《财务管理》教学中插值法的快速理解和掌握
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要在时间价值及内部报酬率计算时常用到插入法,但初学者对该方法并
不是很容易理解和掌握。本文根据不同情况分门别类。利用相似三角形原理推
导出插入法计算用公式。并将其归纳为两类:加法公式和减法公式,简单易懂、理解准确、便于记忆、推导快捷。
关键词插入法;近似直边三角形;相似三角形
时间价值原理正确地揭示了不同时点上资金之间的换算。是财务决策的基
本依据。为此,财务人员必须了解时间价值的概念和计算方法。但在教学过程中。笔者发现大多数教材插值法(也叫插入法)是用下述方法来进行的。如高等
教育出版社2000年出版的《财务管理学》P62对贴现期的。
事实上,这样计算的结果是错误的。最直观的判断是:系数与期数成正向
关系。而4.000更接近于3.791。那么最后的期数n应该更接近于5,而不是6。正确结果是:n=6-0.6=5.4(年)。由此可见,这种插入法比较麻烦,不小心时还容易出现上述错误。
笔者在教学实践中用公式法来进行插值法演算,效果很好,现分以下几种
情况介绍其原理。
一、已知系数F和计息期n。求利息率i
这里的系数F不外乎是现值系数(如:复利现值系数PVIF年金现值系数PVIFA)和终值系数(如:复利终值系数FVIF、年金终值系数FVIFA)。
(一)已知的是现值系数
那么系数与利息率(也即贴现率)之间是反向关系:贴现率越大系数反而越小,可用图1表示。
图1中。F表示根据题意计算出来的年金现值系数(复利现值系数的图示略
有不同,在于i可以等于0,此时纵轴上的系数F等于1),F为在相应系数表
中查到的略大于F的那个系数,F对应的利息率即为i。查表所得的另一个比F
略小的系数记作F,其对应的利息率为i。
(二)已知的是终值系数
那么系数与利息率之间是正向关系:利息率越大系数也越大。其关系可用图2表示。
图2中,F表示根据题意计算出来的某种终值系数。F为在相应系数表中查到的略小于F的那个系数。F对应的利息率仍记作i,查表所得的另一个比F略大的系数记作F,其对应的利息率即为i。
上面两图中,二者往往相差1%,最多也不超过5%,故曲边三角形ABC和ADE可近似地看作直边三角形。
二、已知系数F和利息率i。求计息期n