混凝土配合比中外加剂的算法
C20外加剂、粉煤灰配比
成都至南部高速公路工程LJ10标段C20结构混凝土配合比设计一、设计依据:1、《普通混凝土配合比设计规程》JGJ55-20002、《公路桥涵施工技术规范》JTJ041-20003、成都至南部高速公路工程项目LJ10标段设计图纸二、设计要求:混凝土强度等级C20 坍落度90-120mm三、使用部位:墙身、涵洞基础、护肩、边沟等四、砼搅拌运输及浇灌方法:砼搅拌为机械拌合,运输采用砼运输车五、原材料:1、水泥:重庆金九P.O42.5牌普通硅酸盐水泥2、细集料:徐家脊天然砂,细度模数2.48中砂3、卵石:灵星砂石料场5-20mm掺量30%20-40mm掺量70%4、外加剂:四川路桥特种材料有限责任公司RB-2高效减水剂(缓凝型),掺量为胶凝材料总量的1.0%,减水率为18%5、粉煤灰:采用江油热电厂Ⅱ级粉煤灰4、水:可引用水。
六、按规程JGJ55-2000进行配合比计算1、确定强度:混凝土标准差为5。
0Fcu.o=fu.k+1.645*ó=20+1.645×5=28.2MPa2、水灰比:W/C= Aa*fce/(fcu.o+Aa*Ab*fce)=0.583、用水量:W=165×(1-0.18)=135㎏4、水泥用量:C0=135/0.58=233kg5、砂率:Sp=34%6、混凝土假定密度2400kg/m3计算7、当水灰比为0.58时S1=(2400-284-165)×0.34=663㎏G1=2400-284-663-165=1288㎏初比:水泥:砂子:石子:水233 :677 :1362 :135七、粉煤灰普通混凝土配合比1、粉煤灰混凝土配合比设计以基准混凝土为基础,用粉煤灰超量取代水泥进行计算调整。
按规程选取粉煤灰取代水泥率βc=0.152、水泥用量:233×(1-0.15)=198㎏3、粉煤灰用量1.5×(233-198)=53㎏4、取水泥比重Pc=3.1,粉煤灰比重Pf=2.2,砂子比重Ps=2.6得砂子用量:644㎏5、以上求得水泥 : 粉煤灰 : 砂子 :石子 : 水 : 外加剂198 : 53 : 644 : 1362 : 135 : 3.06B组当水灰比为0.55 砂率33%1、水泥用量245×(1-0.15)=2082、粉煤灰用量1.5×(245-208)=56㎏3、砂子用量:632㎏4、以上得水泥 :粉煤灰 :砂子 : 石子 : 水 :外加剂208 : 56 :632 : 1381 :135 :3.12C组当水灰比为0.61砂率35%1、水泥用量221×(1-0.15)=188㎏2、粉煤灰用量1.5×(221-188)=50㎏3、砂子用量684㎏以上求得水泥:粉煤灰:砂子:石子:水:外加剂188 :50 :684 :1340 :135 :2.38八、以上经过试验室试拌后,并对混凝土拌合物进行检测,坍落度为115mm,粘聚性良好,保水性:无,棍度:中,实测容重为2410kg/m3符合规范规定,拌合物各方面满足施工要求。
外加剂掺量计算公式
外加剂掺量计算公式
外加剂掺量计算公式是根据混凝土中各种材料的比例和外加剂的类型、用量等因素来计算的。
具体公式如下:
1. 减水剂掺量计算
减水剂掺量=水泥重量×(1+掺合料重量比例)/(0.28-掺水量)×0.3%
其中,水泥重量是指混凝土中的水泥用量,掺合料重量比例是指除水泥外其他掺合料的总用量与水泥用量之比,掺水量是指混凝土中掺入的水量。
2. 增稠剂掺量计算
增稠剂掺量=混凝土体积×(1-含气量)×增稠剂掺加比例
其中,混凝土体积是指需要配制的混凝土的总体积,含气量是指混凝土中的含气量比例,增稠剂掺加比例是指每立方米混凝土中需要加入的增稠剂量。
混凝土外加剂复配及应用培训讲义
混凝土——是水泥等胶凝材料和石子、沙子、水按一定比例混合在一起的,可塑性硬化人工建材。 配合比——指混凝土制作时胶凝材料,(水泥、粉煤灰、矿粉、硅灰等)和石子、沙子、水、外加剂的比例。 水灰比——是指水和水泥的比例,水÷水泥=水灰比。(W/C)
混凝土外加剂基础术语
水胶比——是指水泥 胶凝材料之和与水的比例,一般指混凝土用水量如:水160公斤,水泥320公斤,粉煤灰80公斤,即水胶比为:160÷(320+80)=0.4即W/C=0.4。 胶凝材料——与水拌合后在一定时间内和常温下可产生一定强度的材料,如:水泥、矿粉、粉煤灰、硅粉(灰)等。 骨 料——大骨料:指石子、小骨料、沙子。
外 加 剂 术 语
功能性外加剂——防冻、抗腐蚀、抗折等。 减水剂(高效)——木质素系、萘系、氨基磺酸盐系、三聚氰胺系减水剂、脂肪族减水剂、聚羧酸系减水剂。 减水率——在保持砼相同流动性(塌落度、扩展度)时,加入外加剂后减少的用水量和不加外加剂时用水量的比、称为减水率。 高效减水剂一般最大减水率在25—28%,聚羧酸系在30%以上,但成本高应用较少。
混 凝 土 、外 加 剂 基 础 术 语
混 凝 土 、外 加 剂 基 础 术 语
抗 渗——混凝土,抗水渗透的承压指标。 砼容重——1立方米砼的重量一般C30—C60混凝土,为2350kg-2450 kg度——把砼和外加剂拌合好后装入锥形混凝土塌落度试验测试筒,然后提起后,量取混凝土最高点与筒上而的距离。即塌落度,用mm表示。 塌落试验值大表示混凝土流动性好,反之差。
木 钙
碱木素
引气
减水
缓凝
木浆
竹浆
苇浆
草浆
单 糖
低聚糖
多 糖
纤维及其衍生物
外加剂
外加剂(基准配合比)基准配合比按JGJ55进行设计,参非引气型外加剂混凝土和其对应的基准混凝土水泥,砂,石的比例相同,配合比设计应符合以下规定:1.水泥用量:参高性能减水剂或泵送剂的基准混凝土和受检混凝土的单位用水泥量为360kg/m³,参其他外加剂的基准混凝土和受检混凝土单位水泥用量为330kg/m³2.砂率:参高性能减水剂或泵送剂的基准混凝土和受混凝土的砂率均为43-47%,参其他外加剂的基准混凝土和受混凝土的砂率均为36-40%,但参因引气减水剂或引气剂的受检混凝土的砂率应比基准混凝土砂率低1-3%。
3.外加剂参量,按生产厂家指定参量。
4.用水量:参高性能减水剂或泵送剂的基准混凝土和受检混凝土的坍落度控制在(210±10)mm,用水量为坍落度在(210±10)mm 时的最小用水量,参其他外加剂的基准混凝土和受检混凝土的坍落度控制在80±10mm,5.用水量包括液体外加剂,砂,石材料中所含的水量。
6.混凝土搅拌:搅拌机的拌合量应不少于20L,不宜大于40L.7.外加剂为粉状时,将砂、石、水泥、外加剂一次投入搅拌机,干拌均匀,在加入拌合水,一起搅拌2min,外加剂为液体时,将水泥、砂、石一次投入搅拌机,干拌均匀,再加入参入外加剂的拌合水一起搅拌2min,出料后,在铁板上用人工翻拌均匀,再行试验,各种混凝土试验材料及环境温度均应保持在20±3℃。
坍落度和坍落度1h经时变化量测定每批混凝土取一个试样,坍落度和坍落度1h经时变化量均以三次试验结果的平均值表示,三次试验的最大值和最小值与中间值之差有一个超过10mm时,将最大值和最小值一并舍去,取中间值作为该批试验结果,最大值和最小值与中间值之差均超过10mm,则应重做。
坍落度及坍落度经时变化量测定值以mm表示结果表达值约到5mm。
坍落度测定:混凝土坍落度按照GB/T50080测定,但坍落度在210±10mm的混凝土,分两层装料,每次装入筒高的一半,每层勇插捣棒插捣15次。
混凝土配合比参数——外加剂掺量和用水量
预拌混凝土是指以集中搅拌、远距离运输的方式向建筑工地供应符合建筑工程质量要求的混凝土。
包括原材料检验、配合比设计、搅拌、运输、泵送和浇筑等工艺过程。
混凝土作为目前使用最广泛的结构材料之一,其质量直接关系到工程的质量和使用寿命。
如果在生产过程中对质量控制不到位,势必影响企业声誉,给工程质量埋下隐患。
本文从预拌混凝土原材料检验、生产管理和混凝土出厂后检验等方面分析影响预拌混凝土质量的因素,并提出预防处理措施。
1混凝土原材料的质量检验影响混凝土质量的主要因素是混凝土原材料的质量,良好稳定的原材料是保证混凝土质量的根本和前提,因此做好混凝土原材料质量控制工作,对控制混凝土质量有十分重要的意义。
1.1水泥质量检验水泥应选择大厂稳定性好的水泥,避免使用小厂水泥,应固定一至两家水泥生产单位,若经常更换水泥厂家,不利于技术人员对水泥性能的整体把握。
水泥在使用前,除应持有生产厂家的合格证外,还应依据GB175-2007《通用硅酸盐水泥》对水泥进行检验,总结水泥强度增长规律、水泥强度变化标准差;水泥标准稠度用水量、凝结时间、安定性等常规检验依据《水泥标准稠度用水量、凝结时间、安定性实验》(GB/T1346-2011)进行检验,检验合格方可使用。
水泥标准稠度用水量每增加1%,对应混凝土用水量增加5~8kg。
不同厂家的水泥,配方不同,使用掺合料和助磨剂也不相同,若相混合有可能影响水泥的安定性,因此,要分别存储,不得混合使用。
1.2骨料的质量检验混凝土用砂依据《建筑用砂》(GB/T14684-2011)进行试验,检验合格方可使用。
普通混凝土宜优先选用细度模数2.6~2.8之间的中砂。
泵送混凝土用砂,对0.315mm筛孔的通过量不宜小于15%,且不大于30%,以通过率在20%左右最佳;对0.16mm筛孔的通过量不应小于5%。
混凝土用砂应严格控制泥含量和有机质的含量。
如果粗骨料石粉含量较大,对混凝土工作性能有明显影响。
例如砂的含泥量3%,石子中石粉含量0.5%,如果每方混凝土用砂量为700kg,石子用量为1100kg,则相当于增加粉剂量为27kg左右,增加胶凝材料8%左右。
混凝土配合比计算
5 混凝土配合比计算5.1 水胶比5.1.1 当混凝土强度等级小于C60时,混凝土水胶比宜按下式计算:(5.1.1)式中:W/B——混凝土水胶比;αa、αb——回归系数,按本规程第5.1.2条的规定取值;f b——胶凝材料28d胶砂抗压强度(MPa),可实测,且试验方法应按现行国家标准《水泥胶砂强度检验方法(ISO法)》GB/T 17671执行;也可按本规程第5.1.3条确定。
5.1.2 回归系数(αa、αb)宜按下列规定确定:1 根据工程所使用的原材料,通过试验建立的水胶比与混凝土强度关系式来确定;2 当不具备上述试验统计资料时,可按表5.1.2选用。
表5.1.2 回归系数(αa、αb)取值表5.1.3 当胶凝材料28d胶砂抗压强度值(f b)无实测值时,可按下式计算:f b=γfγs f ce(5.1.3)式中:γf、γs——粉煤灰影响系数和粒化高炉矿渣粉影响系数,可按表5.1.3选用;f ce——水泥28d胶砂抗压强度(MPa),可实测,也可按本规程第5.1.4条确定。
表5.1.3 粉煤灰影响系数(γf)和粒化高炉矿渣粉影响系数(γs)注:1 采用Ⅰ级、Ⅱ级粉煤灰宜取上限值;2 采用S75级粒化高炉矿渣粉宜取下限值,采用S95级粒化高炉矿渣粉宜取上限值,采用S105级粒化高炉矿渣粉可取上限值加0.05;3 当超出表中的掺量时,粉煤灰和粒化高炉矿渣粉影响系数应经试验确定。
5.1.4 当水泥28d胶砂抗压强度(f ce)无实测值时,可按下式计算:f ce=γc f ce,g(5.1.4)式中:γc——水泥强度等级值的富余系数,可按实际统计资料确定;当缺乏实际统计资料时,也可按表5.1.4选用;f ce,g——水泥强度等级值(MPa)。
表5.1.4 水泥强度等级值的富余系数(γc)5.2 用水量和外加剂用量5.2.1 每立方米干硬性或塑性混凝土的用水量(m w0)应符合下列规定:1 混凝土水胶比在0.40~0.80范围时,可按表5.2.1-1和表5.2.1-2选取;2 混凝土水胶比小于0.40时,可通过试验确定。
混凝土配合比计算C20
混凝土配合比计算:C20砼原材料:①水泥:北元水泥;②砂:大保当:③石子:山西:④粉煤灰:锦界国华;⑤外加剂:神木恒正建材有限公司1. 配制强度:fcu,o=fcu,k+1.645σ=20+1.645 *4=26.6式中fcu,o-----混凝土配制强度(Mpa)fcu,k-----混凝土立方体积抗压强度标准值σ------混凝土强度标准差混凝土标准差按下表选用2. 胶凝材料28天胶砂抗压强度:f b= γf*γs* f ce=0.75*1*42.5=31.93. 混凝土水胶比的计算:W/B=a a* f b/(f cu,o+a a*a b*f b) =0.53 *31.9/(26.6+0.53*0.2*31.9)=0.56式中a a , a b----回归系数,碎石值分别取0.53; 0.20f b-----胶凝材料28天胶砂抗压强度(Mpa),取值42.5 Mpa水胶比W/B取值0.564.每立方米混凝土的用水量:依据《普通混凝土配合比设计规程》(JGJ55-2011)的表5.2.1-2塑性混凝土用水量取205 kg/m3,流动性和大流动性混凝土的用水量m'wo为225kg/m3,掺外加剂混凝土每立方的用水量m wo=m'wo*(1-β)=225*(1-0.24)=171 kg/m35.每立方米混凝土胶凝材料用量m bo, 每立方米混凝土胶凝材料用量m fo ,m bo=m w0/ W/B=171/0.56=305 kg/m3 (即取305 kg/m3)m fo= m bo *βf =305*28%=85 kg/m3 (即取85 kg/m3)m c0= m bo- m fo =305-85=220kg/m3 (即取220 kg/m3)5. 每立方米混凝土外加剂的用量:m ao= m bo*βa=305*2.5%=7.66.选用砂率βs为40%7.每立方混凝土总容重2400 kg/m3m c0+m f0+ m g0 + m s0 + m w0 =m cp=2400kg/m3βs= m s0*100%/ (m g0 + m s0)220+85+171+ m g0 + m s0 =240040%= m s0*100%(m g0 + m s0)得: m s0 =770kg/m3m g0=1154kg/m3(即取1154kg/m3)C20混凝土配合比: m w0:m c0:m s0:m g0:m f0:m ao为171:220:770:1154:85:7.6。
混凝土配合比自动计算公式
碎石最大粒径 16 180 185 190 200 210 220 230
b.当水灰比小于0.4或大于0.8的混凝土及采用特殊工艺的混凝土用水量由试验确定。 c.流动性,大流动性混凝土的用水量,以上表90mm的用水量为基础,每增加20mm用水量增加5kg, 计算未掺外加剂时混凝土的用水量。 掺外加剂时混凝土的用水量按mwa=mwo(1-β )
注: 1 2 3
采用I级粉煤灰宜取上限值。 采用S75级矿粉宜取下限值,采用S95矿粉宜取上限值,采用S105级矿粉可取上限值加0.05。 当超出掺量时,粉煤灰和矿粉影响系数应经试验确定。
3、根据坍落度及碎石最大粒径选取用水量: 拌合物稠度 卵石最大粒径 项目 指标 10 20 40 15~20 175 160 145 维勃稠度mm 10~15 180 165 150 5~10 185 170 155 10~30 190 170 150 30~50 200 180 160 坍落度mm 50~70 210 190 170 70~90 215 195 175
予以调整.
砂Mso 石Mgo 0.2
粉媒灰替换量-Wco*
761 1052
kg kg 0.09 膨胀剂掺量
82 30 0 17.0188178 水 170 0.67
kg kg kg kg 容重 2443 制表: QQ: UC: YY:
掺量
4.0%
周海霞 1059167599 1562254535 283203822
40 155 160 165 165 175 185 195
增加5kg,
0%) 设计坍落度 220
/20*5
减水剂减水率β
29%
混凝土配合比配置比例及调配办法
混凝土配合比配置比例及调配办法C15混凝土理论配合比(kg/m3)2、基准砂率为37%,在基准砂率的基础上分别增加或减小1%.3、碎石5~20.0mm(5~10.0mm占20%,10~20.0mm占80%).4、使用部位:预制空心砖等。
C15混凝土理论配合比(kg/m3)2、基准砂率为44.0%,在基准砂率的基础上分别增加或减小1%.3、碎石5~25.0mm(5~10.0mm占20%,10~25.0mm占80%).4、使用部位:基础、垫层等.C15混凝土理论配合比(kg/m3)2、基准砂率为44.0%,在基准砂率的基础上分别增加或减小1%.3、碎石5~20.0mm(5~10.0mm占35%,10~20.0mm占65%).4、使用部位:路基护坡、骨架预制件、回填等.C15混凝土理论配合比(kg/m3)2、基准砂率为45%,在基准砂率的基础上分别增加或减小1%.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%)4、使用部位:涵洞、基坑、回填、骨架护坡、集水井等.CFG桩C20混凝土理论配合比(kg/m3)2、基准砂率为44%,在基准砂率的基础上分别增加或减小1%.3、碎石5~25.0mm(5~10.0mm占20%,10~25.0mm占80%).4、使用部位:CFG桩.CFG桩C20混凝土理论配合比(kg/m3)2、基准砂率为44%,在基准砂率的基础上分别增加或减小1%.3、碎石5~25.0mm(5~10.0mm占20%,10~25.0mm占80%). F类粉煤灰.4、使用部位:CFG桩.32、基准砂率为49%,在基准砂率的基础上分别增加或减小1%.3、碎石5~20.0mm(5~10.0mm占20%,10~20.0mm占80%).4、使用部位:CFG桩.C20混凝土理论配合比(kg/m3)2、基准砂率为37%,在基准砂率的基础上分别增加或减小1%.3、碎石5~20.0mm(5~10mm占20%,10~20.0mm占80%)4、使用部位:侧沟、预制盖板等.2、基准砂率为44.0%,在基准砂率的基础上分别增加或减小1%.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%)4、使用部位:涵洞、垫层、翼墙、侧沟等.C20混凝土理论配合比(kg/m3)2、基准砂率为44.0%,在基准砂率的基础上分别增加或减小1%.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%)4、使用部位:箱涵框架基础等.C20 混凝土理论配合比(kg/m3)2、基准砂率为43.5%,在基准砂率的基础上分别增加或减小1%.3、碎石5~20.0mm(5~10.0mm占35%,10~20.0mm占65%).4、使用部位:基础、侧沟、回填等.C20 混凝土理论配合比(kg/m3)2、基准砂率为44.0%,在基准砂率的基础上分别增加或减小1%.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%).4、使用部位:涵洞、垫层、翼墙、侧沟等.2、基准砂率为45.0%,在基准砂率的基础上分别增加或减小1%.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%).4、使用部位:水沟、盖板、挖孔桩护壁、填充等.高性能混凝土(C25)配合比(kg/m3)2、基准砂率为47.0%.3、碎石5~10.0mm.4、使用部位:预制防护栅栏等.5、只调掺合料比例.C25 混凝土理论配合比(kg/m3)2、基准砂率为43.5%,在基准砂率的基础上分别增加或减小1%.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%).4、使用部位:基础、垫层等.C25 混凝土理论配合比(kg/m3)2、基准砂率为44.0%,在基准砂率的基础上分别增加或减小1%.3、碎石5~20.0mm(5~10.0mm占35%,10~20.0mm占65%).4、使用部位:路基面找平、挡墙、侧沟及盖板、基础回填等.31、基准砂率为50.0%,在基准砂率的基础上分别增加或减小1%.2、基准水胶比为0.40,在基准水胶比的基础上分别增加或减小0.05.3、碎石5~10.0mm.4、使用部位:仰拱﹑初期支护等.C25混凝土理论配合比(kg/m3)2、基准砂率为45.0%,在基准砂率的基础上分别增加或减小1%.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%). 粉煤灰:Ⅰ级.4、使用部位:水沟、盖板、挖孔桩护壁、填充等.高性能混凝土(C30)配合比(kg/m3)2、基准砂率为42.0%.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%).4、使用部位:承台、涵洞.5、只调胶凝材料比例.水下混凝土高性能混凝土(C30)配合比(kg/m3)1、基准水胶比为0.38.2、基准砂率为42.0%.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%).4、使用部位:桩基.5、只调胶凝材料比例.6、水下混凝土配制强度需要提高10%~20%,取15%.例:C30:fcu,0=(30.0+1.645×4.5)×(1+0.15)=43.0MPa.高性能混凝土(C30)配合比(kg/m3)1、基准水胶比为0.41.2、基准砂率为43.0%.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%).4、使用部位:承台.5、只调胶凝材料比例.水下混凝土高性能混凝土(C30)配合比(kg/m3)1、基准水胶比为0.41.2、基准砂率为45.0%.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%).4、使用部位:桩基.5、只调胶凝材料比例.6、水下混凝土配制强度需要提高10%~20%,取15%.例:C30:fcu,0=(30.0+1.645×4.5)×(1+0.15)=43.0MPa. 水下混凝土高性能混凝土(C30)配合比(kg/m3)1、基准水胶比为0.40.2、基准砂率为44.0%.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%).4、使用部位:桩基.5、只调胶凝材料比例.6、水下混凝土配制强度需要提高10%~20%,取15%.例:C30:fcu,0=(30.0+1.645×4.5)×(1+0.15)=43.0MPa.高性能混凝土(C30)配合比(kg/m3)1、基准水胶比为0.41.2、基准砂率为43.0%.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%).4、使用部位:承台.5、只调胶凝材料比例.高性能混凝土(C30)配合比(kg/m3)1、基准水胶比为0.38.2、基准砂率为47.0%.3、碎石5~10.0mm..4、使用部位:预制电缆槽、栅栏、声屏障等.5、只调胶凝材料比例.高性能混凝土(C30)配合比(kg/m3)1、基准水胶比为0.38.2、基准砂率为43.0%.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%).4、使用部位:承台.5、只调胶凝材料比例.水下混凝土高性能混凝土(C30)配合比(kg/m3)1、基准水胶比为0.38.2、基准砂率为44.0%.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%).4、使用部位:桩基、明挖基础.5、只调胶凝材料比例.6、水下混凝土配制强度需要提高10%~20%,取15%.例:C30:fcu,0=(30.0+1.645×4.5)×(1+0.15)=43.0MPa.高性能混凝土(C30)配合比(kg/m3)1、基准水胶比为0.38.2、基准砂率为42.0%.3、碎石5~20.0mm(5~10.0mm占35%,10~20.0mm占65%).4、使用部位:承台、基础等.5、只调胶凝材料比例.水下混凝土高性能混凝土(C30)配合比(kg/m3)1、基准水胶比为0.37.2、基准砂率为43.0%.3、碎石5~20.0mm(5~10.0mm占35%,10~20.0mm占65%).4、使用部位:承台、基础等.5、水下混凝土配制强度需要提高10%~20%,取15%.例:C30:fcu,0=(30.0+1.645×4.5)×(1+0.15)=43.0MPa.高性能混凝土(C30)配合比(kg/m3)1、基准水胶比为0.38.2、基准砂率为42.0%.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%).4、使用部位:承台、涵洞.5、只调胶凝材料比例.水下混凝土高性能混凝土(C30)配合比(kg/m3)1、基准水胶比为0.38.2、基准砂率为44.0%.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%).4、使用部位:桩基..5、水下混凝土配制强度需要提高10%~20%,取15%.例:C30:fcu,0=(30.0+1.645×4.5)×(1+0.15)=43.0MPa.高性能混凝土(C35)配合比(kg/m3)1、基准水胶比为0.38.2、基准砂率为42.0%.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%).4、使用部位:承台、墩身、顶帽、托盘、涵洞.5、只调胶凝材料比例.高性能混凝土(C35)配合比(kg/m3)1、基准水胶比为0.39. 环境作用等级为T2.2、基准砂率为43.0%.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%).4、使用部位:承台、墩身、顶帽、托盘、支承垫石.5、只调胶凝材料比例. *:外掺料.防腐承台高性能混凝土(C35)配合比(kg/m3)1、基准水胶比为0.38. 环境作用等级为H1(二氧化碳侵蚀).2、基准砂率为45.0%. *:内掺料属胶凝材料.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%).4、使用部位:承台、墩身、顶帽、托盘等.5、只调胶凝材料比例. *:内掺料,属胶凝材料.水下混凝土高性能混凝土(C35)配合比(kg/m3)1、基准水胶比为0.38. 环境作用等级为H1.2、基准砂率为44.0%. *:内掺料属胶凝材料.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%).4、使用部位:桩基.5、只调胶凝材料比例. *:内掺料,属胶凝材料.6、水下混凝土配制强度需要提高10%~20%,取15%.例:C35:fcu,0=(35.0+1.645×4.5)×(1+0.15)=48.8MPa.高性能混凝土(C35)配合比(kg/m3)1、基准水胶比为0.40. 环境作用等级为T2.2、基准砂率为43.0%.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%).4、使用部位:承台、墩身、顶帽、托盘、支承垫石.5、只调胶凝材料比例.防腐承台高性能混凝土(C35)配合比(kg/m3)1、基准水胶比为0.39. 环境作用等级为H1(二氧化碳侵蚀).2、基准砂率为43.0%. *:内掺料,属胶凝材料.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%).4、使用部位:承台、墩身、顶帽、托盘等.5、只调胶凝材料比例. 水下混凝土高性能混凝土(C35)配合比(kg/m3)1、基准水胶比为0.39. 环境作用等级为H1.2、基准砂率为44.0%. *:内掺料属胶凝材料.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%).4、使用部位:桩基.5、只调胶凝材料比例.6、水下混凝土配制强度需要提高10%~20%,取15%.例:C35:fcu,0=(35.0+1.645×4.5)×(1+0.15)=48.8MPa.防腐承台高性能混凝土(C35)配合比(kg/m3)1、基准水胶比为0.38. 环境作用等级为H1(二氧化碳侵蚀).2、基准砂率为42.0%. *:内掺料属胶凝材料.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%).4、使用部位:承台、墩身、顶帽、托盘.5、只调胶凝材料比例.高性能混凝土(C35)配合比(kg/m3)1、基准水胶比为0.38. 环境作用等级为T2.2、基准砂率为43.0%.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%).4、使用部位:墩台身、顶帽、托盘.5、只调胶凝材料比例.高性能混凝土(C35)配合比(kg/m3)1、基准水胶比为0.37. 环境作用等级为T2.2、基准砂率为43.0%.3、碎石5~20.0mm(5~10.0mm占35%,10~20.0mm占65%).4、使用部位:基础、墩台身、顶帽、托盘等.5、只调胶凝材料比例.防水混凝土高性能混凝土(C35)配合比(kg/m3)1、基准水胶比为0.38,在基准水胶比的基础上分别增加或减小0.2。
混凝土配合比计算公式(新标准)
胶凝材料mbo=
7.34
kg
其中粉煤灰mf0= 0.00
kg
水泥mc0= 7.34
kg
砂ms0= 12.78
kg
碎石mg0= 23.72
kg
16~31.5mm (占用比例)
100%
其中16~31.5(mm)= 23.72
kg
5~16.0(mm)=
0.00
kg
水mw0=
3.82
kg
外加剂ma0= 0.073
Ⅰ级 b=
水泥密度ρc 掺合料密度ρ
f
砂密度ρs 碎石密度ρg
水密度ρw 0.20
3000 1780
2650 2720 1000
2、 3、
计算水胶比(W/B)
W/B=
0.52
确定单位用水量:
(kg/m3) (kg/m3)
(kg/m3) (kg/m3) (kg/m3)
查表得出:
mwo=
233
kg/m3
36.4
MPa
聚酸酸高性能减水剂
外加剂1掺量βa 外加剂1减水率
1.00% 18%
外加剂2种类
外加剂2掺量
外加剂2减水率
砂种类
河砂
砂子细度模数
2.9
碎石最大粒径Dmax=
31.5
mm
拌合用水种类
自来水
回归系数(碎石)
a=
0.53
一、
初步计算配合比
1、
fcu,o=
确定混凝土配制强度fcu,o(Mpa) 33.2 (Mpa)
掺外加剂时混凝土用水量mwa=mwo*(1-β)
4、
水mwa=
191
kg/m3
混凝土配合比计算方法
一、确定计算配合比1. 确定砼配制强度(f cu,o)f cu,o =f cu,k+1.645σ式中f cu,o—混凝土配制强度(MPa);f cu,k—混凝土立方体抗压强度标准值(MPa);σ—混凝土强度标准差(MPa)。
混凝土σ可按表6.8.1取值。
表6.8.1 混凝土σ取值混凝土强度<C20 C20~C35 >C35 等级σ(MPa) 4.0 5.0 6.0 2.确定水灰比(W/C)αa、αb----回归系数,可按表6.8.2采用。
表6.8.2 回归系数αa和αb选用表为了保证混凝土的耐久性,水灰比还不得大于表6.18中规定的最大水灰比值,如计算所得的水灰比大于规定的最大水灰比值时,应取规定的最大水灰比值。
3. 选定砼单位拌和用水量(m w0)(1)干硬性和塑性混凝土用水量的确定根据所用骨料的种类、最大粒径及施工所要求的坍落度值,查表6.8.3、6.8.4选取1m3混凝土的用水量。
表6.8.3 干硬性混凝土的用水量表6.8.4 塑性混凝土的用水量(2)流动性和大流动性混凝土的用水量计算a.以表6.8.4中坍落度90mm的用水量为基础,按坍落度每增大20mm,用水量增加5kg,计算出未掺外加剂时混凝土的用水量。
b.掺外加剂时的混凝土用水量按下式计算:m wa=m w0(1-β)式中m wa——掺外加剂时,每1m3混凝土的用水量(kg/m3 ) ;m w0——未掺外加剂时,每1m3混凝土的用水量(kg/m3) ;β——外加剂的减水率(%),应经试验确定。
4.确定单位水泥用量( m c0)未保证混凝土的耐久性,由上式计算求得的 m c0还应满足表6.6.1规定的最小水泥用量,如计算所得的水泥用量小于规定的最小水泥用量时,应取规定的最小水泥用量值。
5. 确定砂率(ßs)(1)查表法—根据骨料的种类、最大粒径、水灰比按表6.8.5选用。
表6.8.5 混凝土的砂率(%)水灰比(w/c)卵石最大粒径(mm)碎石最大粒径(mm)10 20 40 16 20 400.40 26~32 25~31 24~30 30~35 29~34 27~32 0.50 30~35 29~34 28~33 33~38 32~37 30~350.60 33~38 32~37 31~36 36~41 35~40 33~380.70 36~41 35~40 34~39 39~44 38~43 36~41 (2)计算法α:拨开系数。
C45混凝土配合比计算
C40混凝土配合比计算1、水泥P.O 52.5 密度3.10 g/cm3。
粉煤灰:I级,2.20g/cm3。
碎石:连续级配5~31.5mm密度2.72g/cm3。
河砂:中砂密度2.55g/cm3。
减水剂:DZM-9南京高效减水剂-缓凝减水率17.5% 固含量30.2%。
拌合水:饮用水。
2、混凝土配置强度:f cu,o=f cu,k+1.645σ=40+1.645×2.8= 44.63、计算水胶比:W/C=0.46×52.5/44.6+0.46×0.07×52.5=0.52按强度要求算出水胶比偏大,根据JTS22-2011耐久性要求规定取表5.1.5-1要求取值0.404、确定用水量:根据设计坍落度150±30的要求另外加剂减水率17.5%,JTS202-2011选取用水量为W=182kg。
5、水泥用量:选用W/C=0.40,C=182/0.40=455kg6、根据JTS202-2011来选定砂率:42%7、每立方米基准混凝土砂石用量:V=1000(1-0.01A)-W W/ρW-W B/ρB=1000(1-0.01)-182-455/3.1=661.23LW S=VγρS=661.23×0.42×2.55=708kgW G=V(1-γ)ρG=661.23×(1-0.42)×2.72=1043kg8、因此基准混凝土每立方米用量:W O=182kg C O=455kg S O=708kg G O=1043kg9、计算外加剂用量:455×1.5%=6.8kg,根据外加剂固含量计算外加剂含水量:6.8-6.8×0.302=4.8kg ,取5kg。
W=182-5=177kg10、粉煤灰用量和粉煤灰混凝土的水泥、砂用量:选取的粉煤灰取代系数f=10%F=C O×f=455×10%=45.5F t=K×F=45.5×1.0=39.3C=C O-F=455-46=409W=(W O/C O)×(C+F)= 0.40×(409+46)=178S=S O-[F t/ρf-F/ρC-(W O-W)/ρw]×ρS=69511、混凝土每立方米材料用量:水泥:409kg 砂:695kg 碎石:1043kg外加剂:6.8kg 粉煤灰:46kg 拌合水:178kg12、混凝土配合比:水泥:砂:碎石:外加剂:粉煤灰:拌合水=1:1.70:2.55:0.02:0.11:0.4413、试拌配合比0.1M3观察和易性制作试块:水泥:40.9kg 砂:69.5kg 碎石:104.3kg外加剂:0.68kg 粉煤灰:4.6kg 拌合水:17.8kg14、试块强度:F cu,7= F cu,28=C45高性能混凝土配合比计算水泥P.O 52.5 密度3.10 g/cm3。
砼配合比计算方法
混凝土按强度分成若干强度等级,混凝土的强度等级是按立方体抗压强度标准值fcu,k划分的。
立方体抗压强度标准值是立方抗压强度总体分布中的一个值,强度低于该值得百分率不超过5%,即有95%的保证率。
混凝土的强度分为C7.5、C10、C15、C20、C25、C30、C35、C40、C45、C50、C55、C60等十二个等级。
混凝土配合比是指混凝土中各组成材料(水泥、水、砂、石)之间的比例关系。
有两种表示方法:一种是以1立方米混凝土中各种材料用量,如水泥300千克,水180千克,砂690千克,石子1260千克;另一种是用单位质量的水泥与各种材料用量的比值及混凝土的水灰比来表示,例如前例可写成:C:S:G=1:2.3:4.2,W/C=0.6。
常用等级C20水:175kg水泥:343kg 砂:621kg 石子:1261kg配合比为:0.51:1:1.81:3.68C25水:175kg水泥:398kg 砂:566kg 石子:1261kg配合比为:0.44:1:1.42:3.17C30水:175kg水泥:461kg 砂:512kg 石子:1252kg配合比为:0.38:1:1.11:2.72普通混凝土配合比参考:水泥品种混凝土等级配比(单位)Kng 塌落度mm 抗压强度N/mm2水泥砂石水7天28天P.C32.5 C20 300 734 1236 195 35 21.0 29.01 2.45 4.12 0.65C25 320 768 1153 208 45 19.6 32.11 2.40 3.60 0.65C30 370 721 1127 207 45 29.5 35.21 1.95 3.05 0.56C35 430 642 1094 172 44 32.8 44.11 1.49 2.54 0.40C40 480 572 1111 202 50 34.6 50.71 1.19 2.31 0.42P.O 32.5 C20 295 707 1203 195 30 20.2 29.11 2.40 4.08 0.66C25 316 719 1173 192 50 22.1 32.41 2.28 3.71 0.61C30 366 665 1182 187 50 27.9 37.61 1.82 3.23 0.51C35 429 637 1184 200 60 30.***6.21 1.48 2.76 0.47C40 478 *** 1128 210 60 29.4 51.01 1.33 2.36 0.44P.O 32.5R C25 321 749 1173 193 50 26.6 39.11 2.33 3.65 0.60C30 360 725 1134 198 60 29.4 44.31 2.01 3.15 0.55C35 431 643 1096 190 50 39.0 51.31 1.49 2.54 0.44C40 480 572 1111 202 40 39.3 51.01 1.19 2.31 0.42P.O42.5(R) C30 352 676 1202 190 55 29.***5.21 1.92 3.41 0.54C35 386 643 1194 197 50 34.5 49.51 1.67 3.09 0.51C40 398 649 1155 199 55 39.5 55.31 1.63 2.90 0.50C50 496 606 1297 223 45 38.4 55.91 1.22 2.61 0.45PII 42.5R C30 348 652 1212 188 50 31.***6.01 1.87 3.48 0.54C35 380 639 1187 194 50 35.0 50.51 1.68 3.12 0.51C40 398 649 1155 199 55 39.5 55.31 1.63 2.90 0.50C45 462 618 1147 203 4***2.7 59.11 1.34 2.48 0.44C50 480 633 1115 192 25 45.7 62.81 1.32 2.32 0.40P.O 52.5R C40 392 645 1197 196 53 40.2 55.81 1.64 3.05 0.50C45 456 622 1156 19***2 43.5 59.51 1.36 2.53 0.43C50 468 626 1162 192 30 45.2 61.61 1.33 2.47 0.41此试验数据为标准实验室获得,砂采用中砂,细度模数为2.94,碎石为5~31.5mm连续粒级。
砼配合比计算
混凝土配合比计算方法中铁二院咨询监理公司刘蓉一、混凝土配合比的计算:按照《普通混凝土配合比设计规程》(JGJ55-2011)J64-20111、计算出配制强度2、计算出水胶比3、选择合适的用水量4、计算出水泥用量5、选择合适的砂率6、计算出砂和石子的用量到这里基本配合比已经算出来了,如果有掺粉煤灰、矿粉和减水剂,7、根据掺和料选择掺法与掺量8、根据外加掺量及减少率计算。
水泥强度等级42.5MPa,水泥的富余系数 1.06×42.5=45,碎石混凝土设计强度30MPa,aa=0.46, ab=0.07,σ=5.01、fcu,0=fcu+1.645σ=30+1.645×5.0=38.2Mpa。
2、w/c=aa×fce/(fcu,o+aa×ab×fce)=0.46×45.0/(38.2+0.46×0.07×45.0)=0.52。
3、根据施工要求,混凝土设计坍落度为120mm~160mm,取单位用水量为215kg,掺加1.7%的缓凝高效减水剂,减水率δ=22%,则混凝土单位用水量:mW0= mW(1-δ)=215×(1-22%)=168kg。
4、单位水泥用量:mc=mwo/w/c=168/0.52=323kg。
5、用粉煤灰取代16.5%的水泥,取代系数为λ=1.3, 则有:水泥用量:mc0=323×(1-16.5%)=270 kg。
粉煤灰用量:mf0=323×16.5%×1.3=69.3kg。
减水剂用量:mFDN0=(270+69.3)×1.7%=5.77 kg。
6、假设混凝土单位容重mcp=2400kg/m,砂率βs=40%,则有:mc0+ mf0+ ms0+ mg0+ mW0= mcpmso/(mso+mgo) ×100%=βs细骨料ms0=2400-(270+168+69.3+5.77)×0.40=755kg,粗骨料mg0=2400-(270+168+69.3+5.77+755)=1132kg。
计算外加剂用量时,要不要考虑原材料中的细颗粒粉料
减水剂具有改善混凝土工作性,降低用水量,提高强度,改善混凝土耐久性等优点。
对减水剂的研究主要集中在旧产品的改造和新产品的研发,对减水剂在混凝土配合比设计时的计算方法方面的探讨比较少。
对于计算减水剂用量依然沿用传统的方法,即按胶凝材料的百分比来计算,这种计算方法很难反应混凝土原材料中非胶凝材料粉料颗粒的增加对减水剂的影响。
尤其是现今普遍使用机制砂,机制砂的石粉含量不容忽视,有必要在减水剂用量的计算方面加以探讨完善,以求简便、准确。
多数机制砂的级配具有“两头大,中间少”的特点,即石粉含量多,虽然石粉吸附外加剂没有水泥那样强烈,但石粉含量大时,或其中夹杂泥土时也不容忽视。
因此,从实践出发有必要探讨一下减水剂的计算方式。
(一)减水剂用量传统计算方法存在的问题目前,很多搅拌站是根据经验设计混凝土的配合比,还没有一个广泛被接受的混凝土设计方法。
混凝土企业有时会遇到这样的问题,强度等级在C40以下的混凝土和易性不好,坍落度损失大,强度有时偏低;C40以上的混凝土对减水剂掺量敏感容易出现泌水、离析现象。
同样的水泥、矿物掺合料和配合比,混凝土拌合物工作性有时会有较大的波动。
主要原因可能是大多数搅拌站使用胶凝材料百分比计算方法,这种方法忽视骨料中粉料物质对减水剂的吸附。
低强度等级的混凝土本来减水剂掺量低,骨料中的粉料物质吸附后,量变的不足,而高强度等级的混凝土,减水剂掺量相对较大,骨料中粉料吸附量与低强度等级粉料吸附量相差不大,便会造成高强度等级减水剂量吸附的比例低。
混凝土减水剂用量传统计算方法:混凝土胶凝材料总量×外加剂掺量(%)=混凝土减水剂用量其中,胶凝材料包括水泥、矿粉、煤灰等。
也有一些搅拌站在计算减水剂用量时使用减水剂厂家推荐掺量上下浮动来计算,如:某减水剂推荐掺量为2.0%,C30用2.0%,强度等级升高一个标号增加0.1%,降低一个标号降低0.1%,即则C25用1.9%,C30用2.0%,C35用2.1%,C40用2.2%,等。
混凝土外加剂含气量计算方法
混凝土外加剂含气量计算方法1、混凝土内在原因a、混凝土含气量过大,而且引气剂质量欠佳。
目前泵送混凝土用量较大,为了保证泵送混凝土的可泵性,往往在泵送混凝土中加入适量的引气剂,由于各种引气剂性能有较大的差异,因此在混凝土中呈现的状态也不尽相同,有的引气剂在混凝土中形成较大的气泡,而且表面能较低,很容易形成联通性大气泡,如果再加上振动不合理,大气泡不能完全排出,肯定会给硬化混凝土结构表面造成蜂窝麻面。
b、混凝土配合比不当,混凝土过于粘稠,振捣时气泡很难排出,也是造成硬化混凝土结构表面出现蜂窝麻面的原因。
由于混凝土配合比不当,例如胶结料偏多、砂率偏大、用水量太小、外加剂中有不合理的增稠组份等,都会导致新拌混凝土过于粘稠,使混凝土在搅拌时就会裹入大量气泡,即使振捣合理气泡在粘稠的混凝土中排出也十分困难,因此导致硬化混凝土结构表面出现蜂窝麻面。
c、由于混凝土和易性较差,产生离析泌水。
为了防止混凝土分层,混凝土入模后不敢充分振捣,大量的气泡排不出来,也会导致硬化混凝土结构表面出现蜂窝麻面。
d、有一些水泥厂为了增大水泥细度,又考虑节约电能,往往在磨粉时加入一些助磨剂,例如木钙、二乙二醇、三乙醇胺、丙二醇等物质,由于其中一些助磨剂有引气性,而且引入的气泡不均匀且偏大,也会给硬化混凝土结构表面造成蜂窝麻面。
2、外部原因a、 gb/t10-95《混凝土泵送技术规程》6.3.4中规定"混凝土浇注分层厚度,宜为300-500 mm"但是在实际施工时,往往浇注厚度都偏高,由于气泡行程过长,即使振的时间达到规程要求,气泡也不能完全排出,这样也会给硬化混凝土结构表面造成蜂窝麻面。
b、不合理使用脱模剂是造成硬化混凝土结构表面蜂窝麻面的主要原因。
目前脱模剂市场比较混乱,良莠不齐,产品大致分为以下几大类:(1)矿物油类,例如机油、柴油、煤油、机油加柴油、机油加煤油、机油加变压器等轻质油。
(2)乳化油类,即轻质油加水再加定量的乳化剂生成的水包油型乳液。
普通混凝土配合比设计(最新规范)
之勘阻及广创作混凝土配合比设计就是根据工程要求、结构形式和施工条件来确定各组成资料数量之间的比例关系。
经常使用的暗示方法有两种:一种是以1m3混凝土中各项资料的质量暗示,如某配合比:水泥240kg,水180kg,砂630kg,石子1280kg,矿物掺合料160kg,该混凝土1m3总质量为2490kg;另一种是以各项资料相互间的质量比来暗示(以水泥质量为1),将上例换算成质量比为:水泥∶砂∶石∶掺合料=1∶2.63∶5.33∶0.67,水胶比=0.45。
市政工程中所使用的混凝土须满足以下五项基本要求:(1)满足施工规定所需的和易性要求;(2)满足设计的强度要求;(3)满足与使用环境相适应的耐久性要求;(4)满足业主或施工单位渴望的经济性要求;(5)满足可持续发展所必须的生态性要求。
混凝土配合比设计,实质上就是确定胶凝资料、水、砂和石子这四种组成资料用量之间的三个比例关系:(1)水与胶凝资料之间的比例关系,经常使用水胶比暗示;(2)砂与石子之间的比例关系,经常使用砂率暗示;(3)胶凝资料与集料之间的比例关系,经常使用单位用水量(1m3混凝土的用水量)来暗示。
混凝土配合比设计步调包含配合比计算、试配和调整、施工配合比的确定等。
(1)初步配合比计算1)计算配制强度(fcu,o)。
根据《普通混凝土配合比设计规程》(JGJ 55—2011)规定,混凝土配制强度应按下列规定确定:①当混凝土的设计强度小于C60时,配制强度应按下式确定:式中 fcu,o——混凝土配制强度,MPa;fcu,k——混凝土立方体抗压强度尺度值,这里取混凝土的设计强度等级值,MPa;σ——混凝土强度尺度差,MPa。
②当混凝土的设计强度不小于C60时,配制强度应按下式确定:fcu,o≥1.15fcu,k混凝土强度尺度差σ应根据同类混凝土统计资料计算确定,其计算公式如下:式中 fcu,i——统计周期内同一品种混凝土第i组试件的强度值,MPa;mfcu——统计周期内同一品种混凝土n组试件的强度平均值,MPa;n——统计周期内同品种混凝土试件的总组数。
混凝土配合比设计的基本规定
基本规定一:混凝土配合比设计应满足混凝土配置强度,拌合物性能,力学性能,长期性能和耐久性能的设计要求。
混凝土拌合物性能、力学性能和耐久性能的试验方法应分别符合现行国家标准《普通混凝土拌合物性能试验方法标准》GB/T50080、《普通混凝土力学性能试验方法标准》GB/T50081、和《普通混凝土长期性能和耐久性能试验方法标准》GB/T50082的规定。
二:混凝土配合比设计应采用工程实际使用的原材料;配合比设计所采用的细骨料含水率应小于0.5%,粗骨料含水率应小于0.2%。
三:混凝土的最大水胶比应符合《混凝土结构设计规范》GB50010的规定。
四:除配制C15及其以下强度等级的混凝土外,混凝土的最小胶凝材料用量应符合以下表的规定。
时,钢筋混凝土中矿物掺合料最大掺量宜符合下表的规定,备注:1采用其他通用硅酸盐水泥时,宜将水泥混合材掺量20%以上的混合材量计入矿物掺合料2复合掺合料各组分的掺量不宜超过单掺时的最大掺量3在混合使用两种或两种以上矿物掺合料时,矿物掺合料总掺量应符合表中复合掺合料的规定预应力钢筋混凝土中矿物掺合料最大掺量宜符合下表的规定掺合料2复合掺合料各组分的掺量不宜超过单掺时的最大掺量。
3在混合使用两种或两种以上矿物掺合料时,矿物掺合料总掺量应符合表中复合掺合料的规定对基础大体积混凝土,粉煤灰、粒化高炉矿渣粉和复合掺合料的最大掺量可增加5%。
采用掺量大于30%d C类粉煤灰的混凝土应以实际使用的水泥和粉煤灰掺量进行安定性检验其测试方法应符合现行行业标准《水运工程混凝土试验规程》JTJ270中混凝土拌合物中氯离子含量的快速测定方法的规定。
七、长期处于潮湿或水位变动的寒冷和严寒环境以及盐冻环境的混凝土应掺用引气剂。
引气剂掺量应根据混凝土含气量要求经试验确定,混凝土含气量应符合下表的规定,最大不宜超过7.0%。
备注:含气量为气体占混凝土体积的百分比八、对于有预防混凝土碱骨料反应设计要求的工程,宜掺用适宜粉煤灰或其他矿物掺合料,混凝土中最大碱含量不应大于3.0Kg/m³;对于矿物掺合料碱含量,粉煤灰碱含量可取实测值的1/6,粒化高炉矿渣粉碱含量可取实测值的1/2.混凝土配制强度的确定一、混凝土配制强度应按下列规定确定:1、当混凝土的设计强度小于C60时,配制强度应按下式计算:fcu,o≥fcu,k+1.645δf cu,o—混凝土配制强度(MPa)f cu,k—混凝土立方体抗压强度标准值,这里取混凝土的设计强度等级值(MPa)δ—混凝土强度标准差(MPa)2、当设计强度等级不小于C60时,配制强度应按下式计算fcu,o≥1.15fcu,k二、混凝土强度标准差应按照下列规定确定:1当具有近1个月到3个月的同一品种、同一强度等级混凝土的强度资料时,且试件组数不小于30时,其混凝土强度标准差δ应按下式计算:δ=√∑δ—混凝土强度标准差;fcu,I —第i组的试件强度(MPa)m fcu —n组试件的强度平均值(MPa)n —试件组数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
混凝土配合比中外加剂的算法?怎么确定外加剂的参量的?
你需要的是外加剂的具体算法,首先要厂家的推荐掺量,聚羧酸对原材料的要求比较严格一点,外加剂的掺量和你的原材料有很大关系,砂子含泥量越大你的外加剂掺量越大,泥能吸附外加剂,所以在厂家推荐的掺量基础上还要通过试配验证,看看初始坍落度和经时损失,混凝土凝结时间和强度,其实掺量还是要自己来确定。
聚羧酸外加剂我建议砂子含泥量在1.5%以下。
比如说是高效减水剂,减水率18%,不用外加剂的时候用水量是215千克/方,那掺外加剂的用水量就等于215-215*18%=177千克/方,如果水灰比是0.45的话,原本的水泥用量等与215/0.45=478千克/方,掺外加剂的水泥用量就等于177/0.45=393千克/方。
这是基准配合比,但是要转变为施工配合比的时候就要通过试配验证,考虑原材料含水,根据外加剂厂家的推荐掺量进行试配验证。
高标号混凝土配合比设计注意事项
1、应先考虑混凝土的工作性能,要满足现场的工作性能要求(流动性、粘聚性、保水性)。
2、计算水灰比要准确,从理论上计每增加0.05的水灰比其强度就要下降5~8mpa,反之水灰比越小其强度越高,但坍落度过小工作性能相应减小不利于施工,混凝土过干混凝土中的气泡排不出来,凝结时间过短,坍落度过大混凝土表面容易出现收缩裂纹,顶层无粗骨料,经砂浆和超振出现离析现象并且影响梁体强度,因此坍落度夏天在9~12cm,冬天在1~10cm最利于施工要求。
3、砂石料在选配合比前应先做自检,检验砂子中的含泥量应小于2%、视比重、砂子的细度模数应大于2.6、碱含量、碎石的含泥量小于1%、筛分、针片状含量小于5%,风化石含量及骨料的抗压强度应高出配制砼强度的50%,以上几项都直接影响混凝土的强度。
4、碎石最好选用连续配,这样更容易使混凝土达到最佳密实,骨料的最大粒径宜选用小于25mm,含砂率不易过大,过大直接影响其强度,过小在施工中又容易出现蜂窝现象,需先做碎石的空隙率,再根据砂子的细度数来选出理论用量,并经过试配来选定最佳用量。
5、水泥在混凝土中起到胶结和填充砂子的空隙的作用,用量也不易过大,因为水泥的自身收缩性很强用量过大会使混凝土表面出现收缩裂纹,水泥的水化反应将直接影响混凝土的自身强度,通常水化作用在5~45℃水化作用才会发挥,低于5℃水化反应停止。
6、在高标号混凝土中必须要加入外加剂,外加剂起到减小水灰比,提高混凝土的早期强度的作用,因为我们在选配比时一般都是用42.5水泥(在水泥的28天强度达到42.5 mpa~52.5 mpa时都是合格)保证系数很低需要用外加剂来提高其强度,外加剂在施工时最好采用后掺法这样更容易使外加剂和水泥、水发挥作用,经试验证明后掺要比先掺可以提高3~5 cm的坍落度。
以上是选配比时须注意的事项在施工时应注意原材料的变化及时调整碎石的掺配比量和砂子的砂率应做到不合格的原材料坚决要清出场,在掺入外加剂时采用后掺法时最好是先加入70%的水和水泥、砂石料搅拌30S再加入外加剂搅拌30S再加入30%水搅拌30S以上再出锅。