初中数学全等三角形辅助线技巧范文

合集下载

全等三角形经典题型——辅助线问题

全等三角形经典题型——辅助线问题

全等三角形问题中常见的辅助线的作法(含答案) 总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,D C BAED F CB A利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

全等三角形经典题型辅助线

全等三角形经典题型辅助线

全等三角形常见辅助线作法【例1】.已知:如图6,△BCE 、△ACD 分别是以BE 、AD 为斜边的直角三角形,且BE AD =,△CDE 是等边三角形.求证:△ABC 是等边三角形.【例2】、如图,已知BC > AB ,AD=DC 。

BD 平分∠ABC 。

求证:∠A+∠C=180°.一、线段的数量关系: 通过添加辅助线构造全等三角形转移线段到一个三角形中证明线段相等。

1、倍长中线法【例. 3】如图,已知在△ABC 中,90C ︒∠=,30B ︒∠=,AD 平分BAC ∠,交BC 于点D 。

求证:2BD CD =证明:延长DC 到E ,使得CE=CD ,联结AE ∵∠ADE=60°∵∠C=90° ∴△ADE 为等边三角形 ∴AC ⊥CD ∴AD=DE ∵CD=CE ∵DB=DA∴AD=AE ∴BD=DE ∵∠B=30°∠C=90° ∴BD=2DC ∴∠BAC=60° ∵AD 平分∠BAC ∴∠BAD=30°∴DB=DA ∠ADE=60°DCBADCB EA【例 4.】 如图,D 是ABC ∆的边BC 上的点,且CD AB =,ADB BAD ∠=∠,AE 是ABD ∆的中线。

求证:2AC AE =。

证明:延长AE 到点F,使得EF=AE 联结DF在△ABE 和△FDE 中 ∴∠ADC=∠ABD+∠BDA BE =DE ∵∠ABE=∠FDE∠AEB=∠FED ∴∠ADC=∠ADB+∠FDE AE=FE 即 ∠ADC = ∠ADF ∴△ABE ≌ △FDE (SAS ) 在△ADF 和△ADC 中 ∴AB=FD ∠ABE=∠FDE AD=AD ∵AB=DC ∠ADF = ∠ADC ∴ FD = DC DF =DC∵∠ADC=∠ABD+∠BAD ∴△ ADF ≌ ADC(SAS) ∵ADB BAD ∠=∠ ∴AF=AC ∴AC=2AE【变式练习】、 如图,△ABC 中,BD=DC=AC ,E 是DC 的中点,求证:AD 平分∠BAE.【小结】熟悉法一、法三“倍长中线"的辅助线包含的基本图形“八字型"和“倍长中线”两种基本操作方法,倍长中线,或者倍长过中点的一条线段以后的对于解决含有过中点线段有很好的效果。

构造全等三角形添加辅助线的方法

构造全等三角形添加辅助线的方法

构造全等三角形添加辅助线的方法构造全等三角形是初中数学中的一个重要内容,理解并掌握构造全等三角形的方法对同学们建立良好的几何直观和提高几何证明能力等方面有很大帮助。

添加辅助线是构造全等三角形的重要方法之一。

本文列举了10条关于构造全等三角形添加辅助线的方法,并详细描述了每一种方法的步骤和原理。

一、通过中位线构造全等三角形步骤:1、作出一个三角形ABC和它的一条中位线AD;2、将角BAD和角ACD作为两个角,作一个新的三角形BAD,使它的对边和AC平行;3、证明三角形BAC和三角形BAD全等。

原理:两个平行线截一组平行于它们的直线形成的线段,具有相等的长度。

二、通过角平分线构造全等三角形步骤:1、作出一个三角形ABC,以角A为中心画一条角平分线AE;2、将角EAB和角EAC作为两个角,分别连线得到三角形EAB和三角形EAC;3、证明三角形ABC和三角形EAB全等。

原理:在一个三角形中,一边上的角平分线将这条边分成两个相等的线段,同时将对角的两个角平分为两个相等的角。

三、通过三角形内角和不变构造全等三角形步骤:1、作出两个全等三角形ABC和DEF;2、在三角形ABC内部选取一个点M;3、以点M为中心,作一个半径等于EF的圆,在这个圆上分别找到两个点P、Q;4、连接点P、Q和点M,分别得到三角形AMP和BMQ;5、证明三角形AMP和三角形BMQ全等。

原理:三角形中角的和不变,即两个全等三角形中任意两个内角之和相等。

四、通过角平分线和垂线构造全等三角形步骤:1、作出一个三角形ABC,以角A为中心画一条角平分线AE,垂直于BC;2、在AE上选取一点G,将角GAB和角GAC作为两个角,分别连线得到三角形GAB和三角形GAC;3、以点B为中心,作一个半径等于CG的圆,在这个圆上分别找到两个点M、N;4、连接MN和点B,分别得到三角形MBC和NBC;5、证明三角形GAB和三角形MBC全等。

原理:在一个三角形中,角平分线和垂线的交点将底边分成相等的线段,在垂线上的任意一点到底边的两个端点距离相等。

辅助线的作法

辅助线的作法

例4.已知:如图4所示,AB∥CD, AD∥BC。
求证:AB=CD。
• 分析:图为四边形,我们只学了三角形的 有关知识,必须把它转化为三角形来解决。
• 证明:连接AC(或BD)。
注意:连接四边形的对角线,可把四边形的问题转化 成为三角形来解决。
A
D
B
图 4
C
• 例5.已知:如图5所示,在Rt△ABC中, AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD 的延长于E 。
8年级数学(上)专题复习 ——全等三角形常见辅助线作法
在初中数学学习中,如何添加辅助线是同学们经常 感到头疼的问题,许多同学常常因辅助线的添加方 法不当,造成解题困难。考试时也常因辅助线的添 法不当而导致既得不到本题的分数,又白白浪费了 考试时间。为了解决这个问题我根据多年初中几何 教学经验,把全等三角形的几种常见辅助线作法编 成一个“顺口溜”,现将该歌诀写出来奉献给同学
A ND
B
C
图 7
• 分析:由AB=DC,∠A=∠D,想到如取AD 的中点N,连接NB,NC,再由SAS公理有 △ABN≌△DCN,故BN=CN, ∠ABN=∠DCN。下面只需证∠NBC=∠NCB, 问题得证。
• 证明:取AD中点N,连接NB,NC。
• 注意:取线段中点构造全等三角形。
• 例8.已知:如图8所示,D、E为△ABC内两 点,
下面举出一些具体的例子说明如下:
• 例1.已知:如图1所示, AD为△ABC的中 线,且∠1=∠2,∠3=∠4。
• 求证:BE+CF>EF。
A
N
E B
1 2 3 4
D
图1
F C
• 分析:要证BE+CF>EF ,可利用三角形三 边关系定理证明,须把BE,CF,EF移到同 一个三角形中,而由已知∠1=∠2, ∠3=∠4, 可在角的两边截取相等的线段,利用全等 三角形的对应边相等,把EN,FN,EF移 到同个三角形中。

(完整版)几种证明全等三角形添加辅助线的方法

(完整版)几种证明全等三角形添加辅助线的方法

教学过程构造全等三角形几种方法在几何解题中,常常需要添加辅助线构造全等三角形,以沟通题设与结论之间的联系。

现分类加以说明。

一、延长中线构造全等三角形例1. 如图1,AD是△ABC的中线,求证:AB+AC>2AD。

证明:延长AD至E,使AD=DE,连接CE。

如图2。

∵AD是△ABC的中线,∴BD=CD。

又∵∠1=∠2,AD=DE,∴△ABD≌△ECD(SAS)。

AB=CE。

∵在△ACE中,CE+AC>AE,∴AB+AC>2AD。

二、沿角平分线翻折构造全等三角形例2. 如图3,在△ABC中,∠1=∠2,∠ABC=2∠C。

求证:AB+BD=AC。

证明:将△ABD沿AD翻折,点B落在AC上的E点处,即:在AC上截取AE=AB,连接ED。

如图4。

∵∠1=∠2,AD=AD,AB=AE,∴△ABD≌△AED(SAS)。

∴BD=ED,∠ABC=∠AED=2∠C。

而∠AED=∠C+∠EDC,∴∠C=∠EDC。

所以EC=ED=BD。

∵AC=AE+EC,∴AB+BD=AC。

三、作平行线构造全等三角形例3. 如图5,△ABC中,AB=AC。

E是AB上异于A、B的任意一点,延长AC到D,使CD=BE,连接DE交BC于F。

求证:EF=FD。

证明:过E作EM∥AC交BC于M,如图6。

则∠EMB=∠ACB,∠MEF=∠CDF。

∵AB=AC,∴∠B=∠ACB。

∴∠B=∠EMB。

故EM=BE。

∵BE=CD,∴EM=CD。

又∵∠EFM=∠DFC,∠MEF=∠CDF,∴△EFM≌△DFC(AAS)。

EF=FD。

四、作垂线构造全等三角形例4. 如图7,在△ABC中,∠BAC=90°,AB=AC。

M是AC边的中点。

AD ⊥BM交BC于D,交BM于E。

求证:∠AMB=∠DMC。

证明:作CF⊥AC交AD的延长线于F。

如图8。

∵∠BAC=90°,AD⊥BM,∴∠FAC=∠ABM=90°-∠BAE。

∵AB=AC,∠BAM=∠ACF=90°,∴△ABM≌△CAF(ASA)。

中考数学第四章 三角形 重难 微专项3 全等三角形中常用的辅助线技巧

中考数学第四章 三角形 重难 微专项3  全等三角形中常用的辅助线技巧
∵AD平分∠BAC,∴∠1=∠2.
= ,
在△ACD和△AED中,ቐ ∠1 = ∠2,
= ,
∴△ACD≌△AED,
∴∠AED=∠C=90°,CD=ED.
重难·微专项3 全等三角形中常用的辅助线技巧
例题
又AC=BC,∴∠B=45°,∴∠EDB=∠B=45°,
∴DE=BE,∴CD=BE.
∴∠DBE=60°,
1
∴BD= BE,
2
∴TF=2BD,即BF-AB=2BD.
重难·微专项3 全等三角形中常用的辅助线技巧
突破点2 旋转
运用旋转的全等变换,可以把分散的条件集中到一个三角形中.
模型1
绕定点旋转60°,构造全等三角形
如图,△ABC为等边三角形,点P在△ABC内,将△ABP绕点A逆时针旋转
明剩下的线段等于另一条短线段.
补短法:延长短线段,使其延长部分等于另一条短线段,然后证明延长
后的线段等于长线段(或延长短线段,使延长后的线段等于长线段,然
后证明延长部分等于另一条短线段).
重难·微专项3 全等三角形中常用的辅助线技巧
例题
例1
如图,在Rt△ABC中,∠C=90°,BC=AC,AD平分∠BAC交BC于点D.
60°,得到△ACP',则△ABP≌△ACP',且△APP'为等边三角形.
重难·微专项3 全等三角形中常用的辅助线技巧
例题
例2
如图,在四边形ABCD中,AB=BC,∠ABC=60°,∠ADC=30°,则线段
AD,CD和BD之间的数量关系为 AD2+CD2=BD2 .
重难·微专项3 全等三角形中常用的辅助线技巧
∵BA=BT,∠ABT=60°,

构造全等三角形的常用辅助线

构造全等三角形的常用辅助线

构造全等三角形的常用辅助线构造全等三角形的常用辅助线,这话题一提起来,大家可能就会有点小困惑,嘿嘿,别担心,咱们今天就轻松聊聊这个问题。

全等三角形可不是个冷冰冰的数学名词,它们就像是兄弟姐妹,形状和大小都一模一样,简直就是双胞胎嘛。

想象一下,两个三角形像在进行一场比赛,谁更帅、谁更精致,结果一看,哎呀,居然一模一样,真是让人捧腹大笑。

不过,咱们在构造这些全等三角形的时候,总得有点小技巧,这时候,辅助线就派上用场了。

说到辅助线,真是妙不可言!它们就像是你在厨房做菜时的调味品,有了它们,事情就变得容易多了。

比如说,咱们常用的第一条辅助线就是平行线,哦,这个家伙可厉害了!当你需要构造一个全等三角形,先画一条平行线,保证这条线与某一边平行,简直就是三角形的好搭档。

有时候你可能会觉得,平行线有点简单,但你要知道,简单就是美嘛。

它能帮你轻松搞定角度和边长的问题。

咱们再聊聊中线。

中线就像是三角形里的神秘使者,把顶点和对边的中点连接起来,真是个不可思议的角色!你只需要一笔,就能把整个三角形的秘密传递出来。

想象一下,两个全等三角形,通过中线一连接,简直就是传递信息的高手,瞬间让你明白了它们之间的关系,真是让人拍案叫绝啊。

还有哦,别忘了角平分线!这个角色可是很受欢迎的,尤其是在对称的情况下。

它就像是将三角形分成两个小部分的小刀,让两个部分显得一模一样。

这条线不仅可以帮助你找到角的对称点,还能让你在构造全等三角形时得心应手。

想象一下,画出这条线,结果一看,哇,真是神奇!两个三角形的角度完全吻合,仿佛在对你微笑,心里那个美滋滋呀。

当然了,辅助线不仅限于这些,咱们还有高线、外角平分线等等,个个都是高手,齐上阵,把构造全等三角形的难题轻松化解。

每条线都有自己的风格,就像咱们生活中的每个人,虽然有差异,但都能为这个世界添砖加瓦。

构造全等三角形,就像是一场精彩的表演,辅助线就是那些默默无闻的幕后英雄,少了它们,演出可就不那么精彩了。

几种证明全等三角形添加辅助线的方法

几种证明全等三角形添加辅助线的方法

几种证明全等三角形添加辅助线的方法在几何证明中,证明两个三角形全等是常见的任务之一、为了证明两个三角形全等,可以利用几何性质和辅助线的方法。

以下是几种常见的证明全等三角形添加辅助线的方法。

方法一:辅助线连接两个三角形的顶点和中点。

假设有两个三角形ABC和DEF,我们要证明它们全等。

我们可以通过在两个三角形中选择一对对应的顶点,然后通过连接这对顶点和中点来添加辅助线。

例如,可以连接点A和B的中点M,以及连接点D和E的中点N。

通过连接辅助线MN,我们可以观察到三角形AMN和DMN是全等的,因为它们具有相等的边MN和相等的边角(由三角形ABC和DEF的边和角的性质可得)。

由于三角形AMN和DNM的对应边和对应角也相等,我们可以得出结论,三角形ABC和DEF是全等的。

方法二:辅助线连接两个三角形的顶点和底边中点。

假设有两个三角形ABC和DEF,我们要证明它们全等。

我们可以通过在两个三角形中选择一对对应的顶点,然后通过连接这对顶点和底边的中点来添加辅助线。

例如,可以连接点A和D的中点M,以及连接点B和E 的中点N。

通过连接辅助线MN,我们可以观察到三角形AMN和DMN是全等的,因为它们具有相等的边MN和相等的边角(由三角形ABC和DEF的边和角的性质可得)。

由于三角形AMN和DNM的对应边和对应角也相等,我们可以得出结论,三角形ABC和DEF是全等的。

方法三:辅助线连接两个三角形的对应角的角平分线。

假设有两个三角形ABC和DEF,我们要证明它们全等。

我们可以通过连接每个三角形对应角的角平分线来添加辅助线。

通过连接辅助线,我们可以得到一些相似的三角形。

根据相似三角形的性质,我们可以得到一些相等的边和角。

通过观察这些相等的边和角,我们可以得出结论,三角形ABC和DEF是全等的。

方法四:辅助线连接两个三角形的中垂线。

假设有两个三角形ABC和DEF,我们要证明它们全等。

我们可以通过连接每个三角形的边的中点,然后连接这些中点的垂线来添加辅助线。

全等三角形辅助线方法总结

全等三角形辅助线方法总结

全等三角形-----辅助线图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

一、截长补短法(和,差,倍,分)例如:1,已知,如图,在△ABC中,∠C=2∠B,∠1=∠2。

求证:AB=AC+CD。

2,已知:如图,AC∥BD,AE和BE分别平分∠CAB和∠DBA,CD过点E.求证:(1)AE⊥BE;(2)AB=AC+BD.二、图中含有已知线段的两个图形显然不全等(或图形不完整)时,添加公共边(或一其中一个图形为基础,添加线段)构建图形。

(公共边,公共角,对顶角,延长,平行)例如:已知:如图,AC、BD相交于O点,且AB=DC,AC=BD,求证:∠A=∠D。

三、延长已知边构造三角形例如:如图6:已知AC=BD,AD⊥AC于A ,BC⊥BD于B,求证:AD=BCDBA110图OA BC DE6图O四、遇到角平分线,可自角平分线上的某个点向角的两边作垂线(“对折”全等)例如:已知,如图,AC 平分∠BAD ,CD=CB ,AB>AD 。

求证:∠B+∠ADC=180。

五、遇到中线,延长中线,使延长段与原中线等长(“旋转”全等)例如:1如图,AD 为 △ABC 的中线,求证:AB +AC >2AD 。

(三角形一边上的中线小 于其他两边之和的一半)2,已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 。

3,如图,已知:AD 是△ABC 的中线,且CD=AB ,AE 是△ABD 的中线,求证:AC=2AE.六、遇到垂直平分线,常作垂直平分线上一点到线段两端的连线(可逆 :遇到两组线段相等,可试着连接垂直平分线上的点)例如:在△ABC 中,∠ACB=90,AC=BC,D 为△ABC 外一点,且AD=BD,DE ⊥AC 交AC 的延长 线于E,求证:DE=AE+BC 。

全等三角形六种辅助线方法及例题

全等三角形六种辅助线方法及例题

全等三角形六种辅助线方法及例题全等三角形是初中数学中一个非常重要的概念,掌握全等三角形的判定方法和辅助线方法对于解题至关重要。

本文将介绍全等三角形的六种辅助线方法,并结合例题进行详细讲解。

一、辅助线法1.等角分线法:将三角形内角的平分线相互交点构成的点与三角形的另外一个顶点相连,得到一条辅助线。

这条辅助线将三角形分成两个等角的小三角形,从而得到相似或全等三角形。

2.中线法:将三角形任意两边的中点相连,得到三角形的中线。

相等的中线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。

3.高线法:将三角形内任意一条边的垂线向另外两边引出,得到三角形的高线。

相等的高线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。

4.角平分线法:将三角形内角的平分线相互交点构成的点相连,得到三角形的角平分线。

相等的角平分线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。

5.角平分线中垂线法:将三角形内角的平分线的中垂线相互交点构成的点相连,得到三角形的角平分线中垂线。

相等的角平分线中垂线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。

6.外心连线法:将三角形外接圆心与三角形三个顶点分别相连,得到三条辅助线。

这三条辅助线相等,将三角形分成三个面积相等的小三角形,从而得到相似或全等三角形。

二、例题解析1.已知△ABC,点D,E分别为BC,AB边上的中点,连接AD,BE相交于点F,求证:△DEF≌△ABC。

解析:由题意可知,△ABC是由两个等腰三角形组成的,因此可使用中线法证明两个三角形的全等。

由于D,E分别是BC,AB边上的中点,因此DE是AC中线,即DE=1/2AC;同理,AE是BC中线,AF=1/2BC。

因此,△ADB和△AEC是等腰三角形,且AD=EC,AB=AB,∠BAC=∠BAC,因此△ADB≌△AEC。

又因为DE是AC中线,BF是AE中线,因此DE=1/2AC,BF=1/2AE。

全等三角形中做辅助线的技巧

全等三角形中做辅助线的技巧

全等三角形中做辅助线的技巧口诀:三角形图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看线段垂直平分线,常向两端把线连。

线段和差及倍半,延长缩短可试验线段和差不等式,移到同一三角去。

三角形中两中点,连接则成中位线三角形中有中线,延长中线等中线。

一、由角平分线想到的辅助线口诀:图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

角平分线具有两条性质:a、对称性;b、角平分线上的点到角两边的距离相等。

对于有角平分线的辅助线的作法,一般有两种。

①从角平分线上一点向两边作垂线;②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。

通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。

至于选取哪种方法,要结合题目图形和已知条件。

与角有关的辅助线(—)、截取构全等如图1-1,/ AOC h BOC如取OE=OF并连接DE DF,则有△ OED^A OFD从而为我们证明线段、角相等创造了条件。

例1. 如图1-2,AB//CD,BE平分/ BCD CE平分/ BCD 点E 在AD上,求证:BC=AB+CD例2. 已知:如图1-3,AB=2AC Z BAD=/ CAD DA=DB 求证DC! AC D C例3. 已知:如图1-4,在△ ABC中,/ C=2/ B,AD平分/ BAC求证:AB-AC=CD分析:此题的条件中还有角的平分线,在证明中还要用到构造全等三角形,此题还是证明线段的和差倍分问题。

用到的是截取法来证明的,在长的线段上截取短的线段,来证明。

试试看可否把短的延长来证明呢?练习1. 已知在△ ABC中, AD平分/ BAC / B=图1-42/C,求证:AB+BD=AC2.已知:在厶ABC中,/ CAB=/ B,AE平分/ CAB交BC于E,AB=2AC 求证:AE=2CE3. 已知:在厶ABC中, AB>AC,A为/ BAC的平分线,M为AD上任一点求证:BM-CM>AB-AC4. 已知:D是厶ABC的/BAC勺外角的平分线AD上的任一点,连接DB DC 求证:BD+CD>AB+AC(二)、角分线上点向角两边作垂线构全等过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题。

三角形画辅助线的技巧总结

三角形画辅助线的技巧总结

三角形画辅助线的技巧总结
1. 哎呀呀,碰到三角形一边的中点,那就要想到中位线呀!这不,在三角形 ABC 中,点 D 是 AB 的中点,那咱就赶紧把 CD 中位线给画上呀,那解决问题可就容易多啦,懂了不?
2. 嘿哟,如果有等腰三角形,那就在底边上画个高呀!比如在等腰三角形ABC 中,AB=AC,那就在底边 BC 上画个高 AD 呀,这一画,很多问题不就一目了然啦?
3. 哇塞,如果三角形里有角平分线,那就在角平分线上找点做垂线呀!就像在三角形 ABC 中,AD 是角平分线,咱就在上面找个点 E 作 BC 的垂线,这不就找到突破点啦?
4. 你看呀,当三角形里有直角的时候,可别忘记画斜边中线呀!像是在直角三角形 ABC 中,角 C 是直角,那赶紧把斜边 AB 的中线画出来呀,是不是很妙呀?
5. 嘿,要是有两个相似三角形在一起,那就连接对应点呀!比如三角形ABC 和三角形 A'B'C'相似,那把 AA',BB',CC'连接起来呀,会有新发现哦!
6. 哎呀呀,如果想证明线段相等,那就找全等三角形呀,然后把辅助线画上帮助证明呀!就好像知道 AB=CD,那就通过画辅助线找到对应的全等三角形呀,是不是很机智?
7. 哇哦,三角形里有特殊角度的时候,也可以通过画辅助线构造特殊图形呀!像三角形中有 30 度角,那是不是可以构造直角三角形呀,很神奇吧?
8. 嘿哟,如果需要把三角形拆分或组合,那就大胆地画辅助线呀!比如把一个大三角形分成几个小三角形来分析呀,多有趣呀!
9. 总之呢,画辅助线可是解决三角形问题的一把利器呀!要根据具体情况灵活运用呀,学会这些技巧,三角形问题都不怕啦!。

初中数学全等三角形辅助线技巧

初中数学全等三角形辅助线技巧

例1:如图,Δ是等腰直角三角形,∠90°,平分∠交于点D,垂直于,交的延长线于点E。

求证:2。

思路分析:1〕题意分析:此题考察等腰三角形的三线合一定理的应用2〕解题思路:要求证2,可用加倍法,延长短边,又因为有平分∠的条件,可以和等腰三角形的三线合一定理结合起来。

解答过程:证明:延长,交于点F,在Δ和Δ中,∵∠1=∠2,,∠∠90°,∴Δ≌Δ,∴,从而2。

又∠1+∠∠3+∠90°,故∠1=∠3。

在Δ和Δ中,∵∠1=∠3,,∠∠90°,∴Δ≌Δ,∴,∴2。

解题后的思考:等腰三角形“三线合一〞性质的逆命题在添加辅助线中的应用不但可以提高解题的能力,而且还加强了相关知识点和不同知识领域的联系,为同学们开拓了一个广阔的探索空间;并且在添加辅助线的过程中也蕴含着化归的数学思想,它是解决问题的关键。

〔2〕假设遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转〞。

例2:如图,Δ中,是∠的平分线,又是边上的中线。

求证:Δ是等腰三角形。

思路分析:1〕题意分析:此题考察全等三角形常见辅助线的知识。

2〕解题思路:在证明三角形的问题中特别要注意题目中出现的中点、中线、中位线等条件,一般这些条件都是解题的突破口,此题给出了又是边上的中线这一条件,而且要求证,可倍长得全等三角形,从而问题得证。

解答过程:证明:延长到E,使,连接。

又因为是边上的中线,∴又∠∠Δ≌Δ,故,∠∠2,∵是∠的平分线∴∠1=∠2,∴∠1=∠E,∴,从而,即Δ是等腰三角形。

解题后的思考:题目中如果出现了三角形的中线,常加倍延长此线段,再将端点连结,便可得到全等三角形。

〔3〕遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折〞,所考知识点常常是角平分线的性质定理或逆定理。

例3:,如图,平分∠,,>。

求证:∠∠180°。

三角形全等证明常用辅助线作法(倍长中线、截长补短)

三角形全等证明常用辅助线作法(倍长中线、截长补短)

倍长中线专题初中阶段三角形有三条重要的、也是最基本的线段:三角形的高线、中线、角平分线。

三种线段各有其重要信息反馈,就中线而言,它具有的功能:①必有相等的线段②必有相等的面积③必有倍长中线构成全等。

本专题只讨论倍长中线的问题。

【基本原理】:如图所示,AD是△ABC的中线,延长AD至E点,使DE=AD,得到△ADC≌△EDB。

口诀:图形有中线,倍长延中线,连接另一端,全等尽呈现。

【模型实例】:如图,在△ABC 中,AD 是BC 边的中线,E 是AD 上一点,连接BE 并延长交AC 于F 点,AF=EF ,求证:AC=BE证明: 如图所示。

延长AD 至G 点,使DG=AD ,连接BG 。

在△ADC 与△GDB 中,⎪⎩⎪⎨⎧=∠=∠=CD BD GDB ADC GD AD∴△ADC ≌△GDB∴BG =AC ,∠1=∠G又因为AF=EF∴∠1=∠2=∠3∴∠3=∠G∴BG=BE (等角对等边)∴AC=BE②证全等①作倍长中线 ③列出需要用的结果④转化替代 ⑤得出结果【练习1】:如图,在在△ABC中,D为BC的中点,求证:AD+>AB2AC【练习2】:如图,在△ABC中,D为B C的中点,且AD是角平分线。

求证:AB=AC【练习3】:AD是△ABC的中线,分别以AB边、AC边为直角边向外作等腰直角三角形,求证:EF=2AD【练习4】:在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于F点。

试探究线段AB与AF、CF之间的数量关系,并证明你的结论。

截长补短专题要证明两条线段之和等于第三条线段,可以采用“截长补短”法。

①截长法:把较长的线段截取一段等于两较短线中的一条;②补短法:把两条较短的线段补成一条,再证与长线段相等。

【模型实例】:如图,△ABC中,∠1=∠2,∠B=2∠C。

求证:AC=AB+BD 方法一:截长(利用角平分线构建全等三角形)分析:如图,在AC上截AE=AB,连接DE。

初二数学证明三角形全等做辅助线的方法

初二数学证明三角形全等做辅助线的方法

初二数学证明三角形全等做辅助线的方法我刚学初二数学证明三角形全等的时候,真是一头雾水,尤其是做辅助线这部分。

一开始我也是瞎摸索,就像在黑暗里找东西一样。

我试过连接两点作辅助线。

比如说有时候给了一个四边形里有三角形,看起来乱乱的,我就想着那我把四边形里某个关键的对角连起来看看,就像给它开出一条路似的。

我遇到一个题,是两个三角形看起来有点像,但又缺条件来证明全等。

我把四边形里两个两点一连,嘿,一下子就把隐藏的一些边或者角的关系给挖掘出来了。

我还试过作平行线作辅助线呢。

这就好比给两个图形搭一个一样高度的架子,让它们能更方便地比较。

有一次一个三角形在一个很奇怪的图形组合里,我怎么看怎么不会证全等。

我想了好久,后来试着作了一条平行线,突然就发现那些对等的角就像排队一样整齐地出现在眼前。

但是这也不是每次都行得通的,有好多时候我作了平行线,却发现走了弯路,根本没用。

当时心里那个沮丧啊。

还有垂直平分线做辅助线的情况。

就像是把一个东西在中间拉条对称线一样。

比如说在直角三角形里的一些全等证明。

我当时没注意直角这个特殊条件,到处乱试辅助线,后来发现把斜边的垂直平分线作出来后,就能把一些等量关系找到了。

有时候见到中点也要特别注意,可以倍长中线来作辅助线。

这就好比把一条绳子突然拉长,原来隐藏的关系就暴露了。

我之前有次就是见到中点了,没当回事,按平常的思路去做辅助线,结果卡在那里。

后来重新看题,发现把中线一延长,那些对应的边和角就能和另一个三角形建立关系了。

总结起来呀,做辅助线真的要多观察图形的特点,比如有没有特殊角,有没有中点,是不是在什么特殊的图形组合里。

多尝试不同的方法,就像试不同的钥匙开一把锁一样,有时候第一眼看过去觉得没希望的方法,试了试可能就成功了呢。

虽然有时候会失败,但失败了不怕,多思考为什么不行,慢慢就会找到感觉了。

完整版)全等三角形常用辅助线做法

完整版)全等三角形常用辅助线做法

完整版)全等三角形常用辅助线做法证明三角形全等时,有时需要添加辅助线,对于初学几何证明的学生来说,这往往是一个难点。

下面介绍证明全等时常见的五种辅助线,供同学们研究时参考。

一、截长补短当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用截长补短的办法。

具体作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。

这种作法适用于证明线段的和、差、倍、分等类的题目。

例如,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB。

要证明AC=AE+CD,因为AE、CD不在同一直线上,所以在AC上截取AF=AE,只要证明CF=CD即可。

具体证明过程为:在AC上截取AF=AE,连接OF。

由于AD、CE分别平分∠BAC、∠ACB,∠ABC=60°,因此∠1+∠2=60°,∠4=∠6=∠1+∠2=60°。

显然,△AEO≌△AFO,因此∠5=∠4=60°,∠7=180°-(∠4+∠5)=60°。

在△DOC与△FOC中,∠6=∠7=60°,∠2=∠3,OC=OC,因此△DOC≌△FOC,CF=CD,所以XXX。

另一个例子是在图甲中,AD∥BC,点E在线段AB上,∠ADE=∠CDE,∠DCE=∠ECB。

要证明CD=AD+BC。

因为结论是CD=AD+BC,可以考虑用“截长补短法”中的“截长”,即在CD上截取CF=CB,只要再证明DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。

具体证明过程为:在CD上截取CF=BC,如图乙,因此△XXX≌△BCE(SAS),∴∠2=∠1.又因为AD∥BC,∴∠ADC+∠BCD=180°,∴∠DCE+∠XXX°,∴∠2+∠3=90°,∠1+∠4=90°,∴∠3=∠4.在△FDE与△ADE中,∴△XXX≌△ADE(ASA),∴DF=DA,因此CD=DF+CF,∴XXX。

全等三角形辅助线总结3

全等三角形辅助线总结3

图2-1D CBA图3-1FED CB A三角形全等辅助线探索一、基础知识点:1、在利用三角形三边关系证明线段不等关系时,若直接证不出来,可连接两点或延长某边构成三角 典型例题1-1:D 、E 为△ABC 内两点,求证:AB +AC >BD +DE +CE.2、在利用三角形的外角大于任何和它不相邻的内角时如直接证不出来时,可连接两点或延长某边,构造三角形,使求证的大角在某个三角形的外角的位置上,小角处于这个三角形的内角位置上,再利用外角定理:例:如图2-1:已知D 为△ABC 内的任一点,求证:∠BDC >∠BAC 。

证明:由三角形内角和为180°可知:∠A=180°-∠ABC -∠ACB∠D=180°-∠DBC -∠DCB 又点D 为三角形ABC 内任意一点,可知:∠ABC>∠DBC、∠ACB>∠DCB∴∠ABC+∠ACB>∠DBC+∠DCB∴∠A=180°-∠ABC -∠ACB<∠D=180°-∠DBC -∠DCB,即∠BDC>∠BAC3、有角平分线时,通常在角的两边截取相等的线段,构造全等三角形,如: 例:如图3-1:已知AD 为△ABC 的中线,且DE 平分∠ADB,DF 平分∠ADC, 求证:BE +CF >EF 。

过B 点作BG 平行AC 交FD 延长线于G,连接GF 因BG 平行AC ,则BD/CD=BG/CF=DG/DF又因D 是BC 中点即BD=DC ,则BG=CF,DG=DF因DE 、DF 分别平分∠ADB ,∠ADC,∠ADB+ADC=180度则∠EDF=∠EDA+∠ADf=∠ADB/2+∠ADC/2=(∠ADB+∠ADC)/2=180/2=90度 则∠EDG=180-∠EDF=180-90=90度又DE 为共边,DG=DF 则三角形EDG 与EDF 全等 则EG=EF因EG=EF,BG=CF ,EG<BE+BG (三角形两边之和大于第三边) 所以EF<BE+CF4、有以线段中点为端点的线段时,常延长加倍此线段,构造全等三角形。

全等三角形几何证明常用辅助线

全等三角形几何证明常用辅助线

全等三角形几何证明常用辅助线
辅助线证明三角形全等
一、辅助线定义
辅助线,又称辅助规则,是专门用来证明几何结论的辅助线,它可以
指向几何结论的前提或结果,以更清晰地证明几何结论。

二、辅助线用法
1.在证明三角形全等的情况下,用辅助线来证明角的相等性:用一条
辅助线平分角A,然后将辅助线平移到角B上,如果辅助线可以在角B上
的两点重合,则说明角A和角B是相等的。

2.在证明三角形全等的情况下,用辅助线来证明边的相等性:用一条
辅助线平分边AB,然后将辅助线平移到边CD上,如果辅助线可以在边CD
上的两点重合,则说明边AB和边CD是相等的。

3.在证明三角形全等的情况下,用辅助线来证明两个三角形的相等性:在三角形ABC中画出一条辅助线,然后将该辅助线平移到三角形CDE中,
如果辅助线可以在三角形CDE中的三个点重合,则说明两个三角形ABC和CDE是相等的。

三、辅助线证明三角形全等的步骤
1.识别出待证明的相关图形,并将其准确地表示在平面上。

2.根据定义,确定三角形全等的前提条件,并假设三角形全等。

3.画出两个三角形之间的辅助线,如果相交点都在两个三角形相交的
边上,证明该辅助线可以同时在两个三角形中存在。

全等三角形添加辅助线的方法

全等三角形添加辅助线的方法

全等三角形添加辅助线的方法全等三角形是指具有相等边长和相等内角的两个三角形。

在解决几何问题中,我们经常需要证明或利用全等三角形的性质。

为了更方便地使用全等三角形,我们可以使用辅助线来帮助我们找到全等三角形。

接下来,我将详细介绍几种添加辅助线的方法。

1.中点连线法:在一个三角形中,我们可以通过连接两个边的中点来构造一个平行边。

如果两个三角形的对应边都是平行的,并且两个三角形的第三边相等,那么这两个三角形是全等的。

因此,通过画出中点连线,我们可以找到两个全等的三角形。

例如,在一个三角形ABC中,我们可以通过连接边AB和AC的中点D和E来构造一个平行四边形DCBE。

然后,我们可以继续连接BE和CD,并连接AD和CE,这样就构成了两个全等三角形ADE和CDE。

通过使用这种方法,我们可以更方便地证明或利用全等三角形的性质。

2.高度法:对于一个三角形ABC,我们可以通过作其高来构造两个全等的三角形。

三角形ABC的高是指从顶点到对边的垂直线段。

如果两个三角形的高相等,并且它们的底边相等,那么这两个三角形是全等的。

因此,通过作两个三角形的高,我们可以找到两个全等的三角形。

例如,在一个三角形ABC中,我们可以通过作高AD和高BE来构造两个全等的三角形ABD和ACE。

通过使用这种方法,我们可以更方便地证明或利用全等三角形的性质。

3.角平分线法:对于一个三角形ABC,我们可以通过作角平分线来构造两个全等的三角形。

三角形ABC的角平分线是指从角的顶点到对边的线段,将角分为两个相等的角。

如果两个三角形的相应角相等,并且它们的底边相等,那么这两个三角形是全等的。

因此,通过作两个三角形的角平分线,我们可以找到两个全等的三角形。

例如,在一个三角形ABC中,我们可以通过作角平分线AD和角平分线BE来构造两个全等的三角形ADC和BEC。

通过使用这种方法,我们可以更方便地证明或利用全等三角形的性质。

4.相似三角形法:对于两个相似的三角形ABC和DEF,如果它们的对应边比例相等,那么它们是全等的。

三角形全等添加辅助线的技巧和方法

三角形全等添加辅助线的技巧和方法

三角形全等添加辅助线的技巧和方法嘿,朋友们!今天咱就来聊聊三角形全等添加辅助线的那些超棒技巧和方法。

比如说,当遇到两个看起来不太好直接证明全等的三角形时,咱就可以巧妙地加条辅助线呀!就好像走在迷宫里突然找到了一条捷径一样。

比如在一个三角形里,有一条边特别长,而另一个三角形里对应的边较短,这时候怎么办呢?咱就在长边上截取一段,让它和短边一样长,这不就多了个等量关系嘛!
还有哦,要是两个三角形有共同的边或者角,那辅助线简直就是开启全等大门的钥匙呀!像有两个三角形,它们有一条公共边,但是其他条件不好用,这时候把公共边延长或者作垂线,哇塞,全等的条件可能一下子就冒出来啦!比如说小明和小红一起做数学题,小明就被一道题难住了,后来小红提醒他加个辅助线,结果一下子就豁然开朗了,这不就像是在黑暗中找到了明灯嘛!
总之呀,三角形全等添加辅助线真的太神奇啦,只要你掌握了这些技巧和方法,那些原本难搞的题目就会变得轻而易举啦!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学全等三角形辅助线技巧范文集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。

求证:BD=2CE。

思路分析:1)题意分析:本题考查等腰三角形的三线合一定理的应用2)解题思路:要求证BD=2CE,可用加倍法,延长短边,又因为有BD平分∠ABC 的条件,可以和等腰三角形的三线合一定理结合起来。

解答过程:证明:延长BA,CE交于点F,在ΔBEF和ΔBEC中,∵∠1=∠2,BE=BE,∠BEF=∠BEC=90°,∴ΔBEF≌ΔBEC,∴EF=EC,从而CF=2CE。

又∠1+∠F=∠3+∠F=90°,故∠1=∠3。

在ΔABD和ΔACF中,∵∠1=∠3,AB=AC,∠BAD=∠CAF=90°,∴ΔABD≌ΔACF,∴BD=CF,∴BD=2CE。

解题后的思考:等腰三角形“三线合一”性质的逆命题在添加辅助线中的应用不但可以提高解题的能力,而且还加强了相关知识点和不同知识领域的联系,为同学们开拓了一个广阔的探索空间;并且在添加辅助线的过程中也蕴含着化归的数学思想,它是解决问题的关键。

(2)若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。

例2:如图,已知ΔABC中,AD是∠BAC的平分线,AD又是BC边上的中线。

求证:ΔABC是等腰三角形。

思路分析:1)题意分析:本题考查全等三角形常见辅助线的知识。

2)解题思路:在证明三角形的问题中特别要注意题目中出现的中点、中线、中位线等条件,一般这些条件都是解题的突破口,本题给出了AD又是BC边上的中线这一条件,而且要求证AB=AC,可倍长AD得全等三角形,从而问题得证。

解答过程:证明:延长AD到E,使DE=AD,连接BE。

又因为AD是BC边上的中线,∴BD=DC又∠BDE=∠CDAΔBED≌ΔCAD,故EB=AC,∠E=∠2,∵AD是∠BAC的平分线∴∠1=∠2,∴∠1=∠E,∴AB=EB,从而AB=AC,即ΔABC是等腰三角形。

解题后的思考:题目中如果出现了三角形的中线,常加倍延长此线段,再将端点连结,便可得到全等三角形。

(3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理。

例3:已知,如图,AC平分∠BAD,CD=CB,AB>AD。

求证:∠B+∠ADC=180°。

思路分析:1)题意分析:本题考查角平分线定理的应用。

2)解题思路:因为AC是∠BAD的平分线,所以可过点C作∠BAD的两边的垂线,构造直角三角形,通过证明三角形全等解决问题。

解答过程:证明:作CE⊥AB于E,CF⊥AD于F。

∵AC平分∠BAD,∴CE=CF。

在Rt△CBE和Rt△CDF中,∵CE=CF,CB=CD,∴Rt△CBE≌Rt△CDF,∴∠B=∠CDF,∵∠CDF+∠ADC=180°,∴∠B+∠ADC=180°。

解题后的思考:①关于角平行线的问题,常用两种辅助线;②见中点即联想到中位线。

(4)过图形上某一点作特定的平行线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”例4:如图,ΔABC中,AB=AC,E是AB上一点,F是AC延长线上一点,连EF交BC 于D,若EB=CF。

求证:DE=DF。

思路分析:1)题意分析:本题考查全等三角形常见辅助线的知识:作平行线。

2)解题思路:因为DE、DF所在的两个三角形ΔDEB与ΔDFC不可能全等,又知EB=CF,所以需通过添加辅助线进行相等线段的等量代换:过E作EG//CF,构造中心对称型全等三角形,再利用等腰三角形的性质,使问题得以解决。

解答过程:证明:过E作EG//AC交BC于G,则∠EGB=∠ACB,又AB=AC,∴∠B=∠ACB,∴∠B=∠EGB,∴∠EGD=∠DCF,∴EB=EG=CF,∵∠EDB=∠CDF,∴ΔDGE≌ΔDCF,∴DE=DF。

解题后的思考:此题的辅助线还可以有以下几种作法:例5:△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于P,BQ平分∠ABC 交AC于Q,求证:AB+BP=BQ+AQ。

思路分析:1)题意分析:本题考查全等三角形常见辅助线的知识:作平行线。

2)解题思路:本题要证明的是AB+BP=BQ+AQ。

形势较为复杂,我们可以通过转化的思想把左式和右式分别转化为几条相等线段的和即可得证。

可过O作BC的平行线。

得△ADO≌△AQO。

得到OD=OQ,AD=AQ,只要再证出BD=OD就可以了。

解答过程:证明:如图(1),过O作OD∥BC交AB于D,∴∠ADO=∠ABC=180°-60°-40°=80°,又∵∠AQO=∠C+∠QBC=80°,∴∠ADO=∠AQO,又∵∠DAO=∠QAO,OA=AO,∴△ADO≌△AQO,∴OD=OQ,AD=AQ,又∵OD∥BP,∴∠PBO=∠DOB,又∵∠PBO=∠DBO,∴∠DBO=∠DOB,∴BD=OD,又∵∠BPA=∠C+∠PAC=70°,∠BOP=∠OBA+∠BAO=70°,∴∠BOP=∠BPO,∴BP=OB,∴AB+BP=AD+DB+BP=AQ+OQ+BO=AQ+BQ。

解题后的思考:(1)本题也可以在AB上截取AD=AQ,连OD,构造全等三角形,即“截长法”。

(2)本题利用“平行法”的解法也较多,举例如下:①如图(2),过O作OD∥BC交AC于D,则△ADO≌△ABO从而得以解决。

④如图(5),过P作PD∥BQ交AC于D,则△ABP≌△ADP从而得以解决。

小结:通过一题的多种辅助线添加方法,体会添加辅助线的目的在于构造全等三角形。

而不同的添加方法实际是从不同途径来实现线段的转移的,体会构造的全等三角形在转移线段中的作用。

从变换的观点可以看到,不论是作平行线还是倍长中线,实质都是对三角形作了一个以中点为旋转中心的旋转变换构造了全等三角形。

(5)截长法与补短法,具体作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。

这种作法,适合于证明线段的和、差、倍、分等类的题目。

例6:如图甲,AD∥BC,点E在线段AB上,∠ADE=∠CDE,∠DCE=∠ECB。

求证:CD=AD+BC。

思路分析:1)题意分析:本题考查全等三角形常见辅助线的知识:截长法或补短法。

2)解题思路:结论是CD=AD+BC,可考虑用“截长补短法”中的“截长”,即在CD上截取CF=CB,只要再证DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。

解答过程:证明:在CD上截取CF=BC,如图乙∴△FCE≌△BCE(SAS),∴∠2=∠1。

又∵AD∥BC,∴∠ADC+∠BCD=180°,∴∠DCE+∠CDE=90°,∴∠2+∠3=90°,∠1+∠4=90°,∴∠3=∠4。

在△FDE与△ADE中,∴△FDE≌△ADE(ASA),∴DF=DA,∵CD=DF+CF,∴CD=AD+BC。

试题答案1、分析:因为平角等于180°,因而应考虑把两个不在一起的角通过全等转化成为平角,图中缺少全等的三角形,因而解题的关键在于构造直角三角形,可通过“截长法或补短法”来实现。

证明:过点D作DE垂直BA的延长线于点E,作DF⊥BC于点F,如图1-2∴Rt△ADE≌Rt△CDF(HL),∴∠DAE=∠DCF。

又∠BAD+∠DAE=180°,∴∠BAD+∠DCF=180°,即∠BAD+∠BCD=180°2、分析:与1相类似,证两个角的和是180°,可把它们移到一起,让它们成为邻补角,即证明∠BCP=∠EAP,因而此题适用“补短”进行全等三角形的构造。

证明:过点P作PE垂直BA的延长线于点E,如图2-2∴Rt△APE≌Rt△CPD(SAS),∴∠PAE=∠PCD又∵∠BAP+∠PAE=180°。

∴∠BAP+∠BCP=180°3、分析:从结论分析,“截长”或“补短”都可实现问题的转化,即延长AC至E 使CE=CD,或在AB上截取AF=AC。

证明:方法一(补短法)延长AC到E,使DC=CE,则∠CDE=∠CED,如图3-2∴△AFD≌△ACD(SAS),∴DF=DC,∠AFD=∠ACD。

又∵∠ACB=2∠B,∴∠FDB=∠B,∴FD=FB。

∵AB=AF+FB=AC+FD,∴AB=AC+CD。

4、证明:(方法一)将DE两边延长分别交AB、AC于M、N,在△AMN中,AM+AN>MD+DE+NE;①在△BDM中,MB+MD>BD;②在△CEN中,CN+NE>CE;③由①+②+③得:AM+AN+MB+MD+CN+NE>MD+DE+NE+BD+CE∴AB+AC>BD+DE+EC(方法二:图4-2)延长BD交AC于F,延长CE交BF于G,在△ABF、△GFC和△GDE中有:AB+AF>BD+DG+GF①GF+FC>GE+CE②DG+GE>DE③由①+②+③得:AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DE∴AB+AC>BD+DE+EC。

5、分析:要证AB+AC>2AD,由图想到:AB+BD>AD,AC+CD>AD,所以有AB+AC+BD+CD>AD+AD=2AD,左边比要证结论多BD+CD,故不能直接证出此题,而由2AD 想到要构造2AD,即加倍中线,把所要证的线段转移到同一个三角形中去∴△ACD≌△EBD(SAS)∴BE=CA(全等三角形对应边相等)∵在△ABE中有:AB+BE>AE(三角形两边之和大于第三边)∴AB+AC>2AD。

6、分析:欲证AC=BF,只需证AC、BF所在两个三角形全等,显然图中没有含有AC、BF的两个全等三角形,而根据题目条件去构造两个含有AC、BF的全等三角形也并不容易。

这时我们想到在同一个三角形中等角对等边,能够把这两条线段转移到同一个三角形中,只要说明转移到同一个三角形以后的这两条线段,所对的角相等即可。

思路一、以三角形ADC为基础三角形,转移线段AC,使AC、BF在三角形BFH中方法一:延长AD到H,使得DH=AD,连结BH,证明△ADC和△HDB全等,得AC=BH。

通过证明∠H=∠BFH,得到BF=BH。

相关文档
最新文档