简单的逻辑联结词(一)或且非PPT优秀课件

合集下载

非(not)课件PPT

非(not)课件PPT

典例展示
求参数取值范围时未对条件进行等价转化致误
例4 已知命题p:方程x2+2ax+1=0有两个大于-1的实
数根,命题q:关于x的不等式ax2-ax+1>0的解集为R,
若“p∨q”与“¬q”都是真命题,则实数a的取值范
围是
.
【解析】命题p:方程x2+2ax+1=0有两个大于-1的实数根,
4a2 4 0,
否命题与命题的否定
否命题是既否定条件也否定结论的方式构成新命题. 命题的否定是:只否定结论不否定条件. 对于原命题: 若 p , 则 q 否命题: 若┐p , 则┐q . 命题的否定: 若 p ,则┐q .
从三个角度辨析“p的否定”与“p的否命题”: (1)概念:命题的否定形式是直接对命题的结论进行否定;而 否命题是对原命题的条件和结论同时进行否定. (2)构成:原命题“若a,则b”的否定是“若a,则¬b”;而原命 题的否命题为“若¬a,则¬b”. (3)真假:命题p与命题p的否定¬p的真假性相反;而命题p与命 题p的否命题的真假性没有直接联系.
a2 1 0,
等价于x1 x2> 2, ① 即 2a> 2, 解得a≤-1.
x1 1x2 1>0,
2 2a>0,
命题q:关于x的不等式ax2-ax+1>0的解集为R,等价于
a
0或
a>0, <0.

∴0≤a<4.
由于
a>0, <0

a>0, a2 4a<0,
解得0<a<4,
因为“p∨q”与“¬q”同时为真命题,即p真且q假,③
否命题与命题的否定
否命题是既否定条件也否定结论的方式构成新命题. 命题的否定是:只否定结论不否定条件. 对于原命题: 若 p , 则 q 否命题: 若┐p , 则┐q . 命题的否定: 若 p ,则┐q .

简单的逻辑联结词-或且非ppt课件

简单的逻辑联结词-或且非ppt课件
p p∩q q
如何确定命题“p∧q”的真假性呢? 规定:
当p,q都是真命题时, “p∧q”是真命题; 当p,q两个命题中有一个是假命题时, “ p∧q”是假命题. 简记为:有假则假.
例1 将下列命题用“且”联结成新命题,并 判断它们的真假: (1)p:平行四边形的对角线互相平分,
q:平行四边形的对角线相等;
思考: 如果p且q为真命题,那么p或q一定为真命题吗?
反之,如果p或q为真命题,那么p且q一定是真命题吗?
p
q
p且q
p或q
















探究点3 联结词“非”
下列两个命题间有什么关系? (1)35能被5整除; (2)35不能被5整除.
答案:命题(2)是命题(1)的否定.
【提升总结】
思考:写出命题p: “正方形的四条边相等”
的否定与它的否命题.
命题┓p: 正方形的四条边不相等.
若P一的个否四命边题形:不是正方形,则它的四条边不相等.
命题的否定与否命题的区别
• (1)原命题“若P则q” 的形式,它的非命 题(即命题的否定)“若p,则q”;而它 的否命题为 “若┓p,则┓q”.
• (2)命题的否定(非)的真假性与原命题 相反;而否命题的真假性与原命题无关.
例2 用逻辑联结词“且”改写下列命题,并判断 它们的真假: (1)1既是奇数,又是质数; (2)2和3都是质数.
解:(1)改写为:1是奇数且1是质数.由于“1是质数” 是假命题,所以该命题为假命题. (2)改写为:2是质数且3是质数.因为“2是质数”与 “3是质数”都是真命题,所以该命题为真命题.

简单的逻辑联结词(一)或且非优秀课件

简单的逻辑联结词(一)或且非优秀课件

问题:下列语句是命题吗?如果不是,请你将它改
为命题的形式
(1)11>5. (2)3是15的约数吗? (3)求证:3是15的约数。 (4)0.7是整数. (5)x>8.
例1 判断下面的语句是否为命题?若是命题, 指出它的真假。 (1)请全体同学起立! (2)X2+x>0. (3)对于任意的实数a,都有a2+1>0. (4)x=-a. (5)91是质数. (6)中国是世界上人口最多的国家. (7)这道数学题目有趣吗? (8)若|x-y|=|a-b|,则x-y=a-b. (9)任何无限小数都是无理数.
我们再来看几个复杂的命题: (1)10可以被2或5整除. (2)菱形的对角线互相垂直且平分. (3)0.5非整数. “或”,“且”, “非”称为逻辑联结词. 含有逻辑联结词的命题称为复合命题,不含逻 辑联结词的命题称为简单命题. 复合命题有以下三种形式: (1)P且q. (2)P或q. (3)非p.
思考?
如果 p q 为真命题,那么 p q 一定
是真命题吗?
p q 反之,如果 为真命题,
那么
p q 一定是真命题吗?
注意
逻辑联结词中的”或”相当于集合中的”并 集”,它与日常用语中的”或”的含义不同.日 常用语中的”或”是两个中任选一个,不能都选, 而逻辑联结词中的”或”,可以是两个都选,但 又不是两个都选,而是两个中至少选一个,因此, 有三种可能的情况.
逻辑联结词中的”且”相当于集合中的”交 集”,即两个必须都选.
再见
19、一个人的理想越崇高,生活越纯洁。 20、非淡泊无以明志,非宁静无以致远。 21、理想是反映美的心灵的眼睛。 22、人生最高之理想,在求达于真理。 便有了文明。 24、生当做人杰,死亦为鬼雄。 25、有理想的、充满

简单的逻辑联结词(共19张PPT)

简单的逻辑联结词(共19张PPT)
A∩B={x︱x∈A且x∈B}中的“且”, 是指“x∈A”、“x∈B”这两个条件都 要满足的意思
符号“∧”与“∩”开口都是向下
例1 将下列命题用“且”联结成新命题,并判断它们的真
假。 (1) p :平行四边形的对角线互相平分,
q :平行四边形的对角线相等; 解: p ∧q : 平行四边形的对角线互相平分且相等。 假命题

命题p∨q:函数 y x3是奇函数或在定义域内是减函数。 真
5:命题p: 相似三角形的面积相等;

命题q: 相似三角形的周长相等;

命题p∨q:相似三角形的面积相等或周长相等。

6:命题p:三边对应成比例的两个三角形相似;

命题q:三角对应相等的两个三角形相似;

命题p∨q:三边对应成比例或三角对应相等的两个三 角形相似 真
解:(1)p:2=2 ;q:2<2 ∵ p是真命题,∴p∨q是真命题.
(2)p:集合A是A∩B的子集;q:集合A是A∪B的子集 ∵q是真命题, ∴p∨q是真命题.
(3)p:周长相等的两个三角形全等; q:面积相等的两个三角形全等.
∵命题p、q都是假命题, ∴ p∨q是假命题.
判断复合命题真假的步骤:
注:逻辑联结词“且”与日常用语中的“并且”、 “及”、“和”相当;在日常用语中常用“且”连接两 个语句。表明前后两者同时兼有,同时满足 .
例1 将下列命题用“且”联结成新命题 (1) p :平行四边形的对角线互相平分,
q :平行四边形的对角线相等; 解: p ∧q : 平行四边形的对角线互相平分且相等。
⑴把复合命题写成两个简单命题,并确定复合命 题的构成形式;
⑵判断简单命题的真假;
⑶利用真假表判断复合命题的真假。

《逻辑联结词且或非》课件

《逻辑联结词且或非》课件

“或”的运算规则
01
交换律
A或B=B或A
02
结合律
(A 或 B) 或 C = A 或 (B 或 C)
03
吸收律
A 或 (A 或 B) = A
04
分配律
(A 且 B) 或 C = (A 或 C) 且 (B 或 C)
“或”在生活中的实际应用
交通信号灯
红灯或绿灯亮时,车辆可以通行 。
天气预报
明天下雨或刮风,建议带伞和穿外 套。
“且”的逻辑运算
REPORTING
“且”的定义
“且”表示两个或多 个条件同时满足。
“且”运算具有传递 性,即若A∧B为真, 则A为真且B为真。
“且”用符号“∧” 表示。
“且”的运算规则
当A∧B为真时,A、B都为真。 当A∧B为假时,A、B至少有一个为假。
“且”运算具有结合律,即(A∧B)∧C与A∧(B∧C)的结果相同。
“且”在生活中的实际应用
交通规则
红灯和停止同时亮起表示 停车。
电子设备
多个开关同时闭合表示设 备开启。
决策制定
多个条件同时满足时采取 行动。
PART 03
“或”的逻辑运算
REPORTING
“或”的定义
“或”表示两个命题中至少有一个为 真,即为真。
“或”用于连接两个命题,表示这两 个命题至少有一个成立。
“非”运算具有可交换性,即 “¬P”和“¬Q”的结果是一 样的,无论P和Q的真假性如何 。
“非”运算不具有可结合性, 即“¬(P∧Q)”并不等于 “¬P∧¬Q”,而是等于 “¬P∨¬Q”。
“非”在生活中的实际应用
在决策制定中,我们经常使用“非”的概念来否定某个选项或条件。例 如,在制定计划时,我们可能会说“除非发生特殊情况,否则按照原计 划进行”。

高中数学 简单的逻辑联结词课件

高中数学 简单的逻辑联结词课件
一般地,用联结词“且”把命题p和命题q联结起 来,就得到一个新命题,记作p∧q,读作“p且q”
2.问题2 思考:命题 p∧q的真假如何确定?
观察下列各组命题,命题p∧q的真假与p、q 的真假有什么联系?
P:12能被3整除; q:12能被4整除;
p∧q:12能被3整除且能被4整除;
P:等腰三角形两腰相等; q:等腰三角形三条中线相等;
对“非”的理解,可联想到集合中的 “补集”概念,若命题p对应于集合P, 则命题非p就对应着集合P在全集U中的补 集CUP.
探究2:命题的否定与否命题是不是同一 概念呢?他们具有怎样的区别呢?
命题的否定与否命题是完全不同的概念
例:写出命题p: “正方形的四条边相等”的否定与 它的否命题.
命题的否定:正方形的四条边不相等. 否命题: 若一个四边形不是正方形,则它的四
(4)为全称命题.
(5)为特称命题.
判断下列命题的真假: (1)∀x∈R,x2+2x+1>0; (2)∃x0∈R,|x0|≤0; (3)∀x∈N*,log2x>0; (4)∃x0∈R,sin x0=π2.
解答本题可根据命题中所含量词的含义进行判断.
3.判断下列命题的真假: (1) ∀x∈{3,5,7},3x+1 是偶数; (2) ∃x0∈Q,x20=3; (3)∃x0∈R,x20-x0+1=0.
要想获得真理和知识,惟有两件武器, 那就是清晰的直觉和严格的演绎.
——笛卡尔
探究新知,巩固练习
1.3.1 且 (and)
1.问题1: 思考: 下列命题中,命题间有什么关系?
(1)12能被3整除; (2)12能被4整除; (3)12能被3整除且能被4整除;
命题(3)是由命题(1)(2)使用联结词“且”联结得 到的新命题.

或且非ppt课件

或且非ppt课件
(3)|a|≥0, 真 |a|<0; 假
(4)方程x2-4=0无实根, 假 方程x2-4=0有实根. 真
2.一般地,对一个命题p全盘否定,就得到一个新命题,
记作﹁p,读作“非p”或“p的否定”,那么﹁p的否定
是什么?
﹁p的否定是p 3.命题p与﹁p的真假有什么关系?
p与﹁p必有一个是真命题,另一个是假命题.
即 pq 。
因为p真、q假, 所以命题pq 是真命题。
(2) 集合A是A∩B的子集或是A∪B的子集; 解:命题“集合A是A∩B的子集或是A∪B的子集” 是或命题: p:集合A是A∩B的子集; q:集合A是A∪B的子集;
用“或”联结后构成新命题,即 pq 因为p假q真,所以命题pq是真命题。
口诀:全真为真,有假即假.
2.“或”:当p,q两个命题中有一个命题是真命题时, p q是真命题; 当p,q都是假命题时,p q是假命题;
口诀:全假为假,有真即真.
逻辑联结词“非”
1.下列各组语句是命题吗?它们之间有什么关系?并判明真假. (1)35能被5整除, 真 35不能被5整除; 假
(2)函数y=lgx是偶函数, 假 函数y=lgx不是偶函数; 真
(3) 周长相等的两个三角形全等或面积相等的两 个三角形全等。
解:命题“周长相等的两个三角形全等或面积相 等的两个三角形全等”是或命题:
p:周长相等的两个三角形全等 q:面积相等的两个三角形全等
用“或”联结后构成的新命题,即pq, 因为p假q假,所以命题pq假。
如果pq为真命题, 那么pq一定是真命题吗?
金太阳好教育云平台
1.3 简单的逻辑联结词
1.3.1 且(and) 1.3.2 或(or)
1 理解逻辑联结词“且”的含义

PPT课件:逻辑联结词“且”“或”“非”

PPT课件:逻辑联结词“且”“或”“非”

课时小结
1、逻辑联结词 且 、或、非可以在两个命题间联结, 也可以在两个条件间联结。 2、命题的否定形式与其否命题的关系: (1)“若p则q”的否定形式是“若p则﹁q” (2)“若p则q”的否命题是“若﹁p则﹁q” 3、“p∨q”的否定形式是“﹁ p∧ ﹁ q” “p∧q”的否定形式是“﹁ p∨ ﹁ q” 且 口诀 4、 命题 、或、非命题真值表 p q p∧q p∨q ¬p
“非”命题真值表ቤተ መጻሕፍቲ ባይዱ命题 p ¬p 真 真 假 假 假 真
“p∨q”的否定形 式是“﹁ p∧ ﹁ 真假不同存 q”; “p∧q”的否定形 式是“﹁ p∨ ﹁ q”
口诀
特别地:
命题的否定形式与其否命题的关系: (1)“若p则q”的否定形式是“若p则﹁q” (2)“若p则q”的否命题是“若﹁p则﹁q” (请同学们注意区别)
真 真 假 真 假 假 真 假 真 假 真 假 假 假 真 真 真 假 假 假 真 真 真 同 同 假 非 假 或 真 且 不 ¬ 才 ∨ 才 ∧ 同 : 是 : 为 : 存 假 真
作业
P 19
P 123
有关链接
有关链接
祝同学们学习愉快! 再见
6.1.2 平面直角坐标系 (二)
南昌一中:王盼盼
第一章
常用逻辑用语
§4 逻辑联结词
邬青昱
“且”命题真值表 口诀 命题 p q p∧q 同 真 真 真 真 真 才 真 假 假 假 假 真 假 为 假 假 假 真
“或”命题真值表 口诀 命题 p q p∨q 同 假 真 真 真 真 才 真 假 真 假 假 真 真 是 假 假 假 假
写出下列命题的“﹁p”形式: (1)p:所有正方形都是矩形。 ﹁p:所有正方形不都是矩形。 (2)p:至少存在一个一元二次方程有 实数解。 ﹁p:所有的一个一元二次方程都有 实数解。 (3)p:14与15都不是5的倍数。 ﹁p: 14与15中有一个是5的倍数。

简单的逻辑联结词-且、或 课件

简单的逻辑联结词-且、或  课件
(2)p: 相似三角形的面积相等,q:相似三角形的对
应角相等;
(3)p:函数 y= cos x是周期函数,q:函数y=cos x是奇函数.
解析:(1)因为 p是真命题,q是真命题,所以 “ p∨q”和“ p∧q”都是真命题.
(2)因为p是假命题,q是真命题,所以“p∨q”是真 命题,“ p∧q”是假命题.
∴p或q是真命题,p且q是假命题.
点评:有些命题表面上不含逻辑联结词,可以通过
改写化为“p∨q”或“p∧q”形式的命题,然后通过p、 q
的真假判断命题的真假.
或命题“p∨q”的真假特点是“一真即真,要假全 假”,且命题“p∧q”的真假特点是“一假即假,要真全
真”.
变式 训练
3.指出下列“p∨q”,“p∧q”命题的真假. (1)p: 当x∈R时,x2+1≥2x,q:当 x∈R时, |x|≥0;
点评:(1)当一个复合命题不是用“且”或“或”连 接时,可以将其改为用“且”或“或”连接的复合命题, 改写时要注意不能改变原命题的意思,这就要仔细考虑到 底是用“且”还是用“或”.
(2)在用“且”、“或”联结两个命题 p、 q时, 在不引起歧义的情况下,可将 p、 q中的条件或结论合
并,使叙述更通顺.
变式 训练
2.用“且 ”、“或”改写下列命题: (1)等腰三角形的顶角平分线平分底边,也垂直底边; (2)45 既能被 5 整除又能被 9 整除;
(3) x2-2=0 的根是± 2;
(4)3≥3.
解析:(1)等腰三角形的顶角平分线平分底边且垂直底边; (2)45 能被 5 整除且能被 9 整除;
(3)x2-2=0 的根是 2或- 2;
个相等的实数根且两根的绝对值相等.
(3)“p∨q”:三角形的外角等于与它不相邻的两个内 角的和或大于与它不相邻的任何一个内角;“p∧q”:三 角形的外角等于与它不相邻的两个内角的和且大于与它不 相邻的任何一个内角.

简单的逻辑联结词(第一课时)“且”“或”“非” 课件

简单的逻辑联结词(第一课时)“且”“或”“非” 课件

正面词语 否定词语 正面词语
等于 不等于
都是
大于(>) 不大于
(≤) 任意的
是 不是 至多有一个
否定词语 不都是 某一个 至少有两个
正面词语 否定词语
至少有一个 一个也没有
ቤተ መጻሕፍቲ ባይዱ
3.判断含有逻辑联结词“或”、“且”、“非”的命题 的真假
(1)弄清构成命题的p,q的真假; (2)弄清结构形式; (3)用真值表判别命题的真假.
题型二 判断命题的真假 例2 分别指出下列命题的形式及构成它的命题,并判 断真假: (1)相似三角形周长相等或对应角相等; (2)9的算术平方根不是-3; (3)垂直于弦的直径平分这条弦,并且平分弦所对的两段 弧.
分析 根据组成上述各命题的语句中所出现的逻辑联结 词,并用真值表判断真假.
解 (1)这个命题是 p∨q 的形式,其中 p:相似三角形周 长相等;q:相似三角形对应角相等,因为 p 假 q 真,所以 p ∨q 为真.
答案 1.“且”、“或”、“非” 2.真 真 假 假 真 假 假 真 真 假 假 真
1.对逻辑联结词“或”的理解 (1)“或”与日常生活用语中的“或”意义不同.日常生 活用语中的“或”带有“不可兼有”的意思,如工作或休 息,而逻辑联结词“或”含有“同时兼有”的意思,如x<- 1,或x>2.
(2)“或”与集合A∪B有关系,A∪B={x|x∈A,或x∈ B}.集合的并集是用“或”来定义的.
规律技巧 一个命题“若 p,则 q”的否定是:“若 p, 则﹁q”;否命题为:“若﹁p,则﹁q”.
4.命题的否定与否命题 (1)一个命题的否定(非)只否定结论,而一个命题的否命 题是对条件和结论都否定.
如:命题 p:空集是集合 A 的子集.綈 p:空集不是集合 A 的子集.否命题:若集合不是空集,则它不是集合 A 的子集.因 此,一个命题的否定与它的否命题是有区别的.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
逻辑联结词中的”且”相当于集合中的”交 集”,即两个必须都选.
再见
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰·B·塔布] 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔·卡内基]
题都是假命题时, p q 是假命题.
p
开关p,q的闭合
对应命题的真假,
q
则整个电路的接
通应与命断题开分p 别 对q
的真与假.
一般地,对一个命题p全盘否定,就得 到一个新命题,记作
p
读作”非p”或”p的否定”
若 p
例1:指出下列复合命题的形式及构成它 的简单命题:
(1)24既是8的倍数,也是6的倍数; (2)李强是篮球运动员或跳高运动员; (3)平行线不相交;
“且”、“非”意义不同之处.
问题:下列语句是命题吗?如果不是,请你将它改
为命题的形式
(1)11>5. (2)3是15的约数吗?
(3)求证:3是15的约数。 (4)0.7是整数. (5)x>8.
例1 判断下面的语句是否为命题?若是命题, 指出它的真假。
(1)请全体同学起立! (2)X2+x>0. (3)对于任意的实数a,都有a2+1>0. (4)x=-a. (5)91是质数. (6)中国是世界上人口最多的国家.
87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯·瑞斯] 88.每个意念都是一场祈祷。――[詹姆士·雷德非]
89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森] 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰]
97.有三个人是我的朋友爱我的人.恨我的人.以及对我冷漠的人。 爱我的人教我温柔;恨我的人教我谨慎;对我冷漠的人教我自立。――[J·E·丁格] 98.过去的事已经一去不复返。聪明的人是考虑现在和未来,根本无暇去想过去的事。――[英国哲学家培根] 99.真正的发现之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。――[马塞尔·普劳斯特] 100.这个世界总是充满美好的事物,然而能看到这些美好事物的人,事实上是少之又少。――[罗丹] 101.称赞不但对人的感情,而且对人的理智也发生巨大的作用,在这种令人愉快的影响之下,我觉得更加聪明了,各种想法,以异常的速度接连涌入我的脑际。――[托尔斯泰] 102.人生过程的景观一直在变化,向前跨进,就看到与初始不同的景观,再上前去,又是另一番新的气候――。[叔本华] 103.为何我们如此汲汲于名利,如果一个人和他的同伴保持不一样的速度,或许他耳中听到的是不同的旋律,让他随他所听到的旋律走,无论快慢或远近。――[梭罗] 104.我们最容易不吝惜的是时间,而我们应该最担心的也是时间;因为没有时间的话,我们在世界上什么也不能做。――[威廉·彭] 105.人类的悲剧,就是想延长自己的寿命。我们往往只憧憬地平线那端的神奇【违禁词,被屏蔽】,而忘了去欣赏今天窗外正在盛开的玫瑰花。――[戴尔·卡内基] 106.休息并非无所事事,夏日炎炎时躺在树底下的草地,听着潺潺的水声,看着飘过的白云,亦非浪费时间。――[约翰·罗伯克] 107.没有人会只因年龄而衰老,我们是因放弃我们的理想而衰老。年龄会使皮肤老化,而放弃热情却会使灵魂老化。――[撒母耳·厄尔曼] 108.快乐和智能的区别在于:自认最快乐的人实际上就是最快乐的,但自认为最明智的人一般而言却是最愚蠢的。――[卡雷贝·C·科尔顿] 109.每个人皆有连自己都不清楚的潜在能力。无论是谁,在千钧一发之际,往往能轻易解决从前认为极不可能解决的事。――[戴尔·卡内基] 110.每天安静地坐十五分钟·倾听你的气息,感觉它,感觉你自己,并且试着什么都不想。――[艾瑞克·佛洛姆] 111.你知道何谓沮丧---就是你用一辈子工夫,在公司或任何领域里往上攀爬,却在抵达最高处的同时,发现自己爬错了墙头。--[坎伯] 112.「伟大」这个名词未必非出现在规模很大的事情不可;生活中微小之处,照样可以伟大。――[布鲁克斯] 113.人生的目的有二:先是获得你想要的;然后是享受你所获得的。只有最明智的人类做到第二点。――[罗根·皮沙尔·史密斯] 114.要经常听.时常想.时时学习,才是真正的生活方式。对任何事既不抱希望,也不肯学习的人,没有生存的资格。
是假命题时, p q是假命题.
p
q
全真为真,有假即假.
一般地,用逻辑联结词”或”把 命题p和命题q联结起来.就得到一个
p q 新命题,记作
规定:当p,q两个命题中有一个是真命题
时, p q是真命题;当p,q两个命题中都是
假命题时, p q是假命题.
当p,q两个命题中有一个是真命
题时, p q 是真命题;当p,q两个命
91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。――[兰斯顿·休斯] 92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。――[玛科斯·奥雷利阿斯] 93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。[约翰·纳森·爱德瓦兹]
94.对一个适度工作的人而言,快乐来自于工作,有如花朵结果前拥有彩色的花瓣。――[约翰·拉斯金] 95.没有比时间更容易浪费的,同时没有比时间更珍贵的了,因为没有时间我们几乎无法做任何事。――[威廉·班] 96.人生真正的欢欣,就是在于你自认正在为一个伟大目标运用自己;而不是源于独自发光.自私渺小的忧烦躯壳,只知抱怨世界无法带给你快乐。――[萧伯纳]
复合命题有以下三种形式: (1)P且q. (2)P或q. (3)非p.
思考?
下列三个命题间有什么关系? (1)12能被3整除; (2)12能被4整除; (3)12能被3整除且能被4整除.
一般地,用逻辑联结词”且” 把命题p和命题q联结起来.就得 到一个新命题,记作
pq
读作”p且 q”.
规定:当p,q都是真命题时, p q 是真 命题;当p,q两个命题中有一个命题
新课标人教版课件系列
《数学》
选修1-1
1.3.1《简单的逻辑联结词 (一)或且非》
教学目标
1.通过实例,了解简单的逻辑联结词“或”, “且”“非”的含义
2.能正确地利用“或”、“且”、“非” 表述相关的教学内容.
3.能准确区分命题的否定与否命题的区别. [教学重难点]: 逻辑联结词及它与日常生活中的“或”、
(7)这道数学题目有趣吗? (8)若|x-y|=|a-b|,则x-y=a-b. (9)任何无限小数都是无理数.
我们再来看几个复杂的命题:
(1)10可以被2或5整除. (2)菱形的对角线互相垂直且平分. (3)0.5非整数.
“或”,“且”, “非”称为逻辑联结词. 含有逻辑联结词的命题称为复合命题,不含逻 辑联结词的命题称为简单命题.
且 ≠ ≤ 不是 不都是 至少有 没有一 某 某些 两个真命题,那么 p q 一定
是真命题吗?
反之,如果 p q 为真命题,
那么 p q 一定是真命题吗?
注意
逻辑联结词中的”或”相当于集合中的”并 集”,它与日常用语中的”或”的含义不同.日 常用语中的”或”是两个中任选一个,不能都选, 而逻辑联结词中的”或”,可以是两个都选,但 又不是两个都选,而是两个中至少选一个,因此, 有三种可能的情况.
例2: 分别指出下列复合命题的形式
(1)8≥7; (2)2是偶数,且2是质数; (3)π 不是整数;
例3:写出下列命题的非命题:
(1)p:对任意实数x,均有x2-2x+1≥0; (2)q:存在一个实数x,使得x2-9=0; (3)“AB∥CD”且“AB=CD”; (4)“△ABC是直角三角形或等腰三角形”.
例4 分别写出由命题 “p:平行四边形的对角线相等”, “q:平行四边形的对角线互相平分” 构成的“P或q”,“P且q”,“非p”形式的命题。
本节须注意的几个方面:
(1)“≥”的意义是“>或=”.
(2)“非”命题对常见的几个正面词语的否 定或. = > 是 都是 至多有 至少有 任 所有
一个 一个 意 的 的
相关文档
最新文档