中考数学填空题压轴题精选

合集下载

2024-2025年安徽省中考数学压轴题集

2024-2025年安徽省中考数学压轴题集

2024-2025年安徽省初中学业水平考试数学压轴题集(本卷收录近10年安徽省中考的第10、14、22、23题)一、选择题每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的. 1.如图,在矩形ABCD 中,AB =5,AD =3.动点P 满意13PABABCDS S=矩形 .则点P 到A ,B 两点距离之和P A +PB 的最小值为( )A.29B.34C.52D.412.如图,Rt △ABC ,AB ⊥BC ,AB =6,BC =4,P 是△ABC 内部的一个动点,且满意∠P AB =∠PBC ,则线段CP 长的最小值为( ) 32 B.2 C.81313D.121313A.第1题图 第2题图3.如图,一次函数1y x =和二次函数22+y ax bx c =+图象相交于P ,Q 两点,则函数2(1)y ax b x c=+-+的图象可能是( )A. B. C. D.第3题图4.如图,正方形ABCD 的对角线BD 长为22,若直线l 满意: ①点D 到直线l 的距离为3;②A ,C 两点到直线l 距离相等.则符合题意的直线l 的条数是( ) A.1 B.2 C.3 D.45.如图,点P 是等边三角形ABC 外接圆⊙O 上点,在以下推断中,不正确的是( ) A.当弦PB 最长时,△APC 是等腰三角形 B.当△APC 是等腰三角形时,PO ⊥AC C.当PO ⊥AC 时,∠ACP =30°D.当∠ACP =30°时,△BPC 是直角三角形第4题图第5题图6.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.45C.10或45D.10或217第6题图7.如图所示,P是菱形ABCD的对角线AC上一点,过P垂直于AC的直线交菱形ABCD的边于M、N两点,设AC=2,BD=1,AP=x,△AMN的面积为y,则y关于x的函数图象的大致形态是A. B.第7题图C. D.8.甲、乙两个打算在一段长为1200米的笔直马路上进行跑步,甲、乙跑步的速度分别为4m/s和6m/s,起跑前乙在起点,甲在乙前面100米处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两之间的距离y(m)与时间t(s)的函数图象是()A. B. C. D.9.△ABC中,AB=AC,∠A为锐角,CD为AB边上的高,I为△ACD的内切圆圆心,则∠AIB的度数是A.120°B.125°C.135°D.150°10.如图,在△ABC中,AB=AC=5,BC=6,点M为BC中点,MN⊥AC于点N,则MN等于A.65B.95C.125D.125第10题图第11题图二、填空题11. 在三角形纸片ABC 中,∠A =90°,∠C =30°,AC =30cm ,将该纸片沿过点B 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),剪去△CDE 后得到双层△BDE (如图2),再沿着过△BDE 某顶点的直线将双层三角形剪开,使得绽开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为__________cm.12. 如图,在矩形纸片ABCD 中,AB =6,BC =10,点E 在CD 上,将△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处,有下列结论:①∠EBG =45°;②△DEF ∽△ABG ;③3=2ABG FGH S S △△;④AG +DF =FG .其中正确的是 .(把全部正确结论的序号都选上)第12题图 第14题图13.已知实数a 、b 、c 满意a b ab c +==,有下列结论:①若c ≠0,则111ab+=;②若a =3,则b +c =9;③若a =b =c ,则abc =0;④若a 、b 、c 中只有两个数相等,则a +b +c =8.其中正确的是 .(把全部正确结论的序号都选上)14. 如图,在▱ABCD 中,AD =2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中肯定成立的是 .(把全部正确结论的序号都填在横线上) ①12DCF BCD ∠=∠;②EF =CF ;③=2BEC CEF S S △△;④∠DFE =3∠AEF .15.已知矩形纸片ABCD 中,AB =1,BC =2,将该纸片折叠成一个平面图形,折痕EF 不经过A 点(E ,F 是该矩形边界上的点),折叠后点A 落在点A ’处,给出以下推断: ①当四边形A’CDF 为正方形时,EF =2;②当EF =2时,四边形A’CDF 为正方形; ③当EF =5时,四边BA’CD 为等腰梯形;④当四边形BA’CD 为等腰梯形时,EF =5. 其中正确的是 .(把全部正确结论的序号都填在横线上) 16.如图,P 是矩形ABCD 内的随意一点,连接P A 、PB 、PC 、PD ,得到△P AB 、△PBC 、△PCD 、△PDA ,设它们的面积分别是S 1、S 2、S 3、S 4,给出如下结论:①S 1+S 2=S 3+S 4;②S 2+S 4= S 1+S 3;③若S 3=2S 1,则S 4=2S 2 ④若S 1=S 2,则P 点在矩形的对角线上.其中正确的结论的序号是 .(把全部正确结论的序号都填在横线上)第15题图 第16题图 第18题图 17.定义运算(1)a b a b ⊗=-,下面给出了关于这种运算的几个结论:①2(2)6⊗-=;②a b b a ⊗=⊗;③若0a b +=,则()()2a a b b ab ⊗+⊗=;④若0a b ⊗=,则a =0.其中正确结论的序号是 .(填上你认为全部正确结论的序号)18.如图,AD 是△ABC 的边BC 上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是 ________ _.(把全部正确答案的序号都填写在横线上)①∠BAD =∠ACD ;②∠BAD =∠CAD ;③AB +BD =AC +CD ;④AB -BD =AC -CD .19.已知二次函数的图象经过原点及点11(,)24--,且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为 .20.如图为二次函数2y ax bx c =++的图象,在下列说法中:①a c <0;②方程20ax bx c ++=的根是11x =-,23x =;③0a b c ++>;④当x >1时,y 随x 的增大而增大.正确的说法有__________.(把正确的答案的序号都填在横线上)第20题图三、解答题21. 某超市销售一种商品,成本每千克40元,规定每千克不低于成本,且不高于80元.经市场调查,每天的销售量y (千克)与每千克售价x (元)满意一次函数关系,部分数据如下表:售价x (元/千克) 50 60 70 销售量y (千克) 100 80 60(1)求y 与x 之间的函数表达式; (2)设商品每天的总利润为W (元),求W 与x 之间的函数表达式(利润=收入-成本); (3)试说明(2)中总利润W 随售价x 的改变而改变的状况,并指出售价为多少元时获得最大 利润, 最大利润是多少?22.已知正方形ABCD ,点M 为AB 的中点.(1)如图1,点G 为线段CM 上的一点,且∠AGB =90°,延长AG 、BG 分别与边BC 、CD 交于点E 、F .①求证:BE =CF ;②求证:2BE BC CE =⋅.(2)如图2,在边BC 上取一点E ,满意2BE BC CE =⋅,连接AE 交CM 于点G ,连接BG 并延长交CD 于点F ,求tan ∠CBF 的值.第22题图 1 第22题图223.如图,二次函数2+y ax bx =的图象经过点(2,4)A 与(6,0)B .(1)求a ,b 的值; (2)点C 是该二次函数图象上A ,B 两点之间的一动点,横坐标为x (2<x <6),写出四边形OACB 的面积S 关于点C 的横坐标x 的函数表达式,并求S 的最大值.24.如图,A ,B 分别在射线OA ,ON 上,且∠MON 为钝角,现以线段OA ,OB 为斜边向∠MON 的外侧作等腰直角三角形,分别是△OAP ,△OBQ ,点C ,D ,E 分别是OA ,OB ,AB 的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图1,若∠MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB∽△PEQ,求∠MON大小和ABPQ的值.第24题图1 第24题图2 第24题图325.为了节约材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为x m,矩形区域ABCD的面积为y m2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?第25题图26.如图1,在四边形ABCD中,点E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD 的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC.(1)求证:AD =BC ;(2)求证:△AGD ∽△EGF ;(3)如图2,若AD 、BC 所在直线相互垂直,求ADEF的值.第26题图1 第26题图227.若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”. (1)请写出两个为“同簇二次函数”的函数;(2)已知关于x 的二次函数2212421y x mx m =-++和225y ax bx =++,其中1y 的图象经过点(1,1)A ,若12y y +与1y 为“同簇二次函数”,求函数2y 的表达式,并求出当0≤x ≤3时,2y 的最大值.28.如图1,正六边形ABCDEF 的边长为a ,P 是BC 边上一动点,过P 作PM ∥AB 交AF 于M ,作PN ∥CD 交DE 于N .(1)①∠MPN = ;②求证:PM +PN =3a ;(2)如图2,点O 是AD 的中点,连接OM 、ON ,求证:OM =ON ;(3)如图3,点O 是AD 的中点,OG 平分∠MON ,推断四边形OMGN 是否为特别四边形?并说明理由.第28题图1 第28题图2 第28题图329.某高校生利用暑假40天社会实践参与了一家网店的经营,了解到一种成本为20元/件的新型商品在第x 天销售的相关信息如下表所示.销售量p (件)50p x =- 销售单价q (元/件)当1≤x ≤20时,1302q x =+;当21≤x ≤40时,52520q x=+(1)请计算第几天该商品的销售单价为35元/件;(2)求该网店第x 天获得的利润y 关于x 的函数关系式;(3)这40天中该网店第几天获得的利润最大?最大利润是多少?30.我们把由不平行于底边的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”;如图1,四边形ABCD 即为“准等腰梯形”;其中∠B =∠C .(1)在图1所示的“准等腰梯形”ABCD 中,选择合适的一个顶点引一条直线将四边形ABCD 分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形;(画出一种示意图即可) (2)如图2,在“准等腰梯形”ABCD 中∠B =∠C .E 为边BC 上一点,若AB ∥DE ,AE ∥DC ,求证:AB BEDC EC=; (3)在由不平行于BC 的直线AD 截△PBC 所得的四边形ABCD 中,∠BAD 与∠ADC 的平分线交于点E .若EB =EC ,请问当点E 在四边形ABCD 内部时(即图3所示情形),四边形ABCD 是不是“准等腰梯形”,为什么?若点E 不在四边形ABCD 内部时,状况又将如何?写出你的结论.(不必说明理由)第30题图1 第30题图2 第30题图331.如图1,在△ABC 中,D 、E 、F 分别为三边的中点,G 点在边AB 上,△BDG 与四边形ACDG 的周长相等,设BC =a 、AC =b 、AB =c . (1)求线段BG 的长;(2)求证:DG 平分∠EDF ;(3)连接CG ,如图2,若△BDG 与△DFG 相像,求证:BG ⊥CG .第31题图1 第31题图232.如图,排球运动员站在点O 处练习发球,将球从O 点正上方2m 的A 处发出,把球看成点,其运行的高度y (m )与运行的水平距离x (m )满意关系式2(6)y a x h =-+.已知球网与O 点的水平距离为9m ,高度为2.43m ,球场的边界距O 点的水平距离为18m. (1)当h =2.6时,求y 与x 的关系式;(不要求写出自变量x 的取值范围) (2)当h =2.6时,球能否越过球网?球会不会出界?请说明理由; (3)若球肯定能越过球网,又不出边界,求h 的取值范围.第32题图33.在△ABC 中,∠ACB =90°,∠ABC =30°,将△ABC 绕顶点C 顺时针旋转,旋转角为(0180)θθ︒︒<<,得到△A’B’C’..第33题图1 第33题图2 第33题图3 (1)如图(1),当AB ∥BC 时,设BA 与CD 相交于点D ,证明:△CDA 是等边三角形; (2)如图(2),连接A’A 、B’B ,设△ACA’和△BCB’的面积分别为'ACA S和'BCB S.求证:'':1:3ACA BCB SS=.(3)如图(3),设AC 中点为E ,B’A’中点为P ,AC =a ,连接EP ,当θ= °时,E P 长度最大,最大值为 .34.如图,正方形ABCD 的四个顶点分别在四条平行线l 1、l 2、l 3、l 4上,这四条直线中相邻两条之间的距离依次为h 1、h 2、h 3(h 1>0,h 2>0,h 3>0). (1)求证h 1=h 3;(2)设正方形ABCD 的面积为S .求证22231()S h h h =++;(3)若12312h h +=,当h 1改变时,说明正方形ABCD 的面积S 随h 1的改变状况.第34题图35.春节期间某水库养殖场为适应市场需求,连续用20天时间,采纳每天降低水位以削减 捕捞成本的方法,对水库中某种鲜鱼进行捕捞、销售.九(1)班数学建模爱好小组依据调查,整理出第x 天(1≤x ≤20且x 为整数)的捕捞与销售的相关信息如下:鲜鱼销售单价(元/kg ) 20单位捕捞成本(元/kg ) 55x - 捕捞量(kg )950x - (1)在此期间该养殖场每天的捕捞量与前一天的捕劳量相比是如何改变的?(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x 天的收入y (元)与x (天)之间的函数关系式;(当天收入=日销售额-日捕捞成本)(3)试说明(2)中的函数y 随x 的改变状况,并指出在第几天y 取得最大值,最大值是多少?36.如图,已知△ABC ∽△A 1B 1C 1,相像比为k (k >1),且△ABC 的三边长分别为a 、b 、c (a >b >c ),△A 1B 1C 1的三边长分别为a 1、b 1、c 1.(1)若c =a 1,求证:a =kc(2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a、b、c和a1、b1、c1都是正整数,并加以说明;(3)若b=a1,c=b1,是否存在△ABC和△A1B1C1,使得k=2?请说明理由.第36题图37.如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α,且DM交AC于F,ME交BC于G.(1)写出图中三对相像三角形,并证明其中的一对;(2)连结FG,假如α=45°,AB=42,AF=3,求FG的长.第37题图38.已知某种水果的批发单价与批发量的函数关系如图(1)所示.(1)请说明图中①、②两段函数图象的实际意义.(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果.(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(2)所示,该经销商拟每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.第38题图1 第38题图239.已知:点O到△ABC的两边AB、AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画图表示.第39题图1 第39题图240.刚回营地的两个抢险分队又接到救灾吩咐:一分队马上动身往30千米的A镇;二分队因疲惫可在营地休息a(0≤a≤3)小时再往A镇参与救灾.一分队了发后得知,唯一通往A镇的道路在离营地10千米处发生塌方,塌方地形困难,必需由一分队用1小时打通道路,已知一分队的行进速度为5千米/时,二分队的行进速度为(4+a)千米/时.(1)若二分队在营地不休息,问二分队几小时能赶到A镇?(2)若二分队和一分队同时赶到A镇,二分队应在营地休息几小时?(3)下列图象中,①②分别描述一分队和二分队离A镇的距离y(千米)和时间x(小时)的函数关系,请写出你认为全部可能合理的代号,并说明它们的实际意义.(a)(b)(c)(d)第40题图。

中考数学填空题压轴题(含答案)

中考数学填空题压轴题(含答案)

根据考试大纲,填空压轴题仍将以探究规律类型题为主要考察方向。

题型一:数字规律【例1】一组按一定规律排列的式子:-,,-,,…,(0a ≠),则第n 个式子是 (n为正整数).【答案】【例2】按一定规律排列的一列数依次为:,916,79,54,31 ……,按此规律排列下去,这列数中的第5个数是 ,第n 个数是 .【答案】1125,122+n n【例3】一组按规律排列的整数5,7,11,19,…,第6个整数为____ _,根据上述规律,第n 个整数为____ (n 为正整数).【答案】67;32+n (n 为正整数)【例4】将除去零以外的自然数按以下规律排列,根据第一列的奇数行的数的规律,写出第一列第9行的数为 ,再结合第一行的偶数列的数的规律,判断2011所在的位置是第 行第 列.【答案】81;第45行第15列2a 52a 83a 114a 31(1)n na n --例题精讲填空题压轴题【例5】某些植物发芽有这样一种规律:当年所发新芽第二年不发芽,老芽在以后每年都发芽.发芽规律见下表(设第一年前的新芽数为a )第n 年 1 2 3 4 5 … 老芽率 a a 2a 3a 5a … 新芽率 0 a a 2a 3a … 总芽率a2 a3a5a8a…照这样下去,第8年老芽数与总芽数的比值为 .【解析】由规律可以看出,从第3年开始,老芽率、新芽率,总芽率都分别是前两年之和,因此,第8年的老芽为21,总芽为34,因此答案为2134. 【解析】2134题型二:多边形上存在的点数【例6】如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是 .【解析】此类型题首先要找到边数的特点,然后找每条边上点的数目,第n 个图形是2n +边形,而且每个边上有n 个点。

【答案】(2)n n +或22n n +或2(1)1n +-【例7】用棋子摆出下列一组“口”字,按照这种方法摆下去,则摆第n 个“口”字需用棋子___________【答案】4n【例8】用“O”摆出如图所示的图案,若按照同样的方式构造图案,则第10个图案需要 个“O”.① ② ③ ④ 【答案】181第2个“口”第1个“口” 第3个“口”第n 个“口”………………第1个图形第2个图形第3个图形第4个图形题型三:藏头露尾型【例9】如下图是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中由 个基础图形组成.【解析】此类问题重点要找到“头是谁”“尾是谁”,①13+;②132+⨯;③133+⨯,……第n 个31n + 【答案】31n +【例10】搭建如图①的单顶帐篷需要17根钢管,这样的帐篷按图②,图③的方式串起来搭建,则串7顶这样的帐篷需要 根钢管.图1 图2 图3【答案】83.题型四:成倍数变化型【例11】如图,ABC ∆中,90ACB ∠=︒,1AC BC ==,取斜边的中点,向斜边做垂线,画出一个新的等腰直角三角形,如此继续下去,直到所画直角三角形的斜边与ABC ∆的BC 边重叠为止,此时这个三角形的斜边长为_____.【解析】注意每一次变化所变化的倍数 【答案】81;11(2)2n n - 【例12】如图,以边长为1的正方形的四边中点为顶点作四边形,再以所得四边形四边中点为顶点作四边形,......依次作下去,图中所作的第三个四边形的周长为________; 所作的第n 个四边形的周长为_________________.【答案】2,24()2n【例13】如图,在ABC ∆中,A α∠=,ABC ∠的平分线与ACD ∠的平分线交于点1A ,得1A ∠,则1______A ∠=.1A BC ∠的平分线与1ACD ∠的平分线交于点2A ,得2A ∠,……,2009A BC ∠的平分线与2009A CD ∠的平分线交于点2010A ,得2010A ∠,则2010A ∠= .【答案】2α,20102α(1)(2)(3)……A 2A 1DC A【例14】如图,小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形1111A B C D ,正方形1111A B C D 的面积为 ; 再把正方形1111A B C D 的各边延长一倍得到正方形2222A B C D , 如此进行下去,正方形n n n n D C B A 的面积为 . (用含有n 的式子表示,n 为正整数)【答案】5,n5【例15】把一个正三角形分成四个全等的三角形,第一次挖去中间的一个小三角形,对剩下的三个小正三角形再重复以上做法……一直到第n 次挖去后剩下的三角形有 个.第一次 第二次 第三次 第四次【答案】3n题型五:相似与探究规律【例16】已知ABC AB AC m ∆==中,,72ABC ∠=︒,1BB 平分ABC ∠交AC 于1B ,过1B 作12B B //BC交AB 于2B ,作23B B 平分21AB B ∠,交AC 于3B ,过3B 作34//B B BC ,交AB 于4B ……依次进行下去,则910B B 线段的长度用含有m 的代数式可以表示为 .【答案】m 6215⎪⎪⎭⎫⎝⎛-【例17】如图,矩形纸片ABCD 中,6,10AB BC ==.第一次将纸片折叠,使点B 与点D 重合,折痕与BD交于点1O ;设1O D 的中点为1D ,第二次将纸片折叠使 点B 与点1D 重合,折痕与BD 交于点2O ;设21O D 的中点 为2D ,第三次将纸片折叠使点B 与点2D 重合,折痕与BD 交于点3O ,… .按上述方法折叠,第n 次折叠后的折痕与BD 交于点n O ,则1BO = ,n BO = .第一次折叠 第二次折叠 第三次折叠【答案】2;12332n n -- B AD C 1O 1O 2O 1D 1D 2D 1O 2O 3O B AD C B ADCBA DC【例18】如图,直线x y 33=,点1A 坐标为(1,0),过点1A 作x 轴的垂线交直线于点1B ,以原点O 为圆心,1OB 长为半径画弧交x 轴于点2A ;再过点2A 作x 轴的垂线 交直线于点2B ,以原点O 为圆心,2OB 长为半径画弧交x 轴于 点3A ,…,按此做法进行下去,点4A 的坐标为( , ); 点n A ( , ).【答案】(938,0)(1)332(-n ,0) 【例19】如图,以等腰三角形AOB 的斜边为直角边向外作第2个等腰直角三角形1ABA ,再以等腰直角三角形1ABA 的斜边为直角边向外作第3个等腰直角三角形11A BB ,……,如此作下去,若1OA OB ==,则第n 个等腰直角三角形的面积n S = ________(n 为正整数).【解析】由题干可知:123124 (222)S S S ===,,可知22n n S -=【答案】22n -【例20】如图,n +1个边长为2的等边三角形有一条边在同一直线上,设211B D C ∆的面积为1S ,322B D C ∆的面积为2S ,…,1n n n B D C +∆的面积为n S ,则2S = ;n S =____ (用含n 的式子表示).【答案】233,31nn + 【例21】如图,P 为ABC ∆的边BC 上的任意一点,设BC a =,当1B 、1C 分别为AB 、AC 的中点时,1112B C a =,当2B 、2C 分别为1BB 、1CC 的中点时,2234B C a =,当3B 、3C 分别为2BB 、2CC 的中点时,3378B C a =,当4B 、4C 分别为3BB 、3CC 的中点时,441516B C a =当5B 、5C 分别为4BB 、4CC 的中点时,55_____B C =当n B 、n C 分别为1n BB -、1n CC -的中点时,则n n B C = ;设ABC ∆中BC 边上的高为h ,则n n PB C ∆的面积为______(用含a 、h 的式子表示).【答案】a 3231,a n n 212-, ah n n 12212+-D 4D 3D 2D 1C 5C 4C 3C 2C 1B 5B 4B 3B 2B 1A……B 2B 1A 1BOAC 3B 3B 2C 2C 1B 1CBA【例22】如图,在梯形ABCD 中,AB CD ∥,AB a =,CD b =,E 为边AD 上的任意一点,EF AB ∥,且EF 交BC 于点F .若E 为边AD 上的中点,则______EF =(用含有a ,b 的式子表示);若E 为边AD 上距点A 最近的n 等分点(2n ≥,且n 为整数),则______EF =(用含有n ,a ,b 的式子表示).【答案】2a b +;(1)b n an+-【例23】已知在ABC ∆中,BC a =.如图1,点1B 、1C 分别是AB 、AC 的中点,则线段11B C 的长是_______; 如图2,点1B 、2B ,1C 、2C 分别是AB 、AC 的三等分点,则线段1122B C B C +的值是__________;如图3, 点12......、、、n B B B ,12......、、、n C C C 分别是AB 、AC 的(1)n +等分点,则线段1122n n B C B C B C ++⋅⋅⋅+的值是 ______.【答案】1,2a a ,12na 【例24】已知:如图,在Rt ABC ∆中,点1D 是斜边AB 的中点,过点1D 作11D E AC ⊥于点1E ,连接1BE 交1CD 于点2D ;过点2D 作22D E AC ⊥于点2E ,连接2BE ,交1CD 于点3D ;过点3D 作33D E AC ⊥于点3E ,如此继续,可以依次得到点4D 、5D 、…n D , 分别记11BD E ∆、22BD E ∆、33BD E ∆、…n n BD E ∆的面积 为1S 、2S 、3S …n S .设ABC ∆的面积是1,则1______S =, ______n S =(用含n 的代数式表示).【答案】14,21(1)n +题型六:折叠与探究规律【例25】如图,将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN .设2AB =,当12CE CD =时,则________AMBN=. 若1CE CD n =(n 为整数),则_______AM BN=.(用含n 的式子表示) 【答案】15;1)1(22+-n n【例26】如图,正方形ABCD ,E 为AB 上的动点,(E 不与A 、B 重合)连接DE ,作DE 的中垂线,交图3图2图12n-1B 2C 2A BCB 1C 1C 1B 1CBA FE D CBANMFEDCBAB321AD 于点F .⑴若E 为AB 中点,则______DFAE= ⑵若E 为AB 的n 等分点(靠近点A ),则________DFAE= 【答案】251,42n n+题型七:其他类型【例27】图1是一个八角星形纸板,图中有八个直角,八个相等的钝角,每条边都相等.如图2将纸板沿虚线进行切割,无缝隙无重叠的拼成图3所示的大正方形,其面积为8+3中线段AB 的长为 .图1 图2 图31+【例28】如图,1P 是一块半径为1的半圆形纸板,在1P 的左下端剪去一个半径为12的半圆后得到图形2P ,然后依次剪去一个更小的半圆(其直径为前一个被剪掉半圆的半径)得图形34,,,,n P P P ,记纸板n P 的面积为n S ,试计算求出=-23S S ;并猜想得到1n n S S --=()2n ≥【答案】1)41(2,32---n ππ【例29】如图,图①是一块边长为1,周长记为1P 的正三角形纸板,沿图①的底边剪去一块边长为12的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的21)后,得图③,④,…,记第)3(≥n n 块纸板的周长为n P ,则=-34P P ;1--n n P P = .P 3P 2P 1【答案】81,121-⎪⎭⎫⎝⎛n【例30】已知一个面积为S 的等边三角形,现将其各边n (n 为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如图所示).当8n =时,共向外作出了 个小等边三角形;当n k =时,共向外作出了 个小等边三角形,这些小等边三角形的面积和是 (用含k 的式子表示).【答案】18; 【例31】在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(10),,点D 的坐标为(02),.延长CB 交x 轴于点1A ,作正方形111A B C C ;延长11C B 交x 轴于点2A ,作正方形2221A B C C …按这样 的规律进行下去,第3个正方形的面积为________;第n 个正方形的面积为___________(用含n 的代数式表示).【答案】4235)(,22235-⎪⎭⎫ ⎝⎛n【例32】如图所示,111()P x y ,、222()P x y ,,……()n n n P x y ,在函数4y x=(0x >)的图象上,11OP A ∆,212P A A ∆,323P A A ∆…1n n n P A A -∆都是等腰三角形,斜边1OA 、12A A …1n n A A -,都在x 轴上, 则1_____y =,12______n y y y ++⋅⋅⋅+=【答案】2 , 2n【例33】如图所示,直线1+=x y 与y 轴交于点1A ,以1OA 为边作正方形111OA B C ,然后延长11C B 与直线1+=x y 交于点2A ,得到第一个梯形112AOC A ;再以12C A 为边作正方形1222C A B C ,同样延长22C B 与直线1+=x y 交于点3A 得到第二个梯形2123A C C A ;,再以23C A 为边作正方形2333C A B C ,延长33C B ,得到第三个梯形;……则第2个梯形2123A C C A 的面积是 ;第n (n 是正整数)个梯形的面积是 (用含n 的式子表示).3(-2)k 23(2)k s k-n =3n =5……n =4① ② ③ ④C 2B 2A 2C 1B 1A 1DC B AO yx【答案】6;2n 2223-⨯或1n 423-⨯【例34】在平面直角坐标系中,我们称边长为1且顶点的横纵坐标均为整数的正方形为单位格点 正方形,如图,菱形ABCD 的四个顶点坐标分别是(80)-,,(04),,(80),,(04)-,,则菱形ABCD 能覆盖的单位格点正方形的个数是_______个;若菱形n n n n A B C D 的四个顶点坐标分别为(20)-,n , (0),n ,(20),n ,(0)-,n (n 为正整数), 则菱形n n n n A B C D 能覆盖的单位格点正方形的 个数为_________(用含有n 的式子表示).【答案】单位格点个数为48,单位格点个数为n n 442-【例35】在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.请你观察图中正方形1111A B C D 、2222A B C D 、3333A B C D 每个正方形四条边上的整点的个数.按此规律推算出正方形10101010A B C D 四条边上的整点共有 个.【答案】80【例36】对于每个正整数n ,抛物线2211(1)(1)n n n n n y x x +++=-+与x 轴交于n A ,n B 两点,若n n A B 表示这两点间的距离,则n n A B = (用含n 的代数式表示);112220112011A B A B A B +++的值为 .【答案】()20122011,11+n nyxOD 1D 2D 3C 1C 2C 3B 1B 2B 3A 3A 2A 1123-1-2-3-3-2-1321-8-448ODC BAyx。

中考数学压轴题精选5(含答案)

中考数学压轴题精选5(含答案)

一.选择题(共1小题)1.如图在坐标系中放置一菱形OABC,已知∠ABC=60°,点B在y轴上,OA=1,先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2017次,点B的落点依次为B1,B2,B3,…,则B2017的坐标为()A.(1345,0)B.(1345.5,)C.(1345,)D.(1345.5,0)二.填空题(共1小题)2.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,点D是边BC的中点,点E 是边AB上的任意一点(点E不与点B重合),沿DE翻折△DBE使点B落在点F 处,连接AF,则线段AF的长取最小值时,BF的长为.三.解答题(共10小题)3.在正方形ABCD中,BD是一条对角线,点E在直线CD上(与点C,D不重合),连接AE,平移△ADE,使点D移动到点C,得到△BCF,过点F作FG⊥BD于点G,连接AG,EG.(1)问题猜想:如图1,若点E在线段CD上,试猜想AG与EG的数量关系是,位置关系是;(2)类比探究:如图2,若点E在线段CD的延长线上,其余条件不变,小明猜想(1)中的结论仍然成立,请你给出证明;(3)解决问题:若点E在线段DC的延长线上,且∠AGF=120°,正方形ABCD的边长为2,请在备用图中画出图形,并直接写出DE的长度.4.如图,抛物线L:y=ax2+bx+c与x轴交于A、B(3,0)两点(A在B的左侧),与y轴交于点C(0,3),已知对称轴x=1.(1)求抛物线L的解析式;(2)将抛物线L向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC 内(包括△OBC的边界),求h的取值范围;(3)设点P是抛物线L上任一点,点Q在直线l:x=﹣3上,△PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由.5.在正方形ABCD中,对角线AC、BD交于点O,动点P在线段BC上(不含点B),∠BPE=∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.(1)当点P与点C重合时(如图①),求证:△BOG≌△POE;(2)通过观察、测量、猜想:=,并结合图②证明你的猜想;(3)把正方形ABCD改为菱形,其他条件不变(如图③),若∠ACB=α,求的值.(用含α的式子表示)6.如图,直线y=﹣x﹣4与抛物线y=ax2+bx+c相交于A,B两点,其中A,B两点的横坐标分别为﹣1和﹣4,且抛物线过原点.(1)求抛物线的解析式;(2)在坐标轴上是否存在点C,使△ABC为等腰三角形?若存在,求出点C的坐标,若不存在,请说明理由;(3)若点P是线段AB上不与A,B重合的动点,过点P作PE∥OA,与抛物线=3S 第三象限的部分交于一点E,过点E作EG⊥x轴于点G,交AB于点F,若S△BGF,求的值.△EFP7.如图1(注:与图2完全相同),二次函数y=x2+bx+c的图象与x轴交于A (3,0),B(﹣1,0)两点,与y轴交于点C.(1)求该二次函数的解析式;(2)设该抛物线的顶点为D,求△ACD的面积(请在图1中探索);(3)若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC 边运动,其中一点到达端点时,另一点也随之停止运动,当P,Q运动到t秒时,△APQ沿PQ所在的直线翻折,点A恰好落在抛物线上E点处,请直接判定此时四边形APEQ的形状,并求出E点坐标(请在图2中探索).8.如图,在Rt△ABC中,∠B=90°,直线EF分别交两直角边AB、BC与E、F两点,且EF∥AC,P是斜边AC的中点,连接PE,PF,且AB=,BC=.(1)当E、F均为两直角边的中点时,求证:四边形EPFB是矩形,并求出此时EF的长;(2)设EF的长度为x(x>0),当∠EPF=∠A时,用含x的代数式表示EP的长;(3)设△PEF的面积为S,则当EF为多少时,S有最大值,并求出该最大值.9.如图,在平面直角坐标系中,直线y=﹣x+4与x轴、y轴分别交于点A、B,抛物线y=﹣(x﹣m)2+n的顶点P在直线y=﹣x+4上,与y轴交于点C(点P、C不与点B重合),以BC为边作矩形BCDE,且CD=2,点P、D在y轴的同侧.(1)n=(用含m的代数式表示),点C的纵坐标是(用含m的代数式表示);(2)当点P在矩形BCDE的边DE上,且在第一象限时,求抛物线对应的函数解析式;(3)直接写出矩形BCDE有两个顶点落在抛物线上时m的值.10.如图1,在等腰直角△ABC中,∠BAC=90°,AB=AC=2,点E是BC边上一点,∠DEF=45°且角的两边分别与边AB,射线CA交于点P,Q.(1)如图2,若点E为BC中点,将∠DEF绕着点E逆时针旋转,DE与边AB交于点P,EF与CA的延长线交于点Q.设BP为x,CQ为y,试求y与x的函数关系式,并写出自变量x的取值范围;(2)如图3,点E在边BC上沿B到C的方向运动(不与B,C重合),且DE始终经过点A,EF与边AC交于Q点.探究:在∠DEF运动过程中,△AEQ能否构成等腰三角形,若能,求出BE的长;若不能,请说明理由.11.将△ABC绕点B逆时针旋转α(0°<α<180°)得到△DBE,直线DE与直线AC相交于点F,连接BF.(1)如图1,若α=60°,DF=2AF,请直接写等于;(2)若DF=mAF,(m>0,且m≠1)①如图2,求;(用含α,m的式子表示)②如图3,依题意补全图形,请直接写出等于.(用含α,m的式子表示)12.已知:△ABC,△DEF都是等边三角形,M是BC与EF的中点,连接AD,BE.(1)如图1,当EF与BC在同一条直线上时,直接写出AD与BE的数量关系和位置关系;(2)△ABC固定不动,将图1中的△DEF绕点M顺时针旋转α(0°≤α≤90°)角,如图2,判断(1)中的结论是否仍然成立,若成立,请加以证明;若不成立,说明理由;(3)△ABC固定不动,将图1中的△DEF绕点M旋转α(0°≤α≤90°)角,作DH⊥BC于点H.设BH=x,线段AB,BE,ED,DA所围成的图形面积为S.当AB=6,DE=2时,求S关于x的函数关系式,并写出相应的x的取值范围.一.选择题(共1小题)1.B;二.填空题(共1小题)2.;三.解答题(共10小题)3.AG=EG;AG⊥EG;4.;5.;6.;7.;8.;9.﹣m+4;﹣m2﹣m+4;10.;11.1;sin;12.;。

中考数学 专题17 四川中考填空题压轴专题(解析版)

中考数学 专题17  四川中考填空题压轴专题(解析版)

专题17 四川中考填空题压轴专题【典例1】(2019•眉山)如图,反比例函数y =kx (x >0)的图象经过矩形OABC 对角线的交点M ,分别交AB ,BC 于点D 、E .若四边形ODBE 的面积为12,则k 的值为 4 .【点拨】本题可从反比例函数图象上的点E 、M 、D 入手,分别找出△OCE 、△OAD 、▱OABC 的面积与|k |的关系,列出等式求出k 值.【解答】解:由题意得:E 、M 、D 位于反比例函数图象上,则S △OCE =12|k |,S △OAD =12|k |, 过点M 作MG ⊥y 轴于点G ,作MN ⊥x 轴于点N ,则S ▱ONMG =|k |, 又∵M 为矩形ABCO 对角线的交点,则S 矩形ABCO =4S ▱ONMG =4|k |, 由于函数图象在第一象限, ∴k >0,则k2+k 2+12=4k ,∴k =4.【点睛】本题考查了反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k |.本知识点是中考的重要考点,同学们应高度关注.【典例2】(2019•凉山州)如图,正方形ABCD 中,AB =12,AE =14AB ,点P 在BC 上运动(不与B 、C 重合),过点P 作PQ ⊥EP ,交CD 于点Q ,则CQ 的最大值为 4 .【点拨】先证明△BPE ∽△CQP ,得到与CQ 有关的比例式,设CQ =y ,BP =x ,则CP =12﹣x ,代入解析式,得到y 与x 的二次函数式,根据二次函数的性质可求最值. 【解答】解:∵∠BEP +∠BPE =90°,∠QPC +∠BPE =90°, ∴∠BEP =∠CPQ . 又∠B =∠C =90°, ∴△BPE ∽△CQP . ∴BE PC=BP CQ.设CQ =y ,BP =x ,则CP =12﹣x . ∴912−x=xy ,化简得y =−19(x 2﹣12x ),整理得y =−19(x ﹣6)2+4, 所以当x =6时,y 有最大值为4. 故答案为4.【点睛】本题主要考查了正方形的性质、相似三角形的判定和性质,以及二次函数最值问题,几何最值用二次函数最值求解考查了树形结合思想.【典例3】(2019•自贡)如图,在由10个完全相同的正三角形构成的网格图中,∠α、∠β如图所示,则cos (α+β)=√217.【点拨】给图中相关点标上字母,连接DE ,利用等腰三角形的性质及三角形内角和定理可得出∠α=30°,同理,可得出:∠CDE =∠CED =30°=∠α,由∠AEC =60°结合∠AED =∠AEC +∠CED 可得出∠AED =90°,设等边三角形的边长为a ,则AE =2a ,DE =√3a ,利用勾股定理可得出AD 的长,再结合余弦的定义即可求出cos (α+β)的值.【解答】解:给图中相关点标上字母,连接DE ,如图所示. 在△ABC 中,∠ABC =120°,BA =BC , ∴∠α=30°.同理,可得出:∠CDE =∠CED =30°=∠α. 又∵∠AEC =60°,∴∠AED =∠AEC +∠CED =90°.设等边三角形的边长为a ,则AE =2a ,DE =2×sin60°•a =√3a , ∴AD =√AE 2+DE 2=√7a , ∴cos (α+β)=DE AD =√217. 故答案为:√217.【点睛】本题考查了解直角三角形、等边三角形的性质以及规律型:图形的变化类,构造出含一个锐角等于∠α+∠β的直角三角形是解题的关键.【典例4】(2019•雅安)已知函数y ={−x 2+2x(x >0)−x(x ≤0)的图象如图所示,若直线y =x +m 与该图象恰有三个不同的交点,则m 的取值范围为 0<m <14 .【点拨】直线与y =﹣x 有一个交点,与y =﹣x 2+2x 有两个交点,则有m >0,x +m =﹣x 2+2x 时,△=1﹣4m >0,即可求解.【解答】解:直线y =x +m 与该图象恰有三个不同的交点, 则直线与y =﹣x 有一个交点, ∴m >0,∵与y=﹣x2+2x有两个交点,∴x+m=﹣x2+2x,△=1﹣4m>0,∴m<1 4,∴0<m<1 4;故答案为0<m<1 4.【点睛】本题考查二次函数与一次函数的图象及性质;能够根据条件,数形结合的进行分析,可以确定m的范围.【典例5】(2019•广元)如图,抛物线y=ax2+bx+c(a≠0)过点(﹣1,0),(0,2),且顶点在第一象限,设M=4a+2b+c,则M的取值范围是﹣6<M<6.【点拨】将(﹣1,0)与(0,2)代入y=ax2+bx+c,可知b=a+2,利用对称轴可知:a>﹣2,从而可知M的取值范围.【解答】解:将(﹣1,0)与(0,2)代入y=ax2+bx+c,∴0=a﹣b+c,2=c,∴b=a+2,∵−b2a>0,a<0,∴b>0,∴a>﹣2,∴﹣2<a<0,∴M=4a+2(a+2)+2 =6a+6=6(a+1)∴﹣6<M<6,故答案为:﹣6<M<6;【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.【典例6】(2019•巴中)如图,等边三角形ABC内有一点P,分別连结AP、BP、CP,若AP=6,BP=8,CP=10.则S△ABP+S△BPC=24+16√3.【点拨】将△BPC绕点B逆时针旋转60°后得△AP'B,根据旋转的性质可得∠PBP′=∠CAB=60°,BP=BP′,可得△BPP′为等边三角形,可得BP′=BP=8=PP',由勾股定理的逆定理可得,△APP′是直角三角形,由三角形的面积公式可求解.【解答】解:如图,将△BPC绕点B逆时针旋转60°后得△AP'B,连接PP′,根据旋转的性质可知,旋转角∠PBP′=∠CAB=60°,BP=BP′,∴△BPP′为等边三角形,∴BP′=BP=8=PP';由旋转的性质可知,AP′=PC=10,在△BPP′中,PP′=8,AP=6,由勾股定理的逆定理得,△APP′是直角三角形,∴S△ABP+S△BPC=S四边形AP'BP=S△BP'B+S△AP'P=√34BP2+12×PP'×AP=24+16√3故答案为:24+16√3【点评】本题考查了旋转的性质,等边三角形的性质,勾股定理,作辅助线构造出等边三角形和直角三角形是解题的关键,也是本题的难点.【典例7】(2019•内江)如图,在平行四边形ABCD中,AB<AD,∠A=150°,CD=4,以CD为直径的⊙O交AD于点E,则图中阴影部分的面积为2π3+√3.【点拨】连接OE ,作OF ⊥DE ,先求出∠COE =2∠D =60°、OF =12OD =1,DF =OD cos ∠ODF =√3,DE =2DF =2√3,再根据阴影部分面积是扇形与三角形的面积和求解可得. 【解答】解:如图,连接OE ,作OF ⊥DE 于点F ,∵四边形ABCD 是平行四边形,且∠A =150°, ∴∠D =30°,则∠COE =2∠D =60°, ∵CD =4, ∴CO =DO =2,∴OF =12OD =1,DF =OD cos ∠ODF =2×√32=√3, ∴DE =2DF =2√3, ∴图中阴影部分的面积为60⋅π⋅22360+12×2√3×1=2π3+√3, 故答案为:2π3+√3.【点睛】本题考查的是扇形面积计算、平行四边形的性质,掌握扇形面积公式:S =nπr 2360是解题的关键.【典例8】(2019•泸州)如图,在等腰Rt △ABC 中,∠C =90°,AC =15,点E 在边CB 上,CE =2EB ,点D 在边AB 上,CD ⊥AE ,垂足为F ,则AD 的长为 9√2 .【点拨】过D 作DH ⊥AC 于H ,根据等腰三角形的性质得到AC =BC =15,∠CAD =45°,求得AH =DH ,得到CH =15﹣DH ,根据相似三角形的性质即可得到结论.【解答】解:过D 作DH ⊥AC 于H , ∵在等腰Rt △ABC 中,∠C =90°,AC =15, ∴AC =BC =15, ∴∠CAD =45°, ∴AH =DH , ∴CH =15﹣DH , ∵CF ⊥AE ,∴∠DHA =∠DF A =90°, ∴∠HAF =∠HDF , ∴△ACE ∽△DHC , ∴DH AC=CH CE,∵CE =2EB , ∴CE =10, ∴DH 15=15−DH 10,∴DH =9, ∴AD =9√2, 故答案为:9√2.【点睛】本题考查了相似三角形的判定和性质,等腰直角三角形的判定和性质,正确的作出辅助线是解题的关键.【典例9】(2019•乐山)如图1,在四边形ABCD 中,AD ∥BC ,∠B =30°,直线l ⊥AB .当直线l 沿射线BC 方向,从点B 开始向右平移时,直线l 与四边形ABCD 的边分别相交于点E 、F .设直线l 向右平移的距离为x ,线段EF 的长为y ,且y 与x 的函数关系如图2所示,则四边形ABCD 的周长是 .【点拨】根据题意和函数图象中的数据,可以得到AB、BC、AD的长,再根据平行线的性质和图形中的数据可以得到CD的长,从而可以求得四边形ABCD的周长.【解答】解:∵∠B=30°,直线l⊥AB,∴BE=2EF,由图可得,AB=4cos30°=4×√32=2√3,BC=5,AD=7﹣4=3,由图象可得,AN=5﹣4=1,ND=CM=7﹣5=2,DM=2,∵∠B=30°,EF⊥AB,∴∠M=60°,又∵DM=MC=2,∴△DMC是等边三角形,∴DC=DM=2,∴四边形ABCD的周长是:AB+BC+AD+CD=2√3+5+3+2=10+2√3,故答案为:10+2√3.【点睛】本题考查动点问题的函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.【典例10】(2019•攀枝花)正方形A1B1C1A2,A2B2C2A3,A3B3C3A4,…按如图所示的方式放置,点A1,A2,A3,…和点B1,B2,B3,…分别在直线y=kx+b(k>0)和x轴上.已知点A1(0,1),点B1(1,0),则C5的坐标是(47,16),.【点拨】由题意可知A1纵坐标为1,A2的纵坐标为2,A3的纵坐标为4,A4的纵坐标为8,…,即可得到C1,C2,C3,C4,C5的纵坐标,根据图象得出C1(2,1),C2(5,2),C3(11,4),即可得到C1,C2,C3,C4,C5…在一条直线上,直线的解析式为y=13x+13,把C5的纵坐标代入即可求得横坐标.【解答】解:由题意可知A1纵坐标为1,A2的纵坐标为2,A3的纵坐标为4,A4的纵坐标为8,…,∵A1和C1,A2和C2,A3和C3,A4和C4的纵坐标相同,∴C1,C2,C3,C4,C5的纵坐标分别为1,2,4,8,16,…∴根据图象得出C1(2,1),C2(5,2),C3(11,4),∴直线C1C2的解析式为y=13x+13,∵A5的纵坐标为16,∴C5的纵坐标为16,把y=16代入y=13x+13,解得x=47,∴C5的坐标是(47,16),故答案为(47,16).【点睛】此题考查了待定系数法求一次函数的解析式、等腰直角三角形和正方形的性质.此题难度适中,属于规律型题目,注意掌握数形结合思想的应用.【典例11】(2019•广安)如图,在平面直角坐标系中,点A1的坐标为(1,0),以OA1为直角边作Rt△OA1A2,并使∠A1OA2=60°,再以OA2为直角边作Rt△OA2A3,并使∠A2OA3=60°,再以OA3为直角边作Rt △OA3A4,并使∠A3OA4=60°…按此规律进行下去,则点A2019的坐标为(﹣22017,22017√3).【点拨】通过解直角三角形,依次求A1,A2,A3,A4,…各点的坐标,再从其中找出规律,便可得结论.【解答】解:由题意得,A1的坐标为(1,0),A2的坐标为(1,√3),A3的坐标为(﹣2,2√3),A4的坐标为(﹣8,0),A5的坐标为(﹣8,﹣8√3),A6的坐标为(16,﹣16√3),A7的坐标为(64,0),…由上可知,A点的方位是每6个循环,与第一点方位相同的点在x正半轴上,其横坐标为2n﹣1,其纵坐标为0,与第二点方位相同的点在第一象限内,其横坐标为2n﹣2,纵坐标为2n﹣2√3,与第三点方位相同的点在第二象限内,其横坐标为﹣2n﹣2,纵坐标为2n﹣2√3,与第四点方位相同的点在x负半轴上,其横坐标为﹣2n﹣1,纵坐标为0,与第五点方位相同的点在第三象限内,其横坐标为﹣2n﹣2,纵坐标为﹣2n﹣2√3,与第六点方位相同的点在第四象限内,其横坐标为2n﹣2,纵坐标为﹣2n﹣2√3,∵2019÷6=336…3,∴点A2019的方位与点A3的方位相同,在第二象限内,其横坐标为﹣2n﹣2=﹣22017,纵坐标为22017√3,故答案为:(﹣22017,22017√3).【点睛】本题主点的坐标的规律题,主要考查了解直角三角形的知识,关键是求出前面7个点的坐标,找出其存在的规律.【典例12】(2019•南充)如图,矩形硬纸片ABCD 的顶点A 在y 轴的正半轴及原点上滑动,顶点B 在x 轴的正半轴及原点上滑动,点E 为AB 的中点,AB =24,BC =5.给出下列结论:①点A 从点O 出发,到点B 运动至点O 为止,点E 经过的路径长为12π;②△OAB 的面积最大值为144;③当OD 最大时,点D 的坐标为(25√2626,125√2626).其中正确的结论是 ②③ .(填写序号)【点拨】①由条件可知AB =24,则AB 的中点E 的运动轨迹是圆弧,最后根据弧长公式即可计算出点E 所经过的路径长;②当△OAB 的面积最大时,因为AB =24,所以△OAB 为等腰直角三角形,即OA =OB ,可求出最大面积为144;③当O 、E 、D 三点共线时,OD 最大,过点D 作DF ⊥y 轴于点F ,可求出OD =25,证明△DF A ∽△AOB 和△DFO ∽△BOA ,可求出DF 长,则D 点坐标可求出. 【解答】解:∵点E 为AB 的中点,AB =24, ∴OE =12AB =12,∴AB 的中点E 的运动轨迹是以点O 为圆心,12为半径的一段圆弧, ∵∠AOB =90°, ∴点E 经过的路径长为90×12×π180=6π,故①错误;当△OAB 的面积最大时,因为AB =24,所以△OAB 为等腰直角三角形,即OA =OB , ∵E 为AB 的中点,∴OE ⊥AB ,OE =12AB =12,∴S △AOB =12×24×12=144,故②正确;如图,当O 、E 、D 三点共线时,OD 最大,过点D 作DF ⊥y 轴于点F ,∵AD =BC =5,AE =12AB =12, ∴DE =√AD 2+AE 2=√52+122=13, ∴OD =DE +OE =13+12=25, 设DF =x ,∴OF =√OD 2−DF 2=√252−x 2, ∵四边形ABCD 是矩形, ∴∠DAB =90°, ∴∠DF A =∠AOB , ∴∠DAF =∠ABO , ∴△DF A ∽△AOB ∴DF OA =DA AB ,∴x OA=524,∴OA =24x5, ∵E 为AB 的中点,∠AOB =90°, ∴AE =OE , ∴∠AOE =∠OAE , ∴△DFO ∽△BOA , ∴OD AB =OF OA,∴2524=√252−x 224x 5,解得x =25√2626,x =−25√2626舍去,∴OF=125√26 26,∴D(25√2626,125√2626).故③正确.故答案为:②③.【点睛】本题考查四边形综合题、直角形的性质、矩形的性质、相似三角形的判定和性质等知识.解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.【典例13】(2019•绵阳)如图,△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2√2.将△BDE绕点B逆时针方向旋转后得△BD′E′,当点E′恰好落在线段AD′上时,则CE′=√2+√6.【点拨】如图,连接CE′,根据等腰三角形的性质得到AB=BC=2√2,BD=BE=2,根据性质的性质得到D′B=BE′=BD=2,∠D′BE′=90′,∠D′BD=∠ABE′,由全等三角形的性质得到∠D′=∠CE′B=45°,过B作BH⊥CE′于H,解直角三角形即可得到结论.【解答】解:如图,连接CE′,∵△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2√2,∴AB=BC=2√2,BD=BE=2,∵将△BDE绕点B逆时针方向旋转后得△BD′E′,∴D′B=BE′=BD=2,∠D′BE′=90°,∠D′BD=∠ABE′,∴∠ABD′=∠CBE′,∴△ABD′≌△CBE′(SAS),∴∠D′=∠CE′B=45°,过B作BH⊥CE′于H,在Rt△BHE′中,BH=E′H=√22BE′=√2,在Rt△BCH中,CH=√BC2−BH2=√6,∴CE′=√2+√6,故答案为:√2+√6.【点睛】本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的性质,解直角三角形,正确的作出辅助线是解题的关键.【典例14】(2019•宜宾)如图,△ABC 和△CDE 都是等边三角形,且点A 、C 、E 在同一直线上,AD 与BE 、BC 分别交于点F 、M ,BE 与CD 交于点N .下列结论正确的是 ①③④ (写出所有正确结论的序号).①AM =BN ;②△ABF ≌△DNF ;③∠FMC +∠FNC =180°;④1MN=1AC+1CE【点拨】①根据等边三角形性质得出AC =BC ,CE =CD ,∠ACB =∠ECD =60°,求出∠BCE =∠ACD ,根据SAS 推出两三角形全等即可;②根据∠ABC =60°=∠BCD ,求出AB ∥CD ,可推出△ABF ∽△DNF ,找不出全等的条件; ③根据角的关系可以求得∠AFB =60°,可求得MFN =120°,根据∠BCD =60°可解题; ④根据CM =CN ,∠MCN =60°,可求得∠CNM =60°,可判定MN ∥AE ,可求得MN AC=DN CD=CD−CN CD,可解题.【解答】证明:①∵△ABC 和△CDE 都是等边三角形, ∴AC =BC ,CE =CD ,∠ACB =∠ECD =60°, ∴∠ACB +∠ACE =∠ECD +∠ACE , 即∠BCE =∠ACD , 在△BCE 和△ACD 中, {BC =AC∠BCE =∠ACD CE =CD,∴△BCE ≌△ACD (SAS ),∴AD =BE ,∠ADC =∠BEC ,∠CAD =∠CBE , 在△DMC 和△ENC 中, {∠MDC =∠NEC DC =BC ∠MCD =∠NCE =60°, ∴△DMC ≌△ENC (ASA ), ∴DM =EN ,CM =CN ,∴AD ﹣DM =BE ﹣EN ,即AM =BN ; ②∵∠ABC =60°=∠BCD , ∴AB ∥CD , ∴∠BAF =∠CDF , ∵∠AFB =∠DFN ,∴△ABF ∽△DNF ,找不出全等的条件;③∵∠AFB +∠ABF +∠BAF =180°,∠FBC =∠CAF , ∴∠AFB +∠ABC +∠BAC =180°, ∴∠AFB =60°, ∴∠MFN =120°, ∵∠MCN =60°, ∴∠FMC +∠FNC =180°; ④∵CM =CN ,∠MCN =60°, ∴△MCN 是等边三角形, ∴∠MNC =60°, ∵∠DCE =60°, ∴MN ∥AE , ∴MN AC=DN CD=CD−CN CD,∵CD =CE ,MN =CN , ∴MN AC =CE−MN CE ,∴MNAC=1−MNCE ,两边同时除MN 得1AC=1MN−1CE,∴1MN=1AC+1CE.故答案为①③④【点睛】本题考查了全等三角形的判定,考查了全等三角形的对应边、对应角相等的性质,考查了平行线的运用,考查了正三角形的判定,本题属于中档题.【典例15】(2019•资阳)如图,在△ABC 中,已知AC =3,BC =4,点D 为边AB 的中点,连结CD ,过点A 作AE ⊥CD 于点E ,将△ACE 沿直线AC 翻折到△ACE ′的位置.若CE ′∥AB ,则CE ′=95.【点拨】如图,作CH ⊥AB 于H .首先证明∠ACB =90°,解直角三角形求出AH ,再证明CE ′=AH 即可.【解答】解:如图,作CH ⊥AB 于H .由翻折可知:∠AE ′C =∠AEC =90°,∠ACE =∠ACE ′, ∵CE ′∥AB , ∴∠ACE ′=∠CAD , ∴∠ACD =∠CAD , ∴DC =DA , ∵AD =DB , ∴DC =DA =DB , ∴∠ACB =90°, ∴AB =√AC 2+BC 2=5, ∵12•AB •CH =12•AC •BC ,∴CH =125,∴AH =√AC 2−CH 2=95, ∵CE ′∥AB ,∴∠E ′CH +∠AHC =180°, ∵∠AHC =90°, ∴∠E ′CH =90°, ∴四边形AHCE ′是矩形, ∴CE ′=AH =95, 故答案为95.【点睛】本题考查翻折变换,平行线的性质等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题,属于中考常考题型.【典例16】(2019•达州)如图,抛物线y =﹣x 2+2x +m +1(m 为常数)交y 轴于点A ,与x 轴的一个交点在2和3之间,顶点为B .①抛物线y =﹣x 2+2x +m +1与直线y =m +2有且只有一个交点;②若点M (﹣2,y 1)、点N (12,y 2)、点P (2,y 3)在该函数图象上,则y 1<y 2<y 3;③将该抛物线向左平移2个单位,再向下平移2个单位,所得抛物线解析式为y =﹣(x +1)2+m ; ④点A 关于直线x =1的对称点为C ,点D 、E 分别在x 轴和y 轴上,当m =1时,四边形BCDE 周长的最小值为√34+√2.其中正确判断的序号是 ①③④ .【点拨】①把y =m +2代入y =﹣x 2+2x +m +1中,判断所得一元二次方程的根的情况便可得判断正确; ②根据二次函数的性质进行判断;③根据平移的公式求出平移后的解析式便可;④因BC 边一定,只要其他三边和最小便可,作点B 关于y 轴的对称点B ′,作C 点关于x 轴的对称点C′,连接B′C′,与x轴、y轴分别交于D、E点,求出B′C′便是其他三边和的最小值.【解答】解:①把y=m+2代入y=﹣x2+2x+m+1中,得x2﹣2x+1=0,∵△=4﹣4=0,∴此方程两个相等的实数根,则抛物线y=﹣x2+2x+m+1与直线y=m+2有且只有一个交点,故此小题结论正确;②∵抛物线的对称轴为x=1,∴点P(2,y3)关于x=1的对称点为P′(0,y3),∵a=﹣1<0,∴当x<1时,y随x增大而增大,又∵﹣2<0<12,点M(﹣2,y1)、点N(12,y2)、点P′(0,y3)在该函数图象上,∴y2>y3>y1,故此小题结论错误;③将该抛物线向左平移2个单位,再向下平移2个单位,抛物线的解析式为:y=﹣(x+2)2+2(x+2)x+m+1﹣2,即y=﹣(x+1)2+m,故此小题结论正确;④当m=1时,抛物线的解析式为:y=﹣x2+2x+2,∴A(0,2),C(2,2),B(1,3),作点B关于y轴的对称点B′(﹣1,3),作C点关于x轴的对称点C′(2,﹣2),连接B′C′,与x轴、y轴分别交于D、E点,如图,则BE+ED+CD+BC=B′E+ED+C′D+BC=B′C′+BC,根据两点之间线段最短,知B′C′最短,而BC的长度一定,∴此时,四边形BCDE周长=B′C′+BC最小,为:√B′M2+C′M2+√BM2+CM2=√32+52+√12+12=√34+√2,故此小题结论正确;故答案为:①③④.【点睛】本题考查二次函数的应用、二次函数的图象与性质、二次函数与坐标轴的交点、求线段和的最小值等知识,解题的关键是灵活运用所学知识解决问题,属于中考填空题中的压轴题.【典例17】(2019•遂宁)如图,在平面直角坐标系中,矩形OABC的顶点O落在坐标原点,点A、点C分别位于x轴,y轴的正半轴,G为线段OA上一点,将△OCG沿CG翻折,O点恰好落在对角线AC上的点P处,反比例函数y=12x经过点B.二次函数y=ax2+bx+c(a≠0)的图象经过C(0,3)、G、A三点,则该二次函数的解析式为y=12x2−114x+3.(填一般式)【点拨】点C (0,3),反比例函数y =12x 经过点B ,则点B (4,3),由勾股定理得:(4﹣x )2=4+x 2,故点G (32,0),将点C 、G 、A 坐标代入二次函数表达式,即可求解.【解答】解:点C (0,3),反比例函数y =12x经过点B ,则点B (4,3), 则OC =3,OA =4, ∴AC =5,设OG =PG =x ,则GA =4﹣x ,P A =AC ﹣CP =AC ﹣OC =5﹣3=2, 由勾股定理得:(4﹣x )2=4+x 2, 解得:x =32,故点G (32,0),将点C 、G 、A 坐标代入二次函数表达式得:{c =394a +32b +c =014a +4b +c =0,解得:{ a =12b =−114c =3,故答案为:y =12x 2−114x +3.【点睛】本题考查的是二次函数综合运用,涉及到矩形基本性质、反比例函数基本性质与应用,其中用勾股定理求OG 的长度,是本题解题的关键.【典例18】(2018•凉山州)△AOC 在平面直角坐标系中的位置如图所示,OA =4,将△AOC 绕O 点,逆时针旋转90°得到△A 1OC 1,A 1C 1,交y 轴于B (0,2),若△C 1OB ∽△C 1A 1O ,则点C 1的坐标 (43,83) .【点拨】如图作C 1H ⊥x 轴于H .由△C 1OB ∽△C 1A 1O ,推出OC 1A 1C 1=OB OA 1=12,由tan ∠C 1A 1H =OBOA 1=C 1K A 1H =12,设C 1H =m ,则A 1H =2m ,OH =2m ﹣4,构建方程即可解决问题; 【解答】解:如图作C 1H ⊥x 轴于H .∵△C 1OB ∽△C 1A 1O , ∴OC 1A 1C 1=OB OA 1=12,∵tan ∠C 1A 1H =OBOA 1=C 1HA 1H =12,设C 1H =m ,则A 1H =2m ,OH =2m ﹣4,∴A 1C 1=√5m ,OC 1=√m 2+(2m −4)2, ∴√5m =2√m 2+(2m −4)2, 解得m =83或85(舍弃),∴C 1(43,83).(本题也可以证明tan ∠OC 1H =OH HC 1=12,S 设C 1(m ,2m ),根据A 1H =4m ,构建方程)【点睛】本题考查相似三角形的性质、坐标与图形的旋转等知识,解题的关键是学会利用参数构建方程解决问题,属于中考填空题中的压轴题.【精练1】(2019秋•河东区期末)如图,在反比例函数y =−6x (x <0)的图象上任取一点P ,过P 点分别作x 轴,y 轴的垂线,垂足分别为M ,N ,那么四边形PMON 的面积为 .【点拨】设出点P 的坐标,四边形PMON 的面积等于点P 的横纵坐标的积的绝对值,把相关数值代入即可.【解答】解:设点P 的坐标为(x ,y ),∵点P 的反比例函数解析式上, ∴xy =﹣6,易得四边形PMON 为矩形, ∴四边形PMON 的面积为|xy |=6, 故答案为6.【点睛】考查反比例函数的比例系数的意义;用到的知识点为:在反比例函数图象上的点的横纵坐标的积等于反比例函数的比例系数.注意面积应为正值.【精练2】(2016秋•江阴市校级月考)如图,正方形ABCD 的边长为1cm ,M 、N 分别是BC 、CD 上两个动点,且始终保持AM ⊥MN ,则△ADN 的最小面积为 .【点拨】设BM =xcm ,则MC =(1﹣x )cm ,当AM ⊥MN 时,利用互余关系可证△ABM ∽△MCN ,利用相似比求CN ,根据三角形的面积公式表示出△ADN 的面积,用二次函数的性质求面积的最小值. 【解答】解:设BM =xcm ,则MC =(1﹣x )cm , ∵∠AMN =90°,∴∠AMB +∠NMC =90°,∠NMC +∠MNC =90°, ∴∠AMB =∠MNC , 又∵∠B =∠C , ∴△ABM ∽△MCN ,则AB MC=BM CN,即11−x=x CN,解得:CN =x(1−x)1=x (1﹣x ), ∴S △ADN =S 正方形ABCD =12×1×[1﹣x (1﹣x )]=12x 2−12x +12, ∵12<0,∴当x =12cm 时,S △ADN 最小,最小值是4×12×12−(−12)24×12=38(cm 2).故答案是:38cm 2.【点睛】本题考查了二次函数的性质的运用.关键是根据已知条件判断相似三角形,利用相似比求函数关系式.【精练3】(2019秋•香坊区期末)等边△ABC 中,点P 是BC 所在直线上一点,且PC :BC =1:4,则tan ∠APB 的值是 .【点拨】过A 作AD ⊥BC 于D ,设等边△ABC 的边长为4a ,则DC =2a ,AD =2√3a ,PC =a ,分类讨论:当P 在BC 的延长线上时,DP =DC +CP =2a +a =3a ;当P 点在线段BC 上,即在P ′的位置,则DP ′=DC ﹣CP ′=a ,然后分别利用正切的定义求解即可. 【解答】解:如图,过A 作AD ⊥BC 于D ,设等边△ABC 的边长为4a ,则DC =2a ,AD =2√3a ,PC =a , 当P 在BC 的延长线上时,DP =DC +CP =2a +a =3a , 在Rt △ADP 中,tan ∠APD =AD DP =2√3a 3a =2√33; 当P 点在线段BC 上,即在P ′的位置,则DP ′=DC ﹣CP ′=a , 在Rt △ADP ′中,tan ∠AP ′D =AD DP′=2√3aa =2√3.故答案为2√3或2√33.【点睛】本题考查了解直角三角形:利用三角函数和勾股定理求三角形中未知的边或角的过程叫解直角三角形.也考查了分类讨论思想的运用.【精练4】(2019秋•长清区期中)如图,在△ABC 中,∠BAC =90°,AB =AC =√2,点D 、E 分别在BC 、AC 上(点D 不与点B 、C 重合),且∠ADE =45°,若△ADE 是等腰三角形,则CE = .【点拨】可得∠B =∠C =45°,可证得△DCE ∽△ABD ,由于D 与B 、C 不重合,显然∠ADE =∠AED=45°不符合题意,即AD≠AE,所以此题分两种情况讨论:①AD=DE,此时(2)的相似三角形全等,由此可求得CD、BD的长,进而可得CE、AE的值.【解答】解:∵点D不能与B点重合,∴AD=AE不能成立,(或:∵∠ADE=45°,若AD=AE,则∠AED=ADE=45°,从而∠DAE=90°,即B与D重合,这与已知条件矛盾).①当AE、DE为腰,即AE=DE时(如图1),∠EAD=∠EDA=45°,此时,AD平分∠BAC,∴D为BC边的中点(“三线合一”性质),且E也为AC边的中点,∴CE=AE=√2 2;②当AD、DE为腰,即AD=DE时(如图2),∵∠BAC=90°,AB=AC=2,∴∠B=∠C=45°.∵∠ADE=45°,∴∠B=∠C=∠ADE.∵∠ADB=∠C+∠DAC,∠DEC=∠ADE+∠DAC,∴∠ADB=∠DEC.∵∠ADC +∠B +∠BAD =180,∠DEC +∠C +∠CDE =180°, ∴∠ADC +∠B +∠BAD =∠DEC +∠C +∠CDE , ∴∠EDC =∠BAD , ∴△ABD ∽△DCE 此时AD 与DE 为对应边,∴△ABD ≌△DCE ,DC =AB =√2, CE =BD =BC ﹣CD =2−√2. 因此CE 的长为2−√2或√22. 故答案为:2−√2或√22. 【点睛】本题考查了相似三角形的判定与性质,等腰三角形的判定,解答时证明三角形相似是关键. 【精练5】(2019秋•江岸区校级月考)我们把函数y ={x 2−2x −3(x ≥0)x 2+2x −3(x ≤0)的图象记为C ,若直线y =x +b与图象C 有且只有三个公共点,则b 的取值是 .【点拨】画出分段函数的图象,结合图象找到直线与该图象有三个交点的两端情况:直线经过点(0,﹣3)时;直线y =x +b 与y =x 2+2x ﹣3(x ≤0)部分只有一个交点时. 【解答】解:根据函数解析式分别画出函数图象,如图所示: 当直线经过点(0,﹣3)时,此时函数与直线y =x +b 恰有三个交点, ∴b =﹣3,当直线y =x +b 与y =x 2+2x ﹣3(x ≤0)部分只有一个交点时, ∴x 2+2x ﹣3=x +b , ∴b =−134; ∴b =﹣3或b =−134时两图象有三个交点; 故答案为−134或﹣3.【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.【精练6】(2018秋•越秀区期末)抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④6a﹣2b+c<0;⑤若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2,其中正确的判断是(填写所有正确判断的序号)【点拨】根据抛物线的开口方向,对称轴,抛物线与x轴的交点情况,二次函数图象上点的坐标特征判断即可.【解答】解:∵抛物线对称轴x=﹣1,经过(1,0),∴−b2a=−1,a+b+c=0,∴b=2a,c=﹣3a,∵抛物线开口向上,∴a>0,∴b>0,c<0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②正确;∵抛物线与x轴交于(﹣3,0),∴9a﹣3b+c=0,故③正确;∵9a﹣3b+c=0,b=2a,c=﹣3a,∴6a﹣2b+c=6a﹣4a﹣3a=﹣a<0,故④正确;∵抛物线对称轴x=﹣1,∴x=﹣0.5与x=﹣1.5的函数值相等,∵﹣1.5>﹣2,∴则y1<y2;故⑤错误;故答案为:②③④.【点睛】本题考查二次函数与系数的关系,二次函数图象上的点的特征,解题的关键是灵活运用所学知识解决问题,灵活运用数形结合思想.【精练7】(2019春•东海县期中)如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°,得到线段AQ,连接BQ,若P A=3,PB=4,PC=5,则四边形APBQ的面积为【点拨】连结PQ,如图,根据等边三角形的性质得∠BAC=60°,AB=AC,再根据旋转的性质得AP=AQ=3,∠P AQ=60°,则可判断△APQ为等边三角形,所以PQ=AP=3,接着证明△APC≌△ABQ得到PC=QB=5,然后利用勾股定理的逆定理证明△PBQ为直角三角形,再根据三角形面积公式,利用S=S△BPQ+S△APQ进行计算.四边形APBQ【解答】解:连结PQ,如图,∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∵线段AP绕点A顺时针旋转60°得到线段AQ,∴AP=AQ=3,∠P AQ=60°,∴△APQ为等边三角形,∴PQ=AP=3,∵∠CAP+∠BAP=60°,∠BAP+∠BAQ=60°,∴∠CAP=∠BAQ,且AC=AB,AP=AQ∴△APC≌△ABQ(SAS),∴PC=QB=5,在△BPQ中,∵PB2=42=16,PQ2=32=9,BQ2=52=25,∴PB2+PQ2=BQ2,∴△PBQ为直角三角形,∠BPQ=90°,∴S四边形APBQ=S△BPQ+S△APQ=12BP×PQ+√34×PQ2=6+9√34故答案为:6+9√3 4【点睛】本题考查了旋转的性质,全等三角形的性质,勾股定理以及逆定理,证明△APQ为等边三角形是本题的关键.【精练8】(2019•吉林)如图,在扇形OAB中,∠AOB=90°.D,E分别是半径OA,OB上的点,以OD,OE为邻边的▱ODCE的顶点C在AB̂上.若OD=8,OE=6,则阴影部分图形的面积是(结果保留π).【点拨】连接OC,根据同样只统计得到▱ODCE是矩形,由矩形的性质得到∠ODC=90°.根据勾股定理得到OC=10,根据扇形的面积公式和矩形的面积公式即可得到结论.【解答】解:连接OC,∵∠AOB=90°,四边形ODCE是平行四边形,∴▱ODCE是矩形,∴∠ODC=90°.∵OD=8,OE=6,∴OC=10,∴阴影部分图形的面积=90⋅π×102360−8×6=25π﹣48.故答案为:25π﹣48.【点睛】本题考查了扇形的面积的计算,矩形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.【精练9】(2019•虞城县一模)如图1,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C停止,它们运动的速度都是1cm/s.设P、Q出发ts时,△BPQ的面积为ycm2,已知y与t的函数关系如图2所示(其中曲线OM为抛物线的一部分,其余各部分均为线段)当点P在ED上运动时,连接QD,若QD平分∠PQC,则t的值为.【点拨】根据题意和函数图象可以得到BE和BC的长,然后根据当t=5时,y=10可以得到AB的长,然后根据QD平分∠PQC,可得DG=DC,进而可以求得相应的t的值.【解答】解:由题意可得,BE =5,BC =12, ∵当t =5时,S =10, ∴10=5×AB2,得AB =4, 作EH ⊥BC 于点H ,作EF ∥PQ ,P 1Q 2∥EF ,作DG ⊥P 1Q 2于点G , 则EH =AB =4,BE =BF =5, ∵∠EHB =90°, ∴BH =√52−42=3, ∴HF =2,∴EF =√42+22=2√5, ∴P 1Q 2=2√5,设当点P 运动到P 1时,Q 2D 平分∠P 1Q 2C ,则DG =DC =4,P 1D =17﹣AE ﹣EP 1=12﹣3﹣(t ﹣5)=14﹣t , ∴(14−t)×42=2√5×42,解得,t =14﹣2√5, 故答案为:14﹣2√5.【点睛】本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.【精练10】(2018秋•市中区期末)将正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2按如图所示方式放置,点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,则点B 2019的横坐标是 .【点拨】根据直线y=x+1可求与x轴、y轴的交点坐标,得出第一个正方形的边长,得出点B1的横坐标,根据第二个正方形与第一个正方形的关系,可求出第二个正方形的边长,进而确定B2的横坐标,依此类推,可得出B2019的横坐标.【解答】解:当x=0时,y=x+1=1,∴A(0,1),当y=0时,x=﹣1,∴直线与x轴的交点(﹣1,0)∴B1(1,1),易得△A1B1A2、△A2B2A3、△A3B3A4、△A4B4A5……均是等腰直角三角形,可得:每一个正方形的边长都是它前一个正方形边长的2倍,因此:B2的横坐标为1+1×2=1+2=20+21=3=22﹣1,B3的横坐标为1+1×2+2×2=1+2+4=20+21+22=7=23﹣1,B4的横坐标为24﹣1,B5的横坐标为25﹣1,……B2019的横坐标为22019﹣1,故答案为:22019﹣1.【点睛】此题主要考查了一次函数图形上的点与坐标特征,规律型问题常用的方法是,分别求出前几个数据,然后依据变化规律,得出一般的结论.本题就是先求出B1的横坐标为21﹣1,B2的横坐标为22﹣1,B3的横坐标为23﹣1,B4的横坐标为24﹣1,……进而得到B n的横坐标为2n﹣1.【精练11】(2019•鄂尔多斯模拟)如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),根据这个规律探索可得,第56个点的坐标为.【点拨】根据题意和图象中的点的坐标,可以发现这些点的变化规律,从而可以求得第56个点的坐标.【解答】解:由题意可得,横坐标是1的点有1个,横坐标是2的点有2个,横坐标是3的点有3个,…,∵56=(1+2+3+…+10)+1,∴第56个点的坐标为(11,10),故答案为:(11,10)【点睛】本题考查规律性:点的坐标,解答本题的关键是明确题意,发现题目中点的变化规律,求出相应的点的坐标.【精练12】(2019春•徐州期中)如图,在矩形ABCD中,AB=2cm,BC=3cm,现有一根长为2cm的棒EF紧贴着矩形的边(即两个端点始终落在矩形的边上),按逆时针方向滑动一周,则木棒EF的中点P 在运动过程中所经过的路径长度为cm.【点拨】根据题意可以判断出点P的运动轨迹是4段弧长和2段线段的长度.【解答】解:连接BP,如图所示:∵P是EF的中点,∴BP=12EF=12×2=1,如图所示,点P的运动轨迹是4段弧长+2段线段的长度,即4×90π×1180+2×1=2π+2.故答案为:2π+2.【点睛】本题考查了轨迹、矩形的性质、直角三角形斜边上的中线等于斜边的一半的性质以及弧长的计算.判断出点的P运动的轨迹是解题的关键.【精练13】(2018秋•雨花区校级期末)如图,在Rt△ABC中,∠ABC=90°,AB=BC,点D是AC的中点,直角∠EDF的两边分别交AB、BC于点E、F,给出以下结论:①AE=BF;②S四边形BEDF=12S△ABC;③EF=BD;④∠BFE=∠CDF;⑤△DEF是等腰直角三角形,当∠EDF在△ABC内绕顶点D旋转时(点E不与点A、B重合),上述结论始终成立的有个.。

填空压轴题(几何篇)-2023年中考数学压轴题专项训练(学生版)

填空压轴题(几何篇)-2023年中考数学压轴题专项训练(学生版)

2023年中考数学压轴题专项训练--填空压轴题(几何篇)一、压轴题速练1一.填空题(共40小题)1(2023•龙湾区二模)如图,在△ABC中,AB=13,BC=14,AC=15,点D是线段AC上任意一点,分别过点A、C作直线BD的垂线,垂足为E、F,AE=m,CF=n,则n+m的最大值是,最小值是.2(2023•湖北模拟)如图,正方形ABCD的对角线交于点O,AB=22,现有半径足够大的扇形OEF,∠EOF=90°,当扇形OEF绕点O转动时,扇形OEF和正方形ABCD重叠部分的面积为.3(2023•榆树市二模)如图是中国古代数学家赵爽用来证明勾股定理的弦图的示意图,它是由四个全等的直角三角形和一个小正方形EFGH组成,恰好拼成一个大正方形ABCD,连结EG并延长交BC于点M.若AB=13,EF=1,则GM的长为.4(2023•道外区二模)如图,在四边形ABCD中,AB=BC,∠A=∠ABC=90°,以CD为斜边作等腰直角△ECD,连接BE,若CD=213,BE=2,则AB=.5(2023•包河区二模)Rt△ABC中,点D是斜边AB的中点.(1)如图1,若DE ⊥BC 与E ,DF ⊥AC 于F ,DE =3,DF =4,则AB =;(2)如图2,若点P 是CD 的中点,且CP =52,则PA 2+PB 2=.6(2023•庐江县三模)如图,四边形ABCD 中,AB =AC =AD ,点M 、N 分别是BC 、CD 的中点,连接MN ,若∠DAM =105°,∠BAN =75°,若AM AN=3+12,则∠ANM =°.7(2023•中山市二模)如图,△ABC 与△BDE 均为等腰直角三角形,点A ,B ,E 在同一直线上,BD ⊥AE ,垂足为点B ,点C 在BD 上,AB =4,BE =10.将△ABC 沿BE 方向平移,当这两个三角形重叠部分的面积等于△ABC 面积的一半时,△ABC 平移的距离为.8(2023•新都区模拟)青朱出入图,是魏晋时期数学家刘徽根据“割补术”运用数形关系证明勾股定理的几何证明法,即“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不动也,合成弦方之幂.开方除之,即弦也.”,若图中DF =1,CF =2,则AE 的长为.9(2023•黄埔区一模)△ABC为等腰直角三角形,AB=AC=6,∠BAC=90°,动点D在边BC上运动.以A为直角顶点,在AD右侧作等腰直角三角形△ADE(如图).M为DE中点,N为BC三等分点,CN=13BC,连接MN,则线段MN的最小值为.10(2023•雁塔区校级模拟)如图,菱形ABCD的边长为5,将一个直角的顶点放置在菱形的中心O 处,此时直角的两边分别交边AD,CD于点E,F,当OE⊥AD时,OE的长为2,则EF的长是.​11(2023•奉贤区二模)如果四边形有一组邻边相等,且一条对角线平分这组邻边的夹角,我们把这样的四边形称为“准菱形”.有一个四边形是“准菱形”,它相等的邻边长为2,这两条边的夹角是90°,那么这个“准菱形”的另外一组邻边的中点间的距离是 2 .12(2023•吕梁一模)如图,在正方形ABCD中,点P在对角线BD上,点E,F分别在边AB和BC 上,且∠EPF=45°,若CF=2DP=4,AE=12,则AB的长度为.13(2023•蚌埠二模)如图,点E为正方形ABCD的边CD上一点,以点A为圆心,AE长为半径画弧EF,交边BC于点F,已知正方形边长为1.(1)若∠DAE=15°,则DE的长为;(2)△AEF的面积为S的最大值是.14(2023•兰考县一模)如图,方形ABCD中,AB=8,点P为射线BC上任意一点(与点B、C不重合),连接AP,在AP的右侧作正方形APGH,连接AG,交射线CD于E,当ED长为2时,点BP的长为.15(2023•本溪一模)由4个形状相同,大小相等的菱形组成如图所示的网格,菱形的顶点称为格点,点A,B,C,D都在格点上,∠A=60°,则cos∠CDB的值为.16(2023•沂南县校级一模)如图,矩形ABCD中,AC、BD相交于点O,过点B作BF⊥AC交CD 于点F,交AC与点M,过点D作DE∥BF交AB于点E,交AC于点N,连接FN、EM,则下列结论:①DN=BM;②EM∥FN;③AE=FC;④当AO=AD时,四边形DEBF是菱形.其中,正确结论的个数是.17(2023•琼海一模)如图,菱形ABCD,AE⊥BC,点E为垂足,点F为AE的中点,连接BF并延长交AD于点G,连接CG,CE=2,CG=211,则DG=,AG=,AF=.18(2023•镇江一模)如图,在矩形ABCD中,AB=6,BC=8,△BEF的顶点E在对角线AC上运动,且∠BFE=90°,∠EBF=∠BAC,连接AF,则AF的最小值为.19(2023•泉州模拟)如图,在菱形ABCD 中,∠A =60°,点E 在边AD 上,以BE 为边在菱形ABCD 的内部作等边三角形BEF ,若∠DEF =α,∠EBD =β,则α与β之间的数量关系可用等式表示为.20(2023•市南区一模)如图,正方形ABCD 中,E 、F 分别为BC 、CD 边上的点,∠EAF =45°,则下列结论中正确的有.(填序号)①BE +DF =EF ;②tan ∠AMD =CD DF; ③BM 2+DN 2=MN 2;④若EF =1.5,S △AEF =3,则.S 正方形ABCD =4.21(2023•大连一模)学习菱形时,我们从它的边、角和对角线等方面进行研究,可以发现并证明:菱形的每一条对角线平分一组对角.小明参考平行四边形、矩形判定方法的研究过程,得出下面的猜想:①一条对角线平分一组对角的四边形是菱形;②每一条对角线平分一组对角的四边形是菱形;③一条对角线平分一组对角的平行四边形是菱形.其中正确的是(填序号,填写一个即可).22(2023•石景山区一模)如图,在菱形ABCD 中,点E ,F 分别在BC ,AD 上,BE =DF .只需添加一个条件即可证明四边形AECF 是矩形,这个条件可以是(写出一个即可).23(2023•河东区一模)已知,如图,已知菱形ABCD 的边长为6,∠ABC =60°,点E ,F 分别在AB ,CB 的延长线上,且BE =BF =13AB ,G 是DF 的中点,连接GE ,则GE 的长是.24(2023•合肥模拟)如图,点P在正方形ABCD内,∠BPC=135°,连接PA、PB、PC、PD.(1)若PA=AB,则∠CPD=;(2)若PB=2,PC=3,则PD的长为.25(2023•鄞州区一模)如图,Rt△ABC中,∠C=90°,AC=BC=8,作正方形CDEF,其中顶点E 在边AB上.(1)若正方形CDEF的边长为26,则线段AE的长是;(2)若点D到AB的距离是2,则正方形CDEF的边长是.26(2023•郓城县校级模拟)如图,在平行四边形ABCD中,对角线AC、BD交于点O.点M是BC 边的中点,连接AM、OM,作CF∥AM.已知OC平分∠BCF,OB平分∠AOM,若BD=32,则sin∠BAM的值为.27(2023•三原县二模)如图,点M是▱ABCD内一点,连接MA,MB,MC,MD,过点A作AP∥BM,过点D作DP∥CM,AP与DP交于点P,若四边形AMDP的面积为6,则▱ABCD的面积为.28(2023•和平区二模)如图,已知正方形ABCD的边长为4,点E为边BC上一点,BE=3,在AE的右侧,以AE为边作正方形AEFG,H为BG的中点,则AH的长等于.29(2023•鼓楼区校级模拟)如图,在矩形ABCD中,AD=3,AB=4,B是边AB上一点,△BCE与△FCE关于直线CE对称,连接BF并延长交AD于点G,过点F作FH⊥AD,垂足为点H,设BE=a,若点H为AG的中点,则BE的长为.30(2023•呼和浩特一模)如图在菱形ABCD中,O为对角线AC与BD的交点,点P为边AB上的任一点(不与A、B重合),过点P分别作PM⊥AC,PN⊥BD,M、N为垂足,则可以判断四边形MPNO 的形状为.若菱形的边长为a,∠ADC=120°,则MN的最小值为.(用含a的式子表示)31(2023•洛阳一模)在扇形OAB中,∠AOB=60°,点C是半径OA上一点,且OC=6,将线段OC 沿OB方向平移,当平移距离是6时,点C的对应点C'恰好落在弧AB上,则图中阴影部分的面积为.32(2023•临渭区二模)如图,正六边形纸片ABCDEF的边长为6cm,从这个正六边形纸片上剪出一个扇形(图中阴影部分),则这个扇形的面积为cm2.(结果保留π)33(2023•桂林二模)如图,在Rt△ABC中,∠C=90°,AB=10,BC=6,半径为1的⊙O在Rt△ABC内移动,当⊙O与∠A的两边都相切时,圆心O到点B的距离为2 .34(2023•万州区模拟)如图,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,以点B为圆心,AB为半径作圆弧交CB的延长线于点D,以点A为圆心,AC为半径作圆弧交AD于点E.则图中阴影部分的面积为.35(2023•九龙坡区校级模拟)如图,AC、AD是⊙O中关于直径AB对称的两条弦,以弦AC、AD 为折线将弧AC、弧AD折叠后过圆心O,若⊙O的半径r=4,则圆中阴影部分的面积为.36(2023•烟台一模)如图,GC,GB是⊙O的切线,AB是⊙O的直径,延长GC,与BA的延长线交于点E,过点C作弦CD∥AB,连接DO并延长与圆交于点F,连接CF,若AE=2,CE=4,则CD的长度为.37(2023•历下区二模)如图,已知扇形AOB的半径OA=2,∠AOB=120°将扇形AOB绕点A顺时针旋转30°得到扇形AO′B′,则图中阴影部分的面积是.38(2023•邓州市一模)如图,在扇形AOB中,∠AOB=60°,OA=3,半径OC平分AB,点D为半径OA中点,点E为半径OC上一动点,当AE+DE取得最小值时,由AC,AE,CE围成的阴影部分的面积为.39(2023•龙口市二模)如图,由边长为1的小正方形构成的网格中,点A,B,C都在格点上,以AB 为直径的圆经过点C,D,则cos∠ADC的值为.40(2023•渝中区校级二模)如图,扇形纸片AOB的半径为2,沿AB折叠扇形纸片,点O恰好落在AB上的点C处,图中阴影部分的面积为.​。

(完整版)九年级数学选择、填空压轴题训练(含答案),推荐文档

(完整版)九年级数学选择、填空压轴题训练(含答案),推荐文档

九年级数学综合训练一、选择题(本大题共9 小题,共27.0 分)1.如图,在平面直角坐标系中2 条直线为l1:y=-3x+3,l2:y=-3x+9,直线l1交x 轴于点A,交y 轴于点B,直线l2交x 轴于点D,过点B 作x 轴的平行线交l2于点C,点A、E 关于y 轴对称,抛物线y=ax2+bx+c 过E、B、C 三点,下列判断中:①a-b+c=0;②2a+b+c=5;③抛物线关于直线x=1 对称;④抛物线过点(b,c);⑤S 四边形ABCD=5,其中正确的个数有()A. 5B. 4C. 3D. 22.如图,10 个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如,表示a1=a2+a3,则a1的最小值为()A.32B.36C.38D.403.如图,直线y= ��x -6 分别交x 轴,y 轴于A,B,M 是反比例函数y=�(x>0)的图象上位于直线上方的一点,MC∥x 轴交AB 于C,MD⊥MC 交AB 于D,AC•BD=43,则k 的值为()A. ‒ 3B. ‒ 4C. ‒ 5D. ‒ 64.在平面直角坐标系xOy 中,将一块含有45°角的直角三角板如图放置,直角顶点C 的坐标为(1,0),顶点A 的坐标为(0,2),顶点B 恰好落在第一象限的双曲线上,现将直角三角板沿x 轴正方向平移,当顶点A 恰好落在该双曲线上时停止运动,则此时点C 的对应点C′的坐标为()(3,0) (2,0) (5,0) (3,0)A. 2B.C. 2D.5.如图,在矩形ABCD 中,AB<BC,E 为CD 边的中点,将△ADE 绕点E 顺时针旋转180°,点D 的对应点为C,点A 的对应点为F,过点E 作ME⊥AF 交BC 于点M,连接AM、BD 交于点N,现有下列结论:35 ①AM =AD +MC ;②AM =DE +BM ;③DE 2=AD •CM ;④点 N 为△ABM 的外心. 其中正确的个数为()A. 1 个B. 2 个C. 3 个D. 4 个6. 规定:如果关于 x 的一元二次方程 ax 2+bx +c =0(a ≠0)有两个实数根,且其中一个根是另一个根的 2倍,则称这样的方程为“倍根方程”.现有下列结论:①方程 x 2+2x -8=0 是倍根方程;②若关于 x 的方程 x 2+ax +2=0 是倍根方程,则 a =±3;③若关于 x 的方程 ax 2-6ax +c =0(a ≠0)是倍根方程,则抛物线 y =ax 2-6ax +c 与 x 轴的公共点的坐标是 (2,0)和(4,0); 4 ④若点(m ,n )在反比例函数 y =x 的图象上,则关于 x 的方程 mx 2+5x +n =0 是倍根方程. 上述结论中正确的有( )A. ①②B. ③④C. ②③D. ②④7. 如图,六边形 ABCDEF 的内角都相等,∠DAB =60°,AB =DE ,则下列结论成立的个数是() ①AB ∥DE ;②EF ∥AD ∥BC ;③AF =CD ;④四边形 ACDF 是平行四边形;⑤六边形 ABCDEF 既是中心对称图形,又是轴对称图形.A. 2B. 3C. 4D. 58. 如图,在 Rt △ABC 中,∠C =90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A. 4B. 5C. 6D. 79. 如图,矩形 ABCD 中,AE ⊥BD 于点 E ,CF 平分∠BCD ,交 EA 的延长线于点 F ,且 BC =4,CD =2,给出下列结论:①∠BAE =∠CAD ;4②∠DBC =30°;③AE =5 5;④AF =2 ,其中正确结论的个数有( )A. 1 个B. 2 个C. 3 个D. 4 个二、填空题(本大题共 10 小题,共 30.0 分)10.如图,在Rt△ABC 中,∠BAC=30°,以直角边AB 为直径作半圆交AC 于点D,以AD 为边作等边△ADE,延长ED 交BC 于点F,BC=2 3,则图中阴影部分的面积为.(结果不取近似值)11.如图,在6×6 的网格内填入1 至6 的数字后,使每行、每列、每个小粗线宫中的数字不重复,则a×c=.12.如图,正方形ABCD 中,BE=EF=FC,CG=2GD,BG 分别交AE,AF 于M,N.下列结论:4 �M 3 1①AF⊥BG;②BN=3NF;③M G=8;④S 四边形CGNF=2S 四边形ANGD.其中正确的结论的序号是.13.已知:如图,在△AOB 中,∠AOB=90°,AO=3cm,BO=4cm.将△AOB 绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB 的交点D 恰好为AB 的中点,则线段B1D= cm.14.如图,边长为4 的正六边形ABCDEF 的中心与坐标原点O 重合,AF∥x 轴,将正六边形ABCDEF 绕原点O 顺时针旋转n 次,每次旋转60°.当n=2017 时,顶点A 的坐标为.15.如图,在Rt△ABC 中,BC=2,∠BAC=30°,斜边AB 的两个端点分别在相互垂直的射线OM、ON 上滑动,下列结论:①若C、O 两点关于AB 对称,则OA=2 3;②C、O 两点距离的最大值为4;③若AB 平分CO,则AB⊥CO;�④斜边AB 的中点D 运动路径的长为2;其中正确的是(把你认为正确结论的序号都填上).16.如图,∠AOB 的边OB 与x 轴正半轴重合,点P 是OA 上的一动点,点N(3,0)是OB 上的一定点,点M 是ON 的中点,∠AOB=30°,要使PM+PN 最小,则点P 的坐标为.17.在一条笔直的公路上有A、B、C 三地,C 地位于A、B 两地之间,甲车从A地沿这条公路匀速驶向C 地,乙车从B 地沿这条公路匀速驶向A 地,在甲车出发至甲车到达C 地的过程中,甲、乙两车各自与C 地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示.下列结论:①甲车出发2h 时,两车相遇;②乙车出发1.5h 时,两车相距170km;③乙车出5发27h 时,两车相遇;④甲车到达C 地时,两车相距40km.其中正确的是(填写所有正确结论的序号).�18.如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比例函数y=x(x>0)的图象经过A,B 两点.若点A 的坐标为(n,1),则k 的值为.19.如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A(-1,1),B(0,-2),C(1,0),点P(0,2)绕点A 旋转180°得到点P1,点P1绕点B 旋转180°得到点P2,点P2绕点C 旋转180°得到点P3,点P3绕点A 旋转180°得到点P4,…,按此作法进行下去,则点P2017的坐标为.答案和解析1.【答案】C【解析】解:∵直线l1:y=-3x+3 交x 轴于点A,交y 轴于点B,∴A(1,0),B(0,3),∵点A、E 关于y 轴对称,∴E(-1,0).∵直线l2:y=-3x+9 交x 轴于点D,过点B 作x 轴的平行线交l2 于点C,∴D(3,0),C 点纵坐标与B 点纵坐标相同都是3,把y=3 代入y=-3x+9,得3=-3x+9,解得x=2,∴C(2,3).∵抛物线y=ax2+bx+c 过E、B、C 三点,∴,解得,∴y=-x2+2x+3.①∵抛物线y=ax2+bx+c 过E(-1,0),∴a-b+c=0,故①正确;②∵a=-1,b=2,c=3,∴2a+b+c=-2+2+3=3≠5,故②错误;③∵抛物线过B(0,3),C(2,3)两点,∴对称轴是直线x=1,∴抛物线关于直线x=1 对称,故③正确;④∵b=2,c=3,抛物线过C(2,3)点,∴抛物线过点(b,c),故④正确;⑤∵直线l1∥l2,即AB∥CD,又BC∥AD,∴四边形ABCD 是平行四边形,∴S 四边形ABCD=BC•OB=2×3=6≠5,故⑤错误.综上可知,正确的结论有3个.故选:C.根据直线l1的解析式求出A(1,0),B(0,3),根据关于y 轴对称的两点坐标特征求出E(- 1,0).根据平行于x 轴的直线上任意两点纵坐标相同得出C 点纵坐标与B 点纵坐标相同都是3,再根据二次函数图象上点的坐标特征求出C(2,3).利用待定系数法求出抛物线的解析式为y=-x2+2x+3,进而判断各选项即可.本题考查了抛物线与x 轴的交点,一次函数、二次函数图象上点的坐标特征,关于y 轴对称的两点坐标特征,平行于x 轴的直线上任意两点坐标特征,待定系数法求抛物线的解析式,平行四边形的判定及面积公式,综合性较强,求出抛物线的解析式是解题的关键.2.【答案】D【解析】解:∵a1=a2+a3=a4+a5+a5+a6=a7+a8+a8+a9+a8+a9+a9+a10=a7+3(a8+a9)+a10,∴要使a1 取得最小值,则a8+a9 应尽可能的小,取a8=2、a9=4,∵a5=a8+a9=6,则a7、a10 中不能有6,若a7=8、a10=10,则a4=10=a10,不符合题意,舍去;若a7=10、a10=8,则a4=12、a6=4+8=12,不符合题意,舍去;若a7=10、a10=12,则a4=10+2=12、a6=4+12=16、a2=12+6=18、a3=6+16=22、a1=18+22=40,符合题意;综上,a1的最小值为40,故选:D.由a1=a7+3(a8+a9)+a10 知要使a1 取得最小值,则a8+a9 应尽可能的小,取a8=2、a9=4,根据a5=a8+a9=6,则a7、a10 中不能有6,据此对于a7、a8,分别取8、10、12 检验可得,从而得出答案.本题主要考查数字的变化类,根据题目要求得出a1取得最小值的切入点是解题的关键.3.【答案】A【解析】解:过点D 作DE⊥y 轴于点E,过点C 作CF⊥x 轴于点F,令x=0 代入y= x-6,∴y=-6,∴B(0,-6),∴OB=6,令y=0 代入y= x-6,∴x=2 ,∴(2 ,0),∴OA=2 ,∴勾股定理可知:AB=4 ,∴sin∠OAB= = ,cos∠OAB= =设M(x,y),∴CF=-y,ED=x,∴sin∠OAB= ,∴AC=- y,∵cos∠OAB=cos∠EDB= ,∴BD=2x,∵AC•BD=4,∴- y×2x=4 ,∴xy=-3,∵M 在反比例函数的图象上,∴k=xy=-3,故选(A)过点D 作DE⊥y 轴于点E,过点C 作CF⊥x 轴于点F,然后求出OA 与OB 的长度,即可求出∠OAB 的正弦值与余弦值,再设M(x,y),从而可表示出BD 与AC 的长度,根据AC•BD=4列出即可求出k 的值.本题考查反比例函数与一次函数的综合问题,解题的关键是根据∠OAB 的锐角三角函数值求出BD、AC,本题属于中等题型.4.【答案】C【解析】解:过点B 作BD⊥x 轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO 与△BCD 中,∴△ACO➴△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y= ,将B(3,1)代入y= ,∴k=3,∴y= ,∴把y=2 代入y= ,∴x= ,当顶点A 恰好落在该双曲线上时,此时点A 移动了个单位长度,∴C 也移动了个单位长度,此时点C 的对应点C′的坐标为(,0)故选:C.过点B 作BD⊥x 轴于点D,易证△ACO➴△BCD(AAS),从而可求出B 的坐标,进而可求出反比例函数的解析式,根据解析式与 A 的坐标即可得知平移的单位长度,从而求出 C 的对应点.本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.5.【答案】B【解析】解:∵E 为CD 边的中点,∴DE=CE,又∵∠D=∠ECF=90°,∠AED=∠FEC,∴△ADE➴△FCE,∴AD=CF,AE=FE,又∵ME⊥AF,∴ME 垂直平分AF,∴AM=MF=MC+CF,∴AM=MC+AD,故①正确;如图,延长CB 至G,使得∠BAG=∠DAE,由AM=MF,AD∥BF,可得∠DAE=∠F=∠EAM,可设∠BAG=∠DAE=∠EAM=α,∠BAM=β,则∠AED=∠EAB=∠GAM=α+β,由∠BAG=∠DAE,∠ABG=∠ADE=90°,可得△ABG∽△ADE,∴∠G=∠AED=α+β,∴∠G=∠GAM,∴AM=GM=BG+BM,由△ABG∽△ADE,可得= ,而AB<BC=AD,∴BG<DE,∴BG+BM<DE+BM,即AM<DE+BM,∴AM=DE+BM 不成立,故②错误;∵ME⊥FF,EC⊥MF,∴EC2=CM×CF,又∵EC=DE,AD=CF,∴DE2=AD•CM,故③正确;∵∠ABM=90°,∴AM 是△ABM 的❧➓圆的直径,∵BM<AD,∴当BM∥AD 时,= <1,∴N 不是AM 的中点,∴点N 不是△ABM 的❧心,故④错误.综上所述,正确的结论有2 个,故选:B.根据全等三角形的性质以及线段垂直平分线的性质,即可得出AM=MC+AD;根据△ABG∽△ ADE,且AB<BC,即可得出BG<DE,再根据AM=GM=BG+BM,即可得出AM=DE+BM 不成立;根据ME⊥FF,EC⊥MF,运用射影定理即可得出EC2=CM×CF,据此可得DE2=AD•CM 成立;根据N 不是AM 的中点,可得点N 不是△ABM 的❧心.本题主要考查了相似三角形的判定与性质,全等三角形的判定与性质,矩形的性质以及旋转的性质的综合应用,解决问题的关键是运用全等三角形的对应边相等以及相似三角形的对应边成比例进行推导,解题时注意:三角形❧➓圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的❧心,故❧心到三角形三个顶点的距离相等.6.【答案】C【解析】解:①由x2-2x-8=0,得(x-4)(x+2)=0,解得x1=4,x2=-2,∵x1≠2x2,或x2≠2x1,1 1 ∴方程 x 2-2x-8=0 不是倍根方程. 故①错误;②关于 x 的方程 x 2+ax+2=0 是倍根方程,∴设 x 2=2x 1,∴x 1•x 2=2x 2=2,∴x 1=±1,当 x 1=1 时 ,x 2=2,当 x 1=-1 时 ,x 2=-2,∴x 1+x 2=-a=±3,∴a=±3,故②正确;③关于 x 的方程 ax 2-6ax+c=0(a≠0)是倍根方程,∴x 2=2x 1,∵抛物线 y=ax 2-6ax+c 的对称轴是直线 x=3,∴抛物线 y=ax 2-6ax+c 与 x 轴的交点的坐标是(2,0)和(4,0),故③正确;④∵点(m ,n )在反比例函数 y= 的图象上,∴mn=4,解 mx 2+5x+n=0 得 x 1=- ,x 2=- ,∴x 2=4x 1,∴关于 x 的方程 mx 2+5x+n=0 不是倍根方程;故选:C .①通过解方程得到该方程的根,结合“倍根方程”的定义进行判断;②设 x 2=2x 1,得到 x 1•x 2=2x 2=2,得到当 x 1=1 时,x 2=2,当 x 1=-1 时,x 2=-2,于是得到结论;③根据“倍根方程”的定义即可得到结论;④若点(m,n)在反比例函数y= 的图象上,得到mn=4,然后解方程mx2+5x+n=0 即可得到正确的结论;本题考查了反比例函数图象上点的坐标特征,根与系数的关系,正确的理解倍根方程的定义是解题的关键.7.【答案】D【解析】解:∵六边形ABCDEF 的内角都相等,∴∠EFA=∠FED=∠FAB=∠ABC=120°,∵∠DAB=60°,∴∠DAF=60°,∴∠EFA+∠DAF=180°,∠DAB+∠ABC=180°,∴AD∥EF∥CB,故②正确,∴∠FED+∠EDA=180°,∴∠EDA=∠ADC=60°,∴∠EDA=∠DAB,∴AB∥DE,故①正确,∵∠FAD=∠EDA,∠CDA=∠BAD,EF∥AD∥BC,∴四边形EFAD,四边形BCDA 是等腰梯形,∴AF=DE,AB=CD,∵AB=DE,∴AF=CD,故③正确,连➓CF 与AD 交于点O,连➓DF、AC、AE、DB、BE.∵∠CDA=∠DAF,∴AF∥CD,AF=CD,∴四边形AFDC 是平行四边形,故④正确,同法可证四边形AEDB 是平行四边形,∴AD 与CF,AD 与BE 互相平分,∴OF=OC,OE=OB,OA=OD,∴六边形ABCDEF 既是中心对称图形,故⑤正确,故选D.根据六边形ABCDEF 的内角都相等,∠DAB=60°,平行线的判定,平行四边形的判定,中心对称图形的定义一一判断即可.本题考查平行四边形的判定和性质、平行线的判定和性质、轴对称图形、中心对称图形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.【答案】D【解析】解:如图:故选:D.①以B 为圆心,BC 长为半径画弧,交AB 于点D,△BCD 就是等腰三角形;②以A 为圆心,AC 长为半径画弧,交AB 于点E,△ACE 就是等腰三角形;③以C 为圆心,BC 长为半径画弧,交AC 于点F,△BCF 就是等腰三角形;④以C 为圆心,BC 长为半径画弧,交AB 于点K,△BCK 就是等腰三角形;⑤作AB 的垂直平分线交AC 于G,则△AGB 是等腰三角形;➅作BC 的垂直平分线交AB 于I,则△BCI 和△ACI 是等腰三角形.本题考查了等腰三角形的判定的应用,主要考查学生的理解能力和动手操作能力.9.【答案】C【解析】解:在矩形ABCD 中,∵∠BAD=90°,∵AE⊥BD,∴∠AED=90°,∴∠ADE+∠DAE=∠DAE+∠BAE=90°,∴∠BAE=∠ADB,∵∠CAD=∠ADB,∴∠BAE=∠CAD,故①正确;∵BC=4,CD=2,∴tan∠DBC= = ,∴∠DBC≠30°,故②错误;∵BD= =2 ,∵AB=CD=2,AD=BC=4,∵△ABE∽△DBA,∴,即,∴AE= ;故③正确;∵CF 平分∠BCD,∴∠BCF=45°,∴∠ACF=45°-∠ACB,∵AD∥BC,∴∠DAC=∠BAE=∠ACB,∴∠EAC=90°-2∠ACB,∴∠EAC=2∠ACF,∵∠EAC=∠ACF+∠F,∴∠ACF=∠F,∴AF=AC,∵AC=BD=2 ,∴AF=2 ,故④正确;故选C.根据余角的性质得到∠BAE=∠ADB,等量代换得到∠BAE=∠CAD,故①正确;根据三角函数的定义得到tan∠DBC= = ,于是得到∠DBC≠30°,故②错误;由勾股定理得到BD==2 ,根据相似三角形的性质得到AE= ;故③正确;根据角平分线的定义得到∠BCF=45°,求得∠ACF=45°-∠ACB,推出∠EAC=2∠ACF,根据❧角的性质得到∠EAC=∠ACF+∠F,得到∠ACF=∠F,根据等腰三角形的判定得到AF=AC,于是得到AF=2 ,故④正确.本题考查了矩形的性质,相似三角形的判定和性质,三角形的❧角的性质,角平分线的定义,熟练掌握相似三角形的判定和性质是解题的关键.10.【答案】3【解析】3 3-2π解:如图所示:设半圆的圆心为O,连➓DO,过D 作DG⊥AB 于点G,过D 作DN⊥CB 于点N,∵在Rt△ABC 中,∠BAC=30°,∴∠ACB=60°,∠ABC=90°,∵以AD 为边作等边△ADE,∴∠EAD=60°,∴∠EAB=60°+30°=90°,可得:AE∥BC,则△ADE∽△CDF,∴△CDF 是等边三角形,∵在Rt△ABC 中,∠BAC=30°,BC=2 ,∴AC=4 ,AB=6,∠DOG=60°,则AO=BO=3,故DG=DO•sin60°=,则AD=3 ,DC=AC-AD= ,故DN=DC•sin60°=×= ,则S 阴影=S△ABC-S△AOD-S 扇形DOB-S△DCF= ×2 ×6- ×3×- - × ×=3 - π.故答案为:3 - π.根据题意结合等边三角形的性质分别得出AB,AC,AD,DC 的长,进而利用S 阴影=S△ABC-S△AOD-S 扇形DOB-S△DCF 求出答案.此题主要考查了扇形面积求法以及等边三角形的性质和锐角三角函数关系等知识,正确分割图形是解题关键.11.【答案】2【解析】解:对各个小宫格编号如下:先看己:已经有了数字3、5、6,缺少1、2、4;观察发现:4 不能在第四列,2 不能在第五列,而2 不能在第六列;所以2 只能在第六行第四列,即a=2;则b 和c 有一个是1,有一个是4,不确定,如下:观察上图发现:第四列已经有数字2、3、4、6,缺少1 和5,由于5 不能在第二行,所以5 在第四行,那么1 在第二行;如下:再看乙部分:已经有了数字1、2、3,缺少数字4、5、6,观察上图发现:5 不能在第六列,所以5在第五列的第一行;4 和6 在第六列的第一行和第二行,不确定,分两种情况:①当4 在第一行时,6 在第二行;那么第二行第二列就是4,如下:再看甲部分:已经有了数字1、3、4、5,缺少数字2、6,观察上图发现:2 不能在第三列,所以2 在第二列,则6 在第三列的第一行,如下:观察上图可知:第三列少1 和4,4 不能在第三行,所以4 在第五行,则1 在第三行,如下:观察上图可知:第五行缺少1 和2,1 不能在第1 列,所以1 在第五列,则2 在第一列,即c=1,所以b=4,如下:观察上图可知:第六列缺少1 和2,1 不能在第三行,则在第四行,所以2 在第三行,如下:再看戊部分:已经有了数字2、3、4、5,缺少数字1、6,观察上图发现:1 不能在第一列,所以1 在第二列,则6 在第一列,如下:观察上图可知:第一列缺少3 和4,4 不能在第三行,所以4 在第四行,则3 在第三行,如下:观察上图可知:第二列缺少5 和6,5 不能在第四行,所以5 在第三行,则6 在第四行,如下:观察上图可知:第三行第五列少6,第四行第五列少3,如下:所以,a=2,c=1,ac=2;②当6 在第一行,4 在第二行时,那么第二行第二列就是6,如下:再看甲部分:已经有了数字1、3、5、6,缺少数字2、4,观察上图发现:2 不能在第三列,所以2 在第2 列,4 在第三列,如下:观察上图可知:第三列缺少数字1 和6,6 不能在第五行,所以6 在第三行,则1 在第五行,所以c=4,b=1,如下:观察上图可知:第五列缺少数字3 和6,6 不能在第三行,所以6 在第四行,则3 在第三行,如下:观察上图可知:第六列缺少数字1 和2,2 不能在第四行,所以2 在第三行,则1 在第四行,如下:观察上图可知:第三行缺少数字1 和5,1 和5 都不能在第一列,所以此种情况不成立;综上所述:a=2,c=1,a×c=2;故答案为:2.粗线把这个数独分成了6 块,为了便于解答,对各部分进行编号:甲、乙、丙、丁、戊、己,先从各部分中数字最多的己出发,找出其各个小方格里面的数,再根据每行、每列、每小宫格都不出现重复的数字进行推算.本题是六阶数独,比较复杂,关键是找出突破口,先推算出一个区域或者一行、一列,再逐步的进行推算.12.【答案】①③【解析】解:①∵四边形ABCD 为正方形,∴AB=BC=CD,∵BE=EF=FC,CG=2GD,∴BF=CG,∵在△ABF 和△BCG 中,,∴△ABF➴△BCG,∴∠BAF=∠CBG,∵∠BAF+∠BFA=90°,∴∠CBG+∠BFA=90°,即AF⊥BG;①正确;②∵在△BNF 和△BCG 中,,∴△BNF∽△BCG,∴ = = ,∴BN= NF;②错误;③作EH⊥AF,令AB=3,则BF=2,BE=EF=CF=1,AF= = ,∵S△ABF= AF•BN=AB•BF,∴BN= ,NF= BN= ,∴AN=AF-NF= ,∵E 是BF 中点,∴EH 是△BFN 的中位线,∴EH= ,NH= ,BN∥EH,∴AH= , = ,解得:MN= ,∴BM=BN-MN= ,MG=BG-BM= ,∴ = ;③正确;④连➓AG,FG,根据③中结论,则NG=BG-BN= ,∵S 四边形CGNF=S△CFG+S△GNF= CG•CF+NF•NG=1+= ,S 四边形ANGD=S△ANG+S△ADG= AN•GN+AD•DG= + = ,∴S 四边形CGNF≠S 四边形ANGD,④错误;故答案为①③.①易证△ABF➴△BCG,即可解题;②易证△BNF∽△BCG,即可求得的值,即可解题;③作EH⊥AF,令AB=3,即可求得MN,BM 的值,即可解题;④连➓AG,FG,根据③中结论即可求得S 四边形CGNF 和S 四边形ANGD,即可解题.本题考查了全等三角形的判定和性质,考查了相似三角形的判定和对应边成比例的性质,本题中令AB=3 求得AN,BN,NG,NF 的值是解题的关键.13.【答案】1.5【解析】解:∵在△AOB 中,∠AOB=90°,AO=3cm,BO=4cm,∴AB= =5cm,∵点D 为AB 的中点,∴OD= AB=2.5cm.∵将△AOB 绕顶点O,按顺时针方向旋转到△A1OB1 处,∴OB1=OB=4cm,∴B1D=OB1-OD=1.5cm.故答案为1.5.先在直角△AOB 中利用勾股定理求出AB= =5cm,再利用直角三角形斜边上的中线等于斜边的一半得出OD= AB=2.5cm.然后根据旋转的性质得到OB1=OB=4cm,那么B1D=OB1-OD=1.5cm.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了直角三角形斜边上的中线等于斜边的一半的性质以及勾股定理.14.【答案】(2,2 3)【解析】解:2017×60°÷360°=336…1,即与正六边形ABCDEF 绕原点O 顺时针旋转1 次时点A 的坐标是一样的.当点A 按顺时针旋转60°时,与原F 点重合.连➓OF,过点F 作FH⊥x 轴,垂足为H;由已知EF=4,∠FOE=60°(正六边形的性质),∴△OEF 是等边三角形,∴OF=EF=4,∴F(2,2 ),即旋转2017 后点A 的坐标是(2,2 ),故答案是:(2,2 ).将正六边形ABCDEF 绕原点O 顺时针旋转2017 次时,点A 所在的位置就是原F 点所在的位置.此题主要考查了正六边形的性质,坐标与图形的性质-旋转.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.15.【答案】①②③【解析】解:在Rt△ABC 中,∵BC=2,∠BAC=30°,∴AB=4,AC= =2 ,①若C、O 两点关于AB 对称,如图1,∴AB 是OC 的垂直平分线,则OA=AC=2 ;所以①正确;②如图1,取AB 的中点为E,连➓OE、CE,∵∠AOB=∠ACB=90°,∴OE=CE= AB=2,当OC 经过点E 时,OC 最大,则C、O 两点距离的最大值为4;所以②正确;③如图2,同理取AB 的中点E,则OE=CE,∵AB 平分CO,∴OF=CF,∴AB⊥OC,所以③正确;④如图3,斜边AB 的中点D 运动路径是:以O 为圆心,以2 为半径的圆周的,则:=π.所以④不正确;综上所述,本题正确的有:①②③;故答案为:①②③.①先根据直角三角形30°的性质和勾股定理分别求AC 和AB,由对称的性质可知:AB 是OC 的垂直平分线,所以OA=AC;②当OC 经过AB 的中点E 时,OC 最大,则C、O 两点距离的最大值为4;③如图2,根据等腰三角形三线合一可知:AB⊥OC;④如图3,半径为2,圆心角为90°,根据弧长公式进行计算即可.本题是三角形的综合题,考查了直角三角形30°的性质、直角三角形斜边中线的性质、等腰三角形的性质、轴对称的性质、线段垂直平分线的性质、动点运动路径问题、弧长公式,熟练掌握直角三角形斜边中线等于斜边一半是本题的关键,难度适中.3 316.【答案】(2, 2 )【解析】解:作N 关于OA 的对称点N′,连➓N′M 交OA 于P,则此时,PM+PN 最小,∵OA 垂直平分NN′,∴ON=ON′,∠N′ON=2∠AON=60°,∴△NON′是等边三角形,∵点M 是ON 的中点,∴N′M⊥ON,∵点N(3,0),∴ON=3,∵点M 是ON 的中点,∴OM=1.5,∴PM= ,∴P(,).故答案为:(,).作N 关于OA 的对称点N′,连➓N′M 交OA 于P,则此时,PM+PN 最小,由作图得到ON=ON′,∠N′ON=2∠AON=60°,求得△NON′是等边三角形,根据等边三角形的性质得到N′M⊥ON,解直角三角形即可得到结论.本题考查了轴对称-最短路线问题,等边三角形的判定和性质,解直角三角形,关键是确定P 的位置.17.【答案】②③④【解析】解:①观察函数图象可知,当t=2 时,两函数图象相交,∵C 地位于A、B 两地之间,∴交点代表了两车离C 地的距离相等,并不是两车相遇,结论①错误;②甲车的速度为240÷4=60(km/h),乙车的速度为200÷(3.5-1)=80(km/h),∵(240+200-60-170)÷(60+80)=1.5(h),∴乙车出发1.5h 时,两车相距170km,结论②正确;③∵(240+200-60)÷(60+80)=2 (h),∴乙车出发2 h 时,两车相遇,结论③正确;④∵80×(4-3.5)=40(km),∴甲车到达C 地时,两车相距40km,结论④正确.综上所述,正确的结论有:②③④.故答案为:②③④.①观察函数图象可知,当t=2 时,两函数图象相交,结合交点代表的意义,即可得出结论①错误;②根据速度=路程÷时间分别求出甲、乙两车的速度,再根据时间=路程÷速度和可求出乙车出发1.5h 时,两车相距170km,结论②正确;③根据时间=路程÷速度和可求出乙车出发2 h 时,两车相遇,结论③正确;④结合函数图象可知当甲到C 地时,乙车离开C 地0.5 小时,根据路程=速度×时间,即可得出结论④正确.综上即可得出结论.本题考查了一次函数的应用,根据函数图象逐一分析四条结论的正误是解题的关键.18.【答案】【解析】5 ‒ 1 2解:作AE⊥x 轴于E,BF⊥x 轴于F,过B 点作BC⊥y 轴于C,交AE 于G,如图所示:则AG⊥BC,∵∠OAB=90°,∴∠OAE+∠BAG=90°,∵∠OAE+∠AOE=90°,∴∠AOE=∠GAB ,在△AOE 和△BAG 中,,∴△AOE ➴△BAG (AAS ),∴OE=AG ,AE=BG ,∵点 A (n ,1),∴AG=OE=n ,BG=AE=1,∴B (n+1,1-n ),∴k=n×1=(n+1)(1-n ),整理得:n 2+n-1=0,解得:n= ∴n=,(负值舍去), ∴k=故答案为: ;.作 AE ⊥x 轴于 E ,BF ⊥x 轴于 F ,过 B 点作 BC ⊥y 轴于 C ,交 AE 于 G ,则 AG ⊥BC ,先求得△ AOE ➴△BAG ,得出 AG=OE=n ,BG=AE=1,从而求得 B (n+1,1-n ),根据 k=n×1=(n+1)(1-n )得出方程,解方程即可.本题考查了全等三角形的判定与性质、反比例函数图象上点的坐标特征、解方程等知识;熟练掌握反比例函数图象上点的坐标特征,证明三角形全等是解决问题的关键.19.【答案】(-2,0)【解析】解:如图所示,P 1(-2,0),P 2(2,-4),P 3(0,4),P 4(-2,-2),P 5(2,-2),P 6(0,2),发现 6 次一个循环,∵2017÷6=336…1,∴点 P 2017 的坐标与 P 1 的坐标相同,即 P 2017(-2,0),故答案为(-2,0).画出P1~P6,寻找规律后即可解决问题.本题考查坐标与图形的性质、点的坐标等知识,解题的关键是循环探究问题的方法,属于中考常考题型.“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

2022年中考数学专题训练 填空题压轴题

2022年中考数学专题训练 填空题压轴题

2022年中考数学专题训练---填空题压轴题1.如图,在平面直角坐标系中,直线(0)y kx k =≠经过点(,3)a a (0)a >,线段BC 的两个端点分别在x 轴与直线y kx =上(点B 、C 均与原点O 不重合)滑动,且BC =2,分别作BP x ⊥轴,CP ⊥直线y kx =,交点为P .经探究,在整个滑动过程中,P 、O 两点间的距离为定值 .2.如图,反比例函数的图象经过矩形OABC 对角线的交点M ,分别与AB 、BC 相交于点D 、E ,假设四边形ODBE 的面积为12,那么k 的值为 .3.如图,一段抛物线y=﹣x 〔x ﹣3〕〔0≤x≤3〕,记为C 1,它与x 轴交于点O ,A 1;将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3;…如此进行下去,得到一条“波浪线〞.假设点P 〔37,m 〕在此“波浪线〞上,那么m 的值为 .4.如图,在平面直角坐标系中,直线y=kx 〔k≠0〕经过点〔a , a 〕〔a >0〕,线段BC 的两个端点分别在x 轴与直线y=kx 上〔点B 、C 均与原点O 不重合〕滑动,且BC=2,分别作BP ⊥x 轴,CP ⊥直线y=kx ,交点为P .经探究,在整个滑动过程中,P 、O 两点间的距离为定值______.5.如图,矩形ABOC 的顶点O 在坐标原点,顶点B 、C 分别在x 轴、y 轴的正半轴上,顶点A 在反比例函数ky x=(k 为常数,0,0k x >>)的图像上,将矩形ABOC 绕点A 按逆时针方向旋转90°得到矩形'''AB OC ,假设点O 的对应点'O 恰好落在此反比例函数的图像上,那么OBOC的值是 .6.如图,四边形ABCD 与四边形1111A B C D 是以O 为位似中心的位似图形,满足11=OA A A ,E F ,,1E ,1F 分别是AD BC ,,11A D ,11B C 的中点,那么11=E F EF.F EA 1A DB7.在平面直角坐标系xOy 中,点(2,)A m -绕坐标原点O 顺时针旋转90︒后,恰好落在右图中阴影区域〔包括边界〕内,那么m 的取值范围是 .8.如图9所示,在平面直角坐标系中,△PQR 是△ABC 经过某种变换后得到的图形,观察点A 与点P ,点B 与点Q ,点C 与点R 的坐标之间的关系.在这种变换下,如果△ABC 中任意一点M 的坐标为(x ,y ),那么它的对应点N 的坐标是________.9.如图10所示,小明尝试着将矩形纸片ABCD(如图10a ,AD>CD)沿过A 点的直线折叠,使得B 点落在AD 边上的点F 处,折痕为AE 〔如图10b 〕;再沿过D 点的直线折叠,使得C 点落在DA 边上的点N 处,E 点落在AE 边上的点M 处,折痕为DG(如图10c).如果第二次折叠后,M 点正好在∠NDG 的平分线上,那么矩形ABCD 长与宽的比值为________.1O yx10.如图为一个半径为4m的圆形广场,其中放有六个宽为1m的矩形临时摊位,这些摊位均有两个顶点在广场边上,另两个顶点紧靠相邻摊位的顶点,那么每个矩形摊位的长为m.11.如图,把等边△A BC沿着D E折叠,使点A恰好落在BC边上的点P处,且DP⊥BC,假设BP=4cm,那么EC= cm.12.如图,在△ABC中,∠A=45°,∠B=60°,AB=4,P是BC边上的动点〔不与B,C重合〕,点P关于直线AB,AC的对称点分别为M,N,那么线段MN长的取值范围是.13.如图,AB 是⊙O 的一条弦,C 是⊙O 上一动点且∠ACB =45°,E 、F 分别是AC 、BC 的中点,直线EF 与⊙O 交于点G 、H .假设⊙O 的半径为2,那么GE +FH 的最大值为 .14.如图,在矩形ABCD 中,M 、N 分别是边AD 、BC 的中点,点P 、Q 在DC 边上,且PQ =14DC .假设AB =16,BC =20,那么图中阴影局部的面积是 .O CBFEGA。

(完整)中考数学压轴题精选含答案

(完整)中考数学压轴题精选含答案

一、解答题1.如图,ABC 为O 的内接三角形,AB 为O 的直径,过点A 作O 的切线交BC 的延长线干点D .(1)求证:ABC ∽;(2)若E 为AD 上一点,使得,连接OE ,求证:OE 平分;(3)若点F 为直径AB 下方半圆的中点,连接CF 交AB 于点G ,且,2AB =,求CG的长.2.如图,在Rt △AOD 中,∠AOD =90°,以点O 为圆心、OA 为半径作⊙O .延长AD 、OD ,分别交⊙O 于点C 、E ,点B 是OD 延长线上一点,且有BC =BD .(1)求证:BC 是⊙O 的切线;(2)若∠OAD =30°,CD =3,求弧CE 长. (3)若OD =3,DE =1,求BE .3.如图①,直线:24l y x =-+分别交x 轴和y 轴于点A 和点B ,将AOB 绕点O 逆时针旋转90︒得到COD △.抛物线2:4h y ax bx =++经过A 、B 、D 三点.(1)求抛物线h的表达式;(2)若与y轴平行的直线m以1秒钟一个单位长的速度从y轴向左平移,交线段CD于点M、交抛物线h于点N,求线段MN的最大值;(3)如图②,点E为抛物线h的顶点,点P是抛物线h在第二象限的上一动点(不与点D、B重合),连接PE,以PE为边作图示一侧的正方形PEFG.随着点P的运动,正方形的大小、位置也随之改变,当顶点G恰好落在y轴的负半轴时,试求出此时点P的坐标.4.已知有理数a,b,c在数轴上对应的点分别为A,B,C,其中b是最小的正整数,a,c满足()2a c++-=.250a______,b=______,c=______;(1)填空:=(2)点A,B,C分别以每秒4个单位长度,1个单位长度,1个单位长度的速度在数轴上同时向右运动,设运动时间为t秒.①当AC长为6时,求t的值;②当点A在点C左侧时(不考虑点A与B,C重合的情况),是否存在一个常数m使得+⋅的值在某段运动过程中不随t的改变而改变?若存在,求出m的值;若不存2AC m AB在,请说明理由.5.如图,抛物线2=-++与x轴相交于A B、两点,与y轴交于点C,顶点为D,抛y x2x3物线的对称轴与BC相交于点E,与x轴相交于点F.(1)求线段DE的长.(2)联结OE,若点G在抛物线的对称轴上,且BEG与COE相似,请直接写出点G的坐标.(3)设点P为x轴上的一点,且tan4,时,求点P的坐∠+∠=∠=DAO DPOαα标.6.已知抛物线经过()30A -,,()1,0B ,52,2C ⎛⎫⎪⎝⎭三点,其对称轴交x 轴于点H ,一次函数()0y kx b k =+≠的图象经过点C ,与抛物线交于另一点D (点D 在点C 的左边),与抛物线的对称轴交于点E . (1)求抛物线的解析式;(2)在抛物线上是否存在点F ,使得点A 、B 、E 、F 构成的四边形是平行四边形,如果存在,求出点F 的坐标,若不存在请说明理由(3)设∠CEH=α,∠EAH =β,当αβ>时,直接写出k 的取值范围7.已知二次函数y =﹣x 2+2x +m +1. (1)当m =2时. ①求函数顶点坐标;②当n ≤x ≤n +1时,该函数的最大值为3,求n 的值.(2)当x ≤2时,函数图象上有且只有2个点到x 轴的距离为2,求m 的取值范围. (3)已知点P 为二次函数上一点,点P 的横坐标为﹣3m +2,点M 的坐标为(2m ,m ),以PM 为对角线构造矩形PQMN ,矩形的各边与坐标轴垂直,当抛物线在矩形PQMN 内部的函数部分y 随着x 的增大而增大时,直接写出m 的取值范围.8.如图,在△ABC 中,∠ACB =90°,AC =3,BC =4.点P 从点A 出发,在线段AB 上以每秒1个单位长度的速度向终点B 运动,连接CP .设点P 运动的时间为t 秒. (1)填空:AB = ;(2)当t 为何值时,CP 平分∠ACB ; (3)当t 为何值时,△BCP 为等腰三角形.9.在平面直角坐标系中,二次函数22y ax bx =++的图象与x 轴交于()()3,0,1,0A B -两点,与y 轴交于点C .(1)求二次函数的解析式;(2)点P 是直线AC 上方的抛物线上一动点,当ACP △面积最大时,求出点P 的坐标; (3)点M 为抛物线上一动点,在x 轴上是否存在点Q ,使以A C M Q 、、、为顶点的四边形是平行四边形?若存在,直接写出点Q 的坐标;若不存在,说明理由.10.在平面直角坐标系xOy 中,已知抛物线y =x 2﹣2x ﹣3与x 轴交于A 、B 两点,与y 轴交于C 点,D 为抛物线顶点.(1)连接AD ,交y 轴于点E ,P 是抛物线上的一个动点.①如图一,点P 是第一象限的抛物线上的一点,连接PD 交x 轴于F ,连接,若,求点P 的坐标.②如图二,点P 在第四象限的抛物线上,连接AP 、BE 交于点G ,若,则w 有最大值还是最小值?w 的最值是多少?(2)如图三,点P 是第四象限抛物线上的一点,过A 、B 、P 三点作圆N ,过点P 作PM x ⊥轴,垂足为I ,交圆N 于点M ,点P 在运动过程中,线段是否变化?若有变化,求出MI 的取值范围;若不变,求出其定值.(3)点Q 是抛物线对称轴上一动点,连接OQ 、AQ ,设AOQ 外接圆圆心为H ,当的值最大时,请直接写出点H 的坐标.11.已知,E 为正方形ABCD 中CD 边上一点,连接BE ,过点C 作CF ⊥BE 交AD 于F ,垂足为G .(1)如图1,求证:CE =DF ;(2)如图2,连接AG 、BF ,交于点H ,求证:∠ABF =∠AGF ; (3)如图3,在(2)的条件下,若AG =AB =11,求线段GH 的长.12.如图1,在平面直角坐标系中,直线4y x =+与x 轴、y 轴分别交于A 、B 两点,抛物线2y x bx c =-++经过A 、B 两点,并且与x 轴交于另一点C (点C 在点A 的右侧),点P 是抛物线上一动点.(1)求抛物线的解析式;(2)若点P 是第二象限内抛物线上的一个动点,过点P 作PD ∥y 轴交AB 于点D ,点E 为线段DB 上一点,且DE =,过点E 作EF ∥PD 交抛物线于点F ,当点P 运动到什么位置时,四边形PDEF 的面积最大?并求出此时点P 的坐标;(3)如图2,点F 为AO 的中点,连接BF ,点G 为y 轴负半轴上一点,且GO =2,沿x 轴向右平移直线AG ,记平移过程的直线为,直线交x 轴于点M ,交直线AB 于点N .是否存在点M ,使得△FMN 为等腰三角形,若存在,直接写出....平移后点M 的坐标;若不存在,请说明理由.13.如图,在正方形OABC 中,AB =4,点E 是线段OA (不含端点)边上一动点,作△ABE 的外接圆交AC 于点D .抛物线y =ax 2﹣x +c 过点O ,E .(1)求证:∠BDE =90°;(2)如图1,若抛物线恰好经过点B ,求此时点D 的坐标; (3)如图2,AC 与BE 交于点F .①请问点E 在运动的过程中,CF ⋅AD 是定值吗?如果是,请求出这个值,如果不是,请说明理由; ②若,求点E 坐标及a 的值.14.(1)[感知]如图1,在正△ABC 的外角∠CAH 内引射线AM ,作点C 关于AM 的对称点E (点E 在∠CAH 内),连接BE ,BE 、CE 分别交AM 于点F 、G .求∠FEG 的度数.(2)[探究]把(1)中的“正△ABC ”改为“正方形ABDC ,其余条件不变,如图2,类比探究,可得: ①∠FEG = °;②猜想线段BF 、AF 、FG 之间的数量关系,并说明理由.(3)[拓展]如图3,点A 在射线BH 上,AB =AC ,∠BAC =α(0°<α<180°),在∠CAH 内引射线AM ,作点C 关于AM 的对称点E (点E 在∠CAH 内),连接BE ,BE 、CE 分别交AM 于点F .G .则线段BF 、AF 、GF 之间的数量关系为 .15.定义:在平面直角坐标系中,对于任意两点()11,A x y ,()22,B x y ,如果点(),M x y 满足122x x x -=,122y y y -=,那么称点M 是点A 、B 的“双减点”. 例如:()4,5A -,()6,1B -、当点(),T x y 满足4652x --==-,()5132y --==,则称点()5,3M -是点A 、B 的“双减点”.(1)写出点()1,3A -,()1,4B -的“双减点”C 的坐标;(2)点()6,4E -,点4,43F m m --⎛⎫⎪⎝⎭,点(),M x y 是点E 、F 的“双减点”.求y 与x 之间的函数关系式;(3)在(2)的条件下,y 与x 之间的函数图象与y 轴、x 轴分别交于点A 、C 两点,B 点坐标为3,0,若点E 在平面直角坐标系内,在直线AC 上是否存在点F ,使以A 、B 、E 、F 为顶点的四边形为菱形?若存在,请求出F 点的坐标;若不存在,请说明理由. 16.如图,在平面直角坐标系中,已知AOB CDA △△≌,且1OA =,()0,2B ,抛物线24y ax ax a =+-经过点C .(1)求抛物线的解析式.(2)在抛物线(对称轴的右侧)上是否存在一点P ,使△ABP 是以AB 为直角边的等腰直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.(3)若x 轴上有一点E 的横坐标为2a ,过点E 作y 轴的平行线交抛物线于点F ,抛物线对称轴与x 轴交于点G ,Q 为抛物线(对称轴的左侧)上一动点,是否存在点Q 使GF 为EFQ ∠的平分线?若存在,求出点Q 的坐标;若不存在,请说明理由.17.已知抛物线y =﹣x 2+bx +c 与x 轴交于点A (m ﹣2,0)和B (2m +1,0)(点A 在点B 的左侧),与y 轴相交于点C ,顶点为P ,对称轴为l :x =1.(1)求抛物线解析式;(2)直线y =kx +2(k ≠0)与抛物线相交于两点M (x 1,y 1),N (x 2,y 2)(x 1<x 2),当|x 1﹣x 2|最小时,求抛物线与直线的交点M 和N 的坐标;(3)首尾顺次连接点O 、B 、P 、C 构成多边形的周长为L ,若线段OB 在x 轴上移动,求L 最小值时点O 、B 移动后的坐标及L 的最小值.18.已知AB 、CD 为O 的两条弦,//AB CD .(1)如图1,求证弧AC =弧BD ;(2)如图2,连接AC 、BC 、OA 、BD ,弦BC 与半径OA 相交于点G ,延长AO 交CD 于点E ,连接BE ,使BE BD =,若OA BC ⊥,求证:四边形ABEC 为菱形;(3)在(2)的条件下,CH 与O 相切于点C ,连接CO 并延长交BE 于点F ,延长BE 交CH 于点H ,11OF =,24sin 25BDC ∠=,求CH 长. 19.如图,圆心M (3,0),半径为5的⊙M 交x 轴于A 、B 两点,交y 轴于C 点,抛物线2y ax bx c =++经过A 、B 、C 三点.(1)求抛物线的解析式.(2)求圆M 上一动点P 到该抛物线的顶点Q 的距离的最小值?并求出此时P 点的坐标. (3)若OC 的中点为F ,请问抛物线上是否存在一点G ,使得∠FBG =45°,若存在,求出点G 的坐标,若不存在,请说明理由.20.如图1,在平面直角坐标系中,已知抛物线y =ax 2+bx -4(a ≠0)经过点A (-2,0)和点B (4,0).(1)求这条抛物线所对应的函数表达式;(2)点P为抛物线上第一象限内一点,若S△ABC=2S△PBC,求点P的坐标;(3)如图2,点D是第二象限内抛物线上一点,过点D作DF⊥x轴,垂足为F,△ABD的外接圆与DF相交于点E.试问:线段EF的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由.【参考答案】**科目模拟测试一、解答题1.(1)见解析(2)见解析(3)【解析】【分析】(1)由圆周角定理和切线的性质可知,又因为,即可证明;(2)连接OE交圆于点H,连接OC,由,利用等腰三角形的性质和判定可证,从而得出OE是AC的垂直平分线,从而解决问题;(3)过点G作于K,由点F在半圆的中点,得,得,,得,可求出,从而解决问题.(1)解:证明:为O的直径,,过点A作O的切线交BC的延长线于点D,,,又,;(2)证明:如图,连接OE交圆于点H,连接OC,,,,,,,OC是O的半径,,垂直平分AC,∴,平分;(3)如图,在中,,2AB=,,过点G作于K,,,点F为直径AB下方半圆的中点,,,,,在Rt ABC∆中,,,由勾股定理得,,,,,,,在中,,.【点睛】本题是圆的综合题,主要考查了圆的切线的性质,圆周角定理,相似三角形的判定与性质,勾股定理,三角函数等知识,根据得出线段之间的数量关系是解题的关键.2.(1)见详解;(2)12π;(3)16【解析】【分析】(1)连接CO,先证∠BCD=∠ADO,由∠A+∠ADO=90°,可得∠OCA+∠BCD=90°,进而即可得到结论;(2)先证BCD△是等边三角形,∠BOC=30°,求出OC=3,利用弧长公式即可求解;(3)过点O作ON⊥AD,过点B作BM⊥CD,利用勾股定理和面积法求出ON=125,AN=165,结合垂径定理和等腰三角形的性质得DM=710,最后利用锐角三家函数即可求解.【详解】解:(1)连接CO,∵BC=BD,∴∠BDC=∠BCD,∵∠BDC=∠ADO,∴∠BCD=∠ADO,∵OA=OC,∴∠A=∠OCA,∵∠AOD=90°,∴∠A+∠ADO=90°,∴∠OCA+∠BCD=90°,即OC⊥BC,∴BC是⊙O的切线;(2)∵∠OAD=30°,∴∠OCA=∠OAD=30°,∠AOC=180°-30°-30°=120°,∠ADO=∠BDC=90°-30°=60°,∴∠BOC=120°-90°=30°,又∵BC=BD,∴BCD△是等边三角形,∴CB=CD=3,∵OC⊥BC,∴OC=3×3=3,∴30311802CEππ⨯==;(3)过点O作ON⊥AD,过点B作BM⊥CD,∵OD=3,DE=1,∴AO=EO=3+1=4,∴AD22345+=,∴ON=125 OD OAAD⨯=,∴AN221216455⎛⎫-=⎪⎝⎭,∴AC=2AN=325,∴CD=325-5=75,∵BD=BC,∴DM=75÷2=710,∵∠BDM=∠ADO,∴cos∠BDM=cos∠ADO,即:35 DM ODBD AB==,∴BD =53DM =710×53=76,∴BE =76-1=16. 【点睛】本题主要考查圆和三角形的综合,掌握勾股定理,切线的判定定理,垂径定理,锐角三角函数的定义是解题的关键.3.(1)2142y x x =--+;(2)258;(3)P 点的坐标为552222⎛-- ⎝ 【解析】 【分析】(1)先由直线l 的解析式得出A 、B 的坐标,再根据旋转的性质得出D 点坐标,然后用待定系数法求出抛物线解析式;(2)设出N 点横坐标,纵坐标用横坐示表示,同时表示出M 点坐标,而MN 的长度为N 点与M 点的纵坐标之差,得出MN 的长度是N 点横坐标的二次函数,利用配方法求出最值;(3)作PH y ⊥轴于H ,交抛物线对称轴于K ,可得到PKE GHP △≌△,从而得到PK GH =,EK PH =,利用配方法可得到顶点91,2E ⎛⎫- ⎪⎝⎭,然后设21,42P m m m ⎛⎫--+ ⎪⎝⎭,则有21122EK m m =++,PH m =-,可得到关于m 的方程,解出即可.【详解】解:(1)直线:24l y x =-+交x 轴于点A 、交y 轴于点B , (2,0)A ∴,(0,4)B ,将AOB 绕点O 逆时针旋转90︒得到COD △, (4,0)D ∴-,(0,2)C ,设过点A ,B ,D 的抛物线h 的解析式为:(4)(2)y a x x =+-,将B 点坐标代入可得:4(04)(02)a =+-,解得12a =-∴抛物线h 的解析式为2142y x x =--+;(2)由(4,0)D -,(0,2)C , 则直线CD 的解析式为122y x =+, 设N 点坐标为21,42n n n ⎛⎫--+ ⎪⎝⎭,则M 点坐标为1,22n n ⎛⎫+ ⎪⎝⎭,222111313254222222228MN n n n n n n ⎛⎫⎛⎫∴=--+-+=--+=-++ ⎪ ⎪⎝⎭⎝⎭,∴当32n =-时,MN 最大,最大值为258; (3)若G 点在y 轴上,如图,作PH y ⊥轴于H ,交抛物线对称轴于K ,正方形,PEFG90,EPK GPH GPH PGH,EPKPGH同理:,PEK GPH在PKE △和GHP △中,EPKPGHPE GP PEK GPH,PKE GHP ∴△≌△, PK GH ∴=,EK PH =对2142y x x =--+,配方得219(1)22y x =-++,则顶点91,2E ⎛⎫- ⎪⎝⎭,设21,42P m m m ⎛⎫--+ ⎪⎝⎭,则有22911142222EK m m m m =++-=++,PH m =-, 21122m m m ∴-=++,解得23m =-P ∴点的坐标为5523,323,322⎛-- ⎝. 【点睛】本题是二次函数综合题,主要考查了一次函数图象上坐标点的特征,待定系数法求二次函数解析式,利用纵坐标之差表示竖直方向线段的长度,利用配方法求二次函数最值,正方形的性质、全等三角形的判定与性质、解一元二次方程等众多知识点,综合性强,难度较大.对于(3)问,根据正方形的性质巧妙构造出全等三角形,从而得出线段相等而列出方程是解答的关键和要点.4.(1)2,1,5-;(2)①13或133;②存在,m 的值为2-或2.【解析】 【分析】(1)根据正整数的定义、绝对值的非负性、偶次方的非负性分别可求出,,b a c 的值; (2)①先求出运动t 秒后,点,A C 所表示的数,再分点A 在点C 左侧和点A 在点C 右侧两种情况,然后根据数轴的定义建立方程,解方程即可得;②先求出运动t 秒后,点,,A B C 所表示的数,从而可得AC 的长,再分点A 在点B 左侧和点A 在点B 右侧两种情况,分别求出AB 的值,代入化简,然后根据整式的无关型问题求解即可得. 【详解】解:(1)b 是最小的正整数,1b ∴=,()2250a c ++-=, 20,50a c ∴+=-=,解得2,5a c =-=, 故答案为:2,1,5-;(2)①由题意,运动t 后,点A 所表示的数是42t -,点C 所表示的数是5t +, 当点A 在点C 左侧时,5(42)6AC t t =+--=,解得13t =, 当点A 在点C 右侧时,42(5)6AC t t =--+=,解得133t =, 综上,t 的值为13或133;②由题意,运动t 后,点A 所表示的数是42t -,点B 所表示的数是1t +,点C 所表示的数是5t +,当421t t -=+时,13t =, 当425t t -=+时,73t =, 因为点A 在点C 左侧, 所以5(42)73AC t t t =+--=-,当点A 在点B 左侧,即01t <<时,1(42)33AB t t t =+--=-, 则22(73)(33)314(36)AC m AB t m t m m t +⋅=-+-=+-+, 由360m +=得:2m =-,即在01t <<运动时间内,当2m =-时,2AC m AB +⋅的值不随t 的改变而改变; 当点A 在点B 右侧,即713t <<时,42(1)33AB t t t =--+=-,则22(73)(33)143(36)AC m AB t m t m m t +⋅=-+-=-+-, 由360m -=得:2m =, 即在713t <<运动时间内,当2m =时,2AC m AB +⋅的值不随t 的改变而改变; 综上,存在一个常数m 使得2AC m AB +⋅的值在某段运动过程中不随t 的改变而改变,m 的值为2-或2. 【点睛】本题考查了数轴、一元一次方程的应用、绝对值和偶次方的非负性、整式等知识点,较难的是题(2)②,正确分两种情况讨论是解题关键.5.(1)2;(2)(1,4)-或21,3⎛⎫⎪⎝⎭;(3)(19,0)或(17,0)-【解析】 【分析】(1)根据抛物线的解析式可求得与坐标轴的坐标及顶点坐标,从而易得OB =OC ,由EF ⊥OB 即可求得EF 的长,从而求得DE 的长;(2)设点G 的坐标为(1,x ),分两种情况考虑:△COE ∽△EGB 和△COE ∽△EBG ,根据相似三角形的性质即可求得x 的值,从而可求得点G 的坐标;(3)分两种情况考虑:点P 在点A 的右侧和点P 在点A 的左侧;当点P 在点A 的右侧时,由D (1,4),则tan 4DOF ∠=,得出∠α =∠DOF ,然后根据三角形外角的性质可求得∠DPO =∠ADO ,进而可得△ADP ∽△AOD ,由相似三角形的性质可求得OP 的长,从而求得P 点的坐标;当点P 在点A 的左侧时, 作点P 关于抛物线对称轴的对称点P ',则点P '也满足题意. 【详解】(1)当2y x x =-++23=0时,解方程得:1213x x =-=, ∴抛物线2y x x =-++23与x 轴的交点坐标分别为A (-1,0)、B (3,0) ∴OB =3∵在2y x x =-++23中,当x =0时,3y = ∴抛物线与y 轴的交点C 的坐标为(0,3) ∴OC =3∵2223(1)4y x x x =-++=--+ ∴抛物线的顶点坐标为D (1,4) ∴DF =4,OF =1 ∵OB =OC =3,OC ⊥OB ∴∠OCB =∠OBC =45° ∵EF ⊥OB∴∠FEB =∠OBC =45° ∴EF =BF =OB -OF =3-1=2∴DE =DF -EF =4-2=2 (2)设点G 的坐标为(1,x )在Rt △OBC 及Rt △FBE 中,由勾股定理得:BC =BE ===∴CE BE BE =-==①若△COE ∽△EGB 则有OC EGCE BE=,∠GEB =∠OCE =45° 即OC ∙BE =CE ∙EG ∴点G 只能在点E 下方∵由(1)可得点E 的坐标为(1,2) ∴EG =2-x∴3)x ⨯=- 解得:x =-4即点G 的坐标为(1,-4) ②若△COE ∽△EBG 则有OC BECE EG=,∠BEG =∠OCE =45° 即OC ∙EG =CE ∙BE ∴点G 只能在点E 下方 ∴EG =2-x∴3(2)x ⨯-=解得:23x =即点G 的坐标为21,3⎛⎫⎪⎝⎭综上所述,满足条件的点G 的坐标为(1,4)-或21,3⎛⎫⎪⎝⎭(3)①如图,当点P 在点A 的左侧时,连接DP 、DA 、DO ∵tan 4DFDOF OF∠==,tan 4α= ∴∠DOF =∠α=∠DAO +∠DPO ,∠DOF =∠PDO +∠DPO ∴∠DAO =∠PDO ∴△OAD ∽△ODP ∴OA ODOD OP=,即2OD OA OP = ∵22211617OD OF DF =+=+= ∵OA =1 ∴OP =17∴点P 的坐标为(-17,0)②当点P 在点A 的右侧时,作点P (-17,0)关于抛物线的对称轴的对称点P ',则DP O DPO '∠=∠∴DAO DP O α'∠+∠=∠此时点P '满足题意,且其坐标为(19,0)综上所述,满足条件的点P 的坐标为(19,0)或(17,0)- 【点睛】本题考查了求二次函数与x 轴的交点、顶点坐标,相似三角形的判定与性质,勾股定理等知识,求得三角形相似是关键.注意分类讨论.6.(1)y =12x 2+x −32;(2)(3,6)或(-5,6)或(−1,-2);(3)−12<k <56且k ≠0或56<k <43【解析】 【分析】(1)把A (−3,0),B (1,0),52,2C ⎛⎫ ⎪⎝⎭代入y =ax 2+bx +c ,解方程组即可;(2)把C 点坐标代入直线CD ,得2k +b =52,分两种情况:①若AB 为平行四边形的边时,②若AB 为平行四边形的对角线时,得关于k 、b 的方程组,解方程组即可求解; (3)分两种情况:①当E 点在x 轴上方时,②E 点在x 轴下方时,根据当α=β时,列方程,可求出k 的值,进而求出k 的取值范围. 【详解】解:(1)设抛物线的解析式为y =ax 2+bx +c , ∵抛物线经过A (−3,0),B (1,0),C (2,52)三点, ∴93005422a b c a b c a b c ⎧⎪-+=⎪++=⎨⎪⎪++=⎩,∴12132a b c ⎧⎪⎪⎨⎪⎪-⎩===, ∴抛物线的解析式为y =12x 2+x −32; (2)如图1所示,将C 点坐标代入直线CD ,得2k +b =52, 当x =−1时,y =−k +b ,即E (−1,−k +b ).①若AB 为平行四边形的边时,则F (-1+4,−k +b )或F (-1-4,−k +b ),即:F (3,−k +b )或F (-5,−k +b ), 把F (3,−k +b )代入y =12x 2+x −32,得−k +b =6, 把F (-5,−k +b ),代入y =12x 2+x −32,得−k +b =6, 又∵2k +b =52, ∴k =76-,b =296∴F (3,6)或(-5,6);②若AB 为平行四边形的对角线时,则F 和E 关于x 轴对称, ∴F (−1,k -b ), ∴k -b =-2, 又∵2k +b =52, ∴k =16,b =136,∴F (−1,-2),综上所述:F 的坐标为(3,6)或(-5,6)或(−1,-2); (3)如图2所示,①当E点在x轴上方时,如图2所示,当α=β时,∵∠EHA=90°,∴∠AEC=90°,∴∠AEH=∠EGH,∵∠AHF=∠FHG=90°,∴AHF FHG∽,∴AE AH EG EH=,∵A (−3,0),E(−1,−k+b),G(bk-,0),∴()()2222221k bk bbk bk+-+=-+⎛⎫-++-+⎪⎝⎭,∴k2−bk−2=0,联立方程220522k bkk b⎧--=⎪⎨+=⎪⎩,解得k=−12(k=43舍去),随着E点向下移动,∠CEH的度数越来越大,∠EAH的度数越来越小,当E点和H点重合时(如图3所示),α和β均等于0,此时联立方程522k bk b⎧+⎪⎨⎪-+⎩==,解得5656kb⎧=⎪⎪⎨⎪=⎪⎩,因此当−12<k <56且k ≠0时,α>β;②E 点在x 轴下方时,如图4所示,当α=β时, ∵∠EHA =90°, ∴∠AEC =90°, 根据①可得此时k =43(k =−12舍去),随着E 点向下移动,∠CEH 的度数越来越小,∠EAH 的度数越来越大,因此当56<k <43时,α>β.综上所述可得,当α>β时,k 取值范围为−12<k <56且k ≠0或56<k <43.【点睛】本题考查的是一次函数、二次函数和相似三角形的判定和性质的综合应用,掌握待定系数法求函数解析式和数形结合思想方法是解题的关键.7.(1)①()1,4;②2n =或1n =-;(2)1m 或0m =或43m -<≤-;(3)12m ≤ 【解析】 【分析】(1)①根据顶点坐标的计算公式计算即可;②分两种情况讨论,根据二次函数的图象性质计算即可;(2)分三种情况讨论,再根据当x ≤2时,函数图象上有且只有2个点到x 轴的距离为2,列不等式组即可;(3)根据点P 和点M 横坐标的位置及二次函数的图象性质列不等式组即可; 【详解】(1)当m =2时,函数解析式为2y x 2x 3=-++, ①2122b xa ,24124444ac b y a ---===-,∴顶点坐标是()1,4;②∵2y x 2x 3=-++,10a =-<, ∴开口方向向下,对称轴为:1,x =当1n >时,则x n =时,2233y n n =-++=,此时函数值最大,220,n n ∴-=解得:2n =(0n =舍去), 当11n +<,即0n <时, ∴1x n =+时,3y =最大, ∴()()212133n n -++++=, 解得:1n =-(1n =舍去) 综上:2n =或1n =-; (2)221,y x x m =-+++()()2241148,m m ∴=-⨯-⨯+=+ 当480m +>即2m >-时, 如图,当2x =时,1,y m =+根据当x ≤2时,函数图象上有且只有2个点到x 轴的距离为2可知,12,m +> 1,m ∴>m ∴的范围是 1.m >当1x =时,22,y m =+= 此时符合题意, 则0,m =当当480m +<即2m <-时,如图,根据当x ≤2时,函数图象上有且只有2个点到x 轴的距离为2可知,同理可得:2212m m +>-⎧⎨+≤-⎩解得:43,m -<≤-所以m 的范围是:4 3.m -<≤- 综上:1m 或0m =或4 3.m -<≤- (3)2221(1)2y x x m x m =-+++=--++∴抛物线的顶点坐标为(1,2m +),对称轴为直线1x = ∵点P 的横坐标为﹣3m +2,∴点P 的坐标为(﹣3m +2,2971m m -++)∵以PM 为对角线构造矩形PQMN ,矩形的各边与坐标轴垂直,抛物线在矩形PQMN 内部的函数部分y 随着x 的增大而增大, ∴矩形中抛物线为对称轴左侧的部分,即1x ≤ 又点M 的坐标为(2m ,m ),∴2971121m m m m ⎧-++≥+⎨≤⎩ ∴102m ≤< ∵点P 在二次函数的图象上, 当点M 点在点P 的左侧时 ∴232m m <-+ ∴25m <∴232m m <-+∴25 m<∴25 m<当点M点在点P的右侧时∴232m m-+>∴25 m>∴21 52m≤<故当抛物线在矩形PQMN内部的函数部分y随着x的增大而增大时,12 m≤【点睛】本题主要考查了二次函数综合应用,二次函数的图象与性质,不等式组的解法,清晰的分类讨论是解题的关键.8.(1)5;(2)157t=;(3)1t=或52t=【解析】【分析】(1)直接运用勾股定理求解即可;(2)当CP平分∠ACB时,作PM⊥BC于M点,PN⊥AC于N点,作CQ⊥AB于Q点,利用等面积法分别表示△APC和△BPC,进而得出AP ACBP BC=,从而建立分式方程求解并检验即可;(3)根据等腰三角形的性质进行分类讨论,结合勾股定理求解即可.【详解】解:(1)由勾股定理:2222AB AC BC345++=,故答案为:4;(2)当CP平分∠ACB时,如图所示,作PM⊥BC于M点,PN⊥AC于N点,作CQ⊥AB于Q点,则由角平分线的性质得:PM=PN,∵1122APCS AP CQ AC PN==,1122BPCS BP CQ BC PM==,∴11221122APCBPCAP CQ AC PNSS BP CQ BC PM==,即:AP AC BP BC=,由题意,AP t=,则5BP AB AP t=-=-,∴3 54tt=-,解得:157t=,经检验,157t=是上述分式方程的解,∴当157t=时,CP平分∠ACB;(3)①若BC=BP,如图所示,此时,BP=BC=4,AP=AB-BP=1,∴t=1;②若CP=BP,如图所示,此时,作CT⊥AB于T点,∵1122ABCS AC BC AB CT==,∴125 CT=,在Rt△CBT中,2216 5BT BC CT-,∵AP t=,∴5BP t=-,5CP t=-,∴()169555PT BT BP t t =-=--=-, 在Rt △CPT 中,222CP CT PT =+, 即:()222129555t t ⎛⎫⎛⎫-=+- ⎪ ⎪⎝⎭⎝⎭, 解得:52t =;③若CP =CB ,由于P 在线段AB 上运动,则CP =CB 的情况不成立,故舍去; 综上,当1t =或52t =时,满足△BCP 为等腰三角形. 【点睛】本题考查了勾股定理和等腰三角形的性质,解决本题的关键是正确理解题意,熟练掌握勾股定理,能够根据等腰三角形的性质进行分类讨论解决.9.(1)224233y x x =--+;(2)35(,)22P -(3)存在,12(1,0),(5,0)Q Q --,34(27,0),(27,0)Q Q .【解析】 【分析】(1)根据待定系数法求抛物线解析式;(2)设224(,)33P t t --根据(1)的结论求得C 的坐标,进而求得AC 的解析式,过P 作PD ⊥x 轴交AC 于点D ,进而求得PD 的长,根据12APC C A S PD x x =⋅⋅-△求得APCS的表达式,进而根据二次函数的性质求得取得最大值时,t 的值,进而求得P 点的坐标; (3)分情况讨论,①//CM AQ ,②//AC MQ ,根据抛物线的性质以及平行四边形的性质先求得M 的坐标进而求得Q 点的坐标. 【详解】(1)二次函数22y ax bx =++的图象与x 轴交于()()3,0,1,0A B -两点,则093202a b a b =-+⎧⎨=++⎩解得2343a b ⎧=-⎪⎪⎨⎪=-⎪⎩∴抛物线解析式为224233y x x =--+(2)抛物线224233y x x =--+与y 轴交于点C ,令0x =,则2y =(0,2)C ∴设直线AC 的解析式为y kx b =+,由(3,0)A -,(0,2)C ,则302k b b -+=⎧⎨=⎩解得232k b ⎧=⎪⎨⎪=⎩∴直线AC 的解析式为223y x =+, 如图,过P 作PD ⊥x 轴交AC 于点D ,设224(,)33P t t --,则2(,2)3D t t +,2224222223333PD t t t t t ⎛⎫∴=--+-+=-- ⎪⎝⎭∴12APCC A S PD x x =⋅⋅-△212(2)323t t =⨯--⨯2239324t t t ⎛⎫=--=-++ ⎪⎝⎭ ∴当32t =-时,APCS取得最大值,此时222423435223332322t t ⎛⎫⎛⎫--+=-⨯--⨯-+= ⎪ ⎪⎝⎭⎝⎭ ∴35(,)22P -(3)存在,理由如下抛物线解析式为224233y x x =--+()228133x =-++∴抛物线的对称轴为直线1x =①如图,当//CM AQ 时,Q 点在x 轴上,//CM x 轴∴,M C 关于抛物线的对称轴直线1x =对称,(0,2)C(2,2)M ∴-2CM ∴=122AQ AQ ∴==(3,0)A -12(1,0),(5,0)Q Q ∴--②当//AC MQ 时,如图,设M 的纵坐标为n ,四边形ACQM 是平行四边形,点A ,Q 在x 轴上,则,AQ MC 的交点也在x 轴上, 202n +∴=解得2n =- 设(,2)M m -, 2242233x x ∴-=--+解得1x =-(12)M ∴--A 点到C 点是横坐标加3,纵坐标加2∴M 点到Q 点也是横坐标加3,纵坐标加2即(13,0)Q -±34(2(2Q Q ∴综上所述,存在点Q ,使得以A C M Q 、、、为顶点的四边形是平行四边形,Q 点的坐标为12(1,0),(5,0)Q Q --,34(2(2Q Q .【点睛】本题考查了二次函数综合,待定系数法,二次函数最值,二次函数的图象与性质,平行四边形的性质,综合运用以上知识是解题的关键.10.(1)①,②w 有最小值,w 的最值是(2)不变,(3)或【解析】 【分析】(1)①根据题意先求得各点的坐标,求得AD 的解析式,进而求得点E 的坐标,通过计算可得,进而可得,由可得出,依题意,设,解方程求解即可;②根据已知条件设,求得直线AP 的解析式,直线BE 的解析式,联立即可求得点G 的坐标,根据,令,根据二次函数的性质求得的最大值,即可求得的最小值;(2)根据题意过点N 作,依题意,点N 为ABP △的外心,N 为AB 垂直平分线上的点则点N 在抛物线的对称轴1x =上,设,,()1,0A -,()3,0B ,根据建立方程,解得,进而求得,即可求得;(3)作的外心H ,作轴,则,进而可得H 在AO 的垂直平分线上运动,根据题意当最大转为求当取得最小值时,最大,进而根据点到直线的距离,垂线段最短,即可求得,求得,勾股定理求得,即可求得点H 的坐标,根据对称性求得另一个坐标. (1)抛物线y =x 2﹣2x ﹣3与x 轴交于A 、B 两点,与y 轴交于C 点,D 为抛物线顶点. 令0x =,解得3y =-,则()0,3C - 令0y =,则,解得121,3x x =-=则,则①设直线AD 的解析式为y kx b =+ 则 解得令0x =,则,,依题意,设解得(舍)②点P 在第四象限的抛物线上,AP 、BE 交于点G ,如图,设,()1,0A -设直线AP 的解析式为则解得∴设直线AP 的解析式为设直线BE 的解析式为11y k x b =+∴直线BE 的解析式为联立解得∴=令存在最大值,则存在最小值当时,存在最大值,最大值为则的最小值为∴ w 有最小值,w 的最值是(2) 不变,,理由如下,如图,过点N 作,依题意,点N 为ABP △的外心N 为AB 垂直平分线上的点,即点N 在抛物线的对称轴1x =上, PM x ⊥,,轴,∴设,,()1,0A -,()3,0B ,N 为ABP △的外心,,则即解得即(3) 如图,作的外心H ,作轴,则H在AO的垂直平分线上运动依题意,当最大时,即最大时,是的外心,,即当最大,最大则当取得最小值时,最大,即当HQ⊥直线x=1时,取得最小值时,此时∴在中,.根据对称性,则存在.综上所述,或.【点睛】本题考查了三角形的外心,垂径定理,抛物线与三角形面积计算,二次函数的性质求最值问题,抛物线与圆综合,运用转化思想是解题的关键.11.(1)证明见解析,(2)证明见解析,(3)6 【解析】 【分析】(1)证明△BCE ≌△CDF 即可;(2)取BF 中点O ,连接OA 、OG ,证明A 、B 、G 、F 四点共圆即可;(3)作AK ⊥BG 于K ,HN ⊥AB 于N ,GM ⊥AB 于M ,根据等腰三角形的性质得出12BK AK ,进而得出∠BAG 的正切值,求出AH 长即可. 【详解】(1)证明∵四边形ABCD 是正方形, ∴CB =CD ,∠BCD =90°, ∵CF ⊥BE , ∴∠BGC =90°,∴∠CBE +∠GCB =90°,∠GCB +∠DCF =90°, ∴∠CBE =∠DCF , ∴△CBE ≌△DCF (AAS ), ∴CE =DF ;(2)取BF 中点O ,连接OA 、OG , ∵∠BAF =90°, ∴OA =OF =OB , 同理,OG =OF =OB ,∴A 、B 、G 、F 四点在以O 为圆心,OA 为半径的圆上,如图所示, ∴∠ABF =∠AGF ;(3)作AK ⊥BG 于K ,HN ⊥AB 于N ,GM ⊥AB 于M , ∵四边形ABCD 是正方形, ∴AB =CB ,∠ABC =90°, ∵AK ⊥BG , ∴∠AKB =90°,∴∠BAK +∠ABK =90°,∠ABK +∠CBG =90°, ∴∠BAK =∠CBG , ∴△BAK ≌△CBG (AAS ), ∴AK =BG ; ∵AG =AB =11, ∴1122BK BG AK ==, ∴1tan tan 2BAK CBG ∠=∠=, ∴BC =2EC ,由(1)得,DC =2DF , ∴1tan 2ABF ∠=, ∴12NH BN = ∵MG ∥CB , ∴∠MGB =∠CBG , ∴MG =2MB ,AM =11-MB , 222(11)(2)11MB MB -+=,解得,1225MB =,20MB =(舍去), 335AM =,445MG =, ∴4tan 3MAG ∠=,∴43NH AN =, ∵12NH BN =, ∴32114BN AN NH NH +=+=, 解得,4NH =,则3AN =,225AH AN NH =+=,GH =11-5=6.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的性质,解直角三角形,圆周角定理等知识,解题关键是恰当的作辅助线,熟练运用相关性质进行推理证明.12.(1)(2)点P 的坐标为(−3,4) (3)存在,点M 的坐标为:,,【解析】 【分析】(1)由直线方程可求得A 、B 两点的坐标,代入抛物线解析式可求得b 、c 的值,可求得抛物线解析式,再令y =0可求得C 点坐标;(2)过E 作EH ⊥PD 于H ,可求得EH ,设出P 点坐标,则可表示出D 、E 、F 的坐标,从而可表示出PD 和EF ,利用梯形面积公式可表示出四边形PDEF 的面积,根据二次函数的最值,可求得P 点坐标;(3)可求得直线AG 和A ′G ′的方程,从而可表示出M 、N 点的坐标,从而可表示出MN 、FM 、FN 的长,分MN =FM 、MN =FN 和FM =FN 三种情况分别求解即可.(1)∵直线4y x =+与x 轴、y 轴分别交于A 、B 两点,∴A (−4,0),B (0,4). ∵抛物线2y x bx c =-++经过A 、B 两点,∴.解得.∴抛物线的解析式为.(2)如图,过点E作EH⊥PD于点H,则EH∥OA.∵OA=OB=4,∴∠OAB=45°.∴∠HDE=45°,且DE=.∴HE=HD=2.设点P的坐标为(a,--3a+4),则点D为(a,a+4),点E为(a+2,a+6),点F为(a+2,--7a-6).∴|PD|=-−3a+4-(a+4)=--4a,|EF|=--7a-6-(a+6)=--8a-12.∴S四边形PDEF=HE×(PD+EF)= ×2(--4a--8a-12)=-2-12a-12=-2(a+3)2+6.∴当a=-3时,S四边形PDEF有最大值6.此时点P的坐标为(−3,4).(3)满足条件的点M的坐标为:,,.理由如下:∵OG=2,∴点G的坐标为(0,-2),且A(-4,0).=+,把A、G坐标代入可得,解得.设直线AG的方程为y kx n。

中考数学压轴题100题精选及答案(全)

中考数学压轴题100题精选及答案(全)
【002】 如图16,在Rt△ABC中,∠C=90°,AC= 3,AB= 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).
(3)第(2)问中的一次函数的图象与 轴、 轴分别交于C、D,求过A、B、D三点的二次函数的解析式;
(4)在第(3)问的条件下,二次函数的图象上是否存在点E,使四边形OECD的面积 与四边形OABD的面积S满足: ?若存在,求点E的坐标;
若不存在,请说明理由.
【017】如图,已知抛物线 经过 , 两点,顶点为 .
【012】如图,在平面直角坐标系 中,半径为1的圆的圆心 在坐标原点,且与两坐标轴分别交于 四点.抛物线 与 轴交于点 ,与直线 交于点 ,且 分别与圆 相切于点 和点 .
(1)求抛物线的解析式;
(2)抛物线的对称轴交 轴于点 ,连结 ,并延长 交圆 于 ,求 的长.
(3)过点 作圆 的切线交 的延长线于点 ,判断点 是否在抛物线上,说明理由.
(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);
(3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.
请直接写出相应的t值。
【004】如图,已知直线 与直线 相交于点 分别交 轴于 两点.矩形 的顶点 分别在直线 上,顶点 都在 轴上,且点 与点 重合.

中考数学几何选择填空压轴题精选

中考数学几何选择填空压轴题精选

中考数学几何选择填空压轴题精选一.选择题(共13小题)1.(2013•蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为()①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HE•HB.A.1个B.2个C.3个D.4个2.(2013•连云港模拟)如图,Rt△ABC中,BC=,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2013,分别记△BCE1、△BCE2、△BCE3、…、△BCE2013的面积为S1、S2、S3、…、S2013.则S2013的大小为()A.B.C.D.3.如图,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论:①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有( )A.1个B.2个C.3个D.4个4.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论:①EC=2DG;②∠GDH=∠GHD;③S△CDG=S▭DHGE;④图中有8个等腰三角形.其中正确的是()A.①③B.②④C.①④D.②③5.(2008•荆州)如图,直角梯形ABCD中,∠BCD=90°,AD∥BC,BC=CD,E为梯形内一点,且∠BEC=90°,将△BEC绕C点旋转90°使BC与DC重合,得到△DCF,连EF交CD于M.已知BC=5,CF=3,则DM:MC的值为()A.5:3B.3:5C.4:3D.3:46.如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交BD于点02,同样以AB,AO2为两邻边作平行四边形ABC2O2.…,依此类推,则平行四边形ABC2009O2009的面积为()A.B.C.D.7.如图,在锐角△ABC中,AB=6,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值是( )A.B.6C.D.38.(2013•牡丹江)如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①P M=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是()A.1个B.2个C.3个D.4个9.(2012•黑河)Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论:①(BE+CF)=BC;②S△AEF≤S△ABC;③S四边形AEDF=AD•EF;④AD≥EF;⑤AD与EF可能互相平分,其中正确结论的个数是()A.1个B.2个C.3个D.4个10.(2012•无锡一模)如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD 落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连接GF.下列结论①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG.其中正确的结论有() A.①④⑤B.①②④C.③④⑤D.②③④11.如图,正方形ABCD中,O为BD中点,以BC为边向正方形内作等边△BCE,连接并延长AE交CD于F,连接BD分别交CE、AF于G、H,下列结论:①∠CEH=45°;②GF∥DE;③2OH+DH=BD;④BG=DG;⑤.其中正确的结论是()A.①②③B.①②④C.①②⑤D.②④⑤12.如图,在正方形ABCD中,AB=4,E为CD上一动点,AE交BD于F,过F作FH⊥AE于H,过H作GH⊥BD 于G,下列有四个结论:①AF=FH,②∠HAE=45°,③BD=2FG,④△CEH的周长为定值,其中正确的结论有()A.①②③B.①②④C.①③④D.①②③④13.(2013•钦州模拟)正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,正方形BEFG的边长为4,则△DEK的面积为()A.10B.12C.14D.16二.填空题(共16小题)14.如图,在梯形ABCD中,AD∥BC,EA⊥AD,M是AE上一点,F、G分别是AB、CM的中点,且∠BAE=∠MCE,∠MBE=45°,则给出以下五个结论:①AB=CM;②A E⊥BC;③∠BMC=90°;④EF=EG;⑤△BMC是等腰直角三角形.上述结论中始终正确的序号有_________ .15.(2012•门头沟区一模)如图,对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB、BC、CA至A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1、B1、C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1,B1C1,C1A1至A2,B2,C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2,B2,C2,得到△A2B2C2,记其面积为S2…,按此规律继续下去,可得到△A5B5C5,则其面积为S5= _________ .第n 次操作得到△A n B n C n,则△A n B n C n的面积S n= _________ .(2009•黑河)如图,边长为1的菱形ABCD中,∠DAB=60度.连接对角线AC,以AC为边作第二个菱形ACC1D1,16.使∠D1AC=60°;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第n个菱形的边长为_________ .17.(2012•通州区二模)如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;…;∠A2011BC与∠A2011CD的平分线相交于点A2012,得∠A2012,则∠A2012= _________ .18.(2009•湖州)如图,已知Rt△ABC,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连接BE1交CD1于D2;过D2作D2E2⊥AC于E2,连接BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点D4,D5,…,D n,分别记△BD1E1,△BD2E2,△BD3E3,…,△BD n E n的面积为S1,S2,S3,…S n.则S n= _________ S△ABC(用含n的代数式表示).19.(2011•丰台区二模)已知:如图,在Rt△ABC中,点D1是斜边AB的中点,过点D1作D1E1⊥AC于点E1,连接BE1交CD1于点D2;过点D2作D2E2⊥AC于点E2,连接BE2交CD1于点D3;过点D3作D3E3⊥AC于点E3,如此继续,可以依次得到点D4、D5、…、D n,分别记△BD1E1、△BD2E2、△BD3E3、…、△BD n E n的面积为S1、S2、S3、…S n.设△ABC的面积是1,则S1= _________ ,S n= _________ (用含n的代数式表示).20.(2013•路北区三模)在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为_________ .21.如图,已知Rt△ABC中,AC=3,BC=4,过直角顶点C作CA1⊥AB,垂足为A1,再过A1作A1C1⊥BC,垂足为C1,过C1作C1A2⊥AB,垂足为A2,再过A2作A2C2⊥BC,垂足为C2,…,这样一直做下去,得到了一组线段CA1,A1C1,C1A2,…,则CA1= _________ ,= _________ .22.(2013•沐川县二模)如图,点A1,A2,A3,A4,…,A n在射线OA上,点B1,B2,B3,…,B n﹣1在射线OB上,且A1B1∥A2B2∥A3B3∥…∥A n﹣1B n﹣1,A2B1∥A3B2∥A4B3∥…∥A n B n﹣1,△A1A2B1,△A2A3B2,…,△A n﹣1A n B n﹣1为阴影三角形,若△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为_________ ;面积小于2011的阴影三角形共有_________ 个.23.(2010•鲤城区质检)如图,已知点A1(a,1)在直线l:上,以点A1为圆心,以为半径画弧,交x轴于点B1、B2,过点B2作A1B1的平行线交直线l于点A2,在x轴上取一点B3,使得A2B3=A2B2,再过点B3作A2B2的平行线交直线l于点A3,在x轴上取一点B4,使得A3B4=A3B3,按此规律继续作下去,则①a=_________ ;②△A4B4B5的面积是_________ .24.(2013•松北区二模)如图,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=6,那么AC的长等于_________ .25.(2007•淄川区二模)如图,将矩形ABCD的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH,若EH=3,EF=4,那么线段AD与AB的比等于_________ .26.(2009•泰兴市模拟)梯形ABCD中AB∥CD,∠ADC+∠BCD=90°,以AD、AB、BC为斜边向形外作等腰直角三角形,其面积分别是S1、S2、S3且S1+S3=4S2,则CD= _________ AB.27.如图,观察图中菱形的个数:图1中有1个菱形,图2中有5个菱形,图3中有14个菱形,图4中有30个菱形…,则第6个图中菱形的个数是_________ 个.28.(2012•贵港一模)如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=15cm2,S△BQC=25cm2,则阴影部分的面积为_________ cm2.29.(2012•天津)如图,已知正方形ABCD的边长为1,以顶点A、B为圆心,1为半径的两弧交于点E,以顶点C、D为圆心,1为半径的两弧交于点F,则EF的长为_________ .30.如图,ABCD是凸四边形,AB=2,BC=4,CD=7,求线段AD的取值范围().参考答案与试题解析一.选择题(共13小题)1.(2013•蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为( )①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HE•HB.A.1个B.2个C.3个D.4个解答:解:作EJ⊥BD于J,连接EF①∵BE平分∠DBC∴EC=EJ,∴△DJE≌△ECF∴DE=FE∴∠HEF=45°+22.5°=67.5°∴∠HFE==22。

中考数学填空题压轴题(含答案)

中考数学填空题压轴题(含答案)

根据考试大纲,填空压轴题仍将以探究规律类型题为主要考察方向。

题型一:数字规律【例1】一组按一定规律排列的式子:-,,-,,…,(0a ≠),则第n 个式子是 (n为正整数).【答案】【例2】按一定规律排列的一列数依次为:,916,79,54,31 ……,按此规律排列下去,这列数中的第5个数是 ,第n 个数是 .【答案】1125,122+n n【例3】一组按规律排列的整数5,7,11,19,…,第6个整数为____ _,根据上述规律,第n 个整数为____ (n 为正整数).【答案】67;32+n (n 为正整数)【例4】将除去零以外的自然数按以下规律排列,根据第一列的奇数行的数的规律,写出第一列第9行的数为 ,再结合第一行的偶数列的数的规律,判断2011所在的位置是第 行第 列.【答案】81;第45行第15列2a 52a 83a 114a 31(1)n na n --例题精讲填空题压轴题【例5】某些植物发芽有这样一种规律:当年所发新芽第二年不发芽,老芽在以后每年都发芽.发芽规律见下表(设第一年前的新芽数为a )第n 年 1 2 3 4 5 … 老芽率 a a 2a 3a 5a … 新芽率 0 a a 2a 3a … 总芽率a2 a3a5a8a…照这样下去,第8年老芽数与总芽数的比值为 .【解析】由规律可以看出,从第3年开始,老芽率、新芽率,总芽率都分别是前两年之和,因此,第8年的老芽为21,总芽为34,因此答案为2134. 【解析】2134题型二:多边形上存在的点数【例6】如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是 .【解析】此类型题首先要找到边数的特点,然后找每条边上点的数目,第n 个图形是2n +边形,而且每个边上有n 个点。

【答案】(2)n n +或22n n +或2(1)1n +-【例7】用棋子摆出下列一组“口”字,按照这种方法摆下去,则摆第n 个“口”字需用棋子___________【答案】4n【例8】用“O”摆出如图所示的图案,若按照同样的方式构造图案,则第10个图案需要 个“O”.① ② ③ ④ 【答案】181第2个“口”第1个“口” 第3个“口”第n 个“口”………………第1个图形第2个图形第3个图形第4个图形题型三:藏头露尾型【例9】如下图是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中由 个基础图形组成.【解析】此类问题重点要找到“头是谁”“尾是谁”,①13+;②132+⨯;③133+⨯,……第n 个31n + 【答案】31n +【例10】搭建如图①的单顶帐篷需要17根钢管,这样的帐篷按图②,图③的方式串起来搭建,则串7顶这样的帐篷需要 根钢管.图1 图2 图3【答案】83.题型四:成倍数变化型【例11】如图,ABC ∆中,90ACB ∠=︒,1AC BC ==,取斜边的中点,向斜边做垂线,画出一个新的等腰直角三角形,如此继续下去,直到所画直角三角形的斜边与ABC ∆的BC 边重叠为止,此时这个三角形的斜边长为_____.【解析】注意每一次变化所变化的倍数 【答案】81;11(2)2n n - 【例12】如图,以边长为1的正方形的四边中点为顶点作四边形,再以所得四边形四边中点为顶点作四边形,......依次作下去,图中所作的第三个四边形的周长为________; 所作的第n 个四边形的周长为_________________.【答案】2,24()2n【例13】如图,在ABC ∆中,A α∠=,ABC ∠的平分线与ACD ∠的平分线交于点1A ,得1A ∠,则1______A ∠=.1A BC ∠的平分线与1ACD ∠的平分线交于点2A ,得2A ∠,……,2009A BC ∠的平分线与2009A CD ∠的平分线交于点2010A ,得2010A ∠,则2010A ∠= .【答案】2α,20102α(1)(2)(3)……A 2A 1DC A【例14】如图,小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形1111A B C D ,正方形1111A B C D 的面积为 ; 再把正方形1111A B C D 的各边延长一倍得到正方形2222A B C D , 如此进行下去,正方形n n n n D C B A 的面积为 . (用含有n 的式子表示,n 为正整数)【答案】5,n5【例15】把一个正三角形分成四个全等的三角形,第一次挖去中间的一个小三角形,对剩下的三个小正三角形再重复以上做法……一直到第n 次挖去后剩下的三角形有 个.第一次 第二次 第三次 第四次【答案】3n题型五:相似与探究规律【例16】已知ABC AB AC m ∆==中,,72ABC ∠=︒,1BB 平分ABC ∠交AC 于1B ,过1B 作12B B //BC交AB 于2B ,作23B B 平分21AB B ∠,交AC 于3B ,过3B 作34//B B BC ,交AB 于4B ……依次进行下去,则910B B 线段的长度用含有m 的代数式可以表示为 .【答案】m 6215⎪⎪⎭⎫⎝⎛-【例17】如图,矩形纸片ABCD 中,6,10AB BC ==.第一次将纸片折叠,使点B 与点D 重合,折痕与BD交于点1O ;设1O D 的中点为1D ,第二次将纸片折叠使 点B 与点1D 重合,折痕与BD 交于点2O ;设21O D 的中点 为2D ,第三次将纸片折叠使点B 与点2D 重合,折痕与BD 交于点3O ,… .按上述方法折叠,第n 次折叠后的折痕与BD 交于点n O ,则1BO = ,n BO = .第一次折叠 第二次折叠 第三次折叠【答案】2;12332n n -- B AD C 1O 1O 2O 1D 1D 2D 1O 2O 3O B AD C B ADCBA DC【例18】如图,直线x y 33=,点1A 坐标为(1,0),过点1A 作x 轴的垂线交直线于点1B ,以原点O 为圆心,1OB 长为半径画弧交x 轴于点2A ;再过点2A 作x 轴的垂线 交直线于点2B ,以原点O 为圆心,2OB 长为半径画弧交x 轴于 点3A ,…,按此做法进行下去,点4A 的坐标为( , ); 点n A ( , ).【答案】(938,0)(1)332(-n ,0) 【例19】如图,以等腰三角形AOB 的斜边为直角边向外作第2个等腰直角三角形1ABA ,再以等腰直角三角形1ABA 的斜边为直角边向外作第3个等腰直角三角形11A BB ,……,如此作下去,若1OA OB ==,则第n 个等腰直角三角形的面积n S = ________(n 为正整数).【解析】由题干可知:123124 (222)S S S ===,,可知22n n S -=【答案】22n -【例20】如图,n +1个边长为2的等边三角形有一条边在同一直线上,设211B D C ∆的面积为1S ,322B D C ∆的面积为2S ,…,1n n n B D C +∆的面积为n S ,则2S = ;n S =____ (用含n 的式子表示).【答案】233,31nn + 【例21】如图,P 为ABC ∆的边BC 上的任意一点,设BC a =,当1B 、1C 分别为AB 、AC 的中点时,1112B C a =,当2B 、2C 分别为1BB 、1CC 的中点时,2234B C a =,当3B 、3C 分别为2BB 、2CC 的中点时,3378B C a =,当4B 、4C 分别为3BB 、3CC 的中点时,441516B C a =当5B 、5C 分别为4BB 、4CC 的中点时,55_____B C =当n B 、n C 分别为1n BB -、1n CC -的中点时,则n n B C = ;设ABC ∆中BC 边上的高为h ,则n n PB C ∆的面积为______(用含a 、h 的式子表示).【答案】a 3231,a n n 212-, ah n n 12212+-D 4D 3D 2D 1C 5C 4C 3C 2C 1B 5B 4B 3B 2B 1A……B 2B 1A 1BOAC 3B 3B 2C 2C 1B 1CBA【例22】如图,在梯形ABCD 中,AB CD ∥,AB a =,CD b =,E 为边AD 上的任意一点,EF AB ∥,且EF 交BC 于点F .若E 为边AD 上的中点,则______EF =(用含有a ,b 的式子表示);若E 为边AD 上距点A 最近的n 等分点(2n ≥,且n 为整数),则______EF =(用含有n ,a ,b 的式子表示).【答案】2a b +;(1)b n an+-【例23】已知在ABC ∆中,BC a =.如图1,点1B 、1C 分别是AB 、AC 的中点,则线段11B C 的长是_______; 如图2,点1B 、2B ,1C 、2C 分别是AB 、AC 的三等分点,则线段1122B C B C +的值是__________;如图3, 点12......、、、n B B B ,12......、、、n C C C 分别是AB 、AC 的(1)n +等分点,则线段1122n n B C B C B C ++⋅⋅⋅+的值是 ______.【答案】1,2a a ,12na 【例24】已知:如图,在Rt ABC ∆中,点1D 是斜边AB 的中点,过点1D 作11D E AC ⊥于点1E ,连接1BE 交1CD 于点2D ;过点2D 作22D E AC ⊥于点2E ,连接2BE ,交1CD 于点3D ;过点3D 作33D E AC ⊥于点3E ,如此继续,可以依次得到点4D 、5D 、…n D , 分别记11BD E ∆、22BD E ∆、33BD E ∆、…n n BD E ∆的面积 为1S 、2S 、3S …n S .设ABC ∆的面积是1,则1______S =, ______n S =(用含n 的代数式表示).【答案】14,21(1)n +题型六:折叠与探究规律【例25】如图,将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN .设2AB =,当12CE CD =时,则________AMBN=. 若1CE CD n =(n 为整数),则_______AM BN=.(用含n 的式子表示) 【答案】15;1)1(22+-n n【例26】如图,正方形ABCD ,E 为AB 上的动点,(E 不与A 、B 重合)连接DE ,作DE 的中垂线,交图3图2图12n-1B 2C 2A BCB 1C 1C 1B 1CBA FE D CBANMFEDCBAB321AD 于点F .⑴若E 为AB 中点,则______DFAE= ⑵若E 为AB 的n 等分点(靠近点A ),则________DFAE= 【答案】251,42n n+题型七:其他类型【例27】图1是一个八角星形纸板,图中有八个直角,八个相等的钝角,每条边都相等.如图2将纸板沿虚线进行切割,无缝隙无重叠的拼成图3所示的大正方形,其面积为8+3中线段AB 的长为 .图1 图2 图31+【例28】如图,1P 是一块半径为1的半圆形纸板,在1P 的左下端剪去一个半径为12的半圆后得到图形2P ,然后依次剪去一个更小的半圆(其直径为前一个被剪掉半圆的半径)得图形34,,,,n P P P ,记纸板n P 的面积为n S ,试计算求出=-23S S ;并猜想得到1n n S S --=()2n ≥【答案】1)41(2,32---n ππ【例29】如图,图①是一块边长为1,周长记为1P 的正三角形纸板,沿图①的底边剪去一块边长为12的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的21)后,得图③,④,…,记第)3(≥n n 块纸板的周长为n P ,则=-34P P ;1--n n P P = .P 3P 2P 1【答案】81,121-⎪⎭⎫⎝⎛n【例30】已知一个面积为S 的等边三角形,现将其各边n (n 为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如图所示).当8n =时,共向外作出了 个小等边三角形;当n k =时,共向外作出了 个小等边三角形,这些小等边三角形的面积和是 (用含k 的式子表示).【答案】18; 【例31】在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(10),,点D 的坐标为(02),.延长CB 交x 轴于点1A ,作正方形111A B C C ;延长11C B 交x 轴于点2A ,作正方形2221A B C C …按这样 的规律进行下去,第3个正方形的面积为________;第n 个正方形的面积为___________(用含n 的代数式表示).【答案】4235)(,22235-⎪⎭⎫ ⎝⎛n【例32】如图所示,111()P x y ,、222()P x y ,,……()n n n P x y ,在函数4y x=(0x >)的图象上,11OP A ∆,212P A A ∆,323P A A ∆…1n n n P A A -∆都是等腰三角形,斜边1OA 、12A A …1n n A A -,都在x 轴上, 则1_____y =,12______n y y y ++⋅⋅⋅+=【答案】2 , 2n【例33】如图所示,直线1+=x y 与y 轴交于点1A ,以1OA 为边作正方形111OA B C ,然后延长11C B 与直线1+=x y 交于点2A ,得到第一个梯形112AOC A ;再以12C A 为边作正方形1222C A B C ,同样延长22C B 与直线1+=x y 交于点3A 得到第二个梯形2123A C C A ;,再以23C A 为边作正方形2333C A B C ,延长33C B ,得到第三个梯形;……则第2个梯形2123A C C A 的面积是 ;第n (n 是正整数)个梯形的面积是 (用含n 的式子表示).3(-2)k 23(2)k s k-n =3n =5……n =4① ② ③ ④C 2B 2A 2C 1B 1A 1DC B AO yx【答案】6;2n 2223-⨯或1n 423-⨯【例34】在平面直角坐标系中,我们称边长为1且顶点的横纵坐标均为整数的正方形为单位格点 正方形,如图,菱形ABCD 的四个顶点坐标分别是(80)-,,(04),,(80),,(04)-,,则菱形ABCD 能覆盖的单位格点正方形的个数是_______个;若菱形n n n n A B C D 的四个顶点坐标分别为(20)-,n , (0),n ,(20),n ,(0)-,n (n 为正整数), 则菱形n n n n A B C D 能覆盖的单位格点正方形的 个数为_________(用含有n 的式子表示).【答案】单位格点个数为48,单位格点个数为n n 442-【例35】在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.请你观察图中正方形1111A B C D 、2222A B C D 、3333A B C D 每个正方形四条边上的整点的个数.按此规律推算出正方形10101010A B C D 四条边上的整点共有 个.【答案】80【例36】对于每个正整数n ,抛物线2211(1)(1)n n n n n y x x +++=-+与x 轴交于n A ,n B 两点,若n n A B 表示这两点间的距离,则n n A B = (用含n 的代数式表示);112220112011A B A B A B +++的值为 .【答案】()20122011,11+n nyxOD 1D 2D 3C 1C 2C 3B 1B 2B 3A 3A 2A 1123-1-2-3-3-2-1321-8-448ODC BAyx。

中考数学填空题压轴题精选(1)

中考数学填空题压轴题精选(1)

2017年中考压轴填空题精编2301 .如图,在△ ABC中,/ ACB= 90°, AC= BC= 1, E、F 为线段AB上两动点,且/ ECF= 45°,过点E、F分别作AC BC的垂线相交于点P,垂足分别为G H,贝U PG PH的值为_________________ .22302.已知抛物线C:y = ax + bx+ c的顶点为P,与x轴交于A、B两点(点A在点B左侧),点P关于x2 轴的对称点为Q抛物线C2的顶点为A,且过点Q对称轴与y轴平行,若抛物线C2的解析式为y = x+ 2x + 1,直线y = 2x + m经过A Q两点,则抛物线C的解析式为 _________________________________ .2303 •有四张正面分别标有数字-3, 0, 1, 5的不透明卡片,它们除数字不同外其余全部相同,现将它们1 一ax 1背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a,则使关于x的分式方程+ 2= 有正X—2 2-x整数解的概率为______________ .22304.如图,点A在抛物线y= x —3x的对称轴上,点B在抛物线上,若AB的最小值为2,则点A的坐标为____________ .2305.如图,在四边形ABCD中,/ ABC= 120。

,/ ADC= 90°, AB= 2, BC= 4, BD平分/ ABC 贝U AD=2306.已知直线y= 1x-1与双曲线y = ?的一个交点坐标为(a, b) (a<0),则1+点的值为________________________2 x a 2 b5y =-相交于B C两点,若AB= 5AC贝U k的值为x2 22308.已知二次函数y = —(x-m) + m+ 1,当—2<x< 1时有最大值4,贝U m的值为2309.如图,在厶ABC中, AB= AC= 5, BC= 6,点P是BC边上一动点,且/ APD=Z B,射线PD交AC于D.若以A为圆心,以AD为半径的圆与BC相切,则BP的长是________________ .2310•将一副三角板按如图所示放置,/ BAC=/ BDC= 90。

2022年中考数学复习之挑战压轴题(填空题):图像的平移、折叠、旋转(含答案)

2022年中考数学复习之挑战压轴题(填空题):图像的平移、折叠、旋转(含答案)

2022年中考数学复习之挑战压轴题(填空题):图像的平移、折叠、旋转一.填空题(共10小题)1.(2021秋•鼓楼区校级期末)如图,在△ABC中,AB=AC,BC=6,tan∠ACB=2,点P在边AC上运动(可与点A,C重合),将线段BP绕点P逆时针旋转120°,得到线段DP,连接BD,CD,则CD长的最小值为.2.(2021秋•历城区期末)如图,在矩形ABCD中,AB=3,AD=9,点E,F分别在边AD,BC上,且AE=2,沿直线EF翻折,点A的对应点A′恰好落在对角线AC上,点B的对应点为B′,分别在线段EF,A′B′上取点M,N,沿直线MN二次翻折,使点F与点E重合,则线段MN的长为.3.(2021•綦江区校级三模)如图,在矩形ABCD中,E为AB边上的一点,将△ADE沿DE 翻折,得到△DEF,且F在BC边上,G为AD边上的一点,过点G作AD的垂线交DF 于点H,连接AH交DE于点P,连接AF,若AB=7,BF=3,HA平分∠GHF,则AG 的长度为.4.(2021•马鞍山模拟)如图,将边长为4的正方形ABCD纸片沿EF折叠,点C落在AB边上的点G处,点D与点H重合,CG与EF交于点P,取GH的中点Q连接PQ,则△GPQ的周长最小值是.5.(2020•海安市模拟)如图,矩形ABCD中,AB=3,BC=4,点E是AB边上一点,且AE=,点F是边BC上的任意一点,把△BEF沿EF翻折,点B的对应点为G,连接AG,CG,则四边形AGCD的面积的最小值为.6.(2021春•东阳市期末)在综合实践课上,小明把边长为2cm的正方形纸片沿着对角线AC剪开,如图1所示.然后固定纸片△ABC,把纸片△ADC沿AC的方向平移得到△A′D′C′,连A′B,D′B,D′C,在平移过程中:(1)四边形A′BCD′的形状始终是;(2)A′B+D′B的最小值为.7.(2021•路北区一模)如图,边长为1的正方形ABCD在等边长的正六边形外部做顺时针滚动,滚动一周回到初始位置时停止.第一次滚动时正方形旋转了°,点A在滚动过程中到出发点的最大距离是.8.(2021•河北区模拟)如图,四边形ABCD是边长为2的正方形,E是BC边的中点,F 是直线DE上的动点.连接CF,将线段CF逆时针旋转90°得到CG,连接EG,则EG 的最小值是.9.在正方形ABCD中,点P是对角线AC上一点,连接DP,将DP绕点D逆时针旋转90°后得到线段DE,连接PE,点C关于直线PE的对称点是C′,连接C′E、C′P、C′A.若四边形AC′ED是平行四边形,PC=2,则平行四边形AC′ED的面积是.10.(2020•衢州二模)如图,在矩形ABCD中,AD=8,AB=6,点E是CD的中点,过点E作EF∥BC,交对角线BD于点F.将△DEF绕点D逆时针方向旋转得到△DE1F1,连接CE1,BF1,设旋转角度为α(0°<α<180°),则=;连接CF1,当△DF1B 为直角三角形时,CF1=.2022年中考数学复习之挑战压轴题(填空题):图像的平移、折叠、旋转(10题)参考答案与试题解析一.填空题(共10小题)1.(2021秋•鼓楼区校级期末)如图,在△ABC中,AB=AC,BC=6,tan∠ACB=2,点P在边AC上运动(可与点A,C重合),将线段BP绕点P逆时针旋转120°,得到线段DP,连接BD,CD,则CD长的最小值为.【考点】轴对称﹣最短路线问题;旋转的性质;解直角三角形;等腰三角形的性质.【专题】图形的相似;推理能力.【分析】以BC为边构建出和△BPD相似的三角形,通过将CD边转化为其他边来求值.【解答】解:如图所示,以BC为底边向上作三等腰△BQC,连接BP.由题意可得△BQC和△BPQ均为顶角为120°的等腰三角形,可得,∠QBC=∠PBD=30°,∴∠QBC﹣∠QBD=∠PBD﹣∠QBD,∴∠PBQ=∠DBC,∴△PBQ∽△DBC,∴,∴当PQ⊥AC时,有PQ最小,即此时CD最小,如图所示,设OP′⊥AC,延长AQ与BC交K,此时QP'为QP的最小值,可得AK⊥BC,∵△BQC中,∠BQC=120°,BC=6,∴BK=3,∠QBK=30°,∴QK==,∵tan∠ACB==,KC=3,∴AK==,∴AQ=AK﹣QK=,AC==,∵∠AP'Q=∠AKC=90°,∠QAP'=∠CAK,∴△AQP'∽△ACK,∴,∴,∴QP'=,∴CD==.【点评】本题考查的是瓜豆原理的知识点,重难点在于构造相似三角形的手拉手模型,属于难题.2.(2021秋•历城区期末)如图,在矩形ABCD中,AB=3,AD=9,点E,F分别在边AD,BC上,且AE=2,沿直线EF翻折,点A的对应点A′恰好落在对角线AC上,点B的对应点为B′,分别在线段EF,A′B′上取点M,N,沿直线MN二次翻折,使点F与点E重合,则线段MN的长为.【考点】翻折变换(折叠问题);相似三角形的判定与性质;矩形的性质.【专题】几何综合题;压轴题;推理能力.【分析】如图,过点F作FT⊥AD于T,则四边形ABFT是矩形,连接FN,EN,设AC 交EF于J.证明△FTE∽△ADC,求出ET=1,EF=,设A′N=x,根据NF=NE,可得12+(3﹣x)2=22+x2,解方程求出x,可得结论.【解答】解:如图,过点F作FT⊥AD于T,则四边形ABFT是矩形,连接FN,EN,设AC交EF于J.∵四边形ABFT是矩形,∴AB=FT=3,BF=AT,∵四边形ABCD是矩形,∴AB=CD=3,AD=BC=9,∠B=∠D=90°∴AC===3,∵∠TFE+∠AEJ=90°,∠DAC+∠AEJ=90°,∴∠TFE=∠DAC,∵∠FTE=∠D=90°,∴△FTE∽△ADC,∴==,∴==,∴TE=1,EF=,∴BF=AT=AE﹣ET=2﹣1=1,设A′N=x,∵NM垂直平分线段EF,∴NF=NE,∴12+(3﹣x)2=22+x2,∴x=1,∴FN===,∴MN===,故答案为:.【点评】本题属于几何综合题,考查矩形的性质,翻折变换,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数构建方程解决问题,属于中考填空题中的压轴题.3.(2021•綦江区校级三模)如图,在矩形ABCD中,E为AB边上的一点,将△ADE沿DE 翻折,得到△DEF,且F在BC边上,G为AD边上的一点,过点G作AD的垂线交DF 于点H,连接AH交DE于点P,连接AF,若AB=7,BF=3,HA平分∠GHF,则AG 的长度为7.【考点】翻折变换(折叠问题);相似三角形的判定与性质;角平分线的性质;矩形的性质.【专题】推理填空题;矩形菱形正方形;推理能力.【分析】过点A作AN⊥DF于点N,延长AB,DF交于点M,设AE=x,AD=y,由翻折可知:EF=AE=x,DF=AD=BC=y,则BE=AB﹣AE=7﹣x,CF=BC﹣BF=y﹣3,在Rt△BEF和Rt△DFC中,根据勾股定理得x=,y=,证明△BFM∽△ADM,可得BM=,证明△EFM∽△ANM,可得AN=7,然后根据角平分线的性质可以解决问题.【解答】解:如图,过点A作AN⊥DF于点N,延长AB,DF交于点M,设AE=x,AD=y,由翻折可知:EF=AE=x,DF=AD=BC=y,则BE=AB﹣AE=7﹣x,CF=BC﹣BF=y﹣3,在Rt△BEF和Rt△DFC中,根据勾股定理,得:BE2+BF2=EF2,DC2+CF2=DF2,∴(7﹣x)2+32=x2,72+(y﹣3)2=y2,解得x=,y=,∴EF=,AD=,∴BE=7﹣x=,CF=y﹣3=,∵BF∥AD,∴△BFM∽△ADM,∴=,∴=,∴BM=,∴EM=BM+BE=+=,∴AM=AB+BM=7+=,由翻折可知:∠EFD=∠EAD=90°,∵AN⊥DF,∴∠EFM=∠ANM=90°,∴EF∥AN,∴△EFM∽△ANM,∴=,∴=,∴AN=7,∵HA平分∠GHF,AN⊥DF,HG⊥AD,∴AG=AN=7.故答案为:7.【点评】本题考查了矩形的相关证明与计算,相似三角形的判定与性质,熟练掌握矩形的性质与相似三角形的性质与判定是解题的关键.4.(2021•马鞍山模拟)如图,将边长为4的正方形ABCD纸片沿EF折叠,点C落在AB 边上的点G处,点D与点H重合,CG与EF交于点P,取GH的中点Q连接PQ,则△GPQ的周长最小值是2+2.【考点】翻折变换(折叠问题);正方形的性质;轴对称﹣最短路线问题.【专题】平移、旋转与对称.【分析】如图,取CD的中点N,连接PN,PB,BN.首先证明PQ=PN,PB=PG,推出PQ+PG=PN+PB≥BN,求出BN即可解决问题.【解答】解:如图,取CD的中点N,连接PN,PB,BN.由翻折的性质以及对称性可知;PQ=PN,PG=PC,HG=CD=4,∵QH=QG,∴QG=2,在Rt△BCN中,BN==2,∵∠CBG=90°,PC=PG,∴PB=PG=PC,∴PQ+PG=PN+PB≥BN=2,∴PQ+PG的最小值为2,∴△GPQ的周长的最小值为2+2,故答案为2+2.【点评】本题考查翻折变换,正方形的性质,直角三角形斜边中线的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题,属于中考填空题中的压轴题.5.(2020•海安市模拟)如图,矩形ABCD中,AB=3,BC=4,点E是AB边上一点,且AE=,点F是边BC上的任意一点,把△BEF沿EF翻折,点B的对应点为G,连接AG,CG,则四边形AGCD的面积的最小值为.【考点】翻折变换(折叠问题);三角形的面积;矩形的性质.【专题】推理填空题;平移、旋转与对称;几何直观;运算能力;推理能力.【分析】根据矩形ABCD中,AB=3,BC=4,可得AC=5,由AE=可得点F是边BC上的任意位置时,点C始终在AC的下方,设点G到AC的距离为h,要使四边形AGCD 的面积的最小,即h最小.所以点G在以点E为圆心,BE为半径的圆上,且在矩形ABCD 的内部.过点E作EH⊥AC,交圆E于点G,此时h最小.根据锐角三角函数先求得h 的值,再分别求得三角形ACD和三角形ACG的面积即可得结论.【解答】解:如图,在矩形ABCD中,AB=3,BC=4,∠B=∠D=90°,连接AC,∴AC=5,∵AB=3,AE=,∴点F是边BC上的任意位置时,点G始终在AC的下方,设点G到AC的距离为h,S四边形AGCD=S△ACD+S△ACG=3×4+×5h,=6+h.要使四边形AGCD的面积最小,即h最小.∵点G在以点E为圆心,BE为半径的圆上,且在矩形ABCD的内部.过点E作EH⊥AC,交圆E于点G,此时h最小.在Rt△ABC中,sin∠BAC==,在Rt△AEH中,AE=,sin∠BAC==,解得EH=AE=,EG=BE=AB﹣AE=3﹣,∴h=EH﹣EG=﹣(3﹣)=﹣3.∴S四边形AGCD=6+×(﹣3)=﹣=.故答案为:.【点评】本题考查了翻折变换,解决本题的关键是确定满足条件的点G的位置,运用相似、锐角三角函数等知识解决问题.6.(2021春•东阳市期末)在综合实践课上,小明把边长为2cm的正方形纸片沿着对角线AC剪开,如图1所示.然后固定纸片△ABC,把纸片△ADC沿AC的方向平移得到△A′D′C′,连A′B,D′B,D′C,在平移过程中:(1)四边形A′BCD′的形状始终是平行四边形;(2)A′B+D′B的最小值为2.【考点】作图﹣平移变换;正方形的性质;轴对称﹣最短路线问题.【专题】作图题;推理能力.【分析】(1)利用平移的性质证明即可.(2)如图2中,作直线DD′,作点C关于直线DD′的对称点C″,连接D′C″,BC″,过点B作BH⊥CC″于H.求出BC″,证明A′B+BD′=BD′+CD′=BD′+D′C″≥BC″,可得结论.【解答】解:(1)如图2中,∵A′D′=BC,A′D′∥BC,∴四边形A′BCD′是平行四边形,故答案为:平行四边形.(2)如图2中,作直线DD′,作点C关于直线DD′的对称点C″,连接D′C″,BC″,过点B作BH⊥CC″于H.∵四边形ABCD是正方形,∴AB=BC=2,∠ABC=90°,∴AC=AB=2,∵BJ⊥AC,∴AJ=JC,∴BJ=AC=,∵∠BJC=∠JCH=∠H=90°,∴四边形BHCJ是矩形,∵BJ=CJ,∴四边形BHCJ是正方形,∴BH=CH=,在Rt△BHC″中,BH=,HC″=3,∴BC″===2,∵四边形A′BCD′是平行四边形,∴A′B=CD′,∴A′B+BD′=BD′+CD′=BD′+D′C″≥BC″,∴A′B+BD′≥2,∴A′B+D′B的最小值为2,故答案为:2【点评】本题考查作图﹣平移变换,轴对称最短问题,勾股定理等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.7.(2021•路北区一模)如图,边长为1的正方形ABCD在等边长的正六边形外部做顺时针滚动,滚动一周回到初始位置时停止.第一次滚动时正方形旋转了150°,点A在滚动过程中到出发点的最大距离是+.【考点】旋转的性质;正多边形和圆;轨迹.【专题】平移、旋转与对称;解直角三角形及其应用.【分析】如图,点A的运动轨迹是图中红线.延长AE交红线于H,线段AH的长,即为点A在滚动过程中到出发点的最大距离.【解答】解:第一次滚动正方形旋转了240°﹣90°=150°.如图,点A的运动轨迹是图中红线.延长AE交红线于H,线段AH的长,即为点A在滚动过程中到出发点的最大距离.易知EH=EA2==,在△AEF中,∵AF=EF=1,∠AFE=120°,∴AE=,∴AH=AE+EH=+.∴点A在滚动过程中到出发点的最大距离为+.故答案为:150,+【点评】本题考查旋转变换,正方形的性质,正六边形的性质,解直角三角形等知识,解题的关键是理解题意,学会正确寻找点A的运动轨迹,属于中考填空题中的压轴题.8.(2021•河北区模拟)如图,四边形ABCD是边长为2的正方形,E是BC边的中点,F 是直线DE上的动点.连接CF,将线段CF逆时针旋转90°得到CG,连接EG,则EG的最小值是.【考点】旋转的性质;正方形的性质.【专题】矩形菱形正方形.【分析】如图,作直线BG.由△CBG≌△CDF,推出∠CBG=∠CDF,因为∠CDF是定值,推出点G在直线BG上运动,且tan∠CBG=tan∠CDF==,根据垂线段最短可知,当EG⊥BG时,EG的长最短.【解答】解:如图,作直线BG.∵四边形ABCD是正方形,∴CB=CD,∠BCD=90°,∵∠FCG=∠DCB=90°,∴∠BCG=∠DCF,∵CG=CF,∴△CBG≌△CDF,∴∠CBG=∠CDF,∵∠CDF是定值,∴点G在直线BG上运动,且tan∠CBG=tan∠CDF==,根据垂线段最短可知,当EG⊥BG时,EG的长最短,此时tan∠EBG==,设EG=m,则BG=2m,在Rt△BEG中,∵BE2=BG2+EG2,∴1=m2+4m2,∴m=(负根已经舍弃),∴EG的最小值为,故答案为.【点评】本题考查旋转变换、正方形的性质、全等三角形的判定和性质、垂线段最短、解直角三角形等知识,解题的关键是准确寻找全等三角形解决问题,学会利用垂线段最短解决最值问题,属于中考填空题中的压轴题.9.在正方形ABCD中,点P是对角线AC上一点,连接DP,将DP绕点D逆时针旋转90°后得到线段DE,连接PE,点C关于直线PE的对称点是C′,连接C′E、C′P、C′A.若四边形AC′ED是平行四边形,PC=2,则平行四边形AC′ED的面积是2+4.【考点】旋转的性质;平行四边形的性质;正方形的性质;轴对称的性质.【专题】矩形菱形正方形.【分析】如图,连接DC′,作PH⊥CD于H,设CD交EC′于K.只要证明△ADC′≌△CDP,△DKC′,△PCH是等腰直角三角形即可解决问题;【解答】解:如图,连接DC′,作PH⊥CD于H,设CD交EC′于K.∵四边形ABCD是正方形,∴AD=CD,∵四边形ADEC′是平行四边形,∴DE=AC′=DP,∠DAC′=∠DEK,∵AD⊥CD,AD∥EC′,∴CD⊥EC′,∵∠PDE=90°,∴∠PDC+∠CDE=90°,∠CDE+∠DEK=90°,∴∠CDP=∠DAC′,∴△ADC′≌△CDP,∴DC′=PC=2,∠ADC′=∠DCP=45°,∵∠ADC=∠PHC=90°,∴∠KDC′=45°,∴△DKC′,△PCH是等腰直角三角形,∴DK=KC′=CH=PH=,∴C′K=PH,CK′∥PH,∴四边形PHKC′是平行四边形,∵∠PHK=90°,∴四边形PHKC′是矩形,∴PH=PC′=PC=2,∴AD=CD=2+2,∴四边形AC′ED的面积=(2+2)=2+4.故答案为2+4.【点评】本题考查旋转变换、正方形的性质、平行四边形的性质、等腰直角三角形的判定和性质、全等三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考填空题中的压轴题.10.(2020•衢州二模)如图,在矩形ABCD中,AD=8,AB=6,点E是CD的中点,过点E作EF∥BC,交对角线BD于点F.将△DEF绕点D逆时针方向旋转得到△DE1F1,连接CE1,BF1,设旋转角度为α(0°<α<180°),则=;连接CF1,当△DF1B 为直角三角形时,CF1=或.【考点】旋转的性质;勾股定理;矩形的性质.【专题】平移、旋转与对称;图形的相似;解直角三角形及其应用;运算能力;推理能力.【分析】由△BDF1∽△CDE1可得=;分为∠BDF1=90°,∠DF1B=90°两种情形,分别解斜△CDF1即可得.【解答】解:如图1,∵△DEF绕点D逆时针方向旋转得到△DE1F1,∴∠EDF=∠E1DF1,∴∠EDF﹣∠EDF1=∠E1DF1﹣∠EDF1,∴∠F1DB=∠E1DC,∵==,==,∴=,∴△BDF1∽△CDE1,∴===,故答案是;如图2,当∠BDF1=90°时,在△CDF1中,CD=6,DF1=5,∠CDF1=90°﹣∠BDC,作F1G⊥CD于G,在Rt△AGF1中,DF1=5,∠AF1G=∠BDC,∴F1G=DF1•cos∠AF1G=5•cos∠BDC=5•=5×=3,DG=5•sin∠BDC=4,∴CG=CD﹣DG=2,∴CF==,如图3,当∠DF1B=90°时(图中F1′),∵,∴∠DCF1′=∠DBF1′=30°,作F1′H⊥CD于H,∴设F1′H=a,则CH=a,∴DH=6﹣,在Rt△DHF1′中,由勾股定理得,(6﹣)2+a2=52,∴,(舍去),\∴CF1′=2a=3﹣4,故答案是或3﹣4.【点评】本题以旋转为背景,考查了三角形相似和解直角三角形,解决问题的关键是正确分类和数量熟练掌握基本图形.考点卡片1.三角形的面积(1)三角形的面积等于底边长与高线乘积的一半,即S△=×底×高.(2)三角形的中线将三角形分成面积相等的两部分.2.角平分线的性质角平分线的性质:角的平分线上的点到角的两边的距离相等.注意:①这里的距离是指点到角的两边垂线段的长;②该性质可以独立作为证明两条线段相等的依据,有时不必证明全等;③使用该结论的前提条件是图中有角平分线,有垂直角平分线的性质语言:如图,∵C在∠AOB的平分线上,CD⊥OA,CE⊥OB∴CD=CE3.等腰三角形的性质(1)等腰三角形的概念有两条边相等的三角形叫做等腰三角形.(2)等腰三角形的性质①等腰三角形的两腰相等②等腰三角形的两个底角相等.【简称:等边对等角】③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.【三线合一】(3)在①等腰;②底边上的高;③底边上的中线;④顶角平分线.以上四个元素中,从中任意取出两个元素当成条件,就可以得到另外两个元素为结论.4.勾股定理(1)勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.(2)勾股定理应用的前提条件是在直角三角形中.(3)勾股定理公式a2+b2=c2的变形有:a=,b=及c=.(4)由于a2+b2=c2>a2,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边.5.平行四边形的性质(1)平行四边形的概念:有两组对边分别平行的四边形叫做平行四边形.(2)平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分.(3)平行线间的距离处处相等.(4)平行四边形的面积:①平行四边形的面积等于它的底和这个底上的高的积.②同底(等底)同高(等高)的平行四边形面积相等.6.矩形的性质(1)矩形的定义:有一个角是直角的平行四边形是矩形.(2)矩形的性质①平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等;⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.(3)由矩形的性质,可以得到直角三角形的一个重要性质,直角三角形斜边上的中线等于斜边的一半.7.正方形的性质(1)正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.(2)正方形的性质①正方形的四条边都相等,四个角都是直角;②正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;③正方形具有四边形、平行四边形、矩形、菱形的一切性质.④两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.8.正多边形和圆(1)正多边形与圆的关系把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.(2)正多边形的有关概念①中心:正多边形的外接圆的圆心叫做正多边形的中心.②正多边形的半径:外接圆的半径叫做正多边形的半径.③中心角:正多边形每一边所对的圆心角叫做正多边形的中心角.④边心距:中心到正多边形的一边的距离叫做正多边形的边心距.9.轨迹10.轴对称的性质(1)如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.由轴对称的性质得到一下结论:①如果两个图形的对应点的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称;②如果两个图形成轴对称,我们只要找到一对对应点,作出连接它们的线段的垂直平分线,就可以得到这两个图形的对称轴.(2)轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.11.轴对称-最短路线问题1、最短路线问题在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L 的交点就是所要找的点.2、凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.12.翻折变换(折叠问题)1、翻折变换(折叠问题)实质上就是轴对称变换.2、折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3、在解决实际问题时,对于折叠较为复杂的问题可以实际操作图形的折叠,这样便于找到图形间的关系.首先清楚折叠和轴对称能够提供给我们隐含的并且可利用的条件.解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.我们运用方程解决时,应认真审题,设出正确的未知数.13.作图-平移变换(1)确定平移后图形的基本要素有两个:平移方向、平移距离.(2)作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.14.旋转的性质(1)旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.(2)旋转三要素:①旋转中心;②旋转方向;③旋转角度.注意:三要素中只要任意改变一个,图形就会不一样.15.相似三角形的判定与性质(1)相似三角形相似多边形的特殊情形,它沿袭相似多边形的定义,从对应边的比相等和对应角相等两方面下定义;反过来,两个三角形相似也有对应角相等,对应边的比相等.(2)三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;或依据基本图形对图形进行分解、组合;或作辅助线构造相似三角形,判定三角形相似的方法有事可单独使用,有时需要综合运用,无论是单独使用还是综合运用,都要具备应有的条件方可.16.解直角三角形(1)解直角三角形的定义在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.(2)解直角三角形要用到的关系①锐角、直角之间的关系:∠A+∠B=90°;②三边之间的关系:a2+b2=c2;③边角之间的关系:sin A==,cos A==,tan A==.(a,b,c分别是∠A、∠B、∠C的对边)。

中考数学填空题压轴答案详细

中考数学填空题压轴答案详细

中考填空压轴题1.如 ,在矩形 片 ABCD 中, AB = 3,BC = 5,点 E 、F 分 在 段 AB 、BC 上,将 △ BEF 沿 EF 折叠,点 B 落在 B ′ .如 1,当 B ′在 AD 上 , B ′在 AD 上可移 的最大距离_________;如 2,当 B ′在矩形 ABCD 内部 , AB ′的最小 ______________.AB ′ D AB ′DEFEFACFBBFF CFB FFCF图 1图 22.如 , 器上一根弦固定在 器面板上 A 、 B 两点,支撑点 C 是凑近点 B 的黄金切割 点,若 AB =80cm , AC = ______________cm .( 果保存根号)3.已知抛物 y = ax 2- 2ax -1+a ( a >0)与直 x = 2,x = 3, y =1, y = 2 成的正方形有公共点, a 的取 范 是 ___________________.4.如 , 7 根 柱形木棒的横截面 的半径均 _______________.1, 捆扎7 根木棒一周的 子 度yAAA859x4A A AD14OA 3 2 x27ABCAAA 1075.如 ,已知 A 1(1,0),A 2(1,- 1),A 3(- 1,- 1),A 4(- 1,1),A 5(2,1), ⋯, 点 A 2010 的坐 是 __________________.6.在 Rt △ ABC 中, ∠ C = 90°, AC = 3, BC = 4.若以 C 点 心, r 半径所作的 与斜 AB 只有一个公共点, r 的取 范 是 _________________.7.已知 ⊙ A 和⊙ B 订交, ⊙ A 的半径 5, AB = 8,那么 ⊙B 的半径 r 的取 范 是_________________.8.已知抛物 12- 4x -1,抛物 F 2112F :y = x与 F 对于点( 1,0)中心 称, 在F 和 F成的封 形上,平行于y 的 段 度的最大 _____________.9.如 ,四 形 ABCD 中, AB =4, BC = 7,CD = 2,AD = x , x 的取 范 是().10.已知正数 a 、 b 、 c 足 a 2+ c 2= 16, b 2+ c 2= 25, k = a 2+b 2 的取 范 是 _________________.AADBCBDC11.如 ,在 △ABC 中, AB =AC , D 在 AB 上, BD =AB , ∠A 的取 范 是 _________________.12.函数 y = 2x 2+ 4| x| -1 的最小 是 ____________.13.已知抛物 y = ax 2 +2ax +4( 0< a <3), A ( x 1, y 1),B ( x 2,y 2)是抛物 上两点,若 x 1< x 2,且 x 1+x 2=1-a , y 1 __________ y 2(填 “>”、 “< ”或“= ”)14.如 , △ ABC 中, ∠A 的均分 交 BC 于 D ,若 AB = 6, AC = 4, ∠ A =60°, AD 的___________.15.如 , Rt △ABC 中, ∠ C =90°, AC =6,BC =8,点 D 在 AB 上, DE ⊥AC 交 AC 于 E , DF ⊥ AB 交 BC 于 F , AD =x ,四 形 CEDF 的面 y , y 对于 x 的函数分析式__________________________,自 量 x 的取 范 是 _____________________.yBA DFDBPkHKGy =Ax1y =CAOCxBED F CxEk1k16.两个反比率函数 y = x 和 y = x 在第一象限内的 象如 所示,点 P 在 y = x 的 象上,11PC ⊥ x 于点 C ,交 y = x 的 象于点 A ,PD ⊥y 于点 D ,交 y = x的 象于点 B ,当点 Pk在 y = x 的 象上运 ,以下 : ① △ ODB 与△ OCA 的面 相等; ② 四 形 PAOB 的面 不会 生 化; ③ PA 与 PB 始 相等; ④ 当点 A 是 PC 的中点 ,点 B 必定是 PD 的中点.此中必定正确的选项是 _________________.(把你 正确 的序号都填上,少填 或 填不 分).17.如 , △ ABC 中, BC = 8,高 AD = 6,矩形 EFGH 的一 EF 在 BC 上,其他两个 点 G 、 H 分 在 AC 、 AB 上, 矩形 EFGH 的面 最大 ___________.18.已知二次函数 y =a(a + 1)x 2- (2a + 1)x +1,当 a 挨次取 1,2,⋯,2010 ,函数的像在 x 上所截得的 段 A 11 22 ,⋯,A 2010 2010的 度之和 _____________. B ,AB B19.如 是一个矩形桌子,一小球从 P 撞 到 Q ,反射到 R ,又从 R 反射到 S ,从 S 反射 回原 P ,入射角与反射角相等 (比如 ∠PQA = ∠RQB 等),已知 AB = 8,BC =15,DP = 3.小球所走的路径的 _____________.ADCRBAFDQEGGSBCFCBD PAE1120.如,在平行四形ABCD中,点 E、F 分在 AB、AD 上,且 AE=3AB,AF=4AD,AGEF交角 AC 于 G,AC= _____________.21.已知 m,n 是对于 x 的方程 x2-2ax+a+ 6=0 的两根, (m-1)2+ (n- 1)2的最小_____________.22.如,四形ABCD和 BEFG均正方形,AG: DF: CE= _____________.23.如,在△ ABC中,∠ABC= 60°,点 P 是△ ABC内的一点,且∠APB=∠BPC=∠CPA,且 PA=8,PC= 6, PB=________.ACD ADD1D3O 2DP AB C B C1234BC C C C24.如, AB、 CD 是⊙O 的两条弦,∠AOB与∠ C互,∠COD与∠A 相等,∠ AOB 的度数是 ________.25.如,一个半径2的一个半径 2 的的心,中暗影部分的面_____________.26.如,在 Rt△ ABC中,∠ACB= 90°,∠ B=30°,AC= 2.作△ ABC的高 CD,作△ CDB 的高 DC11 1 1,作△ DC B 的高 C D ,⋯⋯,这样下去,获得的全部暗影三角形的面之和__________.27.已知抛物y= x 2- (2m+ 4)x+ m 2-10 与 x 交于 A、 B 两点, C 是抛物点,若△ABC直角三角形, m= __________.28.已知抛物 y=x 2-(2m+ 4)x+m 2- 10 与 x 交于 A、B 两点, C 是抛物点,若△ ABC等三角形,抛物的分析式 ___________________________.429.已知抛物 y=ax 2+( 3+ 3a)x+4 与 x 交于 A、 B 两点,与 y 交于点 C.若△ ABC直角三角形, a=__________.30.如,在直角三角形 ABC 中,∠ A=90°,点 D 在斜 BC上,点E、 F 分在直角 AB、 AC 上,且 BD= 5,CD=9,四形 AEDF是正方形,暗影部分的面 __________.31.小同学想用“描点法”画二次函数 y= ax2+ bx+c( a≠0)的象,取自量 x 的 5 个,分算出的 y ,以下表:AFEB D Cx⋯-2-1012⋯y⋯112-125⋯因为马虎,小算了此中的一个y ,你指出个算的y 所的 x= __________.32.等三角形ABC 的 6,将其搁置在如所示的平面直角坐系中,此中BC在 x 轴上, BC边上的高 OA 在 y 轴上。

中考数学压轴题100题精选[含答案解析]

中考数学压轴题100题精选[含答案解析]

中考数学压轴题100题精选【含答案】【001】如图,已知抛物线2(1)y a x =-+a ≠0)经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .(1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.【002】如图16,在Rt △ABC 中,∠C=90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB-BC-CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).(1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成 为直角梯形?若能,求t 的值.若不能,请说明理由;(4)当DE经过点C 时,请直接写出t的值.【003】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E,①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值。

中考数学压轴题含答案

中考数学压轴题含答案

中考数学压轴题含答案一、选择题1、下列图形中,既是轴对称图形,又是中心对称图形的是()A.菱形B.平行四边形C.矩形(答案:C)2、如果一个三角形的三条边的平方相等,那么这个三角形一定是()A.等边三角形B.直角三角形C.等腰三角形D.等腰直角三角形(答案:A)3、下列说法正确的是()A.所有的质数都是奇数B.所有的偶数都是合数C.一个数的因数一定比它的倍数小D.自然数一定是正数(答案:A)二、填空题1、若a-b=2,a+b=7,则a²-b²=(答案:14)2、我们学过的数有整数和分数,整数的运算律在分数运算中(答案:同样适用)。

3、一个长方形的周长是20cm,长和宽的比是3:2,则长方形的面积是(答案:60平方厘米)。

三、解答题1、一个圆柱体底面半径为r,高为h,它的体积是多少?(答案:πr²h)2、有一块三角形的土地,底边长为120米,高为90米,这块土地的面积是多少?(答案:5400平方米)3、对于一个给定的整数n,如果它是3的倍数,那么我们就称它为“三的倍数”,否则我们就称它为“非三的倍数”。

现在有一个整数n,它是“三的倍数”,我们可以得出哪些结论?(答案:n+1、n+2、n+3、...、2n都是“三的倍数”,因为它们都可以被3整除。

)中考数学压轴题100题及答案在中考数学考试中,压轴题往往是最具挑战性和最能检验考生数学能力的题目。

为了帮助同学们更好地理解和掌握中考数学的压轴题,本文将分享100道经典的中考数学压轴题及其答案。

一、选择题1、在一个等边三角形中,边长为6,下列哪个选项的面积最接近这个等边三角形的面积?A. 20B. 25C. 30D. 35答案:B解析:等边三角形的面积可以通过计算得出,边长为6的等边三角形的面积为:436293约为28.2,因此选项B最接近。

2、如果一个多边形的内角和是外角和的2倍,那么这个多边形的边数是多少?A. 4B. 6C. 8D. 10答案:C解析:根据多边形的内角和公式和外角和为360度,可列出方程求解。

压轴题28填空压轴题(函数篇)-2023年中考数学压轴题专项训练(全国通用)(原卷版)

压轴题28填空压轴题(函数篇)-2023年中考数学压轴题专项训练(全国通用)(原卷版)

2023年中考数学压轴题专项训练压轴题28填空压轴题(函数篇)一.填空题(共40小题)1.(2023•上虞区模拟)已知点A在反比例函数y=12x(x>0)的图象上,点B在x轴正半轴上,若△OAB为等腰直角三角形,则AB的长为.2.(2023•姑苏区校级一模)在平面直角坐标系xOy中,对于点P(a,b),若点P'的坐标为(ka+b,a+b k)(其中k为常数且k≠0),则称点P'为点P的“k—关联点”.已知点A在函数y=3x(x>0)的图象上运动,且A是点B的“3—关联点”,若C(﹣1,0),则BC的最小值为.3.(2023•海门市一模)如图,在平面直角坐标系xOy中,已知点A(m,n),B(m+4,n﹣2)是函数y=kx(k>0,x>0)图象上的两点,过点B作x轴的垂线与射线OA交于点C.若BC=8,则k的值为.4.(2023•建昌县一模)如图,在平面直角坐标系中,点A,B在反比例函数y=kx(k≠0,x>0)的图象上,点C在y轴上,AB=AC,AC∥x轴,BD⊥AC于点D,若点A的横坐标为5,BD=3CD,则k值为.5.(2023•碑林区校级模拟)如图,等腰直角△ABC的顶点A坐标为(﹣3,0),直角顶点B坐标为(0,1),反比例函数y=kx(x<0)的图象经过点C,则k=.6.(2023•宁波模拟)如图,在平面直角坐标系xOy中,△OAB为等腰直角三角形,且∠A=90°,点B的坐标为(4,0).反比例函数y=kx(k≠0)的图象交AB于点C,交OA于点D.若C为AB的中点,则ODOA=.7.(2023•龙港市二模)如图,Rt△ABO放置在平面直角坐标系中,∠ABO=Rt∠,A的坐标为(﹣4,0).将△ABO绕点O顺时针旋转得到△A′B′O,使点B落在边A′O的中点.若反比例函数y=kx(x>0)的图象经过点B',则k的值为.8.(2023•温州二模)如图,点A在x轴上,以OA为边作矩形OABC,反比例函数y=kx(k>0,x>0)的图象经过AB的中点E,交边BC于点D,连结OE.若OE=OC,CD=2,则k的值为.9.(2023•石家庄二模)已知A,B,C三点的坐标如图所示.(1)若反比例函数y=kx的图象过点A,B,C中的两点,则不在反比例函数图象上的是点;(2)当反比例函数的图象与线段AC(含端点)有且只有一个y=kx公共点时,k的取值范围是.10.(2023•郫都区二模)定义:若一个函数图象上存在横纵坐标相等的点,则称该点为这个函数图象的“等值点”.例如,点(﹣1,﹣1)是函数y=2x+1的图象的“等值点”.若函数y=x2﹣2(x≥m)的图象记为W1,将其沿直线x=m翻折后的图象记为W2.当W1、W2两部分组成的图象上恰有2个“等值点”时,m的取值范围为.11.(2023•双阳区一模)如图,抛物线y=﹣0.25x2+4与y轴交于点A,过AO的中点作BC∥x轴,交抛物线y=x2于B、C两点(点B在C的左边),连接BO、CO,若将△BOC向上平移使得B、C两点恰好落在抛物线y=﹣0.25x2+4上,则点O平移后的坐标为.12.(2023•衡水二模)如图,点A(a,−3a)(a<0)是反比例函数y=k x图象上的一点,点M(m,0),将点A绕点M顺时针旋转90°得到点B,连接AM,BM.(1)k的值为;(2)当a=﹣3,m=0时,点B的坐标为;(3)若a=﹣1,无论m取何值时,点B始终在某个函数图象上,这个函数图象所对应的表达式.13.(2023•市中区二模)如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0)、(2,0)、(2,1)、(1,1)、(1,2)、(2,2)…根据这个规律,第2023个点的坐标.14.(2023•沈阳二模)某商厦将进货单价为70元的某种商品,按销售单价100元出售时,每天能卖出20个,通过市场调查发现,这种商品的销售单价每降价1元,日销量就增加1个,为了获取最大利润,该种商品的销售单价应降 元.15.(2023•贵港二模)如图,抛物线y 1截得坐标轴上的线段长AB =OD =6,D 为y 1的顶点,抛物线y 2由y 1平移得到,y 2截得x 轴上的线段长BC =9.若过原点的直线被抛物线y 1,y 2所截得的线段长相等,则这条直线的解析式为 .16.(2023•江都区一模)如图,在平面直角坐标系中,点A ,B 坐标分别为(3,4),(﹣1,1),点C 在线段AB 上,且AC BC=13,则点C 的坐标为 .17.(2023•龙华区二模)如图,在平面直角坐标系中,OA =3,将OA 沿y 轴向上平移3个单位至CB ,连接AB ,若反比例函数y =kx (x >0)的图象恰好过点A 与BC 的中点D ,则k = .18.(2023•乐至县模拟)如图,在平面直角坐标系中,点A 、A 1、A 2、A 3…A n 在x 轴上,B 1、B 2、B 3…B n在直线y =−√33x +√33上,若A (1,0),且△A 1B 1O 、△A 2B 2A 1…△A n B n A n ﹣1都是等边三角形,则点B n的横坐标为 .19.(2023•玄武区一模)已知函数y =2x 2﹣(m +2)x +m (m 为常数),当﹣2≤x ≤2时,y 的最小值记为a .a 的值随m 的值变化而变化,当m = 时,a 取得最大值.20.(2023•萧山区一模)已知点P (x 1,y 1)Q (x 2,y 2)在反比例函数y =6x图象上. (1)若x 1x 2=2,则y 1y 2= .(2)若x 1=x 2+2,y 1=3y 2,则当自变量x >x 1+x 2时,函数y 的取值范围是 . 21.(2023•灞桥区校级模拟)如图,点A ,B 分别在y 轴正半轴、x 轴正半轴上,以AB 为边构造正方形ABCD ,点C ,D 恰好都落在反比例函数y =k x(k ≠0)的图象上,点E 在BC 延长线上,CE =BC ,EF ⊥BE ,交x 轴于点F ,边EF 交反比例函数y =kx(k ≠0)的图象于点P ,记△BEF 的面积为S ,若S =k2+12,则k 的值为 .22.(2023•东莞市校级一模)如图,在平面直角坐标系中,点A 在y 轴上,点B 在x 轴上.以AB 为边长作正方形ABCD ,S 正方形ABCD =50,点C 在反比例函数y =k /x (k ≠0,x >0)的图象上,将正方形沿x 轴的负半轴方向平移6个单位长度后,点D 刚好落在该函数图象上,则k 的值是 .23.(2023•长春一模)如图,正方形ABCD 、CEFG 的顶点D 、F 都在抛物线y =−12x 2上,点B 、C 、E 均在y 轴上.若点O 是BC 边的中点,则正方形CEFG 的边长为 .24.(2023•成都模拟)如图,在△AOB 中,AO =AB ,射线AB 分别交y 轴于点D ,交双曲线y =kx (k >0,x >0)于点B ,C ,连接OB ,OC ,当OB 平分∠DOC 时,AO 与AC 满足AO AC=23,若△OBD 的面积为4,则k= .25.(2023•北仑区二模)如图,将矩形OABC 的顶点O 与原点重合,边AO 、CO 分别与x 、y 轴重合.将矩形沿DE 折叠,使得点O 落在边AB 上的点F 处,反比例函数y =kx (k >0)上恰好经过E 、F 两点,若B 点的坐标为(2,1),则k 的值为 .26.(2023•合肥二模)已知函数y =x 2+mx (m 为常数)的图形经过点(﹣5,5). (1)m = .(2)当﹣5≤x ≤n 时,y 的最大值与最小值之和为2,则n 的值 .27.(2023•仓山区校级模拟)下表记录了二次函数y =ax 2+bx +2(a ≠0)中两个变量x 与y 的6组对应值,x … ﹣5 x 1 x 2 1 x 3 3 … y…m2nm…其中﹣5<x 1<x 2<1<x 3<3.根据表中信息,当−52<x <0时,直线y =k 与该二次函数图象有两个公共点,则k 的取值范围为 .28.(2023•西安二模)如图,在平面直角坐标系中,直线y =﹣x +1与x 轴,y 轴分别交于点A ,B ,与反比例函数y =kx (k <0)的图象在第二象限交于点C ,若AB =BC ,则k 的值为 .29.(2023•龙泉驿区模拟)在某函数的给定自变量取值范围内,该函数的最大值与最小值的差叫做该函数在此范围内的界值.当t ≤x ≤t +1时,一次函数y =kx +1(k >0)的界值大于3,则k 的取值范围是 ;当t ≤x ≤t +2时,二次函数y =x 2+2tx ﹣3的界值为2,则t = .30.(2023•姑苏区一模)如图①,四边形ABCD 中,AB ∥DC ,AB >AD .动点P ,Q 均以1cm /s 的速度同时从点A 出发,其中点P 沿折线AD ﹣DC ﹣CB 运动到点B 停止,点Q 沿AB 运动到点B 停止,设运动时间为t (s ),△APQ 的面积为y (cm 2),则y 与t 的函数图象如图②所示,则AB = cm .31.(2023•宁波模拟)如图,点B 是反比例函数y =8x(x >0)图象上一点,过点B 分别向坐标轴作垂线,垂足为A ,C .反比例函数y =kx (x >0)的图象经过OB 的中点M ,与AB ,BC 分别相交于点D ,E .连接DE 并延长交x 轴于点F ,点G 与点O 关于点C 对称,连接BF ,BG .则k = ;△BDF 的面积= .32.(2023•青羊区模拟)如图,在平面直角坐标系中,一次函数y =3x 与反比例函数y =kx (k ≠0)的图象交于A ,B 两点,C 是反比例函数位于第一象限内的图象上的一点,作射线CA 交y 轴于点D ,连接BC ,BD ,若CD BC=45,△BCD 的面积为30,则k = .33.(2023•锦江区模拟)已知关于x的多项式ax2+bx+c(a≠0),二次项系数、一次项系数和常数项分别a,b,c,且满足a2+2ac+c2<b2.若当x=t+2和x=﹣t+2(t为任意实数)时ax2+bx+c的值相同;当x=﹣2时,ax2+bx+c的值为2,则二次项系数a的取值范围是.34.(2023•江北区一模)如图,菱形ABCO的顶点A与对角线交点D都在反比例函数y=kx(k>0)的图象上,对角线AC交y轴于点E,CE=2DE,且△ADB的面积为15,则k=;延长BA交x轴于点F,则点F的坐标为.35.(2023•吴兴区一模)如图1,点A是反比例函数y=kx(k>0)的图象上一点,连接OA,过点A作AA1∥y轴交y=1x(x>0)的图象于点A1,连接OA1并延长交y=k x(k>0)的图象于点B,过点B作BB1∥y轴交y=kx(k>0)的图象于点B1,已知点A的横坐标为1,S△AOA1=2S△BA1B1,连接OB1,小明通过对△AOA1和△BOB1的面积与k的关系展开探究,发现k的值为;如图2,延长OB1交y=kx(k>0)的图象于点C,过点C作CC1∥y轴交y=kx(k>0)的图象于点C1,依此进行下去.记S△BA1B1=S1,S△CB1C1=S2,…则S2023=.36.(2023•徐汇区二模)如图,抛物线C1:y=x2+2x−3与抛物线C2:y=ax2+bx+c组成一个开口向上的“月牙线”,抛物线C1和抛物线C2与x轴有着相同的交点A、B(点B在点A右侧),与y轴的交点分别为C、D.如果BD=CD,那么抛物线C2的表达式是.37.(2023•蜀山区校级模拟)距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度h (米)与物体运动的时间t(秒)之间满足函数关系h=﹣5t2+mt+n,其图象如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒,设w表示0秒到t秒时h的值的“极差”(即0秒到t秒时h的最大值与最小值的差).(1)m=,n=;(2)当2≤t≤3时,w的取值范围是.38.(2023•南充模拟)如图,平移抛物线y=ax2+bx+c,使顶点在线段AB上运动,与x轴交于C,D两点.若A(﹣2,﹣3),B(4,﹣3),四边形ABDC的面积为15,则a=.39.(2023•通州区一模)某学校带领150名学生到农场参加植树劳动,学校同时租用A,B,C三种型号客车去农场,其中A,B,C三种型号客车载客量分别为40人、30人、10人,租金分别为700元、500元、200元.为了节省资金,学校要求每辆车必须满载,并将学生一次性送到农场植树,请你写出一种满足要求的租车方案,满足要求的几种租车方案中,最低租车费用是元.40.(2023•武侯区模拟)某投球发射装置斜向上发射进行投球实验,球离地面的高度h(米)与球运行时间t(秒)之间满足函数关系式h=﹣5t2+mt+n,该装置的发射点离地面10米,球筐中心点离地面35米.如图,若某次投球正好中心入筐,球到达球筐中心点所需时间为5秒,那么这次投球过程中球离地面的高度h(米)与球运行时间t(秒)之间满足的函数关系式为(不要求写自变量的取值范围);我们把球在每2秒内运行的最高点离地面的高度与最低点离地面的高度的差称为“投射矩”,常用字母“L”表示.那么在这次投球过程中,球入筐前L的取值范围是.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

AC B H E F PG2017年中考压轴填空题精编2301.如图,在△ABC 中,∠ACB =90°,AC =BC =1,E 、F 为线段AB 上两动点,且∠ECF =45°,过点E 、F 分别作AC 、BC 的垂线相交于点P ,垂足分别为G 、H ,则PG ·PH 的值为___________.2302.已知抛物线C 1:y =ax2+bx +c 的顶点为P ,与x 轴交于A 、B 两点(点A 在点B 左侧),点P 关于x 轴的对称点为Q ,抛物线C 2的顶点为A ,且过点Q ,对称轴与y 轴平行,若抛物线C 2的解析式为y =x2+2x +1,直线y =2x +m 经过A 、Q 两点,则抛物线C 1的解析式为______________.2303.有四张正面分别标有数字-3,0,1,5的不透明卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,则使关于x 的分式方程 1-ax x -2+2=12-x有正整数解的概率为____________.2304.如图,点A 在抛物线y =x2-3x 的对称轴上,点B 在抛物线上,若AB 的最小值为2,则点A 的坐标为____________.2305.如图,在四边形ABCD 中,∠ABC =120°,∠ADC =90°,AB =2,BC =4,BD 平分∠ABC ,则AD =____________. D A C BA B CP D2306.已知直线y =1 2 x -1与双曲线y = 2 x 的一个交点坐标为(a ,b )(a <0),则 1 a +12b的值为____________.2307.已知直线y =kx +4与y 轴交于点A ,与双曲线y =5x相交于B 、C 两点,若AB =5AC ,则k 的值为_____________.2308.已知二次函数y =-(x -m )2+m2+1,当-2≤x ≤1时有最大值4,则m 的值为___________.2309.如图,在△ABC 中,AB =AC =5,BC =6,点P 是BC 边上一动点,且∠APD =∠B ,射线PD 交AC 于D .若以A 为圆心,以AD 为半径的圆与BC 相切,则BP 的长是___________.2310.将一副三角板按如图所示放置,∠BAC =∠BDC =90°,∠ABC =60°,∠DBC =45°,AB =2,连接AD ,则AD =____________.2311.已知当0<x<72时,二次函数y =x2-4x +3-t 的图象与x 轴有公共点,则t 的取值范围是______________.2312.如图,半圆的直径AB 的长为10,弦AC 的长为6,AD 平分∠BAC 交半圆于D ,连接CD ,则CDADB CA BEC DF 的长为____________.2313.如图,在△ABC 中,∠ABC =90°,AB =1,BC =3,点D 、E 分别在AB 、BC 的延长线上,且AD =BC ,延长DC 交AE 于F ,∠AFD =45°,则△ACF 的面积是_____________. 2314.如图,反比例函数y =kx的图象经过点M (1,-1),过点M 作MN ⊥x 轴,垂足为N ,点P (t ,0)是x 轴上一动点,过点P 作直线OM 的垂线l ,若点N 关于直线l 的对称点恰好落在反比例函数的图象上,则t 的值为____________.拓展:如图,反比例函数y =kx的图象经过点M (2,-2425),过点M 作MN ⊥x 轴,垂足为N ,点P (t ,0)是x 轴上一动点,过点P 作直线OM 的垂线l ,若点N 关于直线l 的对称点恰好落在反比例函数的图象上,则t 的值为____________.2315.如图,正方形ABCD 中,BE 平分∠DBC 交CD 于点E ,将△BCE 绕点C 顺时针旋转90°得到△DCF ,A DB FC GE延长BE 交DF 于G .若EG ·BG =4,则EG 的长为_____________.2316.在矩形ABCD 中,OA =4,OB =6,分别以OB 、OA 所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系,E 是边AC 上一点(不与点C 重合),反比例函数y =kx(k>0)的图象经过点E ,与BC 边交于点F ,连接OE 、OF 、EF ,若△OEF 的面积为 323,则k 的值为_____________.2317.如图,点A 在反比例函数y =kx(k>0,x>0)的图象上,AB ⊥x 轴于B ,点C 在x 轴上且在点B右侧,点D 在第一象限,DC ⊥x 轴,连接DB ,若∠DBC =∠OAB ,DC =OB =3,反比例函数的图象恰好经过BD 中点E ,则k 的值为____________.2318.如图,在平面直角坐标系中,点A 的坐标为(3半圆,点P 是半圆上一动点,PQ ⊥OP 交y 轴于点Q ,则OQ 长度的最小值是_____________.2319.如图,AB 是⊙OE 作⊙O 的切线,切点为F .若∠ACF =65°,则∠E 的度数是____________.2320.如图,点A 、B 的坐标分别为(0,2)、(3,4),点P 为x 轴上一点,若点B 关于直线AP 的对称点B ′ 恰好落在x 轴上,则点P 的坐标为____________.思考:如果点A 的坐标不变,点B 的坐标为(3,6),点B ′ 恰好落在y 轴上,则点P 的坐标为______________.2321.如图,在△ABC 中,∠ACB =90°,AC =5,BC =3,点P 是线段AC 上的一个动点,连接BP ,将线段BP 绕点P 逆时针旋转90°得到线段DP ,连接DA ,则线段DA 的最小值是_____________.2322.已知二次函数y =-x2+(m -2)x +3(m +1)的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,如果∠CAB 或∠CBA 这两角中有一个角是钝角,那么m 的取值范围是______________.2323.如图,正△ABC 的边长为2,以BC 边的上高AB 1为边作正△AB 1C 1,△ABC 与△AB 1C 1公共部分的A PB CD面积为S 1;再以正△AB 1C 1边B 1C 1上的高AB 2为边作正△AB 2C 2,△AB 1C 1与△AB 2C 2公共部分的面积记为S 2;……,以此类推,则S n =____________(用含n 的式子表示)2324.正比例函数y 1=mx (m >0)的图象与反比例函数y 2=kx(k ≠0)的图象交于点A (n ,4)和点B ,AM ⊥y 轴,垂足为M ,若△AMB 的面积为8,则满足y 1>y 2的实数x 的取值范围是____________.2325.如图,在平面直角坐标系中,正方形ABCD 的中心在原点O ,且一组对边与x 轴平行,点P (3a ,a )是反比例函数y =kx(k>0)的图象与正方形的一个交点,若图中阴影部分的面积为14,则k 的值为____________.2326.如图,利用一面墙(墙足够长),用总长为80m 的篱笆围成①②③三块矩形区域,且这三块矩形的面积相等,则矩形ABCD 面积的最大值为____________m 2.2327.如图,矩形ABCD 中,AB =8,BC =6,P 为AD 上一点,将△ABP 沿BP 翻折至△EBP ,PE 与CD1 C 1 C 2A DB CE FG H ② ① ③墙相交于点O ,且OE =OD ,则AP 的长为_____________.2328.如图,□ABCD 的顶点A 、C 在双曲线y 1=k 1 x (k 1<0)上,顶点B 、D 在双曲线y 2=k 2x(k 2>0)上,且AB ∥y 轴,若k 1=-2k 2,□ABCD 的面积为24,则k 1=_____________.2329.如图,矩形ABCD 中,AB =3,AD =4,点P 是DC 边上的一个动点,连接AP ,过点A 作AQ ⊥AP ,交CB 的延长线于点Q .当点P 从D 点运动到C 点时,线段PQ 的中点M 所经过的路径长为_____________.2330.将矩形ABCD 按图中所示的方法折叠一角,得到折痕PO ,再折叠一角,得到折痕QO ,如果两折痕的夹角∠POQ =70°,则∠A ′OB ′=_____________°.2331.如图,正方形ABCD 的对角线AC 与BD 相交于点E ,正方形EFGH 绕点E 旋转,直线FB 与直线EOA BCD PB C Q A B CD O P Q A ′ B ′C ′D ′CH 相交于点P ,若AB =2,∠DBP =75°,则DP 2的值是_____________.2332.如图,矩形ABCD 的顶点A 、C 在反比例函数y =kx(k>0,x>0)的图象上,AB =1,AD =2,且A 、C 两点的横、纵坐标均为整数,给出下列结论:①若点B 的坐标为(m ,n ),则m =2n ;②k 的最小值为4;③若矩形ABCD 对称中心的横坐标坐标为9,则k =60;④当k 取不同的值时,沿对角线AC 翻折矩形ABCD ,则点D 的对应点始终落在同一条直线上.其中正确的结论是_______________.2333.如图,BC 是⊙O 的直径,点A 、D 分别在CB 、BC 的延长线上,且AB =BC =CD ,点P 是圆上任意一点(不与点B 、C 重合),则tan ∠APB ·tan ∠DPC 的值为_____________.2334.如图,在Rt △ABC 中,∠ABC =90°,AB =BC =2.将△ABC 绕点C 逆时针旋转60°,得到△MNC ,连接BM ,则BM 的长是_____________.2335.如图,矩形ABCD 中,BC =3AB .将矩形ABCD 沿过点B 的直线折叠,使折叠后的点C 落在对角ADEBFGHPCM C B ANB C A D H G EF 线BD 上的点G 处,折痕为BH ,再将AD 沿过点G 的直线折叠,使点A 、D 分别落在边AB 、CD 上,折痕为EF ,得到矩形BCEF ,称为1次操作;将矩形BCEF 按上述方法操作,得到矩形BCPQ ,称为2次操作;…….(1)若经过3次操作后,得到的矩形的长宽比为n ,则n 的值是____________;(2)若操作过程中出现过10个长宽比为整数的矩形,那么,至少经过了____________次操作.2336.有n (n >3)张卡片,在卡片上分别写上-2、0、1中的任意一个数,记为x 1,x 2,x 3,…,x n .如果将卡片上的数先平方再求和,结果为28;如果将卡片上的数先立方再求和,结果为4,则x 14+x 24+x 34+…+x n 4的值是____________.2337.如图,∠ABC =90°,AB =2,点P 是射线BC 上的一个动点(点P 不与点B 重合),连接AP ,将线段AP 绕点A 逆时针旋转60°得到线段AQ .设BP =x ,点Q 到射线BC 的距离为y ,则y 关于x 的函数关系式为________________.(不要求写出自变量的取值范围)2338.已知实数a ,b 满足a -b =1,a2-ab +2>0,当1≤x ≤2时,函数y =ax(a≠0)的最大值与最小值之差是1,则a 的值是_____________.2339.如图,在平面直角坐标系中,直线y =kx +1分别交x 轴、y 轴于点A 、B ,过点B 作BC ⊥AB 交xA B C P Q轴于点C ,过点C 作CD ⊥BC 交y 轴于点D ,过点D 作DE ⊥CD 交x 轴于点E ,过点E 作EF ⊥DE 交y 轴于点F ,若A 是线段EC 的中点,则线段EF 的长是____________.2340.观察下列等式:23=3+5,33=7+9+11,43=13+15+17+19,若n 为正整数,且n3可表示为若干个连续奇数的和,其中有一个奇数是103,则n 的值是____________.2341.如图,正方形AEFG 的顶点E 、G 在正方形ABCD 的边AB 、AD 上,AB =2,AE =1.现将正方形AEFG 绕点A 逆时针旋转,BE 的延长线交直线DG 于点P ,当点E 落在线段BG 上时停止旋转,在这一过程中,点P 所经过的路径长为_____________.2342.如图,矩形OABC 的顶点A 、C 分别在x 轴、y 轴的正半轴上,直线y =-x +6交边BC 于点M (m ,n )(m <n ),并把矩形OABC 分成面积相等的两部分,过点M 的双曲线y =kx(x>0)交边AB 于点N ,若△OAN 的面积是4,则△OMN 的面积是_____________.A B CD EFG C D A B E F PG2343.将a 、b 、c 三个数的中位数记作Z |a ,b ,c |,直线y =kx +12(k>0)与函数y =Z |x2-1,x +1,-x +1|的图象有且只有2个交点,则k 的取值为_____________.2344.如图,一次函数y =-43x +4的图象与x 、y 轴交于点A 、B ,点B 关于x 轴的对称点为C ,动点P 、Q 分别在线段BC 、AB 上(点P 不与点B 、C 重合),且∠APQ =∠ABO ,当△APQ 是等腰三角形时,点P 的坐标是_______________.2345.用若干个相同的小立方块搭建一个几何体,其主视图和俯视图均如图所示,那么,最多需要___________个小立方块;最少需要___________个小立方块2346.如图,在△ABC 中,∠C =90°,CA =CB ,点M 在线段AB 上,∠GMA =12∠B ,AG ⊥MG ,垂足为G ,MG 与AC 相交于点H ,若MH =8,则GH =_____________.CABMG H2347.如图,⊙O中,BC是弦,AD过圆心O,AD⊥BC,E是⊙O上一点,F是AE延长线上一点,EF =AE,连接CF.若AD=9,BC=6,则线段CF长度的最小值是_____________.2348.如图,双曲线y=kx经过点A(6,8),点B是双曲线上的一个动点,过点B作x轴的垂线,过点A作y轴的垂线,两垂线交于点P,将△ABP沿直线AB翻折,点P的对应点为Q,若点Q恰好落在x轴上,则点B的坐标为_____________.2349.如图,AB是⊙O的直径,点P在AB的延长线上,BP=OB=2,点Q在⊙O上,连接PQ交⊙O于点C,若PC=CQ,则弦AQ的长为_____________.2350.如图,在平面直角坐标系中,O为坐标原点,等腰直角三角形OAB的直角顶点A在反比例函数y=kx(k<0,x>0)的图象上,点B在反比例函数y=-kx(x>0)的图象上,若点A的纵坐标为-2,则点B的坐标为_____________.2351.如图,四边形ABCD 和CEFG 都是正方形,B 、C 、G 三点在同一直线上,点D 在边CE 上,GD 的延长线交BE 于H ,FH 交EG 于O ,若AB =2,EF =3,则OEOG的值为_____________.2352.如图,⊙O 的直径AB 与弦CD 互相垂直,垂足为E ,AB =4,CD =23,动点P 从B 点出发,沿劣弧BD 运动到D 点,AF ⊥CP 于F ,则线段AF 的中点M 所经过的路径长为__________,线段AF 所扫过的图形面积为__________.2353.如图,在平面直角坐标系xO y 中,△OAB 的顶点A 在x 轴的正半轴上,OC 是△OAB 的中线,点B 、C 在反比例函数y =3x(x>0)的图象上,则△OAB 的面积为_____________.更多、更新精彩内容 请关注新初中数学命题解题群 340529648该群是针对各地中考数学题进行分析研讨,对中考数学命题发展趋势进行研讨,调查了解中考命题新方向,本群研讨的主要是原创题。

相关文档
最新文档