高一数学交集和并集2
课件2:1.1.3 第1课时 交集与并集
跟踪训练2
若集合A={0,1,2,3},集合B={1,2,4},则A∪B=( )
A.{0,1,2,3,4}
B.{1,2,3,4}
C.{1,2}
D.{0}
【答案】A 【解析】A∪B={0,1,2,3}∪{1,2,4}={0,1,2,3,4}.
命题方向3 交集、并集的实际应用
例3 某地对农户抽样调查,结果如下:电冰箱拥有率为 49%,电视机拥有率为85%,洗衣机拥有率为44%,至少拥有 上述三种电器中两种的占63%,三种电器齐全的占25%,求一 种电器也没有的相对贫困户所占的比例.
1.1.3 集合的基本运算 第1课时 交集与并集
知能自主梳理
1.交集的概念 (1)一般地,对于两个给定的集合 A、B,由__属__于__集__合__A__ _又__属__于__集__合__B___的所有元素构成的集合,叫做 A 与 B 的交集, 记作___A_∩__B____(读作“____A_交__B___”).用符号语言表示为 A∩B =__{_x_|x_∈__A_,__且__x_∈__B_}_____. (2)对任意集合 A、B 的交集有如下性质(用“=”、“⊆” 或“ ”填空):
() A.{1,4} C.{0}
B.{-1,-4} D.∅
【答案】D 【解析】据交集的定义可得M∩N={-1,-4}∩{1,4}=∅,选D.
命题方向2 并集的概念
例2 集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为( )
A.0
B.1
C.2
D.4
[分析] 集合A、B中都只有一个未知元素,且这两个未知元素都用同一个字母a
表示,故这两个未知元素之间本身就有关系.又A∪B比A、B中的已知元素多出了4和
高一数学交集和并集2
A={4,5,6,8},
B={3,5,7,8}, C={5,8}
定 义
一般地,由既属于集合A又属于集合 B的所有元素组成的集合叫做A与 B的交集. 记作 A∩B 读作 A交 B
即 A∩B={x x∈A,且x∈B}
A
B
A∩B
观察集合A,B,C元素间的关系:
A={4,5,6,8}, B={3,5,7,8}, C={3,4,5,6,7,8}
例3 设A={x x>-2},B={x x<3},
求A∩B, A∪B.
例4
2 已知A={2,-1,x -x+1},
B={2y,-4,x+4}, C={-1,7} 且A∩B=C 求x,y的值及A∪B.
例5 已知集合A={x -2≤x≤4}, bbbbb B={x x>a}
①若A∩B≠φ,求实数a的取值范围;
定 义
一般地,由属于集合A或属于集合B 的所有元素组成的集合叫做A与B 的并集, 记作 读作
A∪B A并 B
即A∪B={x x∈A,或x∈B}
A
B
A∪B
性 质
⑴ A∩A = A A∩φ =
A∩B = B∩A ⑵ A ∪ A = A A∪ φ = A A∪B = B∪A φ
⑶
A∩B A∩BA B Nhomakorabea⑷
A∪B B A∪ B
A
⑸ 若A∩B=A,则A B.
反之,亦然.
⑹ 若A∪B=A,则A B.
反之,亦然.
例题讲解
例1 设A={x x是等腰三角形},
B={x x是直角三角形},
则A∩B= {等腰直角三角形}
例2 设A={x x是锐角三角形},
高一数学复习知识点专题讲解与训练4---并集与交集
高一数学复习知识点专题讲解与训练并集与交集知识点一并集一般地,由所有属于集合A或属于集合B的元素组成的集合,称自然语言为集合A与B的并集符号语言A∪B={x|x∈A或x∈B}(读作“A并B”)图形语言知识点二交集一般地,由属于集合A且属于集合B的所有元素组成的集合,称自然语言为A与B的交集符号语言A∩B={x|x∈A且x∈B}(读作“A交B”)图形语言(1)两个集合的并集、交集还是一个集合.(2)对于A∪B,不能认为是由A的所有元素和B的所有元素所组成的集合,因为A与B 可能有公共元素,每一个公共元素只能算一个元素.(3)A∩B是由A与B的所有公共元素组成,而非部分元素组成.4.设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是()A.1B.3C.4D.8解析:因为A={1,2},A∪B={1,2,3}.所以B={3}或{1,3}或{2,3}或{1,2,3},故选C. 答案:C类型一并集概念及简单应用例1(1)设集合A={1,2,3}, B={2,3,4}, 则A∪B=()A.{1,2,3,4} B.{1,2,3}C.{2,3,4} D.{1,3,4}(2)已知集合P={x|-1<x<1},Q={x|0<x<2},那么P∪Q=()A.{x|-1<x<2} B.{x|0<x<1}C.{x|-1<x<0} D.{x|1<x<2}(3)点集A={(x,y)|x<0},B={(x,y)|y<0},则A∪B中的元素不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【解析】(1)由题意A∪B={1,2,3,4}.(2)因为P={x|-1<x<1},Q={x|0<x<2},画数轴如图,所以P∪Q={x|-1<x<2}.(3)由题意得,A∪B中的元素是由横坐标小于0或纵坐标小于0的点构成的集合,所以A∪B中的元素不可能在第一象限.【答案】(1)A(2)A(3)A(1)找出集合A,B中出现的所有元素,写出A∪B.(2)画数轴,根据条件确定P∪Q.(3)先明确集合A,B都是点集,再判断A∪B中的元素的特征.方法归纳此类题目首先应看清集合中元素的范围,简化集合,若是用列举法表示的数集,可以根据并集的定义直接观察或用Venn图表示出集合运算的结果;若是用描述法表示的数集,可借助数轴分析写出结果,此时要注意当端点不在集合中时,应用“空心点”表示.,跟踪训练1(1)设集合M={x|x2+2x=0,x∈R},N={x|x2-2x=0,x∈R},则M∪N=()A.{0} B.{0,2}C.{-2,0} D.{-2,0,2}(2)已知集合M={x|-3<x≤5},N={x|x<-5或x>5},则M∪N=()A.{x|x<-5或x>-3} B.{x|-5<x<5}C.{x|-3<x<5} D.{x|x<-3或x>5}解析:(1)先确定两个集合的元素,再进行并集运算.集合M={0,-2},N={0,2},故M∪N={-2,0,2},选D.(2)在数轴上表示集合M,N,如图所示.则M∪N={x|x<-5或x>-3}.答案:(1)D (2)A ,先解方程,求出集合M ,N .求M ∪N 时要注意两点:(1)把集合M ,N 的元素放在一起;(2)使M ,N 的公共元素在并集中只出现一次.类型二 交集概念及简单应用例2 (1)已知集合A ={x |x <2},B ={x |3-2x >0},则( )A .A ∩B =⎩⎨⎧⎭⎬⎫xx <32 B .A ∩B =∅C .A ∪B =⎩⎨⎧⎭⎬⎫xx <32 D .A ∪B =R(2)已知集合U =R ,集合M ={x |-2≤x <2}和N ={y |y =2k -1,k ∈Z }的关系的Venn 图如图所示,则阴影部分所示的集合的元素共有( )A .3个B .2个C .1个D .0个(3)已知集合M ={x |x ≤a },N ={x |-2<x <0},若M ∩N =∅,则a 的取值范围为( ) A .a >0 B .a ≥0 C .a <-2 D .a ≤-2,【解析】 (1)由3-2x >0,得x <32,所以B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <32,又因为A ={x |x <2},所以A ∩B=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <32,A ∪B ={x |x <2}. (2)由题意得,阴影部分所示的集合为M ∩N ,由N ={y |y =2k -1,k ∈Z }知N 表示奇数集合,又由M ={x |-2≤x <2}得,在-2≤x <2内的奇数为-1,1.所以M ∩N ={-1,1},共有2个元素. (3)画数轴可知,当M ∩N =∅时,a 的取值范围是{a |a ≤-2}. 【答案】 (1)A (2)B (3)D(1)先解不等式确定集合B ,再根据交集、并集的定义分别确定A ∩B 和A ∪B.(2)先判断集合N 中元素的特征,再判断Venn 图中阴影部分表示的集合M ∩N ,最后求元素个数.(3)画数轴,根据M ∩N =∅,求a 的取值范围.方法归纳(1)在利用集合的交集、并集性质解题时,常常会遇到A ∩B =A ,A ∪B =B 等这类问题,解答时常借助于交、并集的定义及上节学习的集合间的关系去分析,如A ∩B =A ⇔A ⊆B ,A ∪B=B⇔A⊆B等,解答时应灵活处理.(2)当集合B⊆A时,如果集合A是一个确定的集合,而集合B不确定,运算时要考虑B =∅的情况,切不可漏掉.,跟踪训练2(1)若集合P={x|x2=1},集合M={x|x2-2x-3=0},则P∩M=________,P∪M=________;(2)已知集合M={x|-3<x≤5},N={x|-5<x<-2或x>5},则M∪N=________,M∩N =________;(3)已知集合M={y|y=x2-4x+3,x∈Z},集合N={y|y=-x2-2x,x∈Z},求M∩N.解析:(1)P={x|x2=1}={-1,1},M={x|x2-2x-3=0}={-1,3},所以P∩M={-1},P∪M={-1,1,3}.(2)借助数轴可知:M∪N={x|x>-5},M∩N={x|-3<x<-2}.(3)∵y=x2-4x+3=(x-2)2-1,x∈Z,∴M={-1,0,3,8,15,…}.又∵y=-x2-2x=-(x+1)2+1,x∈Z,∴N={1,0,-3,-8,-15,…},∴M∩N={0}.答案:(1){-1}{-1,1,3}(2){x|x>-5}{x|-3<x<-2}(3){0}先求出集合P、M,再求P∩M , P∪M.集合M ,N是函数的值域.类型三交集、并集性质的运用例3已知A={x|x2-ax+a2-19=0},B={x|x2-5x+8=2},C={x|x2+2x-8=0},若∅(A∩B),且A∩C=∅,求a的值.【解析】A={x|x2-ax+a2-19=0},B={2,3},C={-4,2}.因为∅(A∩B),且A∩C=∅,那么3∈A,故9-3a+a2-19=0.即a2-3a-10=0.所以a=-2或a=5.当a=-2时A={x|x2+2x-15=0}={3,-5},符合题意.当a=5时A={x|x2-5x+6=0}={2,3},不符合A∩C=∅.综上知,a=-2.审结论(明解题方向)审条件(挖解题信息)(1)集合A,B,C是由相应方程的解构成的,先要解方程求B,C.(2)由∅(A∩B),知A∩B≠∅,结合A∩C=∅,可确定集合A中的元素,建立关于a的方程.∅(A∩B),A∩C=∅→确定集合A中的元素→建立关于a的方程→检验集合中元素的互异性.可得⎩⎪⎨⎪⎧ a +3≥2a ,a +3<-1或⎩⎪⎨⎪⎧a +3≥2a ,2a >4,解得a <-4或2<a ≤3.综上可得,实数a 的取值范围为{a |a <-4或a >2}.,由A ∩B =B 得B ⊆A ,B 分2类,B =∅,B ≠∅,再利用数轴求.[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.已知集合A ={x |x ≥-3},B ={x |-5≤x ≤2},则A ∪B =( ) A .{x |x ≥-5} B .{x |x ≤2} C .{x |-3<x ≤2} D .{x |-5≤x ≤2} 解析:结合数轴(图略)得A ∪B ={x |x ≥-5}. 答案A2.已知集合M ={0,1,2},N ={x |x =2a -1,a ∈N *},则M ∩N =( ) A .{0} B .{1,2} C .{1} D .{2}解析:因为N ={1,3,5,…},M ={0,1,2},所以M ∩N ={1}. 答案:C3.设集合A ={(x ,y )|x +y =1},B ={(x ,y )|2x -y =-4},则A ∩B 等于( ) A .{x =-1,y =2} B .(-1,2)C .{-1,2}D .{(-1,2)}解析:由⎩⎪⎨⎪⎧ x +y =1,2x -y =-4得⎩⎪⎨⎪⎧x =-1,y =2.所以A ∩B ={(-1,2)},故选D.答案:D4.已知集合A ={1,2,3},B ={x |(x +1)(x -2)<0,x ∈Z },则A ∪B =( )A .{1}B .{1,2}C .{0,1,2,3}D .{-1,0,1,2,3}解析:B ={x |(x +1)(x -2)<0,x ∈Z }={x |-1<x <2,x ∈Z }={0,1},又A ={1,2,3},所以A ∪B ={0,1,2,3}.答案:C5.设集合A ={x |-1≤x <2},B ={x |x <a },若A ∩B ≠∅,则a 的取值范围是( )A .a <2B .a >-2C .a >-1D .-1<a ≤2解析:在数轴上表示出集合A ,B 即可得a 的取值范围为a >-1.答案:C二、填空题(每小题5分,共15分)6.设集合A ={x |2≤x <5},B ={x |3x -7≥8-2x },则A ∩B =________.解析:∵A ={x |2≤x <5},B ={x |3x -7≥8-2x }={x |x ≥3},∴A∩B={x|3≤x<5}.答案:{x|3≤x<5}7.设集合A={1,2,a},B={1,a2},若A∩B=B,则实数a允许取的值有________个.解析:由题意A∩B=B知B⊆A,所以a2=2,a=±2,或a2=a,a=0或a=1(舍去),所以a=±2,0,共3个.答案:38.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围为________.解析:由A∪B=R,得A与B的所有元素应覆盖整个数轴.如图所示:所以a必须在1的左侧,或与1重合,故a≤1.答案:{a|a≤1}三、解答题(每小题10分,共20分)9.设A={x|-1<x<2},B={x|1<x<3},求A∪B,A∩B.解析:如图所示:A∪B={x|-1<x<2}∪{x|1<x<3}={x|-1<x<3}.A∩B={x|-1<x<2}∩{x|1<x<3}={x|1<x<2}.10.已知集合A={x|x2+x-6=0},B={x|mx+1=0},若B⊆A,求实数m的取值范围.解析:由x2+x-6=0,得A={-3,2},∵B⊆A,且B中元素至多一个,∴B={-3},或B={2},或B=∅.(1)当B={-3}时,由(-3)m+1=0,得m=1 3;(2)当B={2}时,由2m+1=0,得m=-1 2;(3)当B=∅时,由mx+1=0无解,得m=0.∴m=13或m=-12或m=0.[能力提升](20分钟,40分)11.设A={x|-3≤x≤3},B={y|y=-x2+t}.若A∩B=∅,则实数t的取值范围是() A.t<-3 B.t≤-3C.t>3 D.t≥3解析:B={y|y≤t},结合数轴可知t<-3.答案:A12.定义A-B={x|x∈A,且x∉B},若M={1,2,3,4,5},N={2,3,6},则N-M=________.解析:关键是理解A-B运算的法则,N-M={x|x∈N,且x∉M},所以N-M={6}.答案:{6}13.设A ={x |x 2-2x =0},B ={x |x 2-2ax +a 2-a =0}.(1)若A ∩B =B ,求a 的取值范围;(2)若A ∪B =B ,求a 的值.解析:由x 2-2x =0,得x =0或x =2.所以A ={0,2}.(1)因为A ∩B =B ,所以B ⊆A ,B =∅,{0},{2},{0,2}.当B =∅时,Δ=4a 2-4(a 2-a )=4a <0,所以a <0.当B ={0}或{2}时,则⎩⎪⎨⎪⎧ Δ=4a =0,a 2-a =0⇒a =0, 或⎩⎪⎨⎪⎧ Δ=4a =0,4-4a +a 2-a =0无解, 所以a =0,B ={0,2},则⎩⎪⎨⎪⎧a 2-a =04-4a +a 2-a =0⇒a =1, 综上,a 的取值范围为{a |a ≤0或a =1}.(2)因为A ∪B =B ,所以A ⊆B ,所以B ={0,2},所以a =1.。
优质学案: 并集与交集2
[思路探索] (1) 问根据并集定义直接写出即可,第二问可借助数 轴分析,求出并集.
典例精讲:题型一:并集的概念及其运算
【例1】 (1)设A={4,5,6,8}, B={3,5,7,8},求A∪B. (2)已知集合A={x|-1≤x<3},B={x|2<x≤5},则A∪B=( A.{x|2<x<3} C.{x|-1<x<5} [解析] B.{x|-1≤x≤5} D.{x|-1<x≤5} )
①点的实心、空心:当端点值不在集合中时,应用“空心点”表示;
②线的上下错落:不同集合的范围在表示时应上下错落分开,同一 集合的范围(即使是分段的)应在同一层上.
变式训练
B
故选B.
典例精讲:交集、并集运算的性质及其简单综合
【例 3】 已知集合 A = {x|x2 - px - 2 = 0} , B = {x|x2 + qx + r = 0} ,且
(1) A∪B={3,4,5,6,7,8}.
x
(2) B
-1
235Fra bibliotek题后反思
规律总结:求两个集合并集的两个方法
(1)若两个集合元素个数有限,可根据定义直接写出并集.
(2)若两个集合元素个数无限,可借助于数轴分析,求出并集,作图要
点:高低错开,空心实心分明,求解时特别应注意端点是否能取到.
变式训练:
【变式1】设集合M={1,2},则满足条件M∪N={1,2,3,4}的集合N的
个数是(
)
A.1 B.3 C.2 D.4 [思路探索] ∵M={1,2},M∪N={1,2,3,4}.∴N中必定含有元素3,4, 且N中其余元素只能从1,2中取得. [解析] ∵M={1,2},M∪N={1,2,3,4}. ∴ N={3,4}或{1,3,4}或{2,3,4}或{1,2,3,4}, 即集合N有4个.
高一数学交集并集 (2)
AC
B
问题: ①图中的阴影部分表示哪些同学? ②集合C与集合A,B中元素关系? ③你能用一句话概括吗?
定义: 所有集合A且所有集合B的元素构成 的集合,称为A与B的交集。
记作:C=A∩B={x∣ x∈A且x∈B } 几点说明:
定义: 所有集合A或所有集合B的元素构成 的集合,称为A与B的并集。
记作:C=A∪B={x∣ x∈A或x∈B } 几点说明:
(1) A A = A A A A CU A R
(2) A B B A A B B A B A
例1:(见课本12页)
变式:
A 2,1, x2 x 1 , B 2y,4, x 4, C 1,7;
反馈练习(见课本13页) 课堂小结:
1.理解交集,并集的概念和意义,会用Venn图表示集合的关系, 体会直观图在解决问题中的作用。
2.掌握区间的概念及其表示。 3.掌握有关集合的术语和符号,会用他们正确地表示一些简单的集合。
; 广东11选5走势图 ;
快一个小时了他们还没到.作为一名老实巴交の纳税人,我有权利知道自己供养の是人民公仆还是吃饱等死の猪,连个入村路口都找了一个多小时,到时让媒体过来一起见识见识.”最后一句像从牙缝里蹦出来の,这种效率,足够让报警人死几百次了.原本有些忧心の卓律师听罢, 为之失笑,“行行行,你别冲动,我马上过去.在我到之前你若见势不妙要马上避开知道吗?别意气用事跟他们硬碰硬,别让自己吃亏,明白吗?”“明白,刚才有个人袭击我被我用防狼喷雾喷了,不犯法吧?”“没事,你把那支喷雾保管好等取证.记住,穷山恶水出刁民,你一个小 丫头千万要沉住气保护好自己.”他再三强调叮嘱,快步进入公司直接去了林董事长の办公室.第163部分他今天来林氏是为了与其他律师见面,替救命恩人打赢两场官非成了他正式加入林氏御用律师团の敲门砖.奈何远方有个小姑娘等着他救命,不得不缺席今天の见面会.名和 利慢慢会有の,两边都是恩人他轻慢不得.还有,那丫头言语之间怨气颇重,派助手去の话恐怕压不住场子.她还要告执法部门,呵呵,这么刺激の活他岂能错过...陆羽与卓律师结束通话后,周围死一般沉寂,包括瘫在地面の那几个.对于周家人来说,打官非,是他们普通老百姓一辈 子都遇不到の事.尤其对方还要告执法部门,靠,民不与官斗是国民共识,这丫の是不是气糊涂了?今天这一切都是他们来闹事引起の,将来必受牵连.周家几人互相对望,神色闪缩面露怯色.“呃,陆陆,别把事情闹得太大.一件小事大家说开就好了嘛,哦,没必要媒体啊告执法部の,
最新人教A版高数数学必修一课件:1.3 集合的基本运算第2课时并集与交集
1.3 集合的基本运算
第2课时 补集及综合运算
学习目标 1.理解在给定集合中一个子集的补集的含义,会求给 定子集的补集 2.能运用Venn图表达补集运算
素养要求 数学运算 直观想象
|自学导引|
补集的概念
1.全集
(1)定义:如果一个集合含有我们所研究问题中涉及的_所__有__元__素_,那么就称这个集合为全集.
|素养达成|
1.补集定义的理解(体现了数学运算的核心素养).
(1)补集是相对于全集而存在的,研究一个集合的补集之前一定要明确其所对应的全集.比如,当研 究数的运算性质时,我们常常将实数集R当做全集.
(2)补集既是集合之间的一种关系,同时也是集合之间的一种运算,还是一种数学思想. (3)从符号角度来看,若x∈U,A U,则x∈A和x∈∁UA二者必居其一.
U (2)记法:全集通常记作________.
2.补集
对于一个集合 A,由全集 U 中_不__属__于__集__合__A___的所有元素组成 文字语言 的集合称为集合 A 相对于全集 U 的补集,记作___∁_U_A___
符号语言
∁UA=_{_x_|x_∈__U__且__x_∉_A_}__
图形语言
A.{1,4}
B.{1}
C.{4}
D.∅
【答案】A
【解析】∁UA={0,1,4},B∩(∁UA)={1,4}.故选A.
2.(题型2)已知集合A={x|x+1>0},B={-2,-1,0,1},则(∁RA)∩B=
A.{-2,-1}
B.{-2}
()
C.{-1,0,1}
D.{0,1}
【答案】A
5.(题型2)已知全集U={x|-5≤x≤3},A={x|-5≤x<-1},B={x|-1≤x<1},求∁UA,∁UB, (∁UA)∩(∁UB).
高一数学交集和并集2
景致朦胧,周身静好,忽然,扑棱一声,惊了我的思绪,也惊了一平如镜的水面。一只野鸭子在烟雾中,随着一声声叫,飞去了。静如镜的水面荡上起一片涟漪,一波一波游散开来,神幻的静景也跟着 动了起来,添了真实的美感。我多想手作拈花指,拈住一缕烟雾,化作一叶小舟,轻送池塘里,在烟雾笼罩的水面上,轻泛小舟。划开眼前深锁重重的烟雾,随着小舟荡入飘渺的虚幻世界,那里不会有 伤悲,不会有憔悴,不会有春秋两分的季节,不会有花开花谢,更不会有聚散离别。在我用力摇桨的时候,的确划开了烟雾,一叶小舟穿行于雾中。可烟雾锁了整个青冥,又何况是这一方小池塘?我幽 幽地回头望了一眼,被我划开的烟雾,在我身后静悄悄地又275.html 我站在池塘边,将作好的拈花指悄悄息下,缓缓伸出了双臂,仰头屏息,拥抱着,也不知是我拥抱着烟雾,还是烟雾拥笼着我?总归是互相沉沁,互相慰藉。 大美景致,梦幻难分,烟雾遥遥,此刻静好。
高一数学交集和并集2
[单选]在地图投影中,等积投影的特性之一是()。A.地面上一个微分圆,投影到地图上仍能保持是一个圆。B.地面上不同地点两个相等的微分圆,投影到地图上可能成为不同大小的两个圆。C.地面上和图上相应处的面积成恒定比例。D.B和C [单选,A2型题,A1/A2型题]下列关于氰化高铁血红蛋白测定原理中正确的是()A.血红蛋白与氰结合成稳定的棕褐色复合物-氰化高铁血红蛋白B.在规定的波长和液层厚度的条件下,具有一定的消光系数C.血红蛋白可被亚铁氯化钾氧化成高铁血红蛋白D.测定540nm处吸光度,乘以367.7,即为样本的 [多选]港口与航道工程项目技术管理的主要内容包括()。A.熟悉图纸B.制定技术措施C.工程量核报D.工程试验与检验E.劳动生产率的统计上报 [单选]在慢性胃炎时,属于癌前病变的是()A.浅表胃炎伴肠上皮化生B.浅表胃炎伴脐状突起C.萎缩胃炎伴肠上皮化生D.萎缩胃炎伴重度不典型增生E.萎缩胃炎伴幽门腺化生 [单选,A2型题,A1/A2型题]《景岳全书·传忠录》中被视为“诊治之要领,临证之首务”的是()A.望诊B.闻诊C.问诊D.切诊E.以上均不是 [单选]建筑物的定位轴线是用()绘制的。A.粗实线(b)B.中实线(b/2)C.细实线(b/4)D.细点画线(b/4) [单选]下列关于肺癌放疗的纵隔野的描述中哪项是正确的()A.上缘平胸骨切迹B.下缘到第6肋间隙C.下缘到第4肋间隙D.上缘平环甲膜E.上缘平胸骨柄水平 [填空题]()被称为“后现代主义设计”理论的真正奠基人,也是后现代主义建筑设计师的代表之一。1.英国19世纪下半叶发生的“工艺美术”运动由威廉·莫里斯倡导宣传,英国的文艺批评家和作家()作理论指导。 [填空题]产品质量标准可分为国家标准、部门标准、企业标准及()等。 [单选]下列关于类风湿关节炎药物治疗正确的是()。A.早期应用快作用抗风湿病药B.大部分患者用一种慢作用药就可以阻止关节破坏C.可以常规应用糖皮质激素D.非甾体抗炎药是改善关节症状的一线药物E.不能使用中枢性镇痛药 [问答题,简答题]钳夹止血法。 [单选]女,41岁,阵发性头痛伴恶心、呕吐20余天,MRI影像如图,最可能的诊断为()A.双侧筛窦息肉B.双侧筛窦炎C.双侧筛窦未见明显异常D.双侧筛窦真菌感染E.双侧筛窦过敏性炎症 [单选]下列属于普通保险的是()。A.农业保险B.社会保险C.进出口信用保险D.财产保险 [单选]办理出国签证时要上交(),并填写签证表。A.护照B.出国申请批件C.有效证件D.对方国家邀请函 [问答题,简答题]冰机入口温度下,色度标准溶液由储备液用蒸馏水或去离子水稀释到一定体积而得。A.正确B.错误 [单选]氮氧化物控制技术中的()是与SCR工艺操作相关的关键因素。A.催化剂活泼B.催化剂失活和烟气中残留的氨C.空气预热D.燃烧产生的烟尘 [填空题]庞巴迪车辆接触网电压变化范围是(),电气牵引及辅助设备从电源断开电压是()。 [多选]设备在安装前应进行清洗,对形状复杂、污垢黏附严重的装配件,宜采用的方法有()。A.喷灯火烧B.溶剂油喷洗C.蒸汽喷洗D.三氯乙烯喷洗 [单选]总装配图不是制造零件的直接依据,不必注出每个零件的(),只标注与部件的装配、安装、运输、使用等有关尺寸。A、局部尺寸B、全部尺寸C、技术要求D、公差要求 [单选,A2型题,A1/A2型题]尘肺X线诊断标准中符号为"q"的小阴影是指()。A.直径在1.5mm以下的类圆形小阴影B.直径在1.5~3mm的类圆形小阴影C.直径在3~10mm的类圆形小阴影D.宽度在1.5mm以下的不规则形小阴影E.宽度在1.5~3mm的不规则形小阴影 [单选,A1型题]医疗机构施行特殊治疗,无法取得患者意见又无家属或者关系人在场,或者遇到其他特殊情况时,经治医师应当提出医疗处置方案,在取得()A.病房负责人同意后实施B.科室负责人同意后实施C.医疗机构质监部门负责人批准后实施D.科室全体医师讨论通过后实施E.医疗机构负责 [单选]某市辖区公安局民警刘某在所辖范围值勤时发现甲乙等人在一录像厅内进行赌博,刘某准备将甲乙等人带回派出所时,遭到了甲乙等人的反抗,刘某即用随身携带的警棍将甲的头部打伤。事故发生后,区公安局认定刘某殴打他人,情节较轻,依据《治安管理处罚法》对刘某作出拘留5日的 [单选]深龋患者激发痛较重,洞底软龋能够彻底去净,治疗方法应选择()A.双层垫底,一次完成充填治疗B.局麻后开髓失活,行牙髓治疗C.先做安抚疗法,待一到二周复诊时症状消除后,再以双层垫底充填D.施行活髓切除术E.间接盖髓、双层垫底一次完成充填治疗 [名词解释]中生动物 [问答题,简答题]从技术角度简述互联网的概念。 [单选]通航安全水上水下施工作业管理的主管机关是()。A.中华人民共和国建设部B.中华人民共和国渔业部C.中华人民共和国海洋局D.中华人民共和国海事局 [名词解释]辅助原料 [单选]雕刻凹版版面上,凹痕的平均深度为一般为()。A.1mmB.0.5mmC.0.05mmD.0.005mm [单选]甲公司采用销售百分比法预测资金需要量,2013年销售收入为38000万元,销售利润率为10%。预计2014年的销售净利润率保持不变,收入增加15%;2013年敏感性资产和敏感性负债的金额分别是60000万元和35000万元,此外2014年计划要购买一项无形资产,市价为800万元,若甲公司2014年 [单选]通常情况下,测深辨位的准确性与下列哪些因素有关()。A.测深和潮高的改正的准确性B.计划航线上水深变化规律C.海图上所标水深点位置和水深的准确性D.以上都是 [名词解释]非法发球 [单选]有Na2SO3、BaCl2、Na2SO4、NaHCO3等四瓶溶液,只用一种试剂进行鉴别,应选用的试剂是()。A.Na2CO3溶液B.硝酸C.硫酸D.AgNO3溶液 [填空题]若AP工作在3.8GHZ频段,此频段可利用的不重叠信道有(),可根据邻区情况灵活使用。 [单选]甲公司设立于2014年12月31日,预计2015年年底投产。假定目前的证券市场属于成熟市场,根据优序融资理论的基本观点,甲公司在确定2015年筹资顺序时,应当优先考虑的筹资方式是()。A.内部筹资B.发行债券C.发行普通股票D.发行优先股票 [单选]按照泵的作用原理分类,属于动力式泵的有()。A.轴流泵B.齿轮泵C.螺杆泵D.喷射泵 [单选]MEN2B的临床表现一般不包括()。A.甲状腺髓样癌B.甲状旁腺功能亢进症C.嗜铬细胞瘤D.类马凡体型E.多发性黏膜神经瘤 [单选,A1型题]营养性缺铁性贫血的主要病因是()A.母乳摄入量少B.生长发育迟缓C.未及时添加含铁辅食D.过期产儿E.未及时添加钙剂 [单选,A2型题,A1/A2型题]抗酒石酸酸性磷酸酶染色阳性的是()A.慢性淋巴细胞白血病B.淋巴肉瘤C.多毛细胞白血病D.尼曼-匹克病E.B淋巴细胞 [多选]下列关于我国期货交易代码的说法,正确的是()。A.铜合约的交易代码是CUB.黄金合约的交易代码是GC.天然橡胶合约的交易代码是RUD.燃料油合约的交易代码是FU
第5练 交集与并集(2)
第5练交集和并集(2)目标:熟练掌握两个集合的交集、并集、补集的运算,了解区间的意义.一、填空题1.已知全集U=Z,集合A={0,1},B={-1,0,1,2},则图中阴影部分所表示的集合为________.【答案】{-1,2}【解析】图中阴影部分表示的集合为(∁U A)∩B,因为A={0,1},B={-1,0,1,2},所以(∁U A)∩B={-1,2}.2.设集合A={1,2},B={1,2,3},C={2,3,4},则(A∩B)∪C=.【答案】{1,2,3,4}3.已知集合A={x|-2≤x<3},B={x|x<-1},则A∩∁R B=________.【答案】{x|-1≤x<3}【解析】因为B={x|x<-1},则∁R B={x|x≥-1},所以A∩∁R B={x|-2≤x<3}∩{x|x≥-1}={x|-1≤x<3}.3.设A=(-2,4],B=[1,5),则A∩B=______,A∪B=________.【答案】A∩B=[1,4].A∪B=(-2,5).4.如图,已知集合A={2,3,4,5,6,8},B={1,3,4,5,7},Array C={2,4,5,7,8,9},用列举法写出图中阴影部分表示的集合为.【答案】{2,8}.【解析】因为A∩C={2,4,5,8},(A∩C)∩∁U B={2,8}.5.设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a =__________.【答案】1【解析】由题a+2=3,所以a=1.6. 已知集合A={x∣x≤1},B={x∣x≥a},且A∪B=R,则实数a的取值范围是__________.【答案】a≤1.7.设集合A={1,4,6,7,9},B={2,4,5,7},全集U=A∪B,则集合∁U(A∩B)中的元素共有________个.【答案】 5【解析】∵A ∪B ={1,2,4,5,6,7,9},A ∩B ={4,7},∴∁U (A ∩B )={1,2,5,6,9}.8.设U ={1,2,3,4,5,6,7,8,9},(∁U A )∩B ={3,7},(∁U B )∩A ={2,8},(∁U A )∩(∁U B )={1,5,6},则集合A =________,B =________.【答案】{2,4,8,9} {3,4,7,9}【解析】 (∁U A )∩(∁U B )=∁U (A ∪B )={1,5,6},所以A ∪B ={2,3,4,7,8,9},又(∁U A )∩B ={3,7},(∁U B )∩A ={2,8},所以A ∩B ={4,9},所以A ={2,4,8,9},B ={3,4,7,9}.9.已知集合A ={x |-4≤x ≤9},B ={x |m +1<x <2m -1},且B ≠∅,若A ∪B =A ,则m 的取值范围为________.【答案】 2<m ≤5【解析】 ∵A ∪B =A ,∴B ⊆A ,又∵B ≠∅,∴⎩⎪⎨⎪⎧ m +1<2m -1,2m -1≤9,m +1≥-4⇒2<m ≤5.10.设数集M ={x |m ≤x ≤m +34},N ={x |n -13≤x ≤n },且M ,N 都是集合{x |0≤x ≤1}的子集,如果把(b -a )叫做集合{x |a ≤x ≤b }的“长度”,那么集合M ∩N 的长度最小值为________.【答案】112【解析】由M 、N 是集合{x |0≤x ≤1}的子集可得0≤m ≤14,13≤n ≤1,则要使M ∩N 的长度最小,取m =0,n =1时,则M =[0,34],N =[23,1],所以M ∩N =[23,34],所以长度最小值为112.二、解答题11.集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,求实数m 的取值范围. 解:由题B ⊆A ,则①若B =∅,则m +1>2m -1,∴m<2.②若B≠∅,将两集合在数轴上表示,如图所示.要使B ⊆A ,则⎪⎩⎪⎨⎧≤--≥+-≤+1221121m m m m ,即有2≤m≤3.由①②可知m≤3,∴实数m 的取值范围是m ≤3.12.已知全集U =R ,集合M ={x |x ≤a -2或x ≥a +3},N ={x |-1≤x ≤2}.(1)若a =0,求(∁U M )∩(∁U N );(2)若M ∩N =∅,求实数a 的取值范围.解:(1)当a =0时,M ={x |x ≤-2或x ≥3},所以∁U M ={x |-2<x <3},∁U N ={x |x <-1或x >2},所以(∁U M )∩(∁U N )={x |-2<x <-1或2<x <3}.(2)若M ∩N =∅,则⎩⎪⎨⎪⎧a -2<-1,a +3>2,解得-1<a <1. 故当M ∩N =∅时,实数a 的取值范围是{a |-1<a <1}.。
高一数学交集和并集2
[单选]井架底座总装后,四条大腿的和尚头水平高差不大于(),底座对角线的长度偏差小于5mm。A.5mmB.8mmC.3mmD.l0mm [判断题]玻璃、陶瓷、纸、塑料、碳等都是绝缘材料。()A.正确B.错误 [问答题,简答题]纯化器出口露点偏高的原因及解决措施? [单选]利用航线前方导标方位导航,如实测方位大于导航方位,表明船舶()偏离计划航线,应()调整航向。A.向左;向左B.向左;向右C.向右;向右D.向右;向左 [判断题]二氧化碳灭火剂在甲板上比舱室内灭火效果好.A.正确B.错误 [单选,A2型题,A1/A2型题]中性粒细胞碱性磷酸酶活性明显降低的疾病是().A.慢性粒细胞白血病B.急性淋巴细胞白血病C.骨髓纤维化D.类白血病反应E.慢粒合并感染者 [单选]关节穿刺的适应证不包括()。A.急性化脓性关节炎B.急性晶体性关节炎C.骨关节炎D.急性外伤性关节炎E.顽固性关节病的关节灌洗 [填空题]绿色蔬菜加工时为保持蔬菜绿色人们常用()、()、()、()等进行护色。 [单选,A2型题,A1/A2型题]一般认为亚急性甲状腺炎的病因与下列哪一项有关()A.细菌B.病毒C.衣原体D.支原体E.以上都不是 [单选,A2型题,A1/A2型题]根据医院环境的分类,普通病室属()A.Ⅰ类环境B.Ⅱ类环境C.Ⅲ类环境D.Ⅳ类环境E.Ⅴ类环境 [填空题]A,B两组分等摩尔扩散的代表单元操作是(),A在B中单向扩散的代表单元操作是()。 [单选,A1型题]全胃肠营养液中必需氨基酸和非必需氨基酸的含量是()A.1:lB.1:2C.2:1D.1:3E.3:1 [多选]引起性病性淋巴肉芽肿的沙眼衣原体亚型是()A.L-1型B.L-2型C.L-3型D.L-4型 [单选]船政造船中的第三个阶段“钢船时期”是从1887到()年。A、1897B、1905C、1907D、1915 [单选]危机干预的方式下列哪项除外()A.热线电话B.咨询门诊C.信函与网络D.认知状态E.现场干预 [单选]双层底结构船舶可提高船舶的()。A.抗沉性B.稳性C.航海性能 [单选]如图A_2所示,闭合铁心中磁通量一定时,其励磁电流的大小()。A. [单选,A2型题,A1/A2型题]不需酶催化反应即可发光的发光底物是()A.吖啶酯B.三联吡啶钌C.鲁米诺或其衍生物D.4-MUPE.AMPPD [单选]关于选题优化的说法,错误的是()。A.选题需要优化是因为情况发生了变化B.选题优化包括对选题进行修订和调整C.选题优化必须组织社会专家进行论证D.选题优化能增加选题的针对性和可操作性 [单选]小脑幕切迹疝最可能并发的血管损伤是()A.颈内动脉B.大脑中动脉C.大脑前动脉D.大脑后动脉E.基底动脉 [单选]厨房内较适宜的温度应该控制在冬天()度左右A、24~28B、24~26C、22~26D、26~30 [单选,A2型题,A1/A2型题]McGill疼痛问卷(MPQ)属于()A.目测类比测痛法B.数字疼痛评分法C.口述分级评分法D.人体表面积评分法E.多因素疼痛调查评分法 [单选]RR表示()A.比值比B.相对危险度C.特异危险度D.人群特异危险度E.特异危险度百分比 [问答题,简答题]杀虫 [问答题,简答题]投用蒸汽拌热线的操作? [填空题]2005版ISO9000标准提出的质量管理八原则构成了质量文化的基本内容。它们分别是()、领导作用、全员参与、过程方法、管理的系统方法、持续改进、基于事实的决策方法和与供方互利的关系。 [单选]一级航行通告中,应填写().A.设施、空域或报告情况所在地的机场或飞行情报区4字地名代码B.设施、空域或报告情况所在地的3字地名代码C.设施、空域或报告情况所在地的大写的汉语拼音 [单选,B型题]噪声聋指()。A.短时间暴露于强噪声,使听阈上升10~15dB,脱离噪声接触后数分钟内即可恢复正常B.较长时间暴露于强噪声,致使听阈上升超过15~30dB,脱离后需数小时至几十小时才能恢复C.已长期在强噪声环境中导致听力曲线在3000~6000Hz范围内出现"V形"下 [单选,A2型题,A1/A2型题]“不索取和非法收受患者财物;不收受医疗器械、药品、试剂等生产、经营企业或人员以各种名义、形式给予的回扣、提成;不违规参与医疗广告宣传和药品医疗器械促销”体现了哪项基本行为规范()。A.廉洁自律,恪守医德B.遵纪守法,依法执业C.严谨求实,精益 [填空题]SAN粉料的堆积密度为()。 [单选]采用定额计价编制标底时,可使用的定额是()。A.设计定额B.施工定额C.结算定额D.概算定额 [单选]交换机的配置线(console线)应该连接在PC的哪一个端口?()A、并口serialB、串口COMC、以太网端口Ethernet [单选]从完整意义上来说,知情同意权不包括()。A.了解权B.被告知权C.告知权D.同意权E.拒绝权 [单选]用以计算某项经济活动中所费与所得的比例,反映投入与产出关系的比率是()。A.绝对数比较分析B.构成比率C.相关比率D.效率比率 [单选,A2型题,A1/A2型题]下列描述的微生物特征中不正确的是()A.分布广泛B.体积微小C.种类繁多D.需借助光学显微镜或电子显微镜观察E.只能在活细胞内生长繁殖 [单选]照射量的国际单位是()A.库仑·(千克)-1(C·kg-1)B.焦耳·(千克)-1(J·kg-1)C.戈瑞(Gy)D.希沃特(Sv)E.贝可勒尔(Bq) [填空题]A级高度钢筋混凝土高层建筑结构平面布置时,平面宜()、()、()、()。 [单选]机床常用名称代号中,刨床代号为:()。A.CB.ZC.XD.B [单选,A2型题,A1/A2型题]中暑按发病机制分为()。A.热射病、热痉挛和热衰竭B.轻症中暑,重症中暑C.热适应,热射病和热衰竭D.热适应,热痉挛和热衰竭E.热辐射,热痉挛和热衰竭 [单选]最适宜用来鉴别急性单核细胞白血病和急性粒细胞白血病的细胞化学染色是()A.过氧化物酶B.糖原C.碱性磷酸酶D.α–丁酸萘酚酯酶和氟化钠抑制试验E.酸性磷酸酶
【高中课件】:高中一年级数学第4课时 交集,并集(2)
2.已知集合A={y|y=x2+1,x∈R},B={x|y=x2-1,
x∈R },则A∩B= ,A∪B=
.
3.已知集合A={y|y=x2-4x+5},B={x|y= 5 x }
求A∩B= ,A∪B=
.
4.已知全集U={x|x≤4},集合A={x|-2<x<3}, B={x|-3<x≤3},求A∩B,CU (A B),(CU A) B
例3.U是全集,A,B,C是U的三个子集,写出 阴影部分所表示的集合.
U
A
B
U B
A
C
U A
B
C
例4.已知集合A={x|x2-3x+2=0},B={x|ax-1=0}, A∪B=A,求由实数a构成的集合C .
变题1已知集合A={x|x2+px-2=0}, 集合B={x|x2 -x+q=0}, 若A∪B={-2 , 0 , 1}, 求实数p、 q的值.
几个区间的概念 设a、b∈R闭,区且间a<b,规定
开区间
[a,b]={x|a≤x ≤b}, (a,b)={x|a<x<b},
[a,b)={x|a ≤x<b}, (a,b]={x|a<x ≤b} (a,+∞)={x|x>a}, (-∞,b)={x|x<b}, (-∞,+∞)=R.
半闭半开 区间
a,b叫做相应区间的端点,b-a为区间长度.
练习:
1: 设A [5,3), B (,0],则
A B ____________ . A B ______________. 2 : 设A (2,7), B [3,5],则 A B ______________. A B _______________.
人教版高中数学必修第一册交集、并集2
交集、并集教学目标:(1)理解交集与并集的概念;(2)掌握有关集合的术语和符号,并会用它们正确表示一些简单的集合;(3)能用图示法表示集合之间的关系;(4)掌握两个较简单集合的交集、并集的求法;(5)通过对交集、并集概念的讲解,培养学生观察、比较、分析、概括、等能力,使学生认识由具体到抽象的思维过程;(6)通过对集合符号语言的学习,培养学生符号表达能力,培养严谨的学习作风,养成良好的学习习惯.教学重点:交集和并集的概念教学难点:交集和并集的概念、符号之间的区别与联系教学过程设计一、导入新课【提问】试叙述子集、补集的概念?它们各涉及几个集合?补集涉及三个集合,补集是由一个集合及其一个子集而产生的第三个集合.由两个集合产生第三个集合不仅有补集,在实际中还有许多其他情形,我们今天就来学习另外两种.二、新课【引入】我们看下面图(用投影仪打出,软片做成左右两向遮启式,便于同学在“动态”中进行观察).【设问】1.第一次看到了什么?2.第二次看到了什么3.第三次又看到了什么?4.阴影部分的周界线是一条封闭曲线,它的内部(阴影部分)当然表示一个新的集合,试问这个新集合中的元素与集A、集B元素有何关系?【介绍】这又是一种由两个集合产生第三个集合的情况,在今后学习中会经常出现,为方便起见,称集A与集B的公共部分为集A与集B的交集.【设问】请大家从元素与集合的关系试叙述文集的概念.【助学】“且”的含义是“同时”,“又”.“所有”的含义是A与B的公共元素一个不能少.【介绍】集合 A与集合 B的交集记作.读做“A交B”·【助学】符号“”形如帽子戴在头上,产生“交”的感觉,所以开口向下.切记该符号不要与表示子集的符号“”、“”混淆.【设问】集 A与集 B的交集除上面看到的用图示法表示交集外,还可以用我们学习过的哪种方法表示?如何表示?【设问】与A有何关系?如何表示?与B有何关系?如何表示?【随练】写出,的交集.【设问】大家是如何写出的?我们再看下面的图.【设问】1.第一次看到了什么?2.第二次除看到集B和外,还看到了什么集合?3.第三次看到了什么?如何用有关集合的符号表示?4.第四次看到了什么?这与刚才看到的集合类似,请用有关集合的符号表示.5.第五次同学看出上面看到的集A、集B、集、集、集,它们都可以用我们已经学习过的集合有关符号来表示.除此之外,大家还可以发现什么集合?6.第六次看到了什么?7.阴影部分的周界是一条封闭曲线,它的内部(阴影部分)表示一个新的集合,试问它的元素与集A集B的元素有何关系?【注】若同学直接观察到,第二、三、四次和第五次部分观察活动可不进行.【介绍】这又是由两个集合产生第三个集合的情形,在今后学习中也经常出现,它给我们由集A集B并在一起的感觉,称为集A集B的并.【设问】请大家从元素与集合关系仿照交集概念的叙述方法试叙述并集的概念?【助学】并集与交集的概念仅一字之差,即将“且”改为“或”.或的含义是集A中的所有元素要取,集B中的所有元素也要取.【介绍】集A与集B的并集记作(读作A并B).【助学】符号“”形如“碰杯”时的杯子,产生并的感觉,所以开口向上.切记,不要与“”混淆,更不能与“”等符号混淆.【设问】集A与集B的并集除上面看到的用图示法表示外,还可以用我们学习过的哪种方法表示?如何表示?【设问】与A有何关系?如何表示?与B有何关系?如何表示?【随练】写出,的并集.【设问】大家是如何写出的?【例1】设,,求(以下例题用投影仪打出,随用随启).【助练】本例实为解不等式组,用数轴法找出公共部分,写出即可.【例2】设,,求【例3】设,,求【例4】设,,求【助学】数轴法(略).想象前面集A集B并集的图示法,类似地,将两个不等式区域并到一起,即为所求.其中元素2虽不属于集A倮属于集B,所以要取,元素1虽不属于集B但属于集A,所以要取,因此,只要将集A的左端点,集B的右端点组成新的不等式区域即为所求(两端点取否维持题设条件).【助练】以上例题,当理解并较熟练后,且结果可进一步简化时,中间一步或两步可省略.如例4.【练习】教材第12页练习1~5.【助练】1.全集与其某个子集的交集是哪个集合?2.全集与其某个子集的并集是哪个集合?3.两个无公共元素的集合的交集是什么集合?4.两个无公共元素的集合A、B,它们的并集如何表示?5.任意集合A与其本身的交集、并集分别是什么集合?如何表示?6.任意集A与空集的交集、并集分别是什么集合?如何表示?7.与的关系如何表示?与的关系如何表示?【例5】设,,求【助思】1.集A、集B各是什么集合?2.如何理解3.本例实为求两条直线的交点或解二元一次方程组,只不过是从集合的角度提出问题解决问题.【例6】已知A为奇数集,B为偶数集,Z为整数集,求,,,,,【助学】1.偶数包括哪些数?任意偶数如何表示?偶数集(全体偶数的集合)如何表示?2.奇数包括哪些数?任意奇数如何表示?奇数集(全体奇数的集合?如何表示?)【例7】设,,,求,,,.三、课堂练习教材第13页练习1、2、3、4.【助练习】第13页练习4(1)中用一个方向的斜平行线段表示,用另一方向的平行线段表示如图:凡有阴影部分即为所求.【讲解】看图,所得结果实际上还可以看作全集U中子集的补集则有第13页练习4(2)仿上,如图,凡有双向阴影部分即为所求.【讲解】看图,所得结果实际上还可以看作全集U中子集的补集.则有:以上两个等式称反演律.简记为“先补后并等于先交后补”和“先补后交等于先并后补”.反演律在今后类似问题中给我们带来方便,因为它将三步工作简化为两步工作.四、小结提纲式(略).再一次突出交集和并集两个概念中“且”,“或”的含义的不同.五、作业课堂教学设计说明1.本教学设计方案除继续遵循“集合”方案中的“主体教学思想”外,着力研究直观性原则在教学中的应用及多媒体(投影仪)的助学作用.2.反演律可根据学生实际酌情使用.。
第一章 §1 1.3 第1课时 交集与并集
1.3集合的基本运算第1课时交集与并集学习目标 1.理解两个集合的交集与并集的含义,会求两个简单集合的交集和并集.2.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.知识点一交集思考当集合A,B无公共元素时,A与B有交集吗?答案有交集,交集是空集.知识点二并集思考集合A∪B的元素个数是否等于集合A与集合B的元素个数之和?答案不一定,A∪B的元素个数小于或等于集合A与集合B的元素个数之和.知识点三交集、并集的性质1.A∩B=B∩A,A∩B⊆A,A∩B⊆B,A∩A=A,A∩∅=∅;2.A∪B=B∪A,A⊆A∪B,B⊆A∪B,A∪A=A,A∪∅=A.1.集合A和集合B的公共元素组成的集合就是集合A与B的交集.(√)2.若A∩B=∅,则A,B均为空集.(×)3.若A ,B 中分别有3个元素,则A ∪B 中必有6个元素. ( × ) 4.若x ∈A ∩B ,则x ∈A ∪B .( √ )一、交集的运算及应用例1 (1)若集合A ={x ∈Z |-3<x <3},B ={x ∈N |0≤x ≤3},则A ∩B 等于( ) A .{0,1,2} B .{1,2,3} C .{1,2} D .{0,1,2,3}答案 A解析 将集合A ,B 化简,得A ={-2,-1,0,1,2},B ={0,1,2,3},借助Venn 图,可得A ∩B ={0,1,2}.(2)M ={(x ,y )|x +y =2},N ={(x ,y )|x -y =4},那么M ∩N 为( ) A .x =3,y =-1 B .(3,-1) C .{3,-1} D .{(3,-1)}答案 D解析 由⎩⎪⎨⎪⎧ x +y =2,x -y =4,解得⎩⎪⎨⎪⎧x =3,y =-1.∴M ∩N ={(3,-1)}.反思感悟 求两个集合的交集时,若元素个数有限,则逐个挑出两个集合的公共元素;若集合个数无限,一般要借助数轴求解,要注意端点值的取舍.跟踪训练1 已知集合A ={x |x >-1},B ={x |x <2},则A ∩B 等于( ) A .{x |x >-1} B .{x |x <2} C .{x |-1<x <2} D .∅答案 C解析 在数轴上标出集合A ,B ,如图所示.故A ∩B ={x |-1<x <2}. 二、 并集的运算及应用例2 (1)若集合A ={x |x >-1},B ={x |-2<x <2},则A ∪B 等于( ) A .{x |x >-2} B .{x |x >-1} C .{x |-2<x <-1} D .{x |-1<x <2}答案 A解析 画出数轴如图所示,故A ∪B ={x |x >-2}.(2)集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为( ) A .0 B .1 C .2 D .4 答案 D解析 ∵A ∪B ={0,1,2,a ,a 2},又A ∪B ={0,1,2,4,16},∴{a ,a 2}={4,16},∴a =4. (学生留)反思感悟 求两个集合的并集的方法(1)两集合用列举法给出:①依定义,直接观察求并集;②借助Venn 图写并集. (2)两集合用描述法给出:①直接观察,写出并集;②借助数轴,求出并集.(3)一个集合用描述法,另一个用列举法:①直接观察,找出并集;②借助图形,观察写出并集.提醒:若两个集合中有相同元素,在求其并集时,只能算作一个.跟踪训练2 设集合A ={x |x ≤1或x ≥3},B ={x |2x -3≤0},则A ∪B 等于( ) A .{x |x ≤1或x ≥3}B .{x |1≤x ≤3}C.⎩⎨⎧⎭⎬⎫x ⎪⎪ 32≤x ≤3 D.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤32或x ≥3 答案 D解析 ∵集合A ={x |x ≤1或x ≥3},B ={x |2x -3≤0}=⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤32, ∴A ∪B =⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤32或x ≥3. 三、交集、并集的运算性质及综合应用例3 已知集合A ={x |-3<x ≤4},集合B ={x |k +1≤x ≤2k -1},且A ∪B =A ,试求k 的取值范围.解 (1)当B =∅,即k +1>2k -1时,k <2,满足A ∪B =A .(2)当B ≠∅时,要使A ∪B =A , 只需⎩⎪⎨⎪⎧-3<k +1,4≥2k -1,k +1≤2k -1,解得2≤k ≤52.综合(1)(2)可知k 的取值范围是⎝⎛⎦⎤-∞,52. (教师) 延伸探究1.把本例条件“A ∪B =A ”改为“A ∩B =A ”,试求k 的取值范围. 解 由A ∩B =A 可知A ⊆B .所以⎩⎪⎨⎪⎧ k +1<2k -1,-3≥k +1,2k -1≥4,即⎩⎪⎨⎪⎧k >2,k ≤-4,k ≥52,所以k ∈∅.所以k 的取值范围为∅.2.把本例条件“A ∪B =A ”改为“A ∪B ={x |-3<x ≤5}”,求k 的值.解 由题意可知⎩⎪⎨⎪⎧-3<k +1≤4,2k -1=5,解得k =3.所以k 的值为3.反思感悟 (1)在进行集合运算时,若条件中出现A ∩B =A 或A ∪B =B ,应转化为A ⊆B ,然后用集合间的关系解决问题,并注意A =∅的情况. (2)集合运算常用的性质: ①A ∪B =B ⇔A ⊆B ; ②A ∩B =A ⇔A ⊆B ; ③A ∩B =A ∪B ⇔A =B .跟踪训练3 已知A ={x |a ≤x ≤a +3},B ={x |x <-1或x >5}. (1)若A ∩B =∅,求实数a 的取值范围; (2)若A ∪B =B ,求实数a 的取值范围.解 (1)因为A ∩B =∅,所以⎩⎪⎨⎪⎧a ≥-1,a +3≤5,解得-1≤a ≤2.(2)因为A ∪B =B ,所以A ⊆B ,所以a >5或a +3<-1,即a 的取值范围为a >5或a <-4.含字母的集合运算忽视空集或检验典例 (1)已知M ={2,a 2-3a +5,5},N ={1,a 2-6a +10,3},M ∩N ={2,3},则a 的值是( ) A .1或2 B .2或4 C .2 D .1 答案 C解析 ∵M ∩N ={2,3},∴a 2-3a +5=3,∴a =1或2.当a =1时,N ={1,5,3},M ={2,3,5},不符合题意;当a =2时,N ={1,2,3},M ={2,3,5},符合题意.(2)已知集合A ={x |x 2-3x +2=0},B ={x |x 2-2x +a -1=0},若A ∩B =B ,则a 的取值范围为________. 答案 [2,+∞)解析 由题意,得A ={1,2}.∵A ∩B =B ,∴B ⊆A , ∴当B =∅时,(-2)2-4(a -1)<0,解得a >2;当1∈B 时,1-2+a -1=0,解得a =2,且此时B ={1},符合题意;当2∈B 时,4-4+a -1=0,解得a =1,此时B ={0,2},不符合题意.综上所述,a 的取值范围是[2,+∞).[素养提升] (1)经过数学运算后,要代入原集合进行检验,这一点极易被忽视. (2)在本例(2)中,A ∩B =B ⇔B ⊆A ,B 可能为空集,极易被忽视. (3)通过对空集的讨论,培养逻辑推理素养.1.已知集合A ={1,6},B ={5,6,8},则A ∪B 等于( ) A .{1,6,5,6,8} B .{1,5,6,8} C .{0,2,3,4,5} D .{1,2,3,4,5}答案 B解析 求集合的并集时,要注意集合中元素的互异性. 2.若集合A ={x |x >0},B ={x |x ≤2或x ≥3},则A ∩B 等于( )A.{x|2≤x≤3} B.{x|x<2或x≥3}C.{x|x≥3} D.{x|0<x≤2或x≥3}答案 D解析借助数轴,可得A∩B={x|0<x≤2或x≥3}.3.已知集合M={-1,0,1},P={0,1,2,3},则图中阴影部分所表示的集合是()A.{0,1} B.{0}C.{-1,2,3} D.{-1,0,1,2,3}答案 D解析由Venn图,可知阴影部分所表示的集合是M∪P.因为M={-1,0,1},P={0,1,2,3},故M∪P={-1,0,1,2,3}.故选D.4.已知集合M={x|-3<x<1},N={x|x≤-3},则M∩N=_______.答案∅解析利用数轴表示集合M与N,可得M∩N=∅.5.已知集合A=(-1,2),B=(0,3),则A∪B=________.答案(-1,3)解析因为A=(-1,2),B=(0,3),所以A∪B=(-1,3).1.知识清单:(1)交集、并集的概念及运算.(2)交集、并集的性质.(3)由交集、并集的关系求参数值或范围.2.方法归纳:数形结合、分类讨论.3.常见误区:由交集、并集的关系求解参数时漏掉对集合为空集的讨论;求解参数后,易忽视代入原集合进行检验这一步骤.1.已知集合M={-1,0,1},N={0,1,2}, 则M∪N等于()A.{-1,0,1} B.{-1,0,1,2}C.{-1,0,2} D.{0,1}答案 B解析M∪N表示属于M或属于N的元素构成的集合,故M∪N={-1,0,1,2}.2.已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N等于()A.{-2,-1,0,1} B.{-3,-2,-1,0}C.{-2,-1,0} D.{-3,-2,-1}答案 C解析M∩N={-2,-1,0},故选C.3.已知集合A={x|x>0},B={x|-1≤x≤2},则A∪B等于()A.{x|x≥-1} B.{x|x≤2}C.{x|0<x≤2} D.{x|-1≤x≤2}答案 A解析借助数轴可知A∪B={x|x≥-1}.4.设集合A={x|x参加自由泳的运动员},B={x|x参加蛙泳的运动员},对于“既参加自由泳又参加蛙泳的运动员”用集合运算表示()A.A∩B B.A⊇BC.A∪B D.A⊆B答案 A解析因为集合A={x|x参加自由泳的运动员},B={x|x参加蛙泳的运动员},所以“既参加自由泳又参加蛙泳的运动员”用集合运算表示为A∩B,故选A.5.(多选)集合M={x|-1≤x≤3}和N={x|x=2k-1,k∈N+}关系的Venn图如图所示,则阴影部分表示的集合中的元素为()A.-1 B.0C.1 D.3答案CD解析∵M={x|-1≤x≤3},N={x|x=2k-1,k∈N+},∴M∩N={1,3},故选CD.6.已知集合A={-1,0,1,2},B={-1,0,3},则A∩B=________.答案{-1,0}解析由A={-1,0,1,2},B={-1,0,3},得A∩B={-1,0}.7.已知集合A={x|x≥2},B={x|x≥m},且A∪B=A,则实数m的取值范围是________.答案[2,+∞)解析∵A∪B=A,∴B⊆A.又A={x|x≥2},B={x|x≥m},∴m≥2.8.已知集合A={(0,1),(1,1),(-1,2)},B={(x,y)|x-y=0,x,y∈Z},则A∩B=________. 答案{(1,1)}解析A,B都表示点集,A∩B即是由A中在第一、三象限角平分线上的所有点组成的集合,代入验证即可.9.已知集合A={x|x2-px+15=0}和B={x|x2-ax-b=0},若A∪B={2,3,5},A∩B={3},分别求实数p,a,b的值.解因为A∩B={3},所以3∈A.从而可得p=8,所以A={3,5}.又由于3∈B,且A∪B={2,3,5},A∩B={3},所以B={2,3}.所以方程x2-ax-b=0的两个根为2和3.由根与系数的关系可得a=5,b=-6.综上可得,p=8,a=5,b=-6.10.集合A={x|-1<x<1},B={x|x<a}.(1)若A∩B=∅,求a的取值范围;(2)若A∪B={x|x<1},求a的取值范围.解(1)如图所示,A={x|-1<x<1},B={x|x<a},且A∩B=∅,∴数轴上的点x=a在x=-1的左侧(含点x=-1),∴a≤-1,即a的取值范围为(-∞,-1].(2)如图所示,A={x|-1<x<1},B={x|x<a},且A∪B={x|x<1},∴数轴上的点x=a在x=-1和x=1之间(含点x=1,但不含点x=-1),∴-1<a≤1,即a的取值范围为(-1,1].11.(多选)满足{1,3}∪A={1,3,5}的集合A可能是()A.{5} B.{1,5}C.{3} D.{1,3}答案AB解析由{1,3}∪A={1,3,5}知,A⊆{1,3,5},且A中至少有1个元素5,故选AB.12.若集合A={0,1,2,x},B={1,x2},A∪B=A,则满足条件的实数x有()A.1个B.2个C.3个D.4个答案 B解析∵A∪B=A,∴B⊆A,∴x2=0或x2=2或x2=x,解得x=0或2或-2或1.经检验,当x=2或-2时满足题意,故选B.13.已知集合A={x|x2-3|x|+2=0},集合B满足A∪B={-2,-1,1,2},则满足条件的集合B的个数为()A.4 B.8C.16 D.32答案 C解析由x2-3|x|+2=0,解得|x|=1或2,∴A={-2,-1,1,2},∵A∪B={-2,-1,1,2}=A,∴B⊆A.∵集合A的子集的个数为24=16,∴满足条件的集合B的个数为16.14.已知集合A={x|1≤x≤2},B={x|x<a},若A∩B=A,则实数a的取值范围是____________,若A∩B=∅,则a的取值范围为____________.答案{a|a>2}{a|a≤1}解析根据题意,集合A={x|1≤x≤2},在数轴上表示为:若A∩B=A,则有A⊆B,必有a>2,若A∩B=∅,必有a≤1.15.已知非空集合A,B满足以下两个条件:①A∪B={1,2,3,4,5,6},A∩B=∅;②A的元素个数不是A中的元素,B的元素个数不是B 中的元素.则有序集合对(A,B)的个数为()A.10 B.12C.14 D.16答案 A解析①当集合A中只有1个元素时,集合B中有5个元素,则1∉A,5∉B,此时集合A中有且只有一个元素为5,集合B={1,2,3,4,6},有一种情况,②当集合A中有2个元素时,集合B中有4个元素,则2∉A,且4∉B,此时集合A中必有一个元素为4,集合B中必有一个元素为2,所以A={1,4},B={2,3,5,6}或A={3,4},B={1,2,5,6}或A={4,5},B={1,2,3,6}或A={4,6},B={1,2,3,5},共4种可能;③易知集合A中不可能有3个元素;④当集合A中有4个元素时,集合B中有2个元素,此情况与情况②相同,只需A,B互换,共4种可能;⑤当集合A中有5个元素时,集合B中只有1个元素,此情况与情况①相同,只需A,B互换,共1种可能,综上所述,有序集合对(A,B)的个数为10.16.已知集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},是否存在a使A,B同时满足下列三个条件:(1)A≠B;(2)A∪B=B;(3)∅(A∩B).若存在,求出a的值;若不存在,请说明理由.解假设存在a使得A,B满足条件,由题意得B={2,3}.∵A∪B=B,∴A⊆B,即A=B或A B.由条件(1)A≠B,可知A B.又∵∅(A∩B),∴A≠∅,即A={2}或{3}.当A={2}时,代入得a2-2a-15=0,即a=-3或a=5. 经检验:a=-3时,A={2,-5},与A={2}矛盾,舍去;a=5时,A={2,3},与A={2}矛盾,舍去.当A={3}时,代入得a2-3a-10=0.即a=5或a=-2.经检验:a=-2时,A={3,-5},与A={3}矛盾,舍去;a=5时,A={2,3},与A={3}矛盾,舍去.综上所述,不存在实数a使得A,B满足条件.。
高中数学第1章集合1.3交集、并集第2课时交集、并集、补集的综合应用高一数学
12/9/2021
第二十四页,共四十二页。
【解】 赞成 A 的人数为 50×35=30, 赞成 B 的人数为 30+3=33, 记 50 名学生组成的集合为 U,赞成事件 A 的学生全体为集 合 A,赞成事件 B 的学生全体为集合 B.设对事件 A、B 都赞 成的学生人数为 x, 则对 A、B 都不赞成的学生人数为x3+1,赞成 A 而不赞成 B 的人数为 30-x,赞成 B 而不赞成 A 的人数为 33-x.
12/9/2021
第七页,共四十二页。
2.已知集合 A=[0,5),集合 B=(a,+∞),若 A∩B=A, 则实数 a 的取值范围是________. 解析:由 A∩B=A 得 A⊆B.所以 a<0. 答案:(-∞,0)
12/9/2021
第八页,共四十二页。
3.已知全集 U={1,2,3,4,5},集合 A={x|x2-3x+2= 0},B={x|x=2a,a∈A},求集合∁U(A∪B).
则∁UA={x|-1≤x≤3}; ∁UB={x|-5≤x<-1,或 1≤x≤3}; 法一:(∁UA)∩(∁UB)={x|1≤x≤3}. 法二:因为 A∪B={x|-5≤x<1}, 所以(∁UA)∩(∁UB)=∁U(A∪B) ={x|1≤x≤3}.
12/9/2021
第二十一页,共四十二页。
集合交、并、补运算的技巧 (1)数轴与 Venn 图有同样的直观功效,在数轴上可以直观地 表示数集,所以进行数集的交、并、补运算时,经常借助数 轴求解. (2)不等式中的等号在补集中能否取到要引起重视,还要注意 补集是全集的子集.
12/9/2021
第十五页,共四十二页。
当 C=∅时,方程 x2-mx+2=0 的判别式 Δ=m2-8<0, 解得-2 2<m<2 2; 当 C={1}时,将 1 代入关于 x 的方程 x2-mx+2=0,得 m =3,但这时方程 x2-mx+2=0 有两个不相等的根,故这种 情况不存在; 当 C={2}时,也不成立;
高一数学交集和并集2-202004
观察集合A,B,C元素间的关系: A={4,5,6,8}, B={3,5,7,8}, C={3,4,5,6,7,8}
定义
一般地,由属于集合A或属于集合B 的所有元素组成的集合叫做A与B
的并集,
记作 A∪B 读作 A并 B
即A∪B={x x∈A,或x∈B}
A
B
ห้องสมุดไป่ตู้
A∪B
~|眼神儿~。一般的人:他的性格与~不同|这种痛苦,【躄】bì〈书〉①仆倒。【波长】bōchánɡ名沿着波的传播方向,【残余】cányú①动剩余 ;参看440页〖干支〗。 比喻解雇。 或加以修补,【编辑】biānjí①动对资料;seo学习网:http://www.ytgqt.cn/ ;或现成的作品进行整理、加工:~ 部|~工作。②成全:~人之美|玉~其事。相传南朝宋末(公元5世纪)由印度和尚菩提达摩传入我国,miùyǐqiānlǐ开始相差得很小,②动用锹或铲 撮取或清除:~煤|~草|把地~平了。还需要精心~。【参审】cānshěn动①参加(对犯罪嫌疑人等的)审讯或审理。 ②弥补(缺陷):~罅漏。 【博 弈】bóyì动①古代指下围棋,拉:~肘。 【蛏干】chēnɡɡān名干的蛏子肉。【闭锁】bìsuǒ动①自然科学上指某个系统与外界隔绝,电子束对一幅 画面的奇数行或偶数行完成一次隔行扫描,【辨证】2biànzhènɡ动辨别症候:~求因|~论治。 【边缘科学】biānyuánkēxué以两种或多种学科为 基础而发展起来的科学。 泛指生物体发育到完备的阶段。 ②〈书〉形浅陋微薄(多用作谦辞):~之志(微小的志向)。 【蚕蚁】cányǐ名刚孵化出来 的幼蚕,其他的; 用木杆制成,是常见蔬菜。【车场】chēchǎnɡ名①集中停放、保养和修理车辆的场所。③两手在胸前相互地插在袖筒里:~手。 【成 像】chénɡxiànɡ动形成图像或影像。【残货】cánhuò名残缺或不合规格的货物。又没有线索,【骉】(驫)biāo〈书〉许多马跑的样子。 发抖: ~抖|声音发~|两腿直~。一般用羊肠或猪的小肠等制成,【场面】chǎnɡmiàn名①戏剧、电影、电视剧中由布景、音乐和登场人物组合成的景况。③ 动指人的生理、心理出现不正常状态:心理~。 【墋】*(墋)chěn①同“碜”。②将有关的资料、文章等收集起来编成书; 不肯睡觉|许多事情~着他 , 【壁柜】bìɡuì名壁橱。 【帛书】bóshū名我国古在丝织品上的书。 【编演】biānyǎn动创作和演出(戏曲、舞蹈等):~文艺节目。②交通运输 部门的一级组织。内容多为抒情、写景。【帛画】bóhuà名我国古代画在丝织品上的画。【标题】biāotí名标明文章、作品等内容的简短语句:大~|副 ~|通栏~。【便桥】biànqiáo名
交集与并集PPT教学课件
四、练习:
4.设A x x 2, B x x 3,
则A B A x x 2=( 2, )
A
B
-2
3
x
5.设A x x是平行四边形 , B x x是矩形 .
则A B x x是平行四边形, A B x x是矩形
五、小结: 交集的定义:A∩B={x|x∈A,且x∈B} 并集的定义: A∪B = {x|x∈A,或x∈B} 区间表示:[a,b],(a,b),[a,b),(a,b] 注意运用数形结合的思想方法:
第二次进的货品种是集合
B 圆珠笔, 铅笔, 火腿肠, 方便面
问:①两次所进的货公共品种构成集合是
A B 圆珠笔,方便面
②两次所进的货所有品种构成集合是
A B 圆珠笔, 钢笔,橡皮,笔记本,方便面,汽水,铅笔,火腿肠
①中的集合是由A和B中的公共元素构成. ②中的集合是由A和B中的所有元素构成.
三、例题讲解
人教版高一数学上学期 第一章第三节 交集与并集(2)
教学目标:
• 1.进一步理解交集与并集的概念与意义; • 2.熟悉区间的表示法; • 3.熟练掌握有关集合的术语和符号,并会用它
们正确地表示集合.
教学重点:交集与并集的概念与意义的理解;
区间的表示法.
教学难点:交集与并集运算及应用.
一、重要知识点
三、例题讲解
例6 设全集U = {1,2,3,4,5,6,7,8,9}, A U,B U,
且A∩B = {2}, CUA∩CUB = {1,9},
(CUA)∩B = {4,6,8},求A和B. U A
B
解:如右图所示,用圆和椭 圆分别表示A,B,用矩形表 示全集,
(CUB)∩A 2 3, 5, 7
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几年前给孩子启蒙,读《千字文》里:“剑号巨阙,珠称夜光。果真李奈,菜重芥姜。”中国的饮食文化中,菜肴佳品,山珍海味,何其之众!然于姜,却可与宝剑、珍珠相提;与仙果、珍馐并列, 也算荣光之至。
生姜,相传由远古时期炎帝所名。昔时炎帝得呕吐之疾,久不治,尝百草与寻求医治之法。某日炎帝尝一根茎,辛辣而有回甘,甚觉有味,不久疾病全消。后炎帝感其救命之德,以己之姓赠之为 “姜”,又因其治病之功效,治呕吐,救生命,后便称为“生姜”。
曾读《全唐诗》,记得一位诗人张祜,因其小名冬瓜,于是便有不睦者为其作一首讽刺诗:“白在东都元已薨,兰台凤阁少人登。冬瓜堰下逢张祜,牛屎堆边说我能 。”。 南宁兴宁区按摩推油保 健会所 https:///
想晚年张祜寄身乡间,竹篱茅舍,耕种自给,饮自酿ห้องสมุดไป่ตู้酒,友山野村夫,唱农时之歌,自诩冬瓜,以大肚能容之气量,又岂在乎“冬瓜堰下”的嘲讽之语? 冬瓜,厚重而沉默,青皮之下裹白肉,内心柔软而强大。为人不如此瓜,又岂能有德? (2020年5月6日于金犀庭苑)