环氧树脂固化剂固化条件及配方(七)
环氧树脂的固化机理及其常用固化剂
3.8.1 脂肪族多元胺
1、反应机理
CH O CH2 + R N H2 R NH CH2 CH OH
CH2 CH O CH2 + R NH CH2 CH OH R N CH2 CH OH CH OH
CH H2N R N H2 OH CH OH
CH2 N CH2 R N
CH2
CH OH
CH2
CH OH
催化剂(或促进剂):质子给予体 促进顺序:酸≥酚≥水>醇(催化效应近似正 比于酸度)
CH2 CH O HX R + CH2 CH HX O R
如被酸促进(先形成氢键)
R" R" NH R' HX + CH2 CH O R R'
NH CH2 CH O R
+
_
HX
形成三分子过渡状态(慢)
R" R' NH CH2 CH O R
(4)硫脲-多元胺缩合物 由多元胺和硫脲反应制得,为低温固化剂。 硫脲和脂肪族多元胺在加热到100℃以上,进行 缩合反应放出氨气,生成缩合物:
S H2N C NH2 + NH2(CH2)nNH2 S S H2N (CH2)n NH C N H m S
或 H2N CNH (CH2)nNH CNH H + NH3 m
3.8.4 多元硫醇
R SH + CH2 CH O R S CH2 CH OH
类似羟基,巯基基团(-SH)也可与环氧基反应, 生成含仲羟基和硫醚键的产物。 聚硫醇化合物(如液体聚硫橡胶)就是典型的多 元硫醇,在单独使用时活性很低,在室温下反应极 其缓慢,几乎不能进行;在有适当催化剂作用下, 固化反应以数倍多元胺的速度进行,这个特点在低 温固化时更明显。
环氧树脂的固化机理及常用固化剂
环氧树脂的固化机理及其常用固化剂反应机理酸催化反应机理催化剂:质子给予体,促进顺序:酸>酚>水>醇固化剂分类1反应型固化剂▪可与EP分子进行加成,通过逐步聚合反应交联成体型网状结构▪一般含有活泼氢,反应中伴随氢原子转移,如多元伯胺、多元羧酸、多元硫醇和多元酚2催化型固化剂▪环氧基按阳离子或阴离子聚合机理进行固化,如叔胺、咪唑、三氟化硼络合物常见固化剂▪脂肪胺固化剂▪芳香族多元胺▪改性多元胺▪多元硫醇▪酸酐类固化剂1脂肪胺固化剂脂肪胺固化特点:▪活性高,可室温固化▪反应剧烈放热,适用期短▪一般需后固化,室温7d再80-100℃2h ▪固化物热形变温度低,一般80-90℃▪固化物脆性大▪挥发性及毒性大2芳香族多元胺芳香族多胺特点:▪固化物耐热性好,耐化学性机械强度均优于脂肪族多元胺▪活性低,大多加热固化▪氮原子因苯环导致电子云密度降低,碱性减弱,以及苯环位阻效应▪多为固体,熔点高,工艺性差▪液化,低共熔点混合,多元胺与单缩水甘油醚加成3改性多元胺a、环氧化合物加成:▪加成物分子量变大,沸点粘度增加,挥发性与毒性减弱,改善原有脆性b、迈克尔加成:▪丙烯腈与多元胺▪胺的活泼氢对α,β不饱和键能迅速加成▪腈乙基化物降低活性,改善与EP相容性特别有效c、曼尼斯加成:曼尼斯反应(Mannich reaction)为多元胺和甲醛、苯酚缩合三分子缩合。
▪产物能在低温、潮湿、水下施工固化EP▪典型产品T-31:二乙烯三胺+甲醛+苯酚▪适应土木工程用于混凝土、钢材、瓷砖等材料▪粘结的快速修复和加固d、硫脲-多元胺缩合:▪硫脲与脂肪族多元胺加热至100℃缩合放出氨气▪能在极低温下(0℃以下)固化EPe、聚酰胺化:▪9,11-亚油酸与9,12-亚油酸二聚反应▪然后2分子与DETA(二乙烯三胺)进行酰胺化反应挥发性毒性很小▪与EP相容性良好,化学计量要求不严▪固化物有很好的增韧效果▪放热效应低,适用期长,固化物耐热性较低,HDT为60℃左右4多元硫醇▪类似于羟基▪聚硫醇化合物(液体聚硫橡胶)就是典型多元硫醇,单独使用活性很低,室温反应及其缓慢几乎不能进行▪适当催化剂作用下固化反应以数倍多元胺速度进行▪在低温固化更为明显5酸酐类固化剂▪反应速率很慢,不能生成高交联产物,一般不作为固化剂▪低挥发性,毒性低,刺激性低▪反应缓慢,放热量小,适用期长▪固化物收缩率低,耐热性高▪固化物机械强度高,电性能优良▪需加热固化,时间长▪EP常用固化剂,仅次于多元胺主要酸酐:▪顺酐>苯酐>四氢苯酐>甲基四氢苯酐▪六氢苯酐>甲基六氢苯酐▪甲基纳迪克酸酐▪均苯四甲酸二酐▪改性酸酐▪酸酐分子中负电性取代基则活性增强阴/阳离子型催化剂▪催化剂仅仅起催化作用,本身不参与交联▪用量主要以实验值为准▪催化环氧开环形成链增长1常用阴离子催化剂1、叔胺类多用DMP-10(二甲氨基苯酚),DMP-30,酚羟基显著加速树脂固化速率,放热量大适用期短,EP快速固化(24h/25℃)2、咪唑类多用液态2-乙基-4-甲基咪唑(仲胺活泼氢和叔胺),适用期长(8-10h),中温固化,热形变温度高,与芳香胺耐热水平(100℃)相当阳离子型固化剂,路易斯酸链终止于离子对复合2常用阳离子催化剂▪路易斯酸:BF3,SnCl4,AlCl3等,为电子接受体▪BF3使用最多,具有腐蚀性,反应活性非常高一般与胺类或醚类络合物,如三氟化硼-乙胺络合物, BF3:400,为87℃结晶物质,室温稳定,离解温度90℃,离解后活性增大环氧树脂固化的三个阶段▪液体-操作时间:树脂/固化剂混合物仍然是液体适合应用▪凝胶-进入固化:混合物开始进入固化相(也称作熟化阶段),这时它开始凝胶或“突变”成软凝胶物。
环氧树脂固化剂固化条件及配方修订稿
环氧树脂固化剂固化条
件及配方
WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-
表1-16 有机酸酰肼固化环氧树脂铁-铁粘接的剪切强度
表1-17 国产的某些改性胺固化剂的质量指标
表1-18 烷基、芳基聚酰胺树脂的典型性能①?
表1-19 日本某些改性胺固化剂的性能指标
表1-20 胺类加合物的固化物性能
表1-21 胺加合物(由环氧乙烷、环氧丙烷制)的固化物性能
表1-22 典型的酸酐固化剂的性质
表1-23 与BA树脂配合的酸酐固化剂的固化条件、特性和用途
表1-24 配方与固化物性能
表1-25 商品甲基四氢苯酐的性能比较
表1-26 商品甲基六氢苯酐的性能比较
表1-27 不同浇铸配方固化物的性能及其比较
表1-28 MHAC与环氧树脂固化物的性能
表1-29 固化物在200℃下长期加热的性能变化①
表中200℃加热10天后的变化有关数据是以图为依据的估算值,并非实测数据。
表1-37 各种HET/酸酐混合物的液化温度(℃)
表1-38 酸酐的典型共熔物
表1-39 日本商品化的聚硫醇固化剂
表1-40 有代表性的叔胺的性质
表1-41 几种叔胺固化物的性能
表1-42 促进剂效果比较(环氧树脂/DDSA)①:固化时间(分)
表1-43 有代表性的咪唑化合物的性质
表1-44 咪唑及其衍生物的使用期及固化时间①
① 咪唑类添加量4g;树脂配料100g;0.3g填料,热板法。
环氧树脂固化剂配方及应用
环氧树脂固化剂配方及应用环氧树脂固化剂配方及应用环氧树脂固化物具有优良的机械性能、电器性能、耐化学药品性能,因而得到广泛的应用。
固化剂是环氧树脂固化物必需的原料之一,否则环氧树脂就不会固化。
为适应各种应用领域的要求,应使用相应的固化剂。
一、脂肪多元胺乙二胺 EDA H2NCH2CH2NH2分子量60活泼氢当量15无色液体每100份标准树脂用6-8份性能:有毒、有剌激臭味,挥发性大、粘度低、可室温快速固化。
用于粘接、浇注、涂料。
该类胺随分子量增大,粘度增加,挥发性减小,毒性减小,性能提高。
但它们放热量大、适用期短。
一般而言它们分子量越大受配合量影响越小。
长期接触脂肪多元胺会引起皮炎,它们的蒸汽毒性很强,操作时须十分注意。
二乙烯三胺DETA H2NC2H4NHC2H4NH2 分子量103活泼氢当量20.6无色液体每100份标准树脂用8-11份。
固化:20℃2小时+100℃30分钟或20℃4天。
性能:适用期50克25℃45分钟,热变形温度95-124℃,抗弯强度1000-1160kg/cm2,抗压强度1120kg/cm2,抗拉强度780kg/cm2,伸长率5.5%,冲击强度0.4尺-磅/寸洛氏硬度99-108。
介电常数(50赫、23℃)4.1 功率因数(50赫、23℃)0.009体积电阻2x1016 Ω-cm常温固化、毒性大、放热量大、适用期短。
三乙烯四胺TETA H2NC2H4NHC2H4NHC2H4NH2分子量146活泼氢当量24.3无色粘稠液体每100份标准树脂用10-13份固化:20℃2小时+100℃30分钟或20℃7天。
性能:适用期50克25℃45分钟,热变形温度98-124℃,抗弯强度950-1200kg/cm2,抗压强度1100kg/cm2,抗拉强度780kg/cm2,伸长率4.4%,冲击强度0.4尺-磅/寸洛氏硬度99-106。
常温固化、毒性比二乙烯三胺稍低、放热量大、适用期短。
四乙烯五胺TEPA H2NC2H4(NHC2H4)3NH2分子量189活泼氢当量27棕色液体每100份标准树脂用11-15份性能同上。
环氧树脂固化剂
固化剂1.脂肪族多元胺1.1 乙二胺(EDA)由1,2-二氯乙烷(EDC)和氨反应制备。
还可由一乙醇胺(MEA)和氨反应制备乙二胺。
对于脂肪胺,伯胺基与环氧的反应速度约为仲胺的2倍。
但环氧基与伯胺的反应与生成的仲胺基和环氧基的反应几乎是同时进行的。
伯胺易与空气中的二氧化碳反应生成白色的固体碳酸铵盐,不能与环氧基发生反应,但加热可以放出二氧化碳,可继续反应。
1.2 二亚乙基三胺(DETA)在25℃下24小时内就能充分固化,7d可以达到最高值,加热进行后固化,其性能可以得到进一步改善。
二亚乙基三胺的粘度非常低,与空气接触生产白烟,环氧当量为185的双酚A型环氧树脂其计算用量为11%。
在其化学计算量的当量点附近有最大的交联密度。
而实际用量为化学计算量的75%即可,有助于减少固化放热。
以二亚乙基三胺固化的环氧树脂有良好的耐化学药品性。
二亚乙基三胺的变性物:二亚乙基三胺与环氧乙烷(EO)、环氧丙烷(PO)的加成物。
生成N,N’-二羟乙基二亚乙基三胺,由于加成物中含有羟基,加速了环氧树脂的固化速度,其适用期比二亚乙基三胺要短。
固化放热温度随羟乙基化程度提高而降低。
且改善了固化剂对树脂的溶解性,降低了固化剂的挥发性和毒性。
但其吸湿性变强。
二亚乙基三胺与丙烯晴的加成反应成为氰乙基化反应,加成后反应活性降低,适用期增长,受湿度的影响也变难。
随着氰乙基化程度的增加,最高放热温度降低,树脂固化物的耐溶剂性得到改善,特别是耐氯化溶剂性能,但固化物电性能有所下降。
二亚乙基三胺与甲醛或多聚甲醛的反应称作羟甲基化反应,可制成一种低毒性的固化剂,适用期较短,适用于快速固化的要求。
二亚乙基三胺与环氧树脂及单环氧化物反应,生成具有羟基和氨基的胺加成物,由于加成物的分子量较大,挥发性小,没有胺臭味,毒性亦低,与树脂的配合量较多,称量不严格,生成的羟基具有促进其固化的作用,由于胺加成物的粘度高,使适用期变短。
二乙胺基三胺与酚、醛的反应成为曼尼期反应,三元反应生成物成为曼尼期碱。
环氧树脂固化剂固化条件及配方
环氧树脂固化剂固化条件及配方(一)«仪旺u②室温,样品量100g @C=良好x=差①所用原料树脂:环氧当量=180〜195的双酚A型环氧树脂;凝胶时间在23 C用药1.1L舞料测定。
表1-4二乙烯三胺的质量分数对固化物的硬度及耐化学腐蚀性能的影响①所用树脂为环氧当量为190的双酚A型环氧树脂,室温凝胶后在110 固化4h。
理论计算二乙烯三胺质量分数=10.8%。
①①固化测试条件:100g树脂配料,20 C固化7d后测定强度。
热变形温度为负荷2.5kg 14d 后测定, 低分子聚酰胺胺值为350。
表1-6在24 C下环氧树脂的环氧基残留量表1-9 KH-514 胶粘剂的耐老化性能①V-115 : n(二聚酸):n(DTA)=2 : 3;胺值238②V-125 : m(二聚酸):n(DTA)=1 : 2 ;胺值345③V-140 : m(二聚酸):n(DTA)=1 : 2 ;胺值375实用文案①表1-28 MHAC 与环氧树脂固化物的性能①①表中200 C加热10天后的变化有关数据是以图为依据的估算值,并非实测数据。
表1-30 TMA 、TMEG、TMTA 固化剂性状表1-31 TMA 、TMEG、TMTA 固化物性质表1-32 TMA 与B-570固化物性能对比②125〜128 C的可使用时间。
①试片埋在弹性垫片上,在各种温度保持30min。
所士数值为不发生开裂的试片数。
表1-36 用MA-PMDA 、PA-PMDA 固化环氧树脂的性能表1-37各种HET/酸酐混合物的液化温度(C )表1-42促进剂效果比较(环氧树脂/DDSA)①:固化时间(分)①咪唑类添加量4g ;树脂配料100g ; 0.3g填料,热板法表1-45 2E 4MZ用量、固化条件对固化物性能的影响① Epon828 10g+ 络合物0.5g② Epo n828 10g+ 双氰胺2g+络合物0.2g③上述配方中加入2g铝粉填料。
环氧树脂固化剂固化条件及配方
环氧树脂固化剂固化条件及配方1. 简介环氧树脂是一种常用的高性能聚合物材料,具有优异的物理、化学性能和加工性能。
然而,环氧树脂在未经固化之前是液态或半固态的,需要通过添加固化剂来完成其硬化过程。
本文将详细介绍环氧树脂固化剂的固化条件及配方。
2. 环氧树脂固化剂的选择环氧树脂的固化剂种类繁多,不同种类的固化剂具有不同的特点和适用范围。
在选择合适的环氧树脂固化剂时,需要考虑以下几个方面:2.1 固化速度根据需要控制产品的硬化时间,在不同应用场景下选择具有合适数值的固化速度。
2.2 固化温度不同类型的环氧树脂固化剂对于环境温度要求不同,一般分为常温固化和热固化两大类。
常温固化可在室温下完成,而热固化需要在一定温度下进行。
2.3 固化性能固化后的环氧树脂要求具有良好的物理性能和化学性能,如强度、硬度、耐腐蚀性等。
2.4 经济性考虑到生产成本,选择相对经济合理的固化剂。
3. 环氧树脂固化剂的固化条件3.1 常温固化条件常温固化的环氧树脂主要通过添加胺类或酸酐类的固化剂来完成。
常见的常温固化条件为室温下24小时。
3.2 热固化条件热固化需要在一定温度下进行,常见的热固化条件为80°C下2小时。
具体的热固化条件需根据所选用的环氧树脂和固化剂来确定。
4. 环氧树脂固化剂配方设计4.1 回流焊接用环氧树脂胶水配方回流焊接是电子制造过程中常用的连接技术之一。
回流焊接用环氧树脂胶水需要具有良好的耐热性和粘接性能。
以下是一种常见的回流焊接用环氧树脂胶水配方:•环氧树脂:100份•固化剂:10-20份•填料(如硅胶):30-50份以上配方中的单位为重量份,具体比例需根据实际情况进行调整。
4.2 高强度结构胶配方高强度结构胶主要用于工程领域中对粘接强度要求较高的部位。
以下是一种常见的高强度结构胶配方:•环氧树脂:100份•固化剂:20-30份•助剂(如改性硅油):5份以上配方中的单位为重量份,具体比例需根据实际情况进行调整。
环氧树脂的固化机理及其常用固化剂
环氧树脂的固化机理及其常用固化剂反应机理酸催化反应机理催化剂:质子给予体,促进顺序:酸>酚>水>醇固化剂分类1反应型固化剂▪可与EP分子进行加成,通过逐步聚合反应交联成体型网状结构▪一般含有活泼氢,反应中伴随氢原子转移,如多元伯胺、多元羧酸、多元硫醇和多元酚2催化型固化剂▪环氧基按阳离子或阴离子聚合机理进行固化,如叔胺、咪唑、三氟化硼络合物常见固化剂▪脂肪胺固化剂▪芳香族多元胺▪改性多元胺▪多元硫醇▪酸酐类固化剂1脂肪胺固化剂脂肪胺固化特点:▪活性高,可室温固化▪反应剧烈放热,适用期短▪一般需后固化,室温7d再80-100℃2h ▪固化物热形变温度低,一般80-90℃▪固化物脆性大▪挥发性及毒性大2芳香族多元胺芳香族多胺特点:▪固化物耐热性好,耐化学性机械强度均优于脂肪族多元胺▪活性低,大多加热固化▪氮原子因苯环导致电子云密度降低,碱性减弱,以及苯环位阻效应▪多为固体,熔点高,工艺性差▪液化,低共熔点混合,多元胺与单缩水甘油醚加成3改性多元胺a、环氧化合物加成:▪加成物分子量变大,沸点粘度增加,挥发性与毒性减弱,改善原有脆性b、迈克尔加成:▪丙烯腈与多元胺▪胺的活泼氢对α,β不饱和键能迅速加成▪腈乙基化物降低活性,改善与EP相容性特别有效c、曼尼斯加成:曼尼斯反应(Mannich reaction)为多元胺和甲醛、苯酚缩合三分子缩合。
▪产物能在低温、潮湿、水下施工固化EP▪典型产品T-31:二乙烯三胺+甲醛+苯酚▪适应土木工程用于混凝土、钢材、瓷砖等材料▪粘结的快速修复和加固d、硫脲-多元胺缩合:▪硫脲与脂肪族多元胺加热至100℃缩合放出氨气▪能在极低温下(0℃以下)固化EPe、聚酰胺化:▪9,11-亚油酸与9,12-亚油酸二聚反应▪然后2分子与DETA(二乙烯三胺)进行酰胺化反应挥发性毒性很小▪与EP相容性良好,化学计量要求不严▪固化物有很好的增韧效果▪放热效应低,适用期长,固化物耐热性较低,HDT为60℃左右4多元硫醇▪类似于羟基▪聚硫醇化合物(液体聚硫橡胶)就是典型多元硫醇,单独使用活性很低,室温反应及其缓慢几乎不能进行▪适当催化剂作用下固化反应以数倍多元胺速度进行▪在低温固化更为明显5酸酐类固化剂▪反应速率很慢,不能生成高交联产物,一般不作为固化剂▪低挥发性,毒性低,刺激性低▪反应缓慢,放热量小,适用期长▪固化物收缩率低,耐热性高▪固化物机械强度高,电性能优良▪需加热固化,时间长▪EP常用固化剂,仅次于多元胺主要酸酐:▪顺酐>苯酐>四氢苯酐>甲基四氢苯酐▪六氢苯酐>甲基六氢苯酐▪甲基纳迪克酸酐▪均苯四甲酸二酐▪改性酸酐▪酸酐分子中负电性取代基则活性增强阴/阳离子型催化剂▪催化剂仅仅起催化作用,本身不参与交联▪用量主要以实验值为准▪催化环氧开环形成链增长1常用阴离子催化剂1、叔胺类多用DMP-10(二甲氨基苯酚),DMP-30,酚羟基显著加速树脂固化速率,放热量大适用期短,EP快速固化(24h/25℃)2、咪唑类多用液态2-乙基-4-甲基咪唑(仲胺活泼氢和叔胺),适用期长(8-10h),中温固化,热形变温度高,与芳香胺耐热水平(100℃)相当阳离子型固化剂,路易斯酸链终止于离子对复合2常用阳离子催化剂▪路易斯酸:BF3,SnCl4,AlCl3等,为电子接受体▪BF3使用最多,具有腐蚀性,反应活性非常高一般与胺类或醚类络合物,如三氟化硼-乙胺络合物, BF3:400,为87℃结晶物质,室温稳定,离解温度90℃,离解后活性增大环氧树脂固化的三个阶段▪液体-操作时间:树脂/固化剂混合物仍然是液体适合应用▪凝胶-进入固化:混合物开始进入固化相(也称作熟化阶段),这时它开始凝胶或“突变”成软凝胶物。
环氧树脂的固化
实验五 环氧树脂的固化化工系 毕啸天 2010011811一、实验目的1.了解高分子化学反应的基本原理及特点2.了解环氧树脂的制备及固化反应的原理、特点二、实验原理热固性树脂是一类重要的树脂材料,环氧树脂(epoxy resins )就是其中的一大品种。
含有环氧基团的低聚物,与固化剂反应形成三维网状的固化物,是这类树脂的总称,其中以双酚A 型环氧树脂产量最大,用途最广。
它是由环氧氯丙烷与双酚A 在氢氧化钠作用下聚合而成。
根据不同的原料配比,不同反应条件,可以制备不同软化点、不同分子量的环氧树脂。
其通式如下:CH 2CHCH 2OC CH 3CH 3OCH 2CHCH 2OHn C CH 3CH 3OCH 2CHCH 2O环氧树脂通常用下面几个参数表征: 1.树脂粘度2.环氧当量或环氧值3.平均分子量和分子量分布4.熔点或软化点环氧值是表征环氧树脂质量的重要指标。
它表示每100g 环氧树脂中含环氧基的摩尔数。
我国环氧树脂部颁牌号中的两位数字是该牌号树脂的平均环氧值×100,所以部颁牌号可以很简明的表示出该环氧树脂的主要特征。
环氧树脂的结构中末端的活泼的环氧基和侧羟基赋予树脂反应活性,双酚A 骨架提供强韧性和耐热性;亚甲基链赋予树脂柔韧性;羟基和醚键的高度极性,使环氧树脂分子与相邻界面产生了较强的分子间作用力。
双酚A 型环氧树脂综合性能好,因而用途广泛,商业上称作“万能胶”。
环氧树脂在未固化前呈热塑性的线性结构,通过与固化剂发生化学反应,形成网状结构的大分子,才具有使用价值。
环氧树脂固化物的性能除了取决于自身的结构特性以外,还取决于固化剂的种类。
此外固化物性能还受固化反应程度的影响。
采用的固化条件不同,交联密度也会不同,所得固化物的性能也各异。
环氧树脂的固化剂种类很多,不同的固化剂,其交联反应也不同。
未固化的环氧树脂是粘性液体或脆性固体,没有实用价值,只有与固化剂进行固化生成交联网络结构才能实现最终用途。
环氧树脂固化剂
固化剂1.脂肪族多元胺1.1 乙二胺(EDA)由1,2-二氯乙烷(EDC)和氨反应制备。
还可由一乙醇胺(MEA)和氨反应制备乙二胺。
对于脂肪胺,伯胺基与环氧的反应速度约为仲胺的2倍。
但环氧基与伯胺的反应与生成的仲胺基和环氧基的反应几乎是同时进行的。
伯胺易与空气中的二氧化碳反应生成白色的固体碳酸铵盐,不能与环氧基发生反应,但加热可以放出二氧化碳,可继续反应。
1.2 二亚乙基三胺(DETA)在25℃下24小时内就能充分固化,7d可以达到最高值,加热进行后固化,其性能可以得到进一步改善。
二亚乙基三胺的粘度非常低,与空气接触生产白烟,环氧当量为185的双酚A型环氧树脂其计算用量为11%。
在其化学计算量的当量点附近有最大的交联密度。
而实际用量为化学计算量的75%即可,有助于减少固化放热。
以二亚乙基三胺固化的环氧树脂有良好的耐化学药品性。
二亚乙基三胺的变性物:二亚乙基三胺与环氧乙烷(EO)、环氧丙烷(PO)的加成物。
生成N,N’-二羟乙基二亚乙基三胺,由于加成物中含有羟基,加速了环氧树脂的固化速度,其适用期比二亚乙基三胺要短。
固化放热温度随羟乙基化程度提高而降低。
且改善了固化剂对树脂的溶解性,降低了固化剂的挥发性和毒性。
但其吸湿性变强。
二亚乙基三胺与丙烯晴的加成反应成为氰乙基化反应,加成后反应活性降低,适用期增长,受湿度的影响也变难。
随着氰乙基化程度的增加,最高放热温度降低,树脂固化物的耐溶剂性得到改善,特别是耐氯化溶剂性能,但固化物电性能有所下降。
二亚乙基三胺与甲醛或多聚甲醛的反应称作羟甲基化反应,可制成一种低毒性的固化剂,适用期较短,适用于快速固化的要求。
二亚乙基三胺与环氧树脂及单环氧化物反应,生成具有羟基和氨基的胺加成物,由于加成物的分子量较大,挥发性小,没有胺臭味,毒性亦低,与树脂的配合量较多,称量不严格,生成的羟基具有促进其固化的作用,由于胺加成物的粘度高,使适用期变短。
二乙胺基三胺与酚、醛的反应成为曼尼期反应,三元反应生成物成为曼尼期碱。
环氧树脂和固化剂的比例
环氧树脂和固化剂的比例
环氧树脂和固化剂的比例:
环氧树脂是一种重要的高分子材料,在使用时需要与固化剂混合配比,以确保产品的性能和质量。
一般情况下,环氧树脂和固化剂按重量比进行配比,其比例通常在100:20至100:60之间。
具体来说,环氧树脂和固化剂的配比应根据实际情况进行选择,以下是一些常见的着重考虑成本和性能的比例:
100:40~50:这个比例可以平衡性能和成本,因为胺固化剂价格较贵。
100:30:此比例可以提高强度,并且降低粘度,但会牺牲一定的耐化学性能。
100:60:此比例可以提高生产效率,但会牺牲一些力学性能和化学稳定性。
100:20:此比例可以提高化学稳定性,可耐高温和抗水解性强,但会牺牲一些机械性能和流动性。
总之,不同的配比比例对环氧树脂的性能有着不同的影响。
根据具体的需要选择配比比例可以更好地满足产品性能和成本的要求。
需要注意的是,不同的环氧树脂和固化剂可能需要不同的比例,因此在使用前最好查看产品说明书或咨询相关专业人士。
环氧固化剂ddm固化条件_概述说明以及解释
环氧固化剂ddm固化条件概述说明以及解释1. 引言1.1 概述环氧固化剂ddm(即二胺材料)是一种常用的固化剂,广泛应用于多个领域中。
本文旨在对环氧固化剂ddm的固化条件进行概述和解释,探讨其基本特性以及固化机理,以期为相关领域的研究和应用提供参考。
1.2 文章结构本文将从以下几个方面对环氧固化剂ddm展开讨论。
首先,我们将介绍其基本特性,包括物理性质、化学性质和应用领域。
接着,在第三部分中,我们将详细阐述环氧固化剂ddm的固化条件,并考察温度、时间以及添加剂对其固化过程的影响因素。
随后,在第四部分中,我们将探讨环氧固化剂ddm的固化机理,包括激活能与反应速率常数之间关系的理论解释、催化机理解释以及温度对固化机理的影响解释。
最后,在结论与展望部分中,我们将总结文章所得出的结论,并展望未来可能的研究方向。
1.3 目的通过对环氧固化剂ddm固化条件的概述和解释,本文旨在为相关研究人员提供关于该固化剂的基本了解,帮助他们更好地理解并应用环氧固化剂ddm。
同时,通过探讨固化机理,我们也可以深入研究其反应过程,并为进一步优化和改进该固化剂的性能提供参考。
我们相信本文将为相关领域的科研工作者和工程技术人员提供有价值的信息和指导。
2. 环氧固化剂ddm的基本特性2.1 物理性质环氧固化剂ddm是一种无色至淡黄色的固体物质,具有良好的熔点和溶解性。
其熔点通常在60-70摄氏度之间,随着纯度的提高而升高。
在常温下,ddm是稳定的,不会发生自身分解。
2.2 化学性质环氧固化剂ddm属于脂肪族胺类化合物,在化学上它含有两个主要功能基团:氨基和乙酰胺基。
这些功能基团赋予了ddm在反应中作为交联剂和催化剂的双重角色。
当环氧树脂与ddm反应时,其胺基与环氧基发生缩聚反应,形成交联结构。
这种反应可以在常温下进行,不需要加热条件,但较低温度下反应速率相对较慢。
此外,ddm还具有一定的碱性, 使其能够作为催化剂来促进环氧树脂的固化反应。
环氧树脂的固化机理及其常用固化剂
特点:能在极低的温度下(0℃以下)固化EP。
课前回顾
1、芳香胺类固化剂的主要优点与缺点? 2、芳香胺的液化方法有哪些? 3、芳香胺活性低的原因? 4、DDM的结构式与特点? 5、DDS的结构式与特点? 6、mXDA 的结构式与特点? 7、能降低胺类固化剂活性的改性方法有哪些,反应 原理是怎样的? 8、能提高胺类固化剂活性的改性方法有哪些,反应 原理? 9、590、593与T-31固化剂的合成原理?
+
_
三分子过渡状态使环氧基开环
HX
R" R'
N
+
_
HX R
R" N R' CH2 CH OH R + HX
CH2 CH OH
质子转移(快)
2、常用固化剂
乙二胺 二乙烯三胺 三乙烯四胺
H2N CH2 CH2 NH CH2 CH2 NH CH2 CH2 N H2
H2N CH2 CH2 NH2
H2N
CH2
3.8.3 聚酰胺
O O
C C
O
C
CH2 7 CH CH CH CH
CH2 7 CH CH CH CH CH2 CH3 5 +
CH2 7 CH CH CH CH CH2 5 CH2 7 CH2 CH
CH2 CH CH CH2 CH3
C CH
4
CH3
9,11-亚油酸与9,12-亚油酸二聚反应
HO
HO
催化剂(或促进剂):质子给予体 促进顺序:酸≥酚≥水>醇(催化效应近似正 比于酸度)
CH2 CH O HX R + CH2 CH HX O R
如被酸促进(先形成氢键)
R" R" NH R' HX + CH2 CH O R R'
环氧树脂胶粘剂的配方
环氧树脂胶粘剂的配方环氧树脂胶粘剂是一种常用的工业胶粘剂,具有优异的黏结性能和耐化学腐蚀性能。
其配方是指树脂、固化剂、填充剂、稀释剂等成分的比例和配制方法。
下面将详细介绍环氧树脂胶粘剂的配方。
一、树脂:环氧树脂是环氧树脂胶粘剂中的主要成分,其性能直接影响胶粘剂的黏结强度和稳定性。
常用的环氧树脂有双酚A型环氧树脂、双酚F型环氧树脂等。
双酚A型环氧树脂具有良好的耐热性和电绝缘性,适用于高温环境下的粘接。
双酚F型环氧树脂具有较高的耐化学腐蚀性能,适用于要求耐腐蚀性能的场合。
二、固化剂:固化剂是环氧树脂胶粘剂中与树脂反应形成三维交联结构的成分,其选择和使用量对胶粘剂的性能起着决定性作用。
常用的固化剂有胺类固化剂、酸酐类固化剂等。
胺类固化剂固化速度快,但耐热性和耐化学腐蚀性较差。
酸酐类固化剂固化速度较慢,但耐热性和耐化学腐蚀性较好。
三、填充剂:填充剂主要用于调节环氧树脂胶粘剂的流动性、增加黏结面的接触面积和提高胶粘剂的强度。
常用的填充剂有石英粉、硅酸盐粉、铝粉等。
石英粉具有较好的耐热性和耐化学腐蚀性,适用于高温和腐蚀性环境下的粘接。
硅酸盐粉具有较好的耐磨性和耐冲击性,适用于需要抗冲击和抗磨损性能的场合。
铝粉可以提高胶粘剂的导电性能,适用于需要导电性能的场合。
四、稀释剂:稀释剂主要用于调节环氧树脂胶粘剂的粘度和流动性。
常用的稀释剂有丙酮、甲苯等有机溶剂。
稀释剂的选择应注意其溶解性、挥发性和安全性,以确保胶粘剂的性能和使用安全。
五、其他添加剂:除了上述主要成分外,环氧树脂胶粘剂中还可以添加改性剂、防老剂、颜料等。
改性剂可以改善胶粘剂的柔韧性、降低收缩率和提高粘接强度。
防老剂可以延长胶粘剂的使用寿命。
颜料可以为胶粘剂提供不同的颜色,方便使用和区分。
环氧树脂胶粘剂的配方包括树脂、固化剂、填充剂、稀释剂和其他添加剂。
这些成分的选择和配比需要根据具体的应用需求进行调整。
合理的配方可以使环氧树脂胶粘剂具有优异的黏结性能和耐化学腐蚀性能,满足不同场合的粘接需求。
环氧树脂胶的配方比例
环氧树脂胶的配方比例环氧树脂胶是一种通用胶粘剂,可以应用于装饰、木工、建筑、汽修等工业。
环氧树脂胶的优点包括低温粘接、耐腐蚀、耐水解、具有良好的机械性能和耐撞击性。
此外,环氧树脂胶在如何配制方面也是非常关键的,它的配方也不尽相同。
根据不同的要求,环氧树脂胶的配方比例可能会有所不同,下面介绍几种常见的环氧树脂胶配方比例:一、硬质环氧树脂胶配方比例:1.环氧树脂:20-25份;2.固化剂:3%-4%;3.填料:加入30-50份,以确保胶体改善扩散性;4.助剂:2-3份,可以延长固化时间;5.膨胀剂:2-3份,一般采用粉末状,旨在减少缝隙。
二、柔性环氧树脂胶配方比例:1.环氧树脂:30-40份;2.固化剂:3%-4%;3.填料:25-45份,以改善粘接胶的流动性;4.溶剂:3-5份,以降低胶水黏度;5.脂肪醇:2-3份,有助于改善胶水的密度和稠度;6.光泽剂:1-2份,以增加表面光泽,减少表面起皱。
三、抗腐蚀环氧树脂胶配方比例:1.环氧树脂:35-50份;2.固化剂:4-5%;3.抗老化剂:2-3份,以阻止老化和缩短固化时间;4.湿存稳剂或精制环氧树脂:3-4份,可提高附着力,有利于耐久性;5.溶剂:4-8份,有助于改善流动性和可控制的固化时间。
四、耐低温环氧树脂胶配方比例:1.环氧树脂:40-50份;2.固化剂:5-7%以上;3.填料:20-40份,以降低固化温度;4.阻增剂:2-3份,用于减少固化过程中的收缩;5.分散剂:2-3份,用于减少流变性;6.助剂:2-3份,可有效抵抗高低温。
总之,环氧树脂胶的配方比例因具体应用条件的不同而不尽相同,在配制时也应注意选择恰当的配料及配比,以最大程度地提升产品性能及使用效果,确保环氧树脂胶产品能够满足不同应用要求。
环氧树脂的固化机理及其常用固化剂
3、 化学计量
胺的用量(phr)= 胺当量×环氧值
胺当量= 胺的相对分子量÷胺中活泼氢的个数 phr意义:每100份树脂所需固化剂的质量份数。
例题:分别用二乙烯三胺和四乙烯五胺固化E-44 环氧树脂,试计算固化剂的用量(phr值)。 若E-44用10%的丙酮或者669(环氧值为0.75)稀 释后(质量比为100:10),又如何计算?
间苯二胺(MPD)
N H2 N H2
性态:无色或淡黄色结晶,熔点63℃,空气中放置容 易氧化成黑色; 特点: (1)适用期较脂肪族胺要长。2.5h/50g(50℃); (2)固化物耐热性较好。HDT可达150℃(2h/80 ℃ +2h/150 ℃) (3)一般不直接使用,作为改性胺的原料。
二氨基二苯甲烷(DDM)
课前回顾
1、海因环氧树脂的结构式与主要性能特点? 2、二氧化双环戊二烯基醚环氧树脂的特点? 3、TDE-85环氧树脂的结构式与性能特点? 4、脂肪族环氧树脂的特点及用途? 5. 有机硅环氧树脂的特点? 6、环氧树脂的固化剂可分为哪两类,分别按什么反 应历程进行固化?特点是什么?两类固化剂的代表 有哪些? 7、脂肪族多元胺固化剂的催化剂有哪些?活性顺序 是怎样的? 8、常用的脂肪族多元胺有哪些?多乙烯多胺的结构 通式?它们的活性与挥发性相对大小顺序? 9、脂肪族多元胺类环氧固化剂的主要特点有哪些?
改性多元胺的制备方法
(1)环氧化合物加成多胺
由单或双环氧化合物与过量多元胺反应制得。 反应式如下:
RNH2 + CH2 CHR' O RNH CH2 CH R' OH
由于加成物的分子量变大,沸点与粘度增加,因此 挥发性与毒性减弱;同时改善了原有脂肪胺固化物的 脆性。(代表产品,593固化剂:DETA+660)
环氧树脂的固化机理及其常用固化剂
+
_
三分子过渡状态使环氧基开环
HX
R" R'
N
+
_
HX R
R" N R' CH2 CH OH R + HX
CH2 CH OH
质子转移(快)
2、常用固化剂
乙二胺 二乙烯三胺 三乙烯四胺
H2N CH2 CH2 NH CH2 CH2 NH CH2 CH2 N H2
H2N CH2 CH2 NH2
H2N
CH2
3.8.4 多元硫醇
R SH + CH2 CH O R S CH2 CH OH
类似羟基,巯基基团(-SH)也可与环氧基反应, 生成含仲羟基和硫醚键的产物。 聚硫醇化合物(如液体聚硫橡胶)就是典型的多 元硫醇,在单独使用时活性很低,在室温下反应极 其缓慢,几乎不能进行;在有适当催化剂作用下, 固化反应以数倍多元胺的速度进行,这个特点在低 温固化时更明显。
可被路易士碱(如叔胺)促进
O
O + R3 N
O
C C
+
N R3 O
—
O
O
C C
生成羧酸盐阴离子
O
+
O
+
N R3 O
—
+
CH2 CH O
CH2
C C
N R3 O CH2 CH O— CH2
O
O
生成氧阴离子
O
C C
+
O
+ CH2 O— O CH2 CH
O
C C
+
N R3 O
N R3 O CH2 CH
O
胺当量(DETA)=103/5=20.6 胺当量(TEPA)=189/7=27 (1)未稀释,环氧值=0.44 Phr(DETA)=0.44×20.6=9.1 Phr(TEPA)=0.44×27=11.9 (2)用丙酮稀释, 环氧值=0.44×100/110=0.4 Phr(DETA)=0.4×20.6=8.2 Phr(TEPA)=0.4×27=10.8 用669稀释, 环氧值=0.44×100/110+0.75×10/110=0.468 Phr(DETA)=0.468×20.6=9.6 Phr(TEPA)=0.468×27=12.6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
+多缩水甘油醚加成物
-
-
-
2
1,9002,000
+丙烯腈
-
-
-
2
-
+环氧树脂加成物
-
-
-
2
2,400
聚酰胺
-
-
-
2
800
三氟化硼-乙胺络合物(游离胺多)
1
8
7.4
-
-
7
8
7.3
-
-
P,P'-二氨基二环已基甲烷
1
5
4.3
-
-
1,3-二氨基环已烷
1
5
5
-
-
1,3-双(氨基乙胺基)丙醇
1
7
5.7
-
-
40.0
100℃
35.8
29.5
-
抗拉模量/MPa
23℃
358
279.7
379.7
100℃
106
914
-
极限延伸率(%)
23℃
2.3
1.8
-
100℃
10.3
7.2
-
抗弯强度/MPa
147.7
140.9
-
抗弯模量/MPa
379.7
395.8
-
表1-46咪唑、金属盐络合物的固化性能
络合物的组成物
配方Ⅰ①
配方Ⅱ②
配方Ⅲ③
咪唑类
金属盐
177℃凝胶时间/min
140℃凝胶时间/min
抗剪强度/MPa
咪唑
CuCl2
12
10
21.0
CuBr2
10
12.3
18.0
CuF2
90
4
16.0
NiCl2
5
5.5
23.0
CoCl2
5
2.5
23.0
ZnBr2
150
14.2
-
CuSO4
450
9.3
18.0
ZnCr2O7
1320
甲基六氢邻苯二甲酸酐(MeHHPA)
-
-
-
-
1,600
苯酮四羧酸二酐(BTDA)
-
-
-
-
12,800
丁二酸酐代甲基环已烯酸酐(MCTC)
-
-
-
-
16,000
六氢邻苯二甲酸酐(HHPA)
1
5
3.7
2
1,200③
十二烯基琥珀酸酐(DDSA)
1
5
4.1
3
3,200
四氢邻苯二甲酸酐(THPA)
-
-
-
-
1,200
甲基内次甲基四氢邻苯二甲酸酐(MHAC)
-
-
-
-
918
邻苯二甲酸酐(PA)
-
-
-
-
1,202~6,000
甲基四氢邻苯二甲酸酐(MeTHPA)
-
-
-
-
1,700
固化剂
相对时间
程度①
SPI分类②
LD50/(mg/kg)
最高
平均
二乙撑三胺(DTA)
1
8
8
4~5
2,080
N-羟乙基二乙撑三胺
+1%二乙撑三胺(DTA)
1
8
3.2
-
-
+2%二乙撑三胺(DTA)
1
8
4
-
-
+4%二乙撑三胺(DTA)
1
8
3.2
-
-
N-氰乙基二乙撑三胺(DTA)
1
6
5.1
-
-
N-羟乙基二乙撑三胺(DTA)
1
8
6.2
2
4,800
Epon828+m-苯撑加成物
2
0
0
-
-
Epon828+二乙撑三胺加成物
4
0
0
-
-
Epon828+(游离二乙撑三胺多)加成物
1
7
5.6
-
2,500
7
8
8
-
2,500
Epon828+二乙撑三胺+酚(游离的二乙撑三胺多)加成物
1
7
6.4
-
-
7
8
8
-
-
Epon828+二乙撑三胺+丙基缩水甘油醚(游离的二乙撑三胺多)加成物(AGE)
环氧树脂固化剂固化条件及配方(七)
2005-06-07 00:00:00作者:来源:网络文字:【大】【中】【小】
表1-45 2E4MZ用量、固化条件对固化物性能的影响
性能
10% 55℃/8h
4% 55℃/8h
4% 55℃/8h+120℃/2h
HDT/℃
110
65
130
抗拉强度/MPa
23℃
68.2
59.7
1
6
2
-
-
7
8
8
-
-
三乙撑四胺(TTA)
-
-
-
4~5
4,340
四乙撑五胺(TEPA)
-
-
-
4~5
2,100~3,900
五乙撑六胺(PEHA)
-
-
-
-
1,600
二乙氨基丙胺
-
-
-
4~5
1,410
间苯二胺
-
-ቤተ መጻሕፍቲ ባይዱ
-
2
130~300
4,4'-二氨基二苯基甲烷
-
-
-
-
126~830
苯二甲胺
-
-
-
4~5
625~1,750
潜伏方式
解潜方法
高温离子聚合物
加热
室温不溶性
加热溶解
由专封闭官能团失去活性
加热,光照射,暴露在湿气中
微胶囊
加压,加热
分子筛吸附
加热,暴露在湿气中
表1-49分数型潜伏性固化剂的熔点及固化特性
固化剂
熔点/℃
室温适用期/(月)
标准固化条件
BF3·MEA
90
6
120℃/4h+200℃/1h
咪唑衍生物(2MZ-AZINE)
-
>3
100~150℃
表1-50芳香二胺固化树脂的耐热性与耐水性
固化剂
吸水率/%
Tg/℃
ΔTg/℃
干燥
吸湿
DDS(基准)
3.3
220
151
69
BDAS
2.3
211
158
53
BDAO
1.7
202
163
39
BDAP
1.5
204
164
40
BDAF
1.3
200
170
30
表1-51主要固化剂的LD50·SPI分类及长时间接触时皮炎的程度
表1-47 BF3络合物的性能
名称
熔点/℃
色泽
使用期/天
BF3·乙胺
87
白
90~120
BF3·苯胺
250℃分解
无色
21~28
BF3·对甲苯胺
250℃分解
微黄
7~8
BF3·N甲基苯胺
85
微黄
5~6
BF3·N乙基苯胺
48
微黄
3~4
BF3·吡啶
73
黄
240~300
表1-48潜伏性固化剂的潜伏方式与解潜方法
18
14.0
Cu(OH)2
90
7
16.0
2E4MZ
NiCl2
4
8
19.0
CuSO4
7.5
9.5
20.0
ZnBr2
10.5
15
19.0
CuBr2
5.5
4
21.02
CuF2
10.5
3.3
21.0
①Epon828 10g+络合物0.5g
②Epon828 10g+双氰胺2g+络合物0.2g。
③上述配方中加入2g铝粉填料。
247-251
6-12
150℃/5~15min
(2E4MZ-AZINE)
225
6-8
-
双氰胺
207-210
6-12
160℃/60min+180℃/20min
己二酸酰胺肼
180
4
150℃/(1~2h)
双氰基马来腈
184
2
150~160℃急速固化
二烯丙基三聚氰胺
142
长时间
130140℃/4h
聚(哌啶-二酸)