答案
跟踪演练1 如图所示,在Rt△ABC中,∠ACB=90°,CD⊥AB于D, 且AD∶BD=9∶4,求AC∶BC的值.
解析答案
例3 如图,AB是圆O的直径,弦CA,BD的延长线 相交于点E,EF垂直BA的延长线于点F,连结FD. 求证:∠DEA=∠DFA.
证明 连结AD,∵AB是圆O的直径, ∴∠ADB=90°,∴∠ADE=90°, 又∵EF⊥FB,∴∠AFE=90°, 所以A,F,E,D四点共圆, ∴∠DEA=∠DFA.
热点二 相交弦定理、切割线定理的应用
1.圆的切线的性质定理 圆的切线垂直于经过切点的半径. 2.圆的切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线. 3.弦切角定理 弦切角等于它所夹的弧所对的圆周角.
4.相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等. 5.切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条 线段长的比例中项.
解析答案
12 3
3.(2016·课标全国甲)如图,在正方形ABCD中,E,G分
别在边DA,DC上(不与端点重合),且DE=DG,过D点

2018江苏高考数学试题及答案解析(K12教育文档)

2018江苏高考数学试题及答案解析(K12教育文档)

2018江苏高考数学试题及答案解析(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018江苏高考数学试题及答案解析(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018江苏高考数学试题及答案解析(word版可编辑修改)的全部内容。

2018年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{}8,2,1,0=A ,{}8,6,1,1-=B ,那么=⋂B A .2.若复数z 满足i z i 21+=⋅,其中i 是虚数单位,则z 的实部为 .3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 .4.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为 .5.函数()1log 2-=x x f 的定义域为 .6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 .7.已知函数()⎪⎭⎫ ⎝⎛<<-+=222sin ππϕx x y 的图象关于直线3π=x 对称,则ϕ的值是 .8.在平面直角坐标系xOy 中,若双曲线()0,012222>>=-b a by a x 的右焦点()0,c F 到一条渐近线的距离为c 23,则其离心率的值是 . 9.函数()x f 满足()()()R x x f x f ∈=+4,且在区间]2,2(-上,()⎪⎪⎩⎪⎪⎨⎧≤<-+≤<=02,2120,2cos x x x xx f π, 则()()15f f 的值为 .10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 .11.若函数()()R a ax x x f ∈+-=1223在()+∞,0内有且只有一个零点,则()x f 在[]1,1-上的最大值与最小值的和为 .12.在平面直角坐标系xOy 中,A 为直线x y l 2:=上在第一象限内的点,()0,5B ,以AB 为直径的圆C 与直线l 交于另一点D .若0=⋅,则点A 的横坐标为 .13.在ABC ∆中,角C B A 、、所对的边分别为c b a 、、, 120=∠ABC ,ABC ∠的平分线交AC 于点D ,且1=BD ,则c a +4的最小值为 .14.已知集合{}*∈-==N n n x x A ,12|,{}*∈==N n x x B n ,2|.将B A ⋃的所有元素从小到大依次排列构成一个数列{}n a ,记n S 为数列{}n a 的前n 项和,则使得112+>n n a S 成立的n 的最小值为 .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥.求证:(1)11AB A B C 平面∥; (2)111ABB A A BC ⊥平面平面.16.(本小题满分14分)已知,αβ为锐角,4tan 3α=,5cos()αβ+=. (1)求cos2α的值; (2)求tan()αβ-的值.17.(本小题满分14分)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ. (1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.18.(本小题满分16分)焦如图,在平面直角坐标系xOy 中,椭圆C 过点1(3,)2,点12(3,0),(3,0)F F -,圆O 的直径为12F F . (1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于,A B 两点.若OAB △,求直线l 的方程.19.(本小题满分16分)记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.(1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点",求实数a 的值;(3)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由.20.(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列.(1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(2)若*110,,a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+均成立,并求d 的取值范围(用1,,b m q 表示).数学Ⅱ(附加题)21.【选做题】本题包括 A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内作答......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4—1:几何证明选讲](本小题满分10分)如图,圆O 的半径为2,AB 为圆O 的直径,P 为AB 延长线上一点,过P 作圆O 的切线,切点为C .若23PC =,求 BC 的长.B .[选修4—2:矩阵与变换](本小题满分10分)已知矩阵2312⎡⎤=⎢⎥⎣⎦A . (1)求A 的逆矩阵1-A ;(2)若点P 在矩阵A 对应的变换作用下得到点(3,1)P ',求点P 的坐标. C .[选修4—4:坐标系与参数方程](本小题满分10分)在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为4cos ρθ=,求直线l 被曲线C 截得的弦长.D .[选修4—5:不等式选讲](本小题满分10分)若x ,y ,z 为实数,且x +2y +2z =6,求222x y z ++的最小值.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.学科#网22.(本小题满分10分)如图,在正三棱柱ABC—A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.23.(本小题满分10分)设*n ∈N ,对1,2,···,n 的一个排列12n i i i ,如果当s 〈t 时,有s t i i >,则称(,)s t i i 是排列12n i i i 的一个逆序,排列12n i i i 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记()n f k 为1,2,···,n 的所有排列中逆序数为k 的全部排列的个数.(1)求34(2),(2)f f 的值;(2)求(2)(5)n f n ≥的表达式(用n 表示).数学Ⅰ试题参考答案一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分.1.{1,8} 2.2 3.90 4.85.[2,+∞)6.3107.π6-8.29.2210.4311.–3 12.313.9 14.27二、解答题15.本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系,考查空间想象能力和推理论证能力.满分14分.证明:(1)在平行六面体ABCD—A1B1C1D1中,AB∥A1B1.因为AB⊄平面A1B1C,A1B1⊂平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B⊂平面A1BC,BC⊂平面A1BC,所以AB1⊥平面A1BC.因为AB1⊂平面ABB1A1,所以平面ABB1A1⊥平面A1BC.16.本小题主要考查同角三角函数关系、两角和(差)及二倍角的三角函数,考查运算求解能力.满分14分.解:(1)因为4tan 3α=,sin tan cos ααα=,所以4sin cos 3αα=.因为22sin cos 1αα+=,所以29cos 25α=, 因此,27cos22cos 125αα=-=-. (2)因为,αβ为锐角,所以(0,π)αβ+∈. 又因为5cos()αβ+=-,所以225sin()1cos ()αβαβ+=-+=, 因此tan()2αβ+=-.因为4tan 3α=,所以22tan 24tan 21tan 7ααα==--, 因此,tan 2tan()2tan()tan[2()]1+tan 2tan()11ααβαβααβααβ-+-=-+==-+.17.本小题主要考查三角函数的应用、用导数求最值等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分14分. 解:(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH =10. 过O 作OE ⊥BC 于E ,则OE ∥MN ,所以∠COE =θ, 故OE =40cos θ,EC =40sin θ,则矩形ABCD 的面积为2×40cos θ(40sin θ+10)=800(4sin θcos θ+cos θ), △CDP 的面积为12×2×40cos θ(40–40sin θ)=1600(cos θ–sin θcos θ). 过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则GK =KN =10. 令∠GOK =θ0,则sin θ0=14,θ0∈(0,π6).当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD , 所以sin θ的取值范围是[14,1).答:矩形ABCD 的面积为800(4sin θcos θ+cos θ)平方米,△CDP 的面积为 1600(cos θ–sin θcos θ),sin θ的取值范围是[14,1). (2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (k >0),则年总产值为4k ×800(4sin θcos θ+cos θ)+3k ×1600(cos θ–sin θcos θ) =8000k (sin θcos θ+cos θ),θ∈[θ0,π2). 设f (θ)= sin θcos θ+cos θ,θ∈[θ0,π2),则222()cos sin sin (2sin sin 1)(2sin 1)(sin 1)f θθθθθθθθ=--=-+-=--+′. 令()=0f θ′,得θ=π6,当θ∈(θ0,π6)时,()>0f θ′,所以f (θ)为增函数; 当θ∈(π6,π2)时,()<0f θ′,所以f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值.答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大.18.本小题主要考查直线方程、圆的方程、圆的几何性质、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等知识,考查分析问题能力和运算求解能力.满分16分. 解:(1)因为椭圆C的焦点为12(),F F -,可设椭圆C 的方程为22221(0)x y a b a b +=>>.又点1)2在椭圆C 上,所以2222311,43,a b a b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=, 所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+. 由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩,消去y ,得 222200004243640()x y x x x y +-+-=.(*)因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()(24)(44364820)4x x y y y x ∆=--+-=-=. 因为00,0x y >,所以002,1x y ==. 因此,点P 的坐标为(2,1). ②因为三角形OAB 的面积为26,所以21 26AB OP ⋅=,从而42AB =. 设1122,,()(),A x y B x y , 由(*)得22000001,22448(2)x y x x ±-=,所以2222121()()x B y y x A =-+-222000222200048(2)(1)(4)x y x y x y -=+⋅+.因为22003x y +=,所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=,解得22005(202x x ==舍去),则2012y =,因此P 的坐标为102(,)2. 综上,直线l 的方程为532y x =-+.19.本小题主要考查利用导数研究初等函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.满分16分.解:(1)函数f (x )=x ,g (x )=x 2+2x —2,则f ′(x )=1,g ′(x )=2x +2. 由f (x )=g (x )且f ′(x )= g ′(x ),得222122x x x x ⎧=+-⎨=+⎩,此方程组无解, 因此,f (x )与g (x )不存在“S ”点.(2)函数21f x ax =-(),()ln g x x =, 则12f x ax g x x'='=(),().设x 0为f (x )与g (x )的“S ”点,由f (x 0)与g (x 0)且f ′(x 0)与g ′(x 0),得200001ln 12ax x ax x ⎧-=⎪⎨=⎪⎩,即200201ln 21ax x ax ⎧-=⎪⎨=⎪⎩,(*) 得01ln 2x =-,即120e x -=,则1221e 22(e )a -==. 当e2a =时,120e x -=满足方程组(*),即0x 为f (x )与g (x )的“S ”点.因此,a 的值为e2.(3)对任意a 〉0,设32()3h x x x ax a =--+.因为(0)0(1)1320h a h a a =>=--+=-<,,且h (x )的图象是不间断的,所以存在0x ∈(0,1),使得0()0h x =,令03002e (1)x x b x =-,则b >0.函数2e ()()xb f x x a g x x=-+=,,则2e (1)()2()x b x f x x g x x -=-=′,′. 由f (x )与g (x )且f ′(x )与g ′(x ),得22e e (1)2xx b x a x b x x x ⎧-+=⎪⎪⎨-⎪-=⎪⎩,即00320030202e e (1)2e (1)2e (1)x x xx x x a x x x x x x x ⎧-+=⋅⎪-⎪⎨-⎪-=⋅⎪-⎩(**) 此时,0x 满足方程组(**),即0x 是函数f (x )与g (x )在区间(0,1)内的一个“S 点". 因此,对任意a >0,存在b >0,使函数f (x )与g (x )在区间(0,+∞)内存在“S 点”. 20.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分. 解:(1)由条件知:112(,)n n n a n d b -=-=. 因为1||n n a b b -≤对n =1,2,3,4均成立, 即1 12|()1|n n d ---≤对n =1,2,3,4均成立, 即1≤1,1≤d ≤3,3≤2d ≤5,7≤3d ≤9,得7532d ≤≤. 因此,d 的取值范围为75[,]32.(2)由条件知:111(1),n n n a b n d b b q -=+-=.若存在d ,使得1||n n a b b -≤(n =2,3,···,m +1)成立,即1111|1|2,3,,(1())n b n d b q b n m -+--≤=+, 即当2,3,,1n m =+时,d 满足1111211n n q q b d b n n ---≤≤--.因为q ∈,则112n m q q -<≤≤,从而11201n q b n --≤-,1101n q b n ->-,对2,3,,1n m =+均成立.因此,取d =0时,1||n n a b b -≤对2,3,,1n m =+均成立.下面讨论数列12{}1n q n ---的最大值和数列1{}1n q n --的最小值(2,3,,1n m =+). ①当2n m ≤≤时,111 2222111()()()n n n n n n n n q q nq q nq n q q q n n n n n n -------+--+-==---, 当112mq <≤时,有2n m q q ≤≤,从而1() 20n n n n q q q ---+>.因此,当21n m ≤≤+时,数列12{}1n q n ---单调递增,故数列12{}1n q n ---的最大值为2m q m-. ②设()()21x f x x =-,当x >0时,ln 21(0(n )l 22)x f x x '=--<, 所以()f x 单调递减,从而()f x 〈f (0)=1.当2n m ≤≤时,111112111()()()nn n q q n n f q n n n n --=≤-=<-, 因此,当21n m ≤≤+时,数列1{}1n q n --单调递减,故数列1{}1n q n --的最小值为mq m . 因此,d 的取值范围为11(2)[,]m mb q b q m m-.数学Ⅱ(附加题)参考答案21.【选做题】A .[选修4—1:几何证明选讲]本小题主要考查圆与三角形等基础知识,考查推理论证能力.满分10分. 证明:连结OC .因为PC 与圆O 相切,所以OC ⊥PC . 又因为PC =OC =2,所以OP .又因为OB =2,从而B 为Rt△OCP 斜边的中点,所以BC =2. B .[选修4—2:矩阵与变换]本小题主要考查矩阵的运算、线性变换等基础知识,考查运算求解能力.满分10分. 解:(1)因为2312⎡⎤=⎢⎥⎣⎦A ,det()221310=⨯-⨯=≠A ,所以A 可逆,从而1-A 2312-⎡⎤=⎢⎥-⎣⎦. (2)设P (x ,y ),则233121x y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,所以13311x y -⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦A , 因此,点P 的坐标为(3,–1). C .[选修4—4:坐标系与参数方程]本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分. 解:因为曲线C 的极坐标方程为=4cos ρθ, 所以曲线C 的圆心为(2,0),直径为4的圆. 因为直线l 的极坐标方程为πsin()26ρθ-=, 则直线l 过A (4,0),倾斜角为π6, 所以A 为直线l 与圆C 的一个交点.设另一个交点为B ,则∠OAB =π6.连结OB ,因为OA 为直径,从而∠OBA =π2, 所以π4cos 236AB ==.因此,直线l 被曲线C 截得的弦长为23. D .[选修4-5:不等式选讲]本小题主要考查柯西不等式等基础知识,考查推理论证能力.满分10分. 证明:由柯西不等式,得2222222()(122)(22)x y z x y z ++++≥++. 因为22=6x y z ++,所以2224x y z ++≥,当且仅当122xy z ==时,不等式取等号,此时244333x y z ===,,, 所以222x y z ++的最小值为4.22.【必做题】本小题主要考查空间向量、异面直线所成角和线面角等基础知识,考查运用空间向量解决问题的能力.满分10分.学科%网解:如图,在正三棱柱ABC −A 1B 1C 1中,设AC ,A 1C 1的中点分别为O ,O 1,则OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,以1,{},OB OC OO 为基底,建立空间直角坐标系O −xyz .因为AB =AA 1=2,所以1110,1,0,3,0,0,0,1,0,0,1,()()()()(2,3,0,2,0,1,2)()A B C A B C --.(1)因为P 为A 1B 1的中点,所以31(,2)2P -,从而131(,,2)(0,2,22),BP AC ==--,故111|||cos ,|||||5BP AC BP AC BP AC ⋅===⋅. 因此,异面直线BP 与AC 1 (2)因为Q 为BC 的中点,所以1,0)2Q , 因此33(,0)2AQ =,11(0,2,2),(0,0,2)AC CC ==. 设n =(x ,y ,z )为平面AQC 1的一个法向量,则10,0,AQ AC ⎧⎪⎨⎪⎩⋅=⋅=n n 即30,2220.x y y z +=⎪+=⎩不妨取1,1)=-n ,设直线CC 1与平面AQC 1所成角为θ, 则111||sin |cos |,|||CC CC CC |θ==⋅⋅==n n n 所以直线CC 1与平面AQC 1. 23.【必做题】本小题主要考查计数原理、排列等基础知识,考查运算求解能力和推理论证能力.满分10分.解:(1)记()abc τ为排列abc 的逆序数,对1,2,3的所有排列,有(123)=0(132)=1(213)=1(231)=2(312)=2(321)=3ττττττ,,,,,,所以333(0)1(1)(2)2f f f ===,.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置. 因此,4333(2)(2)(1)(0)5f f f f =++=.(2)对一般的n (n ≥4)的情形,逆序数为0的排列只有一个:12…n ,所以(0)1n f =. 逆序数为1的排列只能是将排列12…n 中的任意相邻两个数字调换位置得到的排列,所以2018江苏高考数学试题及答案解析(word 版可编辑修改)牛人数学助力高考数学 (1)1n f n =-.为计算1(2)n f +,当1,2,…,n 的排列及其逆序数确定后,将n +1添加进原排列,n +1在新排列中的位置只能是最后三个位置.因此,1(2)(2)(1)(0)(2)n n n n n f f f f f n +=++=+.当n ≥5时,112544(2)[(2)(2)][(2)(2)][(2)(2)](2)n n n n n f f f f f f f f ---=-+-++-+…242(1)(2)4(2)2n n n n f --=-+-+⋯++=, 因此,n ≥5时,(2)n f =222n n --.。

2018江苏高考数学总复习要点——知识篇(全套)

2018江苏高考数学总复习要点——知识篇(全套)
2
2
x2 y 2
2
2
⑸ 数量积的运算律
①交换律:
a b b a
②对数乘的结合律: ( a) b (a b) a (b)
③分配律: (a b) c a c b c
注意: 数量积不满足结合律,即:
coS(-α)=cos α , 偶
tan(-α)=—tan α ,奇
Sin(2π-α)=—sin α , 奇,周期函数
coS(2π-α)=cos α , 偶,周期函数
tan(2π-α)=—tan α ,奇,周期函数
三、基本初等函数(2)三角恒等变






3正余弦正切的诱导公式
公式三(仅正弦不变号)
1)概念
一般地,我们规定实数λ与向量 的积是一个向量,
这种运算叫做向量的数乘,记作 ,它的长度和方向
规定如下:
• ① ՜ = ՜


• ②当>0时, ՜的方向与 ՜的方向相同;


• 当 <0时, ՜的方向与 ՜的方向相反;


• 特别地,当 =0时, ՜=՜

0
五、平面向量
• b=2RsinB
• c=2RsinC
• 注:∆ =
1
absinC
2
= 2 外接圆半径
四、解三角形




2余弦定理及其应用
2 = 2 + 2 − 2
2 = 2 + 2 − 2
2 = 2 + 2 − 2
• =
2 + 2 −2
(1)概念

2018年高考数学理科江苏专版二轮专题复习与策略课件:

2018年高考数学理科江苏专版二轮专题复习与策略课件:

模板1| 三角函数的周期性、单调性及最值问题 【例1】 (满分 3 14分)设函数f(x)= 2 - 3sin2ωx-sin ωxcos ωx(ω>0),且y
π =f(x)图象的一个对称中心到最近的对称轴的距离为4.
3π (1)求ω的值;(2)求f(x)在区间π, 2 上的最大值和最小值.
AB=2CD [解题指导] (1)M是AB中点,四边形ABCD是等腰梯形 ――→ ⇒▱AMC1D1→C1M∥平面A1ADD1 (2)CA,CB,CD1两两垂直→建立空间直角坐标系,写各点坐标→求平面 ABCD的法向量→将所求两个平面所成的角转化为两个向量的夹角
——————————
[规范解答示例]
——————
—————————
2C 2A
[规范解答示例] ————————
1+cos C 1+cos A 3 (1)证明:因为acos 2 +ccos 2 =a· 2 +c· 2 =2b, 所以a+c+(acos C+ccos A)=3b,4分
2 2 2 a2+b2-c2 b + c - a 故a+c+ +c· 2bc =3b,整理得a+c=2b, a· 2ab
[解题指导] 围→求f(x)的最值
化简变形→f(x)=Asin(ωx+φ)→根据周期求ω→确定ωx+φ的范
————
[规范解答示例] ————
3 (1)f(x)= 2 - 3sin2 ωx-sin ωxcos ωx 1-cos 2ωx 1 3 = 2 - 3· -2sin 2ωx2分 2 3 1 = 2 cos 2ωx-2sin 2ωx
因此M 3 1 , , 0 , 2 2
8分
3 1 3 1 → → → 所以MD1=- ,- , 3,D1C1=MB=- , ,0 . 10分 2 2 2 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

难点五 复杂数列的通项公式与求和问题
(对应学生用书第71页)
数列在高考中占重要地位,应当牢记等差、等比的通项公式,前n 项和公式,等差、等比数列的性质,以及常见求数列通项的方法,如累加、累乘、构造等差、等比数列法、取倒数等.数列求和问题中,对于等差数列、等比数列的求和主要是运用公式;而非等差数列、非等比数列的求和问题,一般用倒序相加法、通项化归法、错位相减法、裂项相消法、分组求和法等.数列的求和问题多从数列的通项入手,通过分组、错位相减等转化为等差或等比数列的求和问题,考查等差、等比数列求和公式及转化与化归思想的应用,属中档题. 一、数列的通项公式
数列的通项公式在数列中占有重要地位,是数列的基础之一,在高考中,等差数列和等比数列的通项公式,前n 项和公式以及它们的性质是必考内容,一般以填空题的形式出现,属于低中档题,若数列与函数、不等式、解析几何、向量、三角函数等知识点交融,难度就较大,也是近几年命题的热点. 1.由数列的递推关系求通项
由递推关系求数列的通项的基本思想是转化,常用的方法: (1)a n +1-a n =f (n )型,采用叠加法. (2)
a n +1
a n
=f (n )型,采用叠乘法. (3)a n +1=pa n +q (p ≠0,p ≠1)型,转化为等比数列解决. 2.由S n 与a n 的关系求通项a n
S n 与a n 的关系为:a n =⎩
⎪⎨
⎪⎧
S n n =1 ,
S n -S n -1 n ≥2 .
【例1】 (2017·江苏省南京市迎一模模拟)已知数列{a n }的前n 项和为S n ,且满足S n +n =2a n (n ∈N *
).
(1)证明:数列{a n +1}为等比数列,并求数列{a n }的通项公式;
(2)若b n =(2n +1)a n +2n +1,数列{b n }的前n 项和为T n ,求满足不等式T n -2
2n -1
>2 010的n
的最小值.
[解] (1)证明:当n =1时,2a 1=a 1+1,∴a 1=1. ∵2a n =S n +n ,n ∈N *
,∴2a n -1=S n -1+n -1,n ≥2,
两式相减得a n =2a n -1+1,n ≥2,即a n +1=2(a n -1+1),n ≥2, ∴数列{a n +1}为以2为首项,2为公比的等比数列, ∴a n +1=2n
,∴a n =2n
-1,n ∈N *

(2)b n =(2n +1)a n +2n +1=(2n +1)·2n
, ∴T n =3·2+5·22
+…+(2n +1)·2n
, ∴2T n =3·22
+5·23+…+(2n +1)·2
n +1

两式相减可得-T n =3·2+2·22
+2·23
+…+2·2n
-(2n +1)·2n +1

∴T n =(2n -1)·2n +1
+2,

T n -22n -1
>2 010可化为2n +1
>2 010, ∵210
=1 024,211
=2 048
∴满足不等式T n -2
2n -1
>2 010的n 的最小值为10.
[点评] 利用a n =S n -S n -1求通项时,注意n ≥2这一前提条件,易忽略验证n =1致误,当
n =1时,a 1若适合通项,则n =1的情况应并入n ≥2时的通项;否则a n 应利用分段函数的
形式表示. 二、数列的求和
常见类型及方法
(1)a n =kn +b ,利用等差数列前n 项和公式直接求解; (2)a n =a ·q
n -1
,利用等比数列前n 项和公式直接求解;
(3)a n =b n ±c n ,数列{b n },{c n }是等比数列或等差数列,采用分组求和法求{a n }的前n 项和; (4)a n =b n ·c n ,数列{b n },{c n }分别是等比数列和等差数列,采用错位相减法求和. 【例2】 (扬州市2017届高三上学期期末)已知数列{a n }与{b n }的前n 项和分别为A n 和B n ,且对任意n ∈N *
,a n +1-a n =2(b n +1-b n )恒成立. (1)若A n =n 2
,b 1=2,求B n ; (2)若对任意n ∈N *
,都有a n =B n 及b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+…+b n +1a n a n +1<1
3
成立,求正实数b 1的取值范围;
(3)若a 1=2,b n =2n ,是否存在两个互不相等的整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t
B t
成等差数列?若存在,求出s ,t 的值;若不存在,请说明理由.
【导学号:56394102】
[解] (1)因为A n =n 2
,所以a n =⎩⎪⎨⎪⎧
1,n =1,n 2- n -1 2
,n ≥2,
即a n =2n -1,
故b n +1-b n =1
2(a n +1-a n )=1,所以数列{b n }是以2为首项,1为公差的等差数列,
所以B n =n ·2+12·n ·(n -1)·1=12n 2+3
2
n .
(2)依题意B n +1-B n =2(b n +1-b n ),即b n +1=2(b n +1-b n ),即
b n +1
b n
=2, 所以数列{b n }是以b 1为首项,2为公比的等比数列,所以a n =B n =1-2n
1-2
×b 1=b 1(2n
-1),
所以b n +1a n a n +1=2n
b 1 2n -1 · 2n +1-1

因为b n +1a n a n +1=b 1·2n
b 1 2n -1 ·b 1 2n +1-1
=1b 1⎝ ⎛⎭⎪⎫1
2n -1-12n +1-1 所以
b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+…+b n +1
a n a n +1
=1b 1⎝ ⎛⎭⎪⎫121-1-12n +1-1,所以1b 1⎝ ⎛⎭⎪⎫1
21-1-12n +1-1<13恒成立,
即b 1>3⎝ ⎛⎭⎪⎫1-12n +1-1,所以b 1≥3.
(3)由a n +1-a n =2(b n +1-b n )得:a n +1-a n =2
n +1

所以当n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1 =2n
+2
n -1
+…+23+22+2=2
n +1
-2,
当n =1时,上式也成立, 所以A n =2
n +2
-4-2n ,又B n =2
n +1
-2,
所以A n B n =2n +2-4-2n 2n +1-2=2-n 2n -1

假设存在两个互不相等的整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t
B t
成等差数列, 等价于121
-1,s 2s -1,t 2t -1成等差数列,即2s 2s -1=121-1+t
2t -1
, 即
2s 2s
-1=1+t 2t -1,因为1+t 2t -1>1,所以2s 2s -1
>1,即2s
<2s +1, 令h (s )=2s
-2s -1(s ≥2,s ∈N *
),则h (s +1)-h (s )=2s
-2>0所以h (s )递增, 若s ≥3,则h (s )≥h (3)=1>0,不满足2s
<2s +1,所以s =2, 代入2s 2s -1=121-1+t 2t -1得2t
-3t -1=0(t ≥3),
当t =3时,显然不符合要求;
当t ≥4时,令φ(t )=2t
-3t -1(t ≥4,t ∈N *
),则同理可证φ(t )递增,所以φ(t )≥φ(4)=3>0, 所以不符合要求.
所以,不存在正整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t
成等差数列.
[点评] 裂项相消法求和就是将数列中的每一项裂成两项或多项,使这些裂开的项出现有规律的相互抵消,要注意消去了哪些项,保留了哪些项.从而达到求和的目的.要注意的是裂项相消法的前提是数列中的每一项均可分裂成一正一负两项,且在求和过程中能够前后相互抵消.。

相关文档
最新文档