箱梁模板施工计算_pdf

合集下载

箱梁横梁计算方法研究

箱梁横梁计算方法研究

( 上接 第 1 7页 ) 0
5 结 语
本 文 采 用 混 合 有 限 元 方 法 ,较 为 精 确 地 得 到 了九 堡 大 桥 主 桥 钢 与 混 凝 土 组 合 梁 板 件 的应 力 , 分 析 了混 凝 土 板 件 的应 力 分 布 。通 过 理 论 分析 , 得 到 以下 结 论 :1 九堡 大 桥 主 桥 钢 与 混 凝 土 组 合 梁 () 截 面 正 应 力 分 布 复 杂 ,近 拱 脚 截 面 的混 凝 土 桥 面 板 应 力 分 布 不 均 匀 现 象 显 著 ,近 跨 中截 面 混凝 土 桥 面 板 的应 力 分 布 相 对 较 为 均 匀 ,混 凝 土 桥 面板 最 大 应 力 不 均 匀 系 数 随 着 荷 载 水 平 的 增 大 而 减 小 ;2 由于 钢 横梁 对 混 凝 土 桥 面 板 的 支 承 作用 , ()
222 方 法二 : 板 剪 力法 .。 腹
该 方 法 需先 在 腹 板 下 设 置 支 座 ,无 支 座 位 置 加虚 拟 支 座 ,求 出所 有 车 道 荷 载 作 用 下 每 个 支 座
21 年 7 02 月第 7 期
城 市道 桥 与 防 洪
桥梁结构
15 1
的最 大 支 反 力 F, 以该 反 力 F做 为 腹 板 的 均 布荷 载 进 行 加 载 , 载模 型 见 图 3所 示 。 加
e etv wit c tra o c mp st b d e id r. Ju a o f cie dh r e fr o oi i i e r g gres o r l f i n
b dee g er g20 ,23:2 - 3 . i r g n n e n 0 7 1() 5 3 8 i i 3

(参考资料)32m预制箱梁计算书

(参考资料)32m预制箱梁计算书

32m 预制箱梁计算书1. 计算依据与基础资料1.1. 标准及规范1.1.1. 标准•跨径:桥梁标准跨径30m ;•设计荷载:公路-I 级(城-A 级验算);•桥面宽度:(路基宽26m ,城市主干路),半幅桥全宽13m ,0.5m (栏杆)12.25m (机动车道)+0.5/2m (中分带)=13m 。

•桥梁安全等级为一级,环境类别一类。

1.1.2. 规范《公路工程技术标准》JTG B01-2013《公路桥涵设计通用规范》(JTGD60-2015);(简称《通规》)《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2004(简称《预规》) 《城市桥梁设计规范》(CJJ11-2011); 1.1.3. 参考资料《公路桥涵设计手册》桥梁上册(人民交通出版社2004.3)1.2. 主要材料1)混凝土:预制梁及现浇湿接缝、横梁为C50、现浇调平层为C40;2)预应力钢绞线:采用钢绞线15.2s φ,1860pk f MPa =,51.9510p E Mpa =× 3)普通钢筋:采用HRB400,400=sk f MPa ,52.010SE Mpa =× 1.3. 设计要点1)预制组合箱梁按部分预应力砼A 类构件设计;2)根据小箱梁横断面,采用刚性横梁法计算汽车荷载横向分布系数,将小箱梁简化为单片梁进行计算,荷载横向分配系数采用刚性横梁法计算。

3)预应力张拉控制应力值0.75σ=con pk f ,混凝土强度达到90%时才允许张拉预应力钢束;4)计算混凝土收缩、徐变引起的预应力损失时张拉锚固龄期为7d;5)环境平均相对湿度RH=80%;6)存梁时间不超过90d。

2.标准横断面布置2.1.标准横断面布置图2.2.跨中计算截面尺寸3. 汽车荷载横向分布系数、冲击系数计算3.1. 汽车荷载横向分布系数计算1) 抗扭惯矩计算计算得边梁抗扭惯矩4T I 0.462m =边,中梁抗扭惯矩4T I 0.458m =中,计算结果表明:悬臂对主梁抗扭惯矩贡献很小,为简化计算,可以忽略悬臂影响;同时边、中梁截面几何特性相差不到1%,按主梁截面均相同计算对结果影响不大,以下计算按主梁截面均相同考虑。

箱梁横隔梁计算方法研究

箱梁横隔梁计算方法研究
140
中 外 公 路
第 30 卷 第 4 期 2 0 1 0 年 8 月
文章编号 :1671 - 2579 (2010) 04 - 0140 - 05
箱梁横隔梁计算方ห้องสมุดไป่ตู้研究
宫亚峰 , 毕海鹏 , 李祥辉
( 吉林大学 交通学院 , 吉林 长春 130022)
摘 要 : 以 6 跨预应力混凝土连续箱梁桥为工程背景 ,利用有限元程序建立了该桥梁的 实体模型 ,获得空间分析的横隔梁的应力状态 。在实桥修建过程中将振弦式应变计埋入横隔 梁中 ,获得桥梁结构的实际内力分布特点 ,并与有限元计算结果进行对比分析 。提出一种实 用的利用两次杆系有限元计算分析横隔梁内力的简化方法 ,为预应力混凝土箱形梁桥横隔梁 的设计与计算提供借鉴 。 关键词 : 箱梁 ; 横隔梁 ; 简化计算方法 ; 有限元 ; 振弦式应变计
kN 824 837 849
kN 989 1 004 1 019
(kN ・ m - 1) 147 149 151
c = 6 hf c = 5 hf c = 4 hf
表3 两次杆系有限元试算与实测数据对比 ( c = 6 hf ) 横隔梁 截面位置
1 - 1 截面 2 - 2 截面 3 - 3 截面 1 - 1 截面 2 - 2 截面 3 - 3 截面 1 - 1 截面 2 - 2 截面 3 - 3 截面
掌握 。 1. 1 计算模式 首先建立全桥纵向的杆系有限元模型 , 计算横隔 梁处的内力 。根据计算结果反算横隔梁荷载 。然后取 横隔梁为隔离体 ,单独建立横隔梁的杆系有限元模型 , 计算在简化荷载作用下横隔梁的内部应力 。 1. 2 受力分析 预应力连续箱梁主要通过箱梁腹板及顶 、 底板在 纵向上把恒载传递到横隔梁处 , 再由横隔梁传递至支 座及墩柱结构 。从连续箱梁桥纵向上看 , 由于腹板刚 度最大 ,预应力钢束布置多 ,腹板将作为纵向传力的主 要构件将大部分荷载传递至横隔梁上 ; 同时箱梁的顶 、 底板在整个箱宽上也能够传递适当比例的纵向荷载 。 假定将腹板传递的荷载以集中荷载的形式作用在 横梁相应位置 , 顶 、 底板传递荷载则以均布荷载的形式 作用在横梁全长上 , 两者各占适当比例 , 并假定中腹板 集 中力 F1 为边腹板集中力 F2 的 1 . 2 倍 , 如图 1 所示 。

箱梁计算书

箱梁计算书

桥梁设计计算书课程名称道桥工程设计姓名杨鑫龙学号年级与专业 2016交通工程指导教师提交日期目录一、设计资料 (4)1.1设计资料 (4)二、主梁构造布置及尺寸 (4)2.1横截面布置 (4)2.2主梁尺寸 (5)2.3横隔梁布置 (5)2.4主梁截面特性简易计算表 (5)三、主梁内力计算 (5)3.1恒载内力计算 (6)3.2活载内力计算 (8)3.3内力组合 (14)3.4弯矩剪力包络图 (15)四、预应力钢筋截面面积估算及布置 (15)4.1预应力钢筋截面面积估算 (15)4.2非预应力钢筋截面面积估算 (17)4.3预应力钢束的布置 (17)五、换算截面几何特性 (20)5.1换算截面图示 (20)5.2换算截面几何特性计算 (20)六、钢束预应力损失计算 (21)6.1预应力钢筋与管道壁之间的摩擦引起的预应力损失 (21)6.2锚具变形、钢筋回缩和接缝压缩引起的预应力损失 (22)6.3混凝土弹性压缩引起的预应力损失 (22)6.4预应力钢筋应力松弛引起的预应力损失 (23)6.5混凝土收缩和徐变引起的预应力损失 (24)6.6预应力钢筋张拉控制应力与各阶段预应力损失组合及有效预应力值25七、持久状况承载能力极限状态计算 (26)7.1正截面强度验算 (26)7.2斜截面抗剪强度验算 (26)7.3箍筋或弯起钢筋设计 (26)八、正常使用极限状态验算 (28)8.1正截面抗裂性验算 (28)8.2斜截面抗裂性验算 (28)8.3变形验算 (30)8.3.1使用阶段挠度计算 (30)8.3.2预加力引起的反拱计算及预拱度的设置 (31)九、主梁持久状况应力验算 (31)9.1跨中截面砼法向压应力验算 (31)9.2受拉区预应力筋最大拉应力验算 (32)9.3斜截面主应力验算 (32)十、主梁短暂状态应力验算 (33)10.1主梁短暂状态应力验算 (33)十一、主梁行车道板的内力计算及配筋 (34)11.1恒载作用 (34)11.2活载作用 (35)11.3主梁肋间内力计算 (35)11.4行车道板配筋计算 (37)11.5行车道板截面复核 (38)十二、横隔梁内力计算及配筋 (39)12.1横隔梁内力计算 (39)12.2横隔梁配筋计算 (42)12.3横隔梁截面复核 (43)十三、主梁端部局部承压验算 (43)13.1端部承压区截面尺寸验算 (43)13.2端部承压区承载力验算 (44)十四、结语 (45)十五、参考文献 (45)十六、附录 (46)附录A:主梁截面尺寸图 (46)附录B:横隔梁配筋图 (46)一、设计资料1.1设计资料(1)设计跨径:标准跨径35.82m(墩中心距离),简支梁计算跨径(相邻支座中心距离)35.22m,主梁全长35.78m。

普通钢筋混凝土箱梁计算书

普通钢筋混凝土箱梁计算书

A 匝道桥第一联计算书1 普通钢筋混凝土箱梁纵向验算 1.1 荷载组合短期效应组合:永久作用标准值效应与可变作用频遇值效应相组合长期效应组合:永久作用标准值效应与可变作用准永久值效应相组合 标准组合:作用取标准值,汽车荷载考虑冲击系数基本组合:永久作用的设计值效应与可变作用设计值效应相组合偶然组合: 永久作用标准值效应与可变作用某种代表值效应、一种偶然作用标准值效应相组合1.2 验算规则1.2.1 裂缝宽度验算新《公桥规》第6.4条规范以及《城市桥梁设计规范》 A.0.3 3) 条规范: 1.2.1.1 钢筋混凝土构件,在正常使用极限状态下的裂缝宽度,应按作用(或荷载)短期效应组合并考虑长期效应影响进行验算。

1.2.1.2 钢筋混凝土构件 其计算的最大裂缝宽度不应超过下列规范的限值:1)Ⅰ类和Ⅱ类环境 0.25mm 2)Ⅲ类和Ⅳ类环境 0.15mm1.2.1.3 矩形、T 行和I 形截面钢筋混凝土构件,其最大裂缝宽度W fk 可按下列公式计算:12330()0.2810SSfk SSdW C C C E σρ+=+ (mm )0()S Pf fA A bh b b h ρ+=+−1.2.2 正截面抗弯承载力验算新《公桥规》第5.2.2条规范:矩形截面或翼缘位于受拉边的T 形截面受弯构件,其正截面抗弯承载力计算应符合以下规定:()()()'''''''000002d cd sd s s pd p p p x M f bx h f A h a f A h a γσ⎛⎞≤−+−+−−⎜⎟⎝⎠混凝土受压区高度x 应按下式计算:()'''''sd s pd p cd sd s pd po p f A f A f bx f A f A σ+=++−1.2.3 斜截面抗剪承载力验算新《公桥规》第5.2.7条规范:矩形、T 形和I 形截面的受弯构件,当配置箍筋和弯起钢筋时,其斜截面抗剪承载力计算应符合下列规定:0d cs sb pb V V V V γ≤++31230.4510cs V bh ααα−=×30.7510sin sb sd sb s V f A θ−=×∑ 30.7510sin pb pd pb p V f A θ−=×∑新《公桥规》第5.2.9条规范:矩形、T 形和I 形截面的受弯构件,其抗剪截面应符合下列要求:000.5110d V γ−≤× ()kN1.3 计算模型4x20m (8.0m 宽)箱梁纵向计算模型1.4 正常使用极限状态裂缝验算短期效应组合弯矩图(kN*m )短期效应组合裂缝图(kN*m )经计算,最大负弯矩处裂缝宽度为0.12mm ,最大正弯矩处裂缝宽度为0.16mm ,均符合规范要求。

30+40+30 现浇箱梁 计算书

30+40+30 现浇箱梁 计算书

杭(州)长(兴)高速公路北延(泗安至浙苏界)工程施工图阶段上部构造(30+40+30)m预应力混凝土连续箱梁(桥宽8.5m) 设 计 计 算 书铁道第三勘察设计院集团有限公司2013年10月目录1、桥梁概况 (2)2、技术标准及规范 (2)3、主要材料 (2)4、温度模式 (3)5、施工步骤简述 (3)6、结构离散 (3)7、受力阶段计算要素(30+40+30)m预应力混凝土连续箱梁(桥宽8.5m)主要计算结果 (4)1. 桥梁概况本桥共一联:(30+40+30)m预应力混凝土连续箱梁;下部结构:桥台采用肋板台,桥墩采用柱式墩,墩台均采用钻孔桩基础。

本桥平面位于直线上。

2. 技术标准及规范(一)技术标准1、荷载标准:采用公路-Ⅱ级2、安全等级:一级3、地震烈度:Ⅵ度4、预应力控制要求:按全预应力构件设计(二)技术规范(1)《城市道路设计规范》CJJ37-90;(2)《城市桥梁设计规范》CJJ11-2011;(3)《公路工程技术标准》JTG B01-2003;(4)《公路桥涵设计通用规范》JTG D60-2004;(5)《公路钢筋混凝土及预应力混凝土桥涵设计规范》 JTGD62-2004;(6)《公路圬工桥涵设计规范》 JTG D61-2005;(7)《公路桥涵地基与基础设计规范》JTG D63-2007;(8)《公路桥梁抗震设计细则》JTG/T B02-01-2008;(9)《公路工程混凝土结构防腐蚀技术规范》JTG/TB07-1-2006;(10)《混凝土结构耐久性设计规范》GB/T 50476-2008;(11)《公路交通安全设施设计细则》JTG/T D81-2006;(12)《建筑工程抗震设防分类标准》GB 50223-2008;(13)《公路桥涵施工技术规范》JTG/T F50-2011;(14)《城市桥梁抗震设计规范》CJJ166-2011;3. 主要材料1)混凝土:C50混凝土,重力密度γ=26.0 kN/m3,弹性模量为Ec=3.45×104MPa;2)预应力钢绞线:弹性模量Ep=1.95×105 MPa,公称直径15.2mm,公称面积139mm2,抗拉标准强度为1860Mpa,松驰系数=0.3;3)钢束张拉控制应力:详见各联钢束构造图;4)锚具:设计参照OVM型锚具,锚具变形、钢筋回缩取6mm(一端);5)波纹管:圆形塑料波纹管;6)管道摩擦系数:u=0.17;7)管道偏差系数:κ=0.0015;8)不均匀沉降:Δ=5mm;9)年平均相对湿度:80%。

20M简支箱梁计算(详细)

20M简支箱梁计算(详细)

- 0 -《20M 简支箱梁计算》 (JTGD62-2004)一、计算参数1、 使用对象:(双向4车道,高速公路),半幅宽度12.75m2、 环境条件:Ⅱ类3、 主要材料:混凝土强度等级 C40钢材:R235、HRB335,15.2sφ预应力钢绞线:1860pk f Mpa =二、横断面布置三、结构计算(一)、板块结构几何尺寸预制板截面几何特性跨中断面(边板)- 1 -毛截面:314992.8943.857184isiS y cm A ===∑"4314992.8943.8513812438.23i i i I S y m ==⨯=∑'"402659390.3319638963.0413812438.238485915.14i i i I I I I m =+-=+-=∑∑∑换算截面:331440.2345.007364.74is iSy cm A ===∑234T s A I b td tα=+⎰ 221(145.5149.5)959595145.5149.522014+1812=+⨯++⨯+340.2237.520222677086600022333708cm +⨯⨯+==(式中α高等学校教材“表2-4-3)跨中截面(中板)- 2 -毛截面:28595048.115944is iSy cm A ===∑'40i 2120672.7818882276.8628595048.117245895.14i i s I I I S y m =+-=+-⨯=∑∑∑换算截面:301123.3449.286110.74is iSy cm A ===∑'42120672.7820263050.9301123.3449.287544365.49i i i s I I I S y cm =+-=+-⨯=∑∑∑换22212121241()2T s A I S S h d S S S t t t t ==+++⎰221(141149)95951411492(1418)/21212=+⨯⨯+++4184100902521058834cm 11.87524.167⨯⨯+==(二)荷载效应标准值 1、结构重力 1)板自重一期(预制板)326/r KN m =260.5915.45/q A K N ⨯ 中中=r ==- 3 -260.718418.68/m q A KN ⨯ 边边=r ==;二期(现浇铰缝、铺装层、护栏)铰缝混凝土 325/r K N m =[]250.950.730.08250.038 1.31/mq K N ⨯⨯⨯⨯⨯边=(0.085)-(0.04)/2-(0.12+0.22)==2 1.31 2.62/q K N m ⨯中== 铺装24(0.080.1) 1.5 6.48/q KN m ⨯+⨯中==24(0.08 1.7850.11.375) 6.73/q KN m ⨯⨯+⨯边==护栏按两侧刚性护栏对称布置,混凝土0.353/m m2(250.35)/8 2.19/q KN m ⨯⨯=栏=1.31 6.7310.23/q KN m +∑边==2.62 6.48 2.1911.29/q KN m ++∑中==2)内力影响线- 4 -2、汽车荷载效应 1)公路Ⅰ级荷载均布荷载 10.5/k q K N m= 集中荷载 19.55180(1)238505k P K N -=⨯+=-当计算剪力时: 1.2238285.6k P KN =⨯= 2)冲击系数 结果基频 1f =(桥JTGD62-2004条文说明4-3条) 322/ 1.57710/c m G g NS m ==⨯1 5.05f Hz ==当11.514Hz f Hz ≤≤:0.1767ln 0.0157f μ=- (桥规JTGD60-2004,4.3.2式)所以 0.270μ= 1 1.270μ+= 3)汽车荷载横向分配系数3(~)44c l lk 修正的刚性横梁法 2ii ii ii iI a I R e Ia I β=±∑∑- 5 -221112ii iGl T E a I β=+∑∑ (式中G/E=0.4 )20.0848660.072330.604iI=⨯+⨯=∑;20.0033460.21059 1.71iT =⨯+⨯=∑222222 5.250.084862(3.75 2.250.75)0.07246 4.6779 2.85317.531i ia I=⨯⨯+++⨯=+=∑边板 1 5.25a m = 11 5.250.084860.446I a =⨯=∴210.2579119.5 1.7110.4127.531β==<⨯+⨯ 符合规定 10.084860.08486 5.250.25790.14050.0153i i R e e ⨯=±⨯=±二列车影响线布载得:(0.22250.19500.17440.1470)/c k =+++= 0.5k 支= 沿桥纵向布置:- 6 -(三)持久状态承载能力极限状态计算1、正截面抗弯承载能力按《规范》5.2.2-1式计算00()2d cd x M f bx h γ≤-顶板:0b=183cm,t=12cm,h =91cm混凝土抗力:618.41830120 4.0410cd f bt N =⨯⨯=⨯由于顶板混凝土抗力大于钢筋抗力,混凝土受压区高度x 在顶板内,'112602800280791111.418.41830Pd P sd S cd f A f A x mm f b +⨯+⨯===⨯根据JTG D60-2004 基本组合表达式 (4.1.6-1)取用分项系数0γ――结构重要性系数,0γ=1.1;G γ――结构自重分项系数, G γ=1.21Q γ――汽车荷载(含冲击力)的分项系数,取1Q γ=1.4- 7 -001112()m nd Gi Gik Q Q k c Qj Qjk i j M S S S γγγγφγ===++∑∑[]1.11.2(887.86486.23) 1.4(10.270)613.123012.94K N m =⨯++⨯+⨯=⋅ 60111.4(18.41830111.4(910)3204.531022r cd x M f bx h N mm =-=⨯⨯-=⨯⋅03204.533012.94dK N m M K N mγ=⋅>=⋅ 符合规定 2、斜截面抗剪承载能力按《桥规》5.2.7-1式计算0d cs sb pb V V V V γ≤++ (荷载效应分项系数同正截面抗弯强度)计算斜截面位置距支点/2h ,d V 是斜截面受压端上由作用效应产生的最大剪力组合设计值:[]0 1.11.2(155.5385.17) 1.4(10.270)156.20623.22d V KN γ=⨯++⨯+⨯=1) 预制板截面尺寸应符合《规范》5.2.9式000.5100.51102140910821.86623.22d V b h KN KN γ--≤⨯⋅=⨯⨯⨯=>按《规范》5.2.10式检验斜截面要不要设箍筋330200.5100.510 1.25 1.652140910159.25d td V f bh KN γα--≤⨯=⨯⨯⨯⨯⨯⨯=对于板式受弯构件 1.25159.25=199.06K N <62⨯ 所以 预制板截面尺寸满足《规范》要求,但斜截面得设箍筋。

现浇箱梁支架方案计算

现浇箱梁支架方案计算

现浇箱梁⽀架⽅案计算温泉⼤桥现浇箱梁万能杆件⽀架⽅案计算书⼀、编制依据1、重庆市统景国际温泉度假区连接道路⼯程施⼯图设计⽂件及地勘报告,以及设计变更、补充、修改图纸及⽂件资料。

2、国家有关的政策、法规、施⼯验收规范和⼯程建设标准强制性条⽂(城市建设部分),以及现⾏有关施⼯技术规范、标准等。

3、现场勘察和研究所获得的资料,以及相关补充资料。

4、建设单位、监理单位对本⼯程施⼯的有关要求。

5、我单位施⼯类似⼯程项⽬的能⼒和技术装备⽔平。

6、参考《建筑施⼯⽀架架安全技术规范》、《混凝⼟⼯程模板与⽀架技术》、《公路桥涵施⼯⼿册》、《建筑施⼯计算⼿册》。

⼆、⼯程概况温泉⼤桥桥长190m(K0+100~K1+290),桥梁平⾯位于直线和曲线上,纵⾯位于竖曲线上。

由主桥和单侧引桥共三联组成,设计为(2×25m)预应⼒砼连续梁+(50m+90m+50m) 预应⼒砼下承式连续梁拱组合。

主桥连续刚构跨径组合为50+90+50m,主桥总长度为190m,边跨与主跨的⽐值为0.556。

主梁采⽤单箱单室,箱顶宽12m,箱底宽6m,主桥箱梁第⼀个T构边跨平⾯位于右偏缓和曲线上,其余位于直线上,位于缓和曲线段主梁内侧翼缘板按照从3.0~3.47m线性加宽,曲线外侧及直线段翼缘板不加宽,为3m宽。

主桥缓和曲线段超⾼采⽤不等⾼腹板进⾏调整,详见施⼯图纸。

箱梁跨中梁⾼2.5m,墩顶梁⾼5.5m,箱梁梁⾼采⽤1.8次抛物线变化;箱梁跨中底板厚度28cm,墩顶底板根部厚度80cm,底板厚度变化采⽤1.8次抛物线;箱梁腹板厚度采⽤50、70cm两个级别变化。

主梁零号块处腹板厚度为90cm,边跨箱梁腹板从合拢段到梁端则由50cm增加到80cm。

为满⾜桥⾯横坡要求,将箱梁顶板设置成双向横坡的型式,使桥⾯铺装厚度横向⼀致。

结合有利施⼯、缩短悬臂浇注周期、降低施⼯钢材数量的原则考虑,主梁悬臂浇注梁段共划分为3.5m、4m、4.5m三种长度节段,最⼤悬臂浇注梁段重量为140t,设计时采⽤挂篮重60t。

箱梁计算

箱梁计算

二、支架设计承载力参数1、立杆设计荷载横杆步距(m)立杆荷载(kN)0.6401.2301.8252.4202、横杆设计荷载横杆(m)跨中集中荷载(kN)均布总荷载(kN)0.9 6.7714.811.2 5.0811.111.5 4.068.891.8 3.397.403、方木、模板设计参数[σw] = 13MPa[ τ] = 1.9 MPaE = 1.0×104 MPa10×10cm方木截面抵抗矩:A=bh=100*100=10000mm2I=bh3/12=100*1003/12=8.33*106mm4W=bh2/6=100*1002/6=1.67*105mm3S m=bh2/8=100*1002/8=1.25*105mm3三、箱梁砼自重参数箱梁具体尺寸见设计院图纸。

1、箱梁砼容重按25kN/m3,本次计算按箱梁腹板荷载计算,翼板因荷载偏小,不在验算范围内。

2、箱梁普通截面段腹板每延米砼恒载计算:腹板截面S=0.5*1.7=0.85m2,每延米砼恒载P1=0.85×25=21.25kN/m。

3、横梁、端梁每延米砼恒载计算:(按最不利荷载截面即纵向的横截面计算)箱梁截面S=16.75×1.7=28.475m2每延米砼恒载P2=28.475×25=711.875kN/m,中横梁宽为2m,端梁宽1.2m。

四、荷载组合1、人员及施工机械设备荷载P3=3.5kN/m22、混凝土倾倒及振捣产生的荷载P4=2kN/m2荷载组合按照Ⅱ类荷载组合计算,P=1.2恒载+1.4活载五、支撑体系验算(1)箱梁普通截面段1、模板验算(1)底板模板验算:模板每延米荷载计算:q=1.2*P1+1.4(P3+P4)*0.5=1.2*21.25+1.4(3.5+2)*0.5=29.35KN/m腹板宽度为500mm,板宽按0.5m计算。

1. 计算简图箱梁模板底横向10×10cm方木间距均为300cm,按均布荷载作用下的二等跨连续梁计算。

连续箱梁移动模架现浇施工方案

连续箱梁移动模架现浇施工方案

30m连续箱梁现浇移动模架 施工方案攀枝花公路桥梁工程总公司 铜汤高速公路十八合同段项目部30m连续箱梁现浇移动模架施 工 技 术 方 案1、概述1.1、方案选定。

本标段11座大桥、特大桥。

其中有6座桥梁为30m 连续箱梁,总孔跨数为110跨。

根据本公司现有设备和现场实际情况——地形和资金等条件以及施工经验,公司派员组织项目部技术人员讨论研究选定,对毛塔2号、苏坑1号两座30m连续箱梁桥(总孔跨数为50跨),制定移动模架现浇施工方案。

其余30m连续箱梁桥采用搭设满堂脚手架的方法施工(施工方案本文未及)。

1.2、桥型。

下部为圆断面双柱和独柱式墩两种形式,双柱式墩直径1.6m,独柱墩直径2m,双柱式墩墩中心横向距离3.8m。

桥台为重力式桥台。

下部构造基础分别为扩大基础和桩基础两种形式。

上部为30m连续箱梁,毛塔2号桥靠两岸为7跨一联,其余为6跨一联,苏坑1号桥为6跨一联。

梁高1.75m,顶宽12.2m,底宽5.4m,为单箱双室断面。

顶底板厚一般为0.2m,肋墙厚0.45m。

1.3、线型。

毛塔2号桥及苏坑1号桥皆处于缓和曲线中,超高不断变化,最大横坡-6%,对支架顶面和底板横向调坡,增加了复杂性。

1.4、地形。

桥梁沿山区麻川河河谷上行,多次跨越麻川河。

大桥纵向和横向均为起伏不平的地貌。

标段施工组织设计已作上报,本方案仅为技术性方案,对于施工机构、人员安排、工期计划、质保安全体系等方面,本方案未及。

2、支架墩、桁梁方案布置2.1、总体构思。

紧贴墩柱前后立框架支墩,跨中增设一框架支墩,支墩柱纵向位置对应桁梁节点,按两跨半长度设置一个周期的六组框架支墩。

配合长度为1跨半的桁梁移动,桁梁移动到位后,后部立柱拆移至下一施工孔跨。

支架上组拼杆件桁梁,在下一跨墩帽处设倒拐滑车,由牵引索纵向移动桁梁。

逐 “1孔+邻孔6m”为一施工段安模现浇,逐段拆移支架和牵引桁梁,至全桥完成,桁梁、支架全部拆除。

2.2、方案验算。

按施工静、动荷载,布设在上述桁梁上,对支架强度、稳定、地基沉降和桁梁的强度、挠度等进行必要的验算,以决定设备、材料的规格和结构布置尺寸,确保可靠的安全度。

现浇预应力砼箱梁满堂碗扣式支架计算书_pdf

现浇预应力砼箱梁满堂碗扣式支架计算书_pdf

筑龙网W WW .Z H U L O NG .C OM现浇预应力砼箱梁满堂碗扣式支架计算书 〈1〉采用满堂碗扣式支架,顺横桥向间距均为0.9m,在墩台两侧3.6m范围为0.6m,门架处间距为0.3m,支架搭设中间横杆层距为1.2m,门架支点处为0.6m,跨省道支架处架设40b工字钢纵梁,纵梁间距0.9m,纵向工字钢上铺置50×100mm方木其上铺12mm竹胶板,方木净间距250mm,支点处净间距为100mm,支架搭设宽度较梁底宽2m。

梁翼板采用竹胶板结合木支架搭设,其整体布置见附图。

a、按砼方量检算碗扣支架承载力是否满足要求:梁底宽11.2m,长90米,箱梁底总面积为1008m2,箱梁砼方量945.14m3,加上施工荷载按1.2倍的系数考虑,则每平方米的重量为945.14×2.4÷1008×1.2=2.7t。

支架采用多功能碗扣式支架,沿桥纵向步距90cm,横向步距90cm,每根立杆受正向压力为:2.7×0.9×0.9=2.187t,安全系数按1.3考虑,则每根立杆受正向压力为:2.187×1.3=2.84t,小于碗扣式支架立杆允许承载力3.5t,符合要求。

b、竹胶板采用江西产一等品,静曲强度55Mpa〉2.7×9.8=26.46 Mpa,强度符合。

c、上、下撑托允许荷载50KN,木材[σ]=11Mpa,E=1.1×1045×10cm横向方木 I=bh3/12=5×103/12=416.7cm4 W=bh2/6=5×102/6=83.3cm3 Q总=2.7×9.8=26.46kn/m2M=Q总L2/8=26.46×0.3×0.92/8=0.80kn・m σ=M/W=0.80/83.3×10-6=9.6Mpa<[σ]=11Mpa 筑龙网W WW .Z H U L O NG .C OM强度符合 δ=5Q总L4/384EI =5×26.46×0.3×0.94/384×1.1×104×416.7×10-8=1.48mm δ/L=1.48/0.9×103=1/608<[1/400]=[δ/L] 刚度符合 3.2.3 15×15cm纵向方木计算 I=bh3/12=15×153/12=4219cm4 W=bh2/6=15×152/6=562.5cm3 Q总=2.7×9.8=26.46kn/m2M=Q总L2/8=26.46×0.9×0.92/8=2.41KN・m σ=M/W=2.41/5.625×10-6=4.28Mpa<[σ]=11Mpa 强度符合 δ=5Q总L4/384EI =5×26.46×0.9×0.94/384×1.1×104×4219×10-8=0.4mm δ/L=0.4/0.9×103=1/2250<[1/400]=[δ/L] 刚度符合 d、40b工字钢门架 IX-X=26032cm4WX-X=962.3cm3 (建材实用手册查) Q总=2.7×9.8=26.46 kn/m2 M=Q总L2/8=26.46×0.9×7.22/8=154.3KN・m σ=M/W=154.3/962.3×10-6=160.3Mpa<[σ]=210Mpa 筑龙网W WW .Z H U L O NG .C OM40b工字钢材质(Q235)检验通过 δ=5Q总L4/384EI =5×26.46×0.9×7.24/384×2.1×105×26032×10-8=15.2mm δ/L=15.2/7.4×103=1/487<[1/400]=[δ/L] 钢度符合 3.3碗扣支架 3.3.1对于门架处单杆立杆承受竖向力 G=q总×S=26.46×0.9×8/8 =23.8KN<35KN=[G] 符合要求 对于碗扣支架钢管(Φ48mm,壁厚3.25mm),中间立杆间距1.2m,则 I=π(D4-d4)/64  =π(4.84-4.154)/64  =11.5cm4根据欧拉公式 [Pcr]=π2EI/(μH)2=π2×2.1×105×11.5/(1×1.2)2=52.6KN [Pcr]>G 满足强度要求 为考虑6座现浇箱梁(分离立交桥3座、天桥3座)张拉设备的通用性(每束5~9根Φj15.20钢绞线),拟以每束9根钢绞线选用张拉设备,计算如下。

箱梁横梁计算[资料]

箱梁横梁计算[资料]

请问大家:1)桥博计算连续梁的横隔梁时建模仅取横隔梁的宽度还是取横隔梁的两侧渐变段的截面作为模型计算截面?2)对于箱梁的恒载如何处理,是作为均布荷载加载在桥面板上,还是作为集中力加载在腹板上?3)对于顶板带横向预应力的桥梁,计算出来的结果是不是不考虑翼板根部的拉应力?4)对于多室截面恒载如何分担?希望大家发表自己的看法,如果有相关的算例最好上传学习一下!向别的老工程师请教后他给我这样的解释:不知道大家有什么见解1、横梁截面宽度取(b+2bh+12h'f),b为横梁厚度,bh为承托长度,h'f为板厚。

2、箱梁恒载主要都由腹板传递,取集中力加在腹板上。

3、个人认为应当考虑,施加横向预应力主要就是解决挑臂根部和腹板间桥面板下缘的拉应力,横向应力对横向钢束位置的调整非常敏感。

4、多室截面恒载可按腹板数量均分。

其实横向构件的计算分实体横梁和箱梁框架,以上的1、2、4点均用于实体横梁计算,第3点用于桥面板计算。

不知道大家有什么见解?关于横梁计算,由于在立交和高架设计时经常碰到,我谈一点个人看法,如果没有张拉横梁预应力,各个腹板的受力极不均匀,位移大的腹板,弯距比较小,承受的力也比较小,但是张拉横向预应力以后,各个腹板受力就比较均匀了,一般边腹板的力与中腹板的力之比在1.0~1.2之间。

对于多箱室的,恒载应该考虑两种情况更安全,一个是各个腹板均分恒载,另一个是边腹板是中腹板的1.2倍,另外一个就是桥面上的活载,大家是按照横梁上均布还是,腹板均分?我一般是底板范围均分和腹板均分考虑,毕竟活载比重比较小,计算差别不是很大!我的观点是:1、活载应根据车辆荷载进行横向加载,考虑最不利组合。

2、计算宽度取实体厚度。

楼上的宽度的取法从理论上讲是正确的。

但是保守的取法可以留一定的安全储备。

请各位指正。

这种横梁在城市桥梁和互通立交中用的比较多,我接触过很多向,看了以上几位的留言,也谈一下我自己的看法:举个简单的例子:三跨连续梁的中间横梁,计算的第一步是先进行纵向计算,得出横梁处的活载反力和恒载反力,然后才能进行横梁计算.1、对恒载处理的方式有两种:一是把恒载均布加到横梁上箱梁腹板宽度范围内;另外一种就是认为腹板传力,把恒载加到腹板位置集中力加载;这两种方式我都计算过,第二种方式对设计来讲偏于保守,我实际计算时采取折中的办法,把恒载打0.9折.试想一下横梁两边箱梁防撞墙的重量不可能全部传到横梁上吧!2、对活载的处理方式:根据纵向计算得出的活载反力,算出每个车辆荷载的的轴重,然后自定义车辆荷载,根据实际的横向车辆布置进行活载加载。

高箱梁模板支架设计及施工技术

高箱梁模板支架设计及施工技术
C ia hn )
[ ywod ]big nier g atns uhg o i e ; rce ds n Ke r s r ee g ei ;cs i— t i b xg d r bak t ei d n n — i h r g
l /( . O 0 6×0 6)=18 6 1 N m . 6 。 / =
N =( 8×5 9 . 3+7×2 8 . 2)×
[ 稿 日期 ]2 1— 2 2 收 01 0 — 0
计算 支 架 采 用 极性 荷 载 法 , 算模 板 和方 木采 计
用 容 许 应 力 法 , 架 与 墩 柱 相 连 , 以 抵 抗 风 载 。另 支 用
[ 者 简 介 ]罗 端 高 ( 90 , , 南 衡 阳 人 , 士 , 程 师 , 要 从 事 公 路 工 程 管 理 方 面 的 研 究 。 作 1 8 一) 男 湖 博 工 主
② 荷载计 算 。
荷载 q=[( . 5 . )+ ( . 2 ]× . 0 5+ 7 5 2 5+ ) 0 6=
3 5k 7. N/m 。
③ 强度 验算 。
按 3跨连续 梁计算 , 载 g= 7 5k / 跨度 z 荷 3 . N m,

0 6m, 方木最 大弯矩 : . 则
① 截面力 学性 能单根 钢管 。

④ 刚度验 算 。
挠度 f=0 7 l / 0 0 7 r 满 足 要 . 2mn <L 4 0= . 5r l l m,
求。
5. 78 × 1 m m : 0 0
,= 1 21 × 1 mi . 5 0 l l
② 荷载计 算 。
g . :I4×( 2 9+ )× . 3 .2 k / 4 . 2 0 6= 7 7 N m。

32m预制箱梁计算书

32m预制箱梁计算书

32m 预制箱梁计算书1. 计算依据与基础资料1.1. 标准及规范1.1.1. 标准•跨径:桥梁标准跨径30m ;•设计荷载:公路-I 级(城-A 级验算);•桥面宽度:(路基宽26m ,城市主干路),半幅桥全宽13m ,0.5m (栏杆)12.25m (机动车道)+0.5/2m (中分带)=13m 。

•桥梁安全等级为一级,环境类别一类。

1.1.2. 规范《公路工程技术标准》JTG B01-2013《公路桥涵设计通用规范》(JTGD60-2015);(简称《通规》)《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2004(简称《预规》) 《城市桥梁设计规范》(CJJ11-2011); 1.1.3. 参考资料《公路桥涵设计手册》桥梁上册(人民交通出版社2004.3)1.2. 主要材料1)混凝土:预制梁及现浇湿接缝、横梁为C50、现浇调平层为C40;2)预应力钢绞线:采用钢绞线15.2s φ,1860pk f MPa =,51.9510p E Mpa =× 3)普通钢筋:采用HRB400,400=sk f MPa ,52.010SE Mpa =× 1.3. 设计要点1)预制组合箱梁按部分预应力砼A 类构件设计;2)根据小箱梁横断面,采用刚性横梁法计算汽车荷载横向分布系数,将小箱梁简化为单片梁进行计算,荷载横向分配系数采用刚性横梁法计算。

3)预应力张拉控制应力值0.75σ=con pk f ,混凝土强度达到90%时才允许张拉预应力钢束;4)计算混凝土收缩、徐变引起的预应力损失时张拉锚固龄期为7d;5)环境平均相对湿度RH=80%;6)存梁时间不超过90d。

2.标准横断面布置2.1.标准横断面布置图2.2.跨中计算截面尺寸3. 汽车荷载横向分布系数、冲击系数计算3.1. 汽车荷载横向分布系数计算1) 抗扭惯矩计算计算得边梁抗扭惯矩4T I 0.462m =边,中梁抗扭惯矩4T I 0.458m =中,计算结果表明:悬臂对主梁抗扭惯矩贡献很小,为简化计算,可以忽略悬臂影响;同时边、中梁截面几何特性相差不到1%,按主梁截面均相同计算对结果影响不大,以下计算按主梁截面均相同考虑。

谈箱梁模板的设计

谈箱梁模板的设计

1 . 2 钢 模板 强度 计算 、 刚度 验算
钢模板 的选材一般 面板为 4 m m~ 6 m m厚 的冷轧钢 板 , 面板
之后 的加强横 、 竖肋用不等边角钢或槽钢 。 1 ) 设计荷载 。 料等 临时荷载 q 。
1 ) 振捣混凝土对模板的最大侧压力 , k P a ; 2 ) 新浇混凝土对侧模的最大侧压力为 :
P = 0 . 2 2 y t 0 k 1 k 2 “ 或P = y h 。
其中, P 为新浇混凝土对侧模 板 的最 大侧压 力 , k P a ; h为有
土的容重 , k N / m ; £ 。 为新浇混凝土的初凝 时问 , 可 按实测确 定 ; k 为外加剂影响修正系数 , 不掺外加 剂时 , 取 1 . 0 ; 掺缓 凝作 用的 外
r = M /W o r ] 时, 符合要 求。 否则重新排矩或在胶合板下放组合钢 模板 或 4 c m厚 木板 重
新计算。
2 侧模 设计
侧模板的构成材料一般为木模贴胶合 板和钢模 板 , 对木模 来
讲周转次数少 , 较 适用 于一次 投入 或周转 2次 以内 的施 工 ; 对 于
谈 箱 梁 模 板 的 设 计
高 海 荣
( 山西路桥 第- - S E 程有限公司 , 山西 临汾 0 4 1 0 0 0 )

要: 结合 多年来 箱梁施 工的经验 , 从底模设计、 侧模设计 、 内侧模强度及 刚度计算等 方面介绍 了箱梁底 模及侧模 的设计 计算
提出在模板设计中 , 由于 工地现状及材料不 同, 可能使设计的框架形式不同 , 但计算模式相 同。 关键词 : 箱梁 , 模板 , 设计
连接认 为是刚性连接( 螺栓较多 ) , 这样箱梁的底模可 近似 的作 为 3 0 m m时 , 取O . 8 5 ; 当坍落度 为 5 0 m m一 9 0 l T l m时 , 取1 . 0 ; 当坍 落 连续梁 ( n > 3 ) , 见图 1 。 加劲肋最大弯矩 :

现浇箱梁模架体系施工应用

现浇箱梁模架体系施工应用

现浇箱梁模架体系施工应用发布时间:2021-09-26T03:42:16.098Z 来源:《建筑实践》2021年5月(上)第13期作者:高鑫志[导读] 桥梁现浇梁体模架方案属于桥梁上部结构施工的范畴。

高鑫志北京城建道桥建设集团有限公司北京北京市 100000摘要:桥梁现浇梁体模架方案属于桥梁上部结构施工的范畴。

桥梁上部结构施工方法,随着预应力混凝土的广泛应用,已经得到迅速的发展。

在钢筋混凝土桥梁时代,可以说主要是梁的浇注施工方法。

由于桥梁类型的增加与跨径的增大,构件生产的预制化,结构设计方法的进步、机械设备的发展,由此而引起施工方法的进步和发展,形成了多种多样的施工方法。

但除了一些特殊施工方法外,大致可分为预制安装法和现浇筑两大类。

就地浇筑法是在桥位处搭设支架,在支架上浇筑梁体混凝土,达到强度后拆除模板、支架。

南河路潮河大桥上部结构为现浇变截面连续箱梁,墩梁固结,中跨最大跨度达到52m,属大体积混凝土结构,因此箱梁的施工是本桥梁最为重要和关键的部位,该部位结构施工的模板体系方案,对保证该桥梁整体质量至关重要。

而且本身大跨度现浇变截面连续箱梁模架体系的施工,也是本工程的重难点。

本文通过选用胶合板为面板的模板体系,详细阐述了现浇筑法保证支架、模板的稳定性技术措施,以及在施工过程中每个的控制环节,为以后类似工程提供了经验。

关键词:现浇变截面箱梁、模架体系、稳定性、技术措施引言:桥梁现浇梁体模架方案属于桥梁上部结构施工的范畴。

桥梁上部结构施工方法,随着预应力混凝土的广泛应用,已经得到迅速的发展。

在钢筋混凝土桥梁时代,可以说主要是梁的浇注施工方法。

由于桥梁类型的增加与跨径的增大,构件生产的预制化,结构设计方法的进步、机械设备的发展,由此而引起施工方法的进步和发展,形成了多种多样的施工方法。

但除了一些特殊施工方法外,大致可分为预制安装法和现浇筑两大类。

一、工程概况南河路跨潮河桥属于北京市密云县南河路(水源路-宁蔡路)道路工程一部分,位于直线段上。

钢-砼组合箱梁施工技术_pdf

钢-砼组合箱梁施工技术_pdf

钢-砼组合箱梁施工技术xx路跨线桥位于柳泉路北首,跨越济青高速公路,连接淄博高新技术产业开发区南北两个区域。

该桥中线与济青高速公路中线交角为70º01´02´´,道路最大纵坡3.47%,全桥为一副桥,车道为双向八车道,宽度为30 m,两侧各设计3.9 m宽人行道,全宽38.74 m 。

桥梁全长为408 m,其中南北引桥长均为138 m(现浇三跨预应力砼连续箱梁,跨径3×46m),主桥长为132 m,中线跨径为(40+52+40)m,中跨52 m为斜桥,桥墩布置与济青高速路平行,在边跨做成正桥。

主桥除中跨段32 m为钢—砼组合箱梁结构,外边跨及中跨两边段10 m均为预应力砼箱梁结构。

钢-砼组合箱梁段共5个钢箱,钢箱间设横梁连接。

钢箱两端与砼箱梁之间通过预应力筋纵向组合。

每个钢箱宽为3.5m,三片腹板,钢箱高1.78m,与0.22m砼桥面板组合高度为2.0m,箱体内设纵横向加劲肋,每2.5m设横隔板一道。

所有钢材采用Q345D(16Mn),其力学性能满足GB/1591-94的要求。

桥面板采用40号补偿收缩砼,并加入聚丙烯纤维网。

1、钢-砼组合箱梁施工根据施工需要,每个钢箱分三段(10m+12m+10m)工厂制作,现场拼装,通过高强螺栓连接。

1.1钢箱梁制作钢箱梁制作选择有施工资质的桥梁厂制造。

由我单位提供钢箱梁全部设计详图及设计说明,材料明细表,螺栓、剪力钉位置详图。

另外结合施工现场情况,提供必要的施工安装说明等。

制作过程中,会同监理单位依据《公路桥涵施工技术规范》及行业《质量检验评定标准》进行质量检验验收。

并要求桥梁厂提供各种材质试验、焊接试验及钢结构探伤试验报告;提供构件编号及工地预拼图。

焊缝要求:尽量减少焊接变形,所有构件的纵、横向对接焊缝均不得小于母材强度,均采用自动埋弧焊,达到Ⅰ级焊缝标准。

钢板均采用喷砂法除锈,除锈等级sa2.5,底层防腐涂料用VC1-396,钢板外露面喷面漆。

现浇箱梁支架及模板施工安全计算

现浇箱梁支架及模板施工安全计算
02 = . 1 K m .5 57 3 N/
02 =2 .5 + .) × .5 (27 2 0 1
中横 梁 厚 1 0 m、 梁 宽 4 c  ̄ 5 m、 体采 用 C 0砼 , 8c 腹 5m 7 c 梁 5
内布设 纵 向预应 力 。 二 、支 架 受 力计算 1 立 杆承 重计 算 .
16. 852=1 65 N 3. K
横 梁 弯 拉 应 力 : o= / = .6 × 1 。 1X 1 。X M w 00 0/ 0
1 。 0 6 a [ 】= 4 5 a 0 = .MP < 0 1 . MP
横 梁弯 拉 应力 满足 要 求 。
( )横 梁 施 加在 每 根 立 杆重 量 :N = ×09x00 2 2 4 . .6×
跨 中最 大 弯矩 : q 。 8 68 M= L/ = .7×09 / = .9 KN ・ . 8 0 6 6 m 中5 ×30弯 拉应 力 [ ] = 0 MP l . 0 25 a 弹 性模 量 E 20 X 1 a = .6 0MP
立 杆承 重满 足 要求 。
2 支架稳 定性 验算

要 :文 中介 绍 了现浇 箱梁 支 架和 模板 的施 工 工艺 ,阐 明了支 架和 箱梁 模 板 的检 算 内容 。
文 献标 识 码 :A
文章 编号 : 1 0 — 9 3 ( 0 1 6 0 3 — 2 0 6 7 7 2 1 )0 — 2 10
关键 词 :现 浇 ;支架 ;模 板 ;安 全计 算
× 7. 5× 4=0. 054KN
× l l . xo0 = K O 12 .4 6 N 每 根立 杆 总承 重 :
N= l N2 N + +N3 +N4 N =13. + 65+0. 162+0. 23+0. 15+0. 6+ 6=20. 792KN < 30KN

现浇箱梁横梁计算分析研究

现浇箱梁横梁计算分析研究
左 右 1 。
() 3 由于 篇 幅及 时 间 限制 , 文 只对 2个 支 座 本
的情况进行 了计算分析( 对于 3 个及 以上支座 的分 析核心思路和分析方法基本相 同1 。当前提条件为 2个 支 座 的情 况 下 , 比较 A、 c、 E五个 子 区 域 B、 D、 时, 相对支撑位置更近一些的区域其剪力值更大 。
收 稿 日期 :0 1 l — 8 2 1- 1 2
剪力传递大小产生影响1 。本文就此影响用墩反力 来 衡量 其 宏 观差 异 , 表 1 见 。 112 主梁 向横梁 传 递 剪 力分 布规 律 分析 .. 本文通 过 A S S 限元 软件用 s i 5 体 NY 有 od 实 l4 单 元对 图 1 图 2所 示 的箱 梁进 行 了恒 载计 算 。之 、 后 对 中横 梁 边缘 截 面 A A见 图 3的剪 力 分布 进 行 —( ) 了分析处理 。 主要思路是将 A A截 面所有节点( — 见 图 4的重 力 加 速 度 方 向力 V 剪 力 ) 照 区域 进 行 ) Y( 按 了积分求和 ,之后将各子 区域 的剪力与全截面剪 力 进行 了百 分 比比较 f 见表 2 图 5。 、 1 由于 使 用 了 sl 4 体 单 元 ,因此 内部 节 点 od5实 i
_
。 - 】J
。-・ I
R 由 ^

1 l
- - -




L 且




r _ c产
・ -
J峨
,卫 l
【 :

=_~ :f — 二 I ‘ l
。-
’ ‘f 一 —~ 一 ・ — ~ 1 J ● ● _

箱梁外模计算书

箱梁外模计算书

箱梁模板计算书京沪高速铁路32米箱梁模板采用钢板面和钢框架结构设计,桥模板按《铁路混凝土工程施工验收补充标准》(铁建设[2005]160号)、《公路桥涵施工技术规范》、《混凝土结构工程施工及验收规范》(GB50204)和《钢结构设计规范》(GB50017-2003)的要求进行设计与计算。

1. 荷载计算(1)新浇混凝土的侧压力(F1)根据招标单位提供的数据,新浇混凝土容重 r c=26KN/ m3,浇筑速度v=1.5m/h, 入模温度T=200C。

依据混凝土有效压头计算公式:v/T≤0.035时,h=0.22+24.9 v/Tv/T≥0.035时,h=1.53+3.8 v/T现v/T=1.5/20=0.075,则有效压头h=1.815m考虑可能的外加剂最大影响,取系数1.2,则混凝土计算侧压力标准值F1=1.2*26*1.815=56.63KN/ m2=56.63*10-3N/mm2(2)倾倒混凝土产生的侧压力(F2)当采用泵送混凝土浇筑时,侧压力取6 KN/ m2 并乘以活荷载分项系数1.4。

所以 F2=1.4×6=8.4 KN/ m2(3)侧压力合计(F3) v/TF3= F1+ F2=56.63+8.4=65.03 KN/ m2模板强度验算考虑新浇混凝土侧压力与倾倒混凝土时产生的荷载,即F3值。

模板刚度验算考虑新浇混凝土侧压力,即F3值。

2. 侧模计算:(1)设计模板的形式与用料计算用板块为假设的最不利板块。

其中面板为8mm厚钢板;模板下角竖肋为间距300mm的10㎜筋板;模板其他部分为单向板,横肋间距300mm的工10#;背楞[18#双槽钢;对拉杆水平间距最大2000mm;(2)板面、与板面直接焊接的横肋、背楞的强度与刚度计算:上述构件均为受弯构件,与板面直接焊接的横肋是板面的支承边;背楞作为横肋的支座;对拉栓及销轴作为背楞的支座。

2.1钢面板、横肋、背楞和桁架计算 2.1.1 钢面板计算钢面板与横肋采用断续焊焊接成整体后,把钢面板当作单向板计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

箱梁模板施工计算
一、简介
A19~A24箱梁一联五孔125m(5×25m)。

A19~A21单箱三室,渐
G
.B18~B23箱梁一联五孔120m(20+4×25)单箱三室,在一般结



W
W W
.Z
H U L O
N G
1、箱梁模板支架体系
2、底模下方木铺设
采用10×15cm 的方木纵向(顺桥向)铺设作为模板主肋,其间距为91.4cm,采用10×10cm 方木横向铺设作为模板次肋,间距30cm,上部面板采用1220×2440×18mm 的竹胶板。

3、结构受力分析
以墩柱两侧4.0m 结构过渡区荷载最大段进行验算,如果满足要求,则一般结构区也满足要求。

(1)、模板主肋
建立受力模型见图3-8
抗弯=M/W=0.077×q×L2/w=0.077×30×1.222×106/375
]=15MPa
≈9.2MPa<[f
m
qL4/100EI
挠度:w=K
挠度系数
=0.632×30×1.224/100×0.1×2812.5=1.5×10-3m=1.5mm
据《现行建筑规范大全》规定,结构表面外露的模板,最大变形

龙网
W
W W
.
值不超出模板构件计算跨度的1/400。

2.44×1/400=0.0061=6.1mm 抗剪τ=σ/A=K 剪力系数
×ql÷bh=0.607×30×1.22/0.1×
0.15=1.48MPa<1.5Mpa
W=bh 2/6=167cm 3,I=bh 3
/12=833cm 4
,q=32.8×0.3=10KN/m
抗弯=M/W=0.077×q×L 2
/w=0.077×10×0.9142
×106/167
≈3.9MPa<[f m ]=15MPa 挠度:w=K 挠度系数qL 4
/100EI
=0.632×10×0.9144
/100×0.1×833=0.5×10-3
m=0.5mm 据《现行建筑规范大全》规定,结构表面外露的模板,最大变形值不超出模板构件计算跨度的1/400。

2.44×1/400=0.0061=6.1mm
抗剪 τ=σ/A=K 剪力系数×ql÷bh=0.607×10×0.914/0.1×0.1 =0.55MPa<1.5Mpa



W
W W
.Z
H U L O
(3)、模板受力分析
建立受力模型进行简力分析,受力模型见图3-10
采用18×1220×2440mm 竹胶板,其主要物理力学性能指标(JG/T3026-1995标准要求)
静曲弹性模量: E 横向≥4×103Mpa ,E 纵向≥6×103Mpa 模板按连续四跨简支梁分布荷载计算:
Ix=bh 3
/12=30.5×1.83
/12=14.8cm 4
,q=32.8×0.914=30KN/m 挠度:w=K 挠度系数qL 4
/100EI
=0.632×30×0.3054
/100×14.8×10-8
×4×106
=2.8×10-3
m=2.8mm
据《现行建筑规范大全》规定,结构表面外露的模板,最大变形值不超出模板构件计算跨度的1/400。

2.44×1/400=0.0061=6.1mm
.C O
M
4、箱梁外模施工
(1)、模板铺设
支架体系采用MJ1219门式满堂支架,上部采用立杆可调顶托,并利用脚手架上U 型托来调节方木支撑的高度。

顶托上用10×15cm
2
方木做纵梁。

纵梁上方用10×10cm 2
方木做横梁。

箱梁翼板滴水模采用0.2m×1.5m 定型钢模,箱梁其余外模均采用18×1220×2440mm 竹
胶板。

为使本桥脱模后线条流畅,同时根据模板的支撑结构(见图3-7)、
W
W W
.(2)、模板加固
底模采用支架支撑,模板主肋10cm×15cm、L=4.0m 方木按91.4cm 纵向铺设,接头处下托5×10cm 方木;次肋10cm×10cm、L=4.0m 方 向布置,间距55cm,上、中、下三道;次肋5cm×10cm 横向布置,
间距30cm。

外模和内模的中间采用制作好的砼支撑作控制内空尺寸
的内撑,梅花型布置,共分两层,间距55cm。

见图3-14

龙网
W
W W
.Z
H U L O
N G
.C O
M
5、内模施工
箱梁内腔模板采用1.5×0.3m、1.5×0.2m、1.5×0.15m 定型钢模作面板,U 形卡、L 形插销拼接、加固,φ42管扣制作成龙骨架作内支撑,砼支撑预先设置在底板的顶层钢筋上,以保证钢筋的保护层,并作为支撑上部内模重量的支点。

相关文档
最新文档