运筹学邮递员问题
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7
v1-v2-v4-v3-v2-v4-v6-v5-v4-v6-v5-v3-v1
v1
v3
v5
v1
v3
v5
v2
a
v4
v6
v2
v4
b
v6
v1-v2-v3-v2-v4-v5-v6-v4-v3-v5-v3-v1
图8.28
8
中国邮递员问题也可以表示为:在 一个有奇点的连通图中。要求增加一 些重复边,使得新的连通图不含有奇 点,并且增加的重复边总权最小。 我们把增加重复边后不含奇点的新 的连通图叫做邮递路线,而总权最小 的邮递路线叫做最优邮递路线。 (下略) 下面我们来介绍初始邮递 路线的确定,改进,以及一个邮递路 线是否是最优路线的判定标准的方法 -----图上作业法。
6
在连通图 G 中,如果在边 [vi,vj] 上重复走几次,那么就在点 vi,vj 之 间增加了几条相应的边,每条边的 权和原来的权相等,并把新增加的 边叫做重复边。显然,这条路线构 成新图中的欧拉圈。如图 8.28a, b 所示。并且,邮递员的两条边走路 线总路程的差等于新增加重复边总 权的差。
一.一笔画问题 一笔画问题,也称为遍历问题,是很 有实际意义的。 设有一个连通多重图 G ,如果在 G 中存 在一条链,经过G的每条边一次且仅一次, 那么这条链叫做欧拉链。如在G中存在一 个简单圈,经过G的每条边一次,那么这 个圈叫做欧拉圈一个图如果有欧拉圈, 那么这个图叫做欧拉图。很明显,一个 图G如果能够一笔画出,那么这个图一定 是欧拉图或者含有欧拉链。
2
若G1是连通的,则由归纳假设,G1有欧拉圈C1。 把C1中的边[w,μ]换成[μ,v],[w,v],即是G中的 欧拉圈。若G1有两个分图G1’,G1’’,令v在G1’中。 由归纳假设,G1’,G1’’分别有欧拉圈C1’,C1’’,把 C1” 中的边 [μ,w] 换成 [μ,v],C1’ 及 [v,w] 即是 G 中 的欧拉圈。
10
中国邮递员问题
v1
5 2
v8
3
4
v7
3
v2
5
6
v9
4
4
v6
4 4
v3
9
v4
v5
图8.29
11
在连接 v2 和 v4 的链中任取一条 ,比如链 ( v2,v1,v8,v7,v6,v5,v4 ) , 在 加 入 重 复 边 [v2,v1],[v1,v8],[v8,v7],[v7,v6],[v6,v5],[v5,v4 ]. 同 样 , 任 取 连 接 v6 和 v8 的 一 条 链 (v8,v1,v2,v3,v4,v5,v6), 在 加 入 重 复 边 [v8,v1],[v1,v2],[v2,v3],[v3,v4],[v4,v5],[v5,v6 ].于是,得到图8.30 在连通图 8.30 中,没有奇点,故它是欧拉 图。对于这条邮递路线,重复边的总长 为:2W12+W23+W34+2W45+2W56+W67+W78+2W18=51。
v1 v2
v3
v5
A D 图8.26
B
v4
图8.27
v6
4
二.图上作业法 从一笔画问题的讨论可知,一个邮递员 在他所负责投递的街道范围内,如果街道构 成的图中没有奇点,那么他就可以从邮局出 发,经过每条街道一次,且仅一次,并最终 回到原出发地。但是,如果街道构成的图中 有奇点,他就必然要在某些街道重复走几次。 例如 , 在图 8.27 表示的街道图中, v1 表 示邮局所在地,每条街道的长度是 1 ,邮递 员可以按照以下的路线行走:
9
(一)初始邮递路线的确定方法 由于任何一个图中,奇点的个数为偶数, 所以如果一个连通图有奇点,就可以把它们两 两配成对,而每对奇点之间必有一条链(图是 连通的),我们把这条链的所有边作为重复边 追加到图中去,这样得到的新连通图必无奇点, 这就给出了初始投递路线。 例如,在图 8.29 中, v1 是邮局所在地,并 有四个奇点 v2,v4,v6,v8, 将它们两两配对,比 如v2和v4为一对,v6和v8为一对。
12
(v2,v1,v8,v7,v6,v5,v4) (v8,v1,v2,v3,v4,v5,v6)
v1
5
2
v8
3
4
v7
3
v2
5
6
v9
4Βιβλιοθήκη Baidu
4
v6
4
v3
9
v4
4
v5
图8.30
13
(二)改进邮递路线,使重复边的总长不断减 少。 从图 8.30 中可以看出,在边 [v1,v2] 旁边有两 条重复边,但是如果把他们都从图中去掉,所得 到的连通图仍然无奇点,还是一个邮递路线,而 总 长 度 却 有 所 减 少 。 同 理 , 在 边 [v1,v8],[v4,v5],[v5,v6]旁边的重复边也是一样的。 一般地,在邮递路线上,如果在边 [vi,vj]旁 边有两条以上的重复边,从中去掉偶数条,那么 可以得到一个总长度较少的邮递路线。
1
定理 一个连通多重图 G 是欧拉图的 充分必要条件是G中无奇点。
证:必要性,显然。 充分性,不妨设,连通多重图 G至少有三 点,对 G 的边数 q 用数学归纳法。因为 G 是连通的, 并且不含奇点,故q>=3。 当 q=3 时,显然 G 是欧拉图。假设 q=n 时成立, 看q=m+1的情形:由于 G是无奇点的连通图,并且 G的点数p>=3,因此存在三个点μ,v,w,使得[μ, v],[w,v]∈E 。从 G 中去掉边 [μ, v],[w,v] ,增 加新的边[μ,w],得到一个新的多重图G1,G1有 q-1条边,且仍不含奇点,G1至多有两个分图。
5
v1-v2-v4-v3-v2-v4-v6-v5-v4-v6-v5-v3-v1,
总长是12。 也可以按照另一条路线走:
v1-v2-v3-v2-v4-v5-v6-v4-v3-v5-v3-v1,
总长是11。 按 照 第 1 条 路 线 走 , 在 边 [v2,v4],[v4,v6],[v6,v5] 上各走 3 两次,按照 第 2 条路线走,在边 [v3,v2],[v3,v5]上各走了 两次。
推论 一个多重连通图G有欧拉链的 充分必要条件是G有且仅有两个奇点。
这个推论的证明留给读者作为习题。 从这个定理的证明可以看出,识别一个连通 图能否一笔画出的条件是它是否有奇点。若有奇 点,就不能一笔画出。若没有奇点,就能够一笔 画出,并回到原出发地。
3
比如前面提到的哥尼斯堡七桥问题, 欧拉把它抽象成具有四个项点,并且都 是奇点的图 8.26 的形状。很明显,一个 漫步者无论如何也不可能重复的走完七 座桥,并最终回到原出发地。图 8.27 。 仅有两个奇点,可以一笔画出。 C
v1-v2-v4-v3-v2-v4-v6-v5-v4-v6-v5-v3-v1
v1
v3
v5
v1
v3
v5
v2
a
v4
v6
v2
v4
b
v6
v1-v2-v3-v2-v4-v5-v6-v4-v3-v5-v3-v1
图8.28
8
中国邮递员问题也可以表示为:在 一个有奇点的连通图中。要求增加一 些重复边,使得新的连通图不含有奇 点,并且增加的重复边总权最小。 我们把增加重复边后不含奇点的新 的连通图叫做邮递路线,而总权最小 的邮递路线叫做最优邮递路线。 (下略) 下面我们来介绍初始邮递 路线的确定,改进,以及一个邮递路 线是否是最优路线的判定标准的方法 -----图上作业法。
6
在连通图 G 中,如果在边 [vi,vj] 上重复走几次,那么就在点 vi,vj 之 间增加了几条相应的边,每条边的 权和原来的权相等,并把新增加的 边叫做重复边。显然,这条路线构 成新图中的欧拉圈。如图 8.28a, b 所示。并且,邮递员的两条边走路 线总路程的差等于新增加重复边总 权的差。
一.一笔画问题 一笔画问题,也称为遍历问题,是很 有实际意义的。 设有一个连通多重图 G ,如果在 G 中存 在一条链,经过G的每条边一次且仅一次, 那么这条链叫做欧拉链。如在G中存在一 个简单圈,经过G的每条边一次,那么这 个圈叫做欧拉圈一个图如果有欧拉圈, 那么这个图叫做欧拉图。很明显,一个 图G如果能够一笔画出,那么这个图一定 是欧拉图或者含有欧拉链。
2
若G1是连通的,则由归纳假设,G1有欧拉圈C1。 把C1中的边[w,μ]换成[μ,v],[w,v],即是G中的 欧拉圈。若G1有两个分图G1’,G1’’,令v在G1’中。 由归纳假设,G1’,G1’’分别有欧拉圈C1’,C1’’,把 C1” 中的边 [μ,w] 换成 [μ,v],C1’ 及 [v,w] 即是 G 中 的欧拉圈。
10
中国邮递员问题
v1
5 2
v8
3
4
v7
3
v2
5
6
v9
4
4
v6
4 4
v3
9
v4
v5
图8.29
11
在连接 v2 和 v4 的链中任取一条 ,比如链 ( v2,v1,v8,v7,v6,v5,v4 ) , 在 加 入 重 复 边 [v2,v1],[v1,v8],[v8,v7],[v7,v6],[v6,v5],[v5,v4 ]. 同 样 , 任 取 连 接 v6 和 v8 的 一 条 链 (v8,v1,v2,v3,v4,v5,v6), 在 加 入 重 复 边 [v8,v1],[v1,v2],[v2,v3],[v3,v4],[v4,v5],[v5,v6 ].于是,得到图8.30 在连通图 8.30 中,没有奇点,故它是欧拉 图。对于这条邮递路线,重复边的总长 为:2W12+W23+W34+2W45+2W56+W67+W78+2W18=51。
v1 v2
v3
v5
A D 图8.26
B
v4
图8.27
v6
4
二.图上作业法 从一笔画问题的讨论可知,一个邮递员 在他所负责投递的街道范围内,如果街道构 成的图中没有奇点,那么他就可以从邮局出 发,经过每条街道一次,且仅一次,并最终 回到原出发地。但是,如果街道构成的图中 有奇点,他就必然要在某些街道重复走几次。 例如 , 在图 8.27 表示的街道图中, v1 表 示邮局所在地,每条街道的长度是 1 ,邮递 员可以按照以下的路线行走:
9
(一)初始邮递路线的确定方法 由于任何一个图中,奇点的个数为偶数, 所以如果一个连通图有奇点,就可以把它们两 两配成对,而每对奇点之间必有一条链(图是 连通的),我们把这条链的所有边作为重复边 追加到图中去,这样得到的新连通图必无奇点, 这就给出了初始投递路线。 例如,在图 8.29 中, v1 是邮局所在地,并 有四个奇点 v2,v4,v6,v8, 将它们两两配对,比 如v2和v4为一对,v6和v8为一对。
12
(v2,v1,v8,v7,v6,v5,v4) (v8,v1,v2,v3,v4,v5,v6)
v1
5
2
v8
3
4
v7
3
v2
5
6
v9
4Βιβλιοθήκη Baidu
4
v6
4
v3
9
v4
4
v5
图8.30
13
(二)改进邮递路线,使重复边的总长不断减 少。 从图 8.30 中可以看出,在边 [v1,v2] 旁边有两 条重复边,但是如果把他们都从图中去掉,所得 到的连通图仍然无奇点,还是一个邮递路线,而 总 长 度 却 有 所 减 少 。 同 理 , 在 边 [v1,v8],[v4,v5],[v5,v6]旁边的重复边也是一样的。 一般地,在邮递路线上,如果在边 [vi,vj]旁 边有两条以上的重复边,从中去掉偶数条,那么 可以得到一个总长度较少的邮递路线。
1
定理 一个连通多重图 G 是欧拉图的 充分必要条件是G中无奇点。
证:必要性,显然。 充分性,不妨设,连通多重图 G至少有三 点,对 G 的边数 q 用数学归纳法。因为 G 是连通的, 并且不含奇点,故q>=3。 当 q=3 时,显然 G 是欧拉图。假设 q=n 时成立, 看q=m+1的情形:由于 G是无奇点的连通图,并且 G的点数p>=3,因此存在三个点μ,v,w,使得[μ, v],[w,v]∈E 。从 G 中去掉边 [μ, v],[w,v] ,增 加新的边[μ,w],得到一个新的多重图G1,G1有 q-1条边,且仍不含奇点,G1至多有两个分图。
5
v1-v2-v4-v3-v2-v4-v6-v5-v4-v6-v5-v3-v1,
总长是12。 也可以按照另一条路线走:
v1-v2-v3-v2-v4-v5-v6-v4-v3-v5-v3-v1,
总长是11。 按 照 第 1 条 路 线 走 , 在 边 [v2,v4],[v4,v6],[v6,v5] 上各走 3 两次,按照 第 2 条路线走,在边 [v3,v2],[v3,v5]上各走了 两次。
推论 一个多重连通图G有欧拉链的 充分必要条件是G有且仅有两个奇点。
这个推论的证明留给读者作为习题。 从这个定理的证明可以看出,识别一个连通 图能否一笔画出的条件是它是否有奇点。若有奇 点,就不能一笔画出。若没有奇点,就能够一笔 画出,并回到原出发地。
3
比如前面提到的哥尼斯堡七桥问题, 欧拉把它抽象成具有四个项点,并且都 是奇点的图 8.26 的形状。很明显,一个 漫步者无论如何也不可能重复的走完七 座桥,并最终回到原出发地。图 8.27 。 仅有两个奇点,可以一笔画出。 C