永磁同步电机研究的热点及发展方向
永磁同步电机矢量控制发展综述
永磁同步电机矢量控制发展综述
永磁同步电机矢量控制是一种高效、精确、可靠的控制方法,已经成为电机控制领域的研究热点。
该控制方法通过对电机的电流、电压、转速进行矢量分析,实现对电机的精确控制。
近年来,随着电机工业的快速发展,永磁同步电机矢量控制技术也在不断完善和发展。
永磁同步电机矢量控制技术的发展可以分为以下几个阶段:传统的电机控制技术、传统的矢量控制技术、基于反馈线性化的矢量控制技术、基于自适应控制的矢量控制技术以及基于模型预测控制的矢量控制技术。
在传统的电机控制技术中,电机通常采用电阻-电感-电容(RLC)模型进行控制,这种控制方法简单,但对电机的响应速度和精度较差,无法满足高性能电机控制的要求。
传统的矢量控制技术则是通过矢量变换对电机进行控制,提高了电机控制的精度和响应速度,但存在磁饱和等问题。
基于反馈线性化的矢量控制技术是在传统的矢量控制技术基础上,通过对电机的非线性特性进行建模和控制,提高了电机控制的精度和可靠性。
基于自适应控制的矢量控制技术则是根据电机的实际运行情况,自适应地调整控制参数,提高了电机控制的鲁棒性和适应性。
基于模型预测控制的矢量控制技术则是通过建立电机的预测模型,预测电机未来的运行状态,从而实现更加精确的电机控制。
总之,永磁同步电机矢量控制技术在电机工业中具有广泛的应用前景,其发展也将会越来越快速和深入。
2024年永磁式同步电动机市场前景分析
2024年永磁式同步电动机市场前景分析引言永磁式同步电动机是一种新型的电动机,具有高效率、高可靠性和低噪音等优点,因此在电动车、工业自动化等领域得到广泛应用。
本文将对永磁式同步电动机市场前景进行详细分析。
市场规模及趋势据统计数据显示,永磁式同步电动机市场自从近几年开始飞速发展。
预计到2025年,全球永磁式同步电动机市场规模将达到xx亿美元。
这一市场规模的增长主要受到电动车市场的推动,特别是电动汽车的广泛普及。
优势与应用领域永磁式同步电动机具有以下优势: - 高效率:相比传统的感应电动机,永磁式同步电动机具有更高的能量利用率,能够降低能源消耗。
- 高性能:永磁材料的应用使得同步电动机具有较大的磁场强度和扭矩密度,适用于高负载和高速应用。
- 低噪音:永磁式同步电动机的转子结构简单,摩擦和噪音较低。
- 高可靠性:永磁材料具有较好的稳定性和耐磨损性,提高了电动机的可靠性和使用寿命。
永磁式同步电动机广泛应用于以下领域: 1. 电动汽车:电动汽车的快速发展将直接推动永磁式同步电动机市场的增长。
2. 工业自动化:永磁式同步电动机在工业领域中应用广泛,如机床、风力发电机组等领域。
3. 家电领域:永磁式同步电动机在家电领域的应用正在逐渐增加,如洗衣机、热水器等。
挑战与发展趋势然而,永磁式同步电动机市场仍然面临一些挑战: 1. 永磁材料价格波动:永磁材料的价格波动较大,对永磁式同步电动机制造商造成不小的压力。
2. 竞争加剧:随着市场规模的不断扩大,永磁式同步电动机市场竞争日趋激烈,厂商之间的竞争变得更加激烈。
3. 环保要求增加:随着环保意识的增强,对电动机的能效要求不断提高,这也对永磁式同步电动机的技术提出了更高的要求。
然而,尽管面临一些挑战,永磁式同步电动机市场仍然具有较大的发展潜力。
未来的发展趋势主要有: 1. 技术创新:永磁式同步电动机制造商将继续进行技术创新,以提高电机的性能和效率。
2. 成本降低:随着永磁材料价格的稳定,电动机制造商将通过规模化生产和工艺改进等方式降低成本。
无轴承永磁同步电机研究现状与发展趋势
Z ej n 10 3 hn ) hni g2 2 1 ,C ia a
Abtat er ges e ae t ge sn ho osm t P M) i ahg ef mac MS s c:A bai l r n n man t yc rnu oo r n s pm r( MS s ihpr r n eP M o
微 电机
无 轴 承 永 磁 同步 电机 研 究 现 状 与 发 展 趋 势
成秋 良,朱烷秋 ,王成 波 ,王海涛
( 江苏大学 电气信息工程学院 ,镇江 2 2 1 ) 10 3
摘
要 :无轴承永磁 同步电机同时具备永磁 同步电机的优 良特性与磁悬浮轴承 的特点。分析 了国内外
无轴承永磁 同步 电机研 究现状 ,指 出其发展规律 ;总结 了目前 国内外无轴承永磁 同步 电机结构与控制 策略方面的研 究成果 ,为其结构改进 与控制优化提供 参考 ;分析 了无轴承永磁 同步电机发展趋势 ,为
a o tn e rn l s e h oo y, a a h x eln h r c e sis o MS a d t e fau e fma - d p i g b a ge stc n l g i nd h st e e c le tc a a tr tc fP M n h e tr s o g i n tc b a n . Ba e n t e meh d o o u n ttsis, a ay e n e n t n la d do si e e r h ei e r g i s d o h t o fd c me tsaitc n lz d it r ai a n me tc r s a c o
对 I E /E lc o i Lba ( E ) 据 库 , E E IE Eet nc i r I L 数 r ry 20 ( 括 20 0 7年 包 0 7年 ) 之前 的检索结 果进 行 了统计
永磁同步电机技术研究及开发
永磁同步电机技术研究及开发随着电动汽车、风力发电等新能源行业的不断发展,永磁同步电机技术也在快速发展。
永磁同步电机具有高效、高性能和低噪音等优点,已经得到了广泛的应用和研究。
本文将介绍永磁同步电机技术的研究及开发情况,并探讨其未来发展趋势。
一、永磁同步电机技术的研究历程永磁同步电机源于交流异步电机,与异步电机相比,具有高效、高功率密度、高精度控制、低转矩脉动和低噪音等优势。
早期的永磁同步电机采用传统的机械式换向器进行换向,存在换向器寿命短、维护成本高等问题,而随着现代电子技术的发展,无刷永磁同步电机(BLDC)应运而生。
BLDC电机采用电子式换向,取代了传统的机械式换向器,具有寿命长、维护成本低的优点。
接着,随着永磁材料技术的不断进步,出现了一种新型的永磁材料——稀土永磁材料(NdFeB),它具有高磁能积、高抗腐蚀性、高稳定性等特点,广泛应用于永磁同步电机领域,进一步提高了永磁同步电机的性能。
二、永磁同步电机的应用领域永磁同步电机已经广泛应用于各种领域,如电动汽车、风力发电、工业控制及家电等。
其中,电动汽车是永磁同步电机的主要应用领域之一。
永磁同步电机具有高效、高功率密度和低噪音等优点,可以有效提高电动汽车的续航里程和动力输出,满足用户对电动汽车节能、环保的需求。
三、永磁同步电机技术的未来趋势未来,永磁同步电机将继续向高效、高性能和低成本的方向发展。
随着永磁材料技术不断进步,永磁同步电机的功率密度和效率将得到进一步提高,同时成本将进一步降低。
另外,永磁同步电机还将进一步应用于工业控制领域,提高生产效率和质量。
同时,随着人们对环保和节能的要求越来越高,永磁同步电机在家电和能源领域的应用也将得到进一步拓展。
四、永磁同步电机技术研究的挑战尽管永磁同步电机技术在多个领域得到了广泛应用,但也存在一些技术瓶颈和挑战。
例如,永磁同步电机需要高精度的转子定位控制,但转子因温度变化而引起的热膨胀和机械松动导致转子震动,这将影响电机的精度和寿命。
永磁同步电机研究的热点及发展方向
永磁同步电机研究的热点及发展方向当前,永磁同步电机研究的热点主要包括以下几个方面:1. 高性能控制策略:为了实现更高的控制性能和系统响应速度,研究者们一直在致力于开发高性能的控制策略。
例如,基于模型预测控制(Model Predictive Control,MPC)的方法被广泛应用于永磁同步电机的控制中,通过对电机模型的预测,可以实现精确的转矩控制和高动态响应。
2.热管理和散热技术:由于永磁同步电机在工作过程中会产生较多的热量,散热问题成为制约其性能和寿命的一个重要因素。
因此,研究者们一直在探索高效的热管理和散热技术,如利用流体冷却、热管技术、材料的热导性等方法来提高永磁同步电机的散热效果,保证电机在高功率工作状态下的稳定性和可靠性。
3.高效率和能量回收:随着能源和环境问题的日益严峻,研究者们对永磁同步电机的能效和能量回收也提出了更高的要求。
通过改进电机的设计和控制策略,提高电机的效率和功率密度,并且将电机与能量存储系统(如超级电容器、锂离子电池等)相结合,实现能量的高效利用和回收,已成为研究热点和发展方向。
另外,未来永磁同步电机的发展方向还包括以下几个方面:1.高温超导材料的应用:高温超导材料在低温条件下能够实现零电阻和强磁性,因此被认为是提高永磁同步电机功率密度和效率的重要途径之一、研究者们正在探索高温超导材料在永磁同步电机中的应用,以期在提高电机性能的同时,减少电机体积和重量。
2.磁剂的研发和改进:磁剂作为永磁同步电机中的关键部件,其性能对电机的性能和效率有重要影响。
目前,研究者们正在努力研发具有高矫顽力和较高磁能积的磁剂材料,以提高永磁同步电机的磁能密度和磁场强度。
3.多物理场耦合模型和仿真:由于永磁同步电机的工作涉及电磁场、机械场和热场等多个物理场的相互作用,因此开发多物理场耦合模型和仿真工具,可以更准确地分析和评估电机的性能和可靠性。
多物理场耦合模型和仿真方法的研究是未来永磁同步电机研究的重要发展方向之一总之,永磁同步电机作为一种高性能的电机,其研究的热点主要集中在高性能控制策略、热管理和散热技术、高效率和能量回收等方面。
浅谈永磁同步电机的技术优势及应用前景
内蒙古科技与经济Inner Mongolia Science Technology&EconomyMay2020 No.9TotalNo.45120205第9期总第451期01rp st电机的技术优势$b用n w陈浩维(华北电力大学电气与电子工程学院,北京102206)摘要:永磁同步电机基于节能高'、结构相对简单、体积小、运行平稳可靠,将来可广泛应用于家电、航空、医疗器械、电梯以及汽车等领域。
中国因拥有丰富的稀土资源,对以此为永磁材料的永磁同步电机更进一步的技术研究,意义重大深远。
近年来,内置式磁路结构的设计、仿真及控制等扌支术日渐成熟,永磁同步电机因具有独特的技术优势,社会需求日益增1!支术发展更加深入,应用b景广阔。
关键词:永磁同步电机;扌支术优势;应用b景中图分类号:F407.61文献标识码:A文章编号1007—6921(2020)09—0081—02近年来世界能源紧张问题明显,最大能源消费的中国更加突出,政府重视节能减排,对于设备和技术研究给予资金支持&由于永磁同步电机在设计环节中改进,具有更为小巧的传动系统,减少能耗,提升了效率,平均节电率高大10%以上(1)&同时优化其他元器件的设计,使设备的稳定性得到明显的改善,优越的性能,在各领域应用中日益体现,是一种当前最有发展潜力的电机技术&1研究高速永磁同步电机的意义节能、高效、量轻是永磁同步电机拥有的独特优势,因具有巨大的发展潜力,广阔的应用领域#自然成为电机行业发展的风向标&转子、定子、机座及端盖等部件是组成部分,永磁体、转子铁心及转轴构成转子&目前永磁体使用最常见的稀土永磁材料是汝铁硼,稀土资源最多的是我国,大约占世界的80%储存量,中国当前资源相对缺乏条件下,对永磁同步电机进行技术研究,对于促进我国经济的发展,影响意义重大&2永磁同步电动机技术发展的基础2.1高性能稀土永磁材料的发现P铁硼是目前应用得最为广泛,它的发展推动了永磁电机的发展&相比于传统的电励磁三相感应电机,电激磁磁极被永磁彳代替,结构得到简化,没有了转子的滑环及电刷,无刷结构得到完成,转子体积变小,大幅度提高电机功率密度、转矩密度及工作效率&2.2新型控制理论的获得应用由于矢量控制算法很好地解决了交流电机的驱动策略理论问题,交流电机于是具备了比较完善的控制性能&直接转矩控制方法的实现,控制结构变得更为简单,同时对参数变化具备电路棒、性能强及转矩动态响应迅速的特性&间接转矩控制方法的实现,顺利解决了直接转矩在低速时转矩脉动大的问题缺陷,提升了电机的转速及控制精度&2.3高性能电力电子器件及处理器的应用信息和传统产业是通过现代电力电子技术得以连接,在弱电和被控强电之间的起到桥梁作用&由于电力电子技术的发展完善,导致驱动控制策略的完成实现&20世纪70年代的通用变频器系列产品,可把工频电源改变为变频电源,由于频率具有连续及可调特性,使得同步电动机的启动问题得以解决&3永磁同步电动机技术优勢3.1设计扌支术内置式结构设计由于存在高效率、大功率、大密度、大的弱速及速的能力,它自然是驱动电机的最佳选择&永磁电机的所有励磁磁场来源于永磁体,齿槽转矩导致电机工作时的震动及噪声增大&齿槽转矩过分增大可导致电机速度控制系统的低速性能受到影响,同样也影响到位置控制系统的高精度定位,因此,在进行电机结构设计时,应该采取电机优化方法,尽可能缩小齿槽转矩&减小齿槽转矩,目前常见是通过以下方法来实现的,更改极弧系数,缩小定子的槽口宽度,斜槽、极槽配合,变更磁极位置、尺寸及形状等&值得注意的是,缩小齿槽转矩,电机的其他性能有可能受到影响,常见的如,电磁转矩有可能相应变小&因此在结构设计时,各种因素必须尽可能做到平衡,使得电机性能实现最大化&电机的磁路结构及尺寸、永磁体体积的估算、定子的设定、转子于冲片及绕组的数据是确定永磁同步电机电磁设计方案的难点及关键#运用旋转电机磁场数值解析法,电磁场解析法及电磁场数值计算法,可做到优化设计⑵&3.2仿真由于永磁彳的存在,在给电机的计算参数设计时有了难度,例如空载漏磁系数的设计及极弧系数的设计&计算优化永磁电机的各种参数,通常采取有限元分析软件方法进行,它能精确计算电机参数#在分析电机参数对性能的影响时,凭借它同样也存在极高的可信度&3.3控在工业控制领域方面,完善发展技术从而提升电机驱动系统性能,一样存在着重大意义,它让系统的性能驱动实现最佳状态,基本特性表现在比较低收稿日期!020—01—10作者简介:陈浩维(1999—),男,福建龙岩人,本科,电气工程及其自动化专业°・81・总第451期内蒙古科技与经济的速度情况下,特别是在快速启动及静止加速等情形中,可以完成较大转矩输出;在高速运行状态,使得大范围内的恒功率调速控制的目标得以实现&4永磁同步电动机的未来发展趋勢国内外近阶段,在永磁同步电机本体基础上涌现了不少高端电机,六相永磁同步电动机为典型代表,应用于舰船动力的提供,相比传统的直流电机#体积缩小了60%左右,损耗也大约减少20%;在舰船推进使用的永磁同步电机安装容量最大功率可达38MW;我国目前已经成功研制了功率达到3MW 的高速永磁风力发电机&调速范围变得更大及进一步提高精度控制是永磁同步电机目前发展趋势,具备高性能的永磁材料自然引起广泛重视&目前,永磁同步电机的技术研究变得日益成熟,正朝高速度#大转矩、大功率、高效率以及微型化、智能化趋势发展⑶&永磁同步电机还有一些技术瓶颈依然无法突破,①控制问题,永磁发电机要通过外部来调节改变其输出电压及功率因数是非常困难的,永磁直流电动机不能再用改变励磁的办法来调节其转速&②退磁问题,稀土永磁电机对于工作环境要求比较苛刻#如果温度超过180°C的稀土永磁材料将发生不可逆的退磁及失效;剧烈振动或较大温差易产生断裂现象;材料也易受到氧化腐蚀,需要表面涂装;同时不耐受过载#一旦发生将发生退磁&③成本问题,稀土永磁价格相对比较昂贵,成本通常高电励磁电机,必须通过发挥它的高性能及节省运行费用方法来得以补偿,故永磁电机在小功率的方面应用比较适合&比如,想解决此类问题,实现技术的升级及广泛应用#国家还必须鼎力扶持和投入足够量的科研经费& 5永磁同步电机技术的市场应用及前景5.1大功率机械设备研究朝着列车、新能源汽车、电梯、机器人等机械设备方向发展&当前我国新能源客车大部分使用交流异步电机,而新能源乘用车基本使用永磁同步电机&以往一部分企业驱动电机曾经使用的是开关磁阻电机,目前次项技术已渐被市场淘汰,我国未来在新能源汽车驱动电机选择上,主流是采用永磁同步电机&5.2航空领域稀土永磁双凸极结构电机是基于开关磁阻电机而研发出来的一种新型的电机,由于定子或转子被植入了稀土永磁体,使其拥有更大的输出转矩,且存在着高度的可靠性和容错性,所以能够在航空领域中显示出良好的应用前景,特别是稀土永磁电机&除此之外,稀土永磁具备了无刷直流电机的优势,如高度可靠性、体积重量变小及具有大功率等,显著提高了在航空领域上的应用速度,功能及性能均朝着更为高级方向发展&5.3宇航设备磁同步电机所用材料因有耐高温的特性,同时体积小,故非常适应高温、真空等特殊环境需求&适合应用于宇航设备的机械中,成为将来技术重要的一个研究方向&5.4医疗器械由于永磁同步电机寿命长、噪音低和体积小的特性,很适合延伸应用到手术用机器人及微型医疗机器等医疗设备方面,也成为该电机的一个技术研究的重要方向&近阶段,随着医疗器械产业快速发展,对于医疗器械用的永磁电机产品市场需求量显著增加,其市场发展受益匪浅&5.5国防军工应用于军用通信设备方面有激光测距仪设备、雷达和战车制造及军用弹道计算机等,应用于武器制造方面有火炮、导弹、宇宙飞船、人造卫星、飞机、坦克、舰艇及火箭等&在将来较长的时间内,我国的军费预算将维持比较快增速,永磁电机具备的寿命长、高速、高效及耐冲击等特性,未来在国防军工领域将得到广泛应用,前景十分广阔&5.6全融机具多见的有ATM机及纸币售货机等自动机器#还有一些高精尖的银行点钞机和捆钞机等设备&金融机具在金融信息化中存在不可替代作用,由于内涵及外延的持续扩大延伸,它的地位同样持续提升#应用市场的发展势头也能够得到良好保持&6永磁同步电机的特点是节能高效、结构相对简单、体积小、运行平稳可靠&近年来,内置式磁路结构的设计、仿真及控制等技术日渐成熟,永磁同步电机因具有独特的技术优势,社会需求日益增加,技术发展更加深入,在家电、航空、医疗器械、电梯以及汽车等领域的方面具有广阔的应用前景&[参考文献$「1"陈义中.稀土永磁同步电机取代普通电机的节能改I!"电机技术#017#2):42〜43. !"高峰.永磁同步电机设计关键技术与方法研究工程技术(引文版)#017#(1):162. !"王建设,徐荣,孙友增.永磁同步电动机发展现状综述科技与创新#016#16):5〜6.(上接第47页$根据国资委下发《关于国有控股混合所有制企业开展员工持股试点的意见1对国有企业员工持股有关事项进行约定,其中也明确规定试点企业必须是处于主业处于充分竞争行业和领域,公司董事会中有非公有资本股东推荐的董事&通过员工持股或符合要求的管理层持股,能够将员工或管理层利益和企业的成长绑在一起,成为利益共同体,有效激发企业活力,提高企业的市场竞争力&3国有企业通过混合所有制改革,形成合理的股权结构,改组科学合理的董事会、监事会,能够极大提高企业的市场竞争力,有效放大各方资本功能,实现国有资本的保值增值&[参考文献$「1"于国平.国有企业混合所有制改革方向!"商业会计,2016,(5):12〜15.!"杨红英,童露.混合所有制改革下的国有企业公司治理!".宏观经济研究,2015,(1):42〜51.!"李济广•国有企业混合所有制的目的、形式与治理保障!".社会科学2015,(2):4*〜58.・82・。
2024年永磁同步电机市场前景分析
2024年永磁同步电机市场前景分析引言永磁同步电机是一种使用永磁材料产生磁场的电机,具有高效率、高功率密度、高稳定性和较低噪音等优点。
近年来,随着环保和能源效率要求的增长,永磁同步电机在电动汽车、工业设备和家用电器等领域的市场需求不断增加。
本文将对永磁同步电机市场的前景进行分析,并对其发展趋势进行展望。
市场规模和增长趋势根据市场调研机构的数据,永磁同步电机市场在过去几年中保持着快速增长的趋势。
预计到2025年,全球永磁同步电机市场规模将达到X亿美元。
这一强劲的增长主要得益于以下几个因素:1.电动汽车市场的快速增长:随着全球对环保和低碳出行的要求不断提高,电动汽车市场迅速崛起。
永磁同步电机作为电动汽车主要的动力系统之一,其需求量也随之增加。
2.工业设备市场的需求增加:工业设备市场对高效、节能的电机需求不断增加。
永磁同步电机以其优异的性能指标和能效表现,逐渐取代传统的感应电机成为首选。
3.新能源发电市场的扩大:新能源发电市场如风力发电和太阳能发电等也对永磁同步电机提出了更高的要求。
其高效率和稳定性使其成为这些领域的首选电机。
发展趋势随着技术的发展和市场需求的变化,永磁同步电机市场将会呈现以下几个发展趋势:1.高效率和节能的要求:随着环保意识的提高,对电机的能效要求越来越严格。
永磁同步电机以其高效率和节能的特点,将成为未来电机市场的主流。
2.控制系统的智能化:永磁同步电机的控制系统将趋向于智能化和自动化。
通过采用先进的控制算法和传感器技术,可以实现精准的控制和优化运行,进一步提高电机的性能。
3.材料和设计的创新:永磁同步电机的发展还会受到材料和设计创新的推动。
新型的永磁材料和结构设计可以提高电机的功率密度和热稳定性,进一步优化电机的性能。
4.个性化定制的需求增加:随着消费者对个性化产品的需求增加,市场对于定制化的永磁同步电机的需求也在不断增加。
为了满足不同领域和应用的要求,未来的永磁同步电机将会更加多样化和灵活性。
例子-永磁直线同步电动机关键技术的研究
永磁直线同步电动机关键技术的研究第1章绪论1.1课题的背景与意义随着科学技术进步,高效率、高精度、高柔化和绿色化成为机械加工的重要发展方向。
切削加工的发展方向是高速切削加工。
一方面,高速加工不仅极大提高了机械加工生产效率,而且可降低切削力 30%以上,尤其径向切削力大幅度减小,同时 95%-98%的切削热被切屑带走,加工零件的热变形小,振荡频率高,工作平稳,有利于提高加工零件的光洁度,从而极大地提高了加工零件的质量及互换性;另一方面,超微细加工及科学实验对精密加工提出了越来越高的要求。
实现高速、精密加工的基本条件是:要有性能优良的高速精密机床。
为了保证进给量不变,确保零件的加工精度,表面质量和刀具耐用度,驱动系统的速度也必须相应提高;同时,进给系统的行程一般比较小,也要求驱动系统具有高的加(减)速度,以缩短启动、变速、停止的过渡时间。
因此,研制新型高速精密驱动系统是国内外的研究热点。
在工业发达国家,高速切削技术正成为切削加工的主流技术。
根据 1992年国际生产工程研究会(CLRP)年会主题报告的定义,高速切削通常指切削速度超过传统切削速度5-10倍的切削加工。
目前,多数数控机床的进给系统,采用旋转伺服电机驱动滚珠丝杠。
为了适应高速精密加工的要求,一些厂商采用了不同的措施不断改进滚珠丝杠的结构和性能,如日本MAZAK公司的FF66O卧式加工中心采用高速滚珠丝杠副驱动系统,其速度达 1.5m/s,加速度为1.5g,重复精度达0.002mm 。
但滚珠丝杠驱动系统需中间环节(如联轴器、滚珠丝杠、螺母等)传动,存在很多缺点,如存在反向死区、螺距误差引起误差传递、由于摩擦磨损而导致的精度渐变、附加惯量大、弹性变形引起爬行,以及位置、速度、加速度受限于丝杠的机械特性(刚度、临界速度)等,进一步改进高速精密滚珠丝杠驱动系统,有着不可克服的困难。
所以机床上传统的“旋转电机+滚珠丝杠”进给传动方式,由于受自身结构的限制,在进给速度、加速度、快速定位精度等方面很难有突破性的提高,已无法满足超高速切削、超精密加工对机床进给系统伺服性能提出的更高要求。
永磁同步电机控制系统发展现状及趋势
永磁同步电机控制系统发展现状及趋势摘要:永磁同步电机具有高功率密度、高效率和高可靠性等优点,在现代工业中应用广泛,相关控制理论得到了长远发展。
基于此,本文总结梳理了永磁同步电机控制系统的发展现状,然后论述了各控制系统的特点,最后展望了基于滑模控制的永磁同步电机控制系统的发展趋势,以期为未来永磁同步电机控制系统的进一步发展提供参考。
关键词:永磁同步电机;控制系统;发展现状;滑模控制;发展趋势引言:自永磁同步电机诞生以来,因其具有一系列优异特性,得到了广泛研究,同时伴随着永磁材料和半导体器件的发展,永磁同步电机获得了长足发展。
同时,随着相关控制理论的发展,永磁同步电机控制系统也随之进化,控制精度越来越高。
因而在现代工业中,永磁同步电机广泛应用于国民经济、航空航天等众多领域,发挥着重要作用。
相应的,随着技术产品的发展,对永磁同步电机的控制精度要求越来越高,故将各种先进控制方法应用的永磁同步电机的研究也不断涌现。
1永磁同步电机发展概况永磁同步电机与其他电动机最大不同之处在于励磁电流是依靠永磁体产生。
因此永磁同步电机具有以下优势[1]:(1)采用永磁材料,高速运行过程中发热少,避免了电机工作时转子发冷却难的问题,同时寿命也得到了提高;(2)永磁同步电机功率更高,可以达到97%左右;(3)永磁同步电机功率密度更高,在较小尺寸下即可实现较高的功率和转矩。
1.1永磁同步电机发展历史永磁同步电机的发展可总结为三个阶段[2]:(1)20世纪六七十年代,这个阶段由于稀土材料未得到充分开发,价格昂贵,导致永磁同步电机成本高昂,仅在航空航天等高要求行业得到应用;(2)20世纪八十年代,随着价格稍低的铅铁硼永磁材料的出现和电子控制技术的逐步成熟,永磁同步电机成本降低,同时控制相对容易实现,因而也逐步应用于民用领域;(3)自20世纪九十年代至今,伴随着永磁材料价格的降低、电力电子技术和微处理器技术的发展,永磁同步电机的驱动系统研发应用也得到了明显发展,应用领域进一步扩大,尤其是近十年,永磁同步电机已经成为国民经济中电机驱动系统的第一选择。
永磁同步电机简介
15 /17
(3)弱磁控制 永磁同步电机的转子是永磁铁励磁,随着转速的升高,电动 机电压达到逆变器所能输出的极限,再想升速就只能靠调节 定子电流的大小和相位增加直轴去磁电流来等效弱磁提高转 速。 (4)性能改善 主要从开发新结构电机,力矩补偿减少力矩波动,改善永磁 体的抗消磁能力等方面对电机的性能进行改善。
9/17
永磁同步电机控制策略
(1)上世纪70年代西门子工程师F.Blaschke 首先提出异步电机矢量控制理论来解决交流电 机转矩控制问题。 ~
给定 信号
i*m
控制器 i
* t
i*
VR-1 i*
+
i*A i*B 2/3 * iC
iA 电流控制 iB 变频器 iC
i
3/2 iβ VR
16 /17
5. 永磁同步电机的发展趋势
(1)大功率,高转速,高转矩,高效率,质量轻 (2)轻型化,微型化,高功能化,专业化 (3)动力传动一体化的电机驱动系统 (4)高性能,高档永磁同步电机伺服系统
17 /17
3. 永磁同步电机控制系统的控制算法研究现状综述
永磁同步电机是一个多变量,强耦合的非线性系统。实际 应用中电机的参数实时变化,且会受到外部干扰的影响,因此 很多的先进控制算法被应用到交流控制系统来解决上述问题。 (1)PI控制 优点:经典控制策略,方法简单,既能提高静态精度,又能改 善动态品质; 缺点:PI控制法属于线性的控制方法,适应负载能力差,抗干 扰能力差,控制性能不够稳定。 (2)滑模变结构控制 优点:不要求精确的数学模型,不受参数变化和外部扰动的影 响; 缺点:由于惯性,时间延迟等因素,存在抖振现象。
im
等效直流 电机模型
《2024年永磁同步电机的参数辨识及控制策略研究》范文
《永磁同步电机的参数辨识及控制策略研究》篇一一、引言随着电力电子技术的飞速发展,永磁同步电机(PMSM)作为高效、节能的电机驱动系统,在工业、交通、航空航天等领域得到了广泛应用。
然而,永磁同步电机的性能和效率受到其参数辨识和控制策略的深刻影响。
因此,对永磁同步电机的参数辨识及控制策略进行研究,对于提高电机性能、优化系统运行具有重要意义。
二、永磁同步电机参数辨识1. 参数辨识的重要性永磁同步电机的性能和运行状态受到其参数的影响,如电感、电阻、永磁体磁链等。
准确的参数辨识对于电机的控制、优化设计以及故障诊断具有重要意义。
2. 参数辨识方法(1)传统方法:通过电机设计参数和实验测试获得,但受环境、温度等因素影响较大。
(2)现代方法:利用现代信号处理技术和智能算法,如最小二乘法、卡尔曼滤波器、神经网络等,对电机运行过程中的数据进行实时辨识和更新。
3. 参数辨识的挑战与解决方案在参数辨识过程中,如何提高辨识精度、降低辨识误差、适应不同工况是主要挑战。
针对这些问题,可以通过优化算法、提高采样精度、引入多源信息融合等方法进行解决。
三、永磁同步电机的控制策略研究1. 控制策略的种类与特点永磁同步电机的控制策略主要包括矢量控制、直接转矩控制、模型预测控制等。
矢量控制具有高精度、高动态响应的特点;直接转矩控制具有转矩响应快、控制简单的优点;模型预测控制则具有较好的鲁棒性和适应性。
2. 控制策略的优化与改进针对不同应用场景和需求,可以对控制策略进行优化和改进。
例如,通过引入智能算法,如模糊控制、神经网络控制等,提高电机的自适应性和鲁棒性;通过优化算法参数,提高电机的能效和运行效率。
3. 控制策略的挑战与未来方向在控制策略研究中,如何提高系统的稳定性和可靠性、降低能耗是主要挑战。
未来研究方向包括:深度学习在永磁同步电机控制中的应用、多源信息融合在电机控制中的研究等。
四、实验与分析通过搭建永磁同步电机实验平台,对上述参数辨识及控制策略进行研究与验证。
永磁同步电机控制算法综述
永磁同步电机控制算法综述一、本文概述随着能源危机和环境污染问题的日益严重,高效、环保的电机及其控制技术成为了研究热点。
永磁同步电机(PMSM)作为一种具有高功率密度、高效率以及良好调速性能的电机,广泛应用于电动汽车、风力发电、工业自动化等领域。
为了实现永磁同步电机的精确控制,提高其运行性能,研究永磁同步电机的控制算法至关重要。
本文旨在综述永磁同步电机的控制算法,包括其基本原理、发展历程、主要控制策略以及优缺点。
通过对不同类型的控制算法进行梳理和评价,为永磁同步电机的控制策略选择提供理论依据和实践指导。
同时,本文还将探讨永磁同步电机控制算法的未来发展趋势,以期为相关领域的研究人员和技术人员提供参考和借鉴。
在本文中,我们将首先介绍永磁同步电机的基本结构和运行原理,为后续的控制算法分析奠定基础。
接着,我们将重点介绍几种主流的永磁同步电机控制算法,如矢量控制、直接转矩控制、滑模控制等,并详细分析它们的实现原理、优缺点及适用场景。
我们还将讨论一些新兴的控制算法,如基于的控制算法、无传感器控制算法等,以展示永磁同步电机控制算法的最新进展。
我们将对永磁同步电机控制算法的发展趋势进行展望,探讨未来可能的研究方向和技术创新点。
通过本文的综述,我们期望能够为永磁同步电机的控制算法研究提供全面、深入的视角,推动永磁同步电机控制技术的不断发展和优化。
二、PMSM的基本原理永磁同步电机(PMSM)是一种利用永磁体产生磁场的电机。
与传统的电励磁同步电机相比,PMSM不需要额外的励磁电流,因此具有更高的效率和功率密度。
PMSM的基本原理主要基于电磁感应和磁场相互作用。
PMSM的核心部件是永磁体和电枢绕组。
永磁体通常位于电机转子上,产生一个恒定的磁场。
电枢绕组则位于电机定子上,通过通入三相交流电产生旋转磁场。
当旋转磁场与永磁体磁场相互作用时,会产生一个转矩,使电机转子开始旋转。
PMSM的旋转速度可以通过控制电枢绕组中的电流频率和相位来调节。
请简述永磁同步电机的应用现状及发展趋势
请简述永磁同步电机的应用现状及发展趋势永磁同步电机是一种使用永磁体作为转子的电机,具有高效、低噪声、低能耗等特点,因此在各个领域得到了广泛应用,例如汽车、航空、轨道交通、工业自动化等。
目前,永磁同步电机的应用现状呈现出以下几个方面的发展趋势:
1. 智能化:随着人工智能和机器学习技术的发展,永磁同步电机的智能化程度越来越高。
例如,可以通过智能化控制来实现自适应负载调节、自适应电机控制等功能。
2. 高温环境:永磁同步电机在高温环境下的应用越来越广泛。
例如,在航空航天领域,永磁同步电机可以用于高速飞行的飞行器,在高温、高压环境下运行。
3. 高速率:永磁同步电机的高速率性能越来越重要。
例如,在高速轨道交通领域,永磁同步电机可以实现较高的牵引力和速度控制。
4. 节能环保:永磁同步电机的节能环保性能越来越突出。
例如,在工业自动化领域,永磁同步电机可以通过优化电机控制,实现减少能源消耗的目的。
5. 小型化:永磁同步电机的小型化趋势也越来越明显。
例如,在移动设备和嵌入式系统领域,永磁同步电机可以实现小型、紧凑的设计。
未来,永磁同步电机将朝着智能化、高温环境、高速率、节能环保和小型化等方向发展,应用前景更加广阔。
永磁同步电机无位置传感器控制技术研究综述
永磁同步电机无位置传感器控制技术研究综述【摘要】永磁同步电机无位置传感器控制技术是近年来的研究热点之一,本文对该技术进行了综述。
在介绍了研究动机、研究目的和研究意义。
在详细阐述了永磁同步电机的基本原理、无位置传感器控制技术的发展历程、研究现状、关键技术以及应用领域。
在展望了该技术的发展前景,提出了研究的不足之处和未来研究方向。
通过本文的综述,读者可以全面了解永磁同步电机无位置传感器控制技术的最新进展和未来发展趋势。
【关键词】永磁同步电机、无位置传感器、控制技术、研究动机、研究目的、研究意义、基本原理、发展历程、研究现状、关键技术、应用领域、发展前景、不足之处、未来研究方向1. 引言1.1 研究动机无位置传感器控制技术能够实现永磁同步电机的高性能运行,减少系统成本和提高可靠性。
深入研究永磁同步电机无位置传感器控制技术,对于推动永磁同步电机技术的发展,提高系统的性能表现具有重要的意义。
在实际应用中,永磁同步电机无位置传感器控制技术的发展也将对工业自动化、电动汽车、风力发电等领域产生深远的影响。
本文旨在系统总结永磁同步电机无位置传感器控制技术的研究现状和关键技术,为这一领域的进一步研究和应用提供参考和指导。
1.2 研究目的本研究的目的在于系统地总结永磁同步电机无位置传感器控制技术的发展历程、研究现状和关键技术,探讨该技术在不同应用领域中的实际应用情况,并展望未来的发展趋势。
通过深入研究和分析,我们旨在为永磁同步电机无位置传感器控制技术的进一步发展提供参考和指导,为工业应用和科研领域提供有力支撑。
通过本研究,我们希望能够为提高永磁同步电机的控制性能和降低系统成本做出贡献,促进我国永磁同步电机无位置传感器控制技术的创新与发展。
1.3 研究意义永磁同步电机无位置传感器控制技术的研究意义在于推动电机控制技术的发展和应用。
随着科技的不断进步,对电机系统的性能要求越来越高,传统的位置传感器在一些特殊环境下会受到限制,而无位置传感器控制技术可以有效地解决这一问题。
永磁同步电机研究的热点及发展趋势
永磁同步电机研究的热点及发展趋势龚小茂西安交通大学机硕1005班3111003040摘要与传统电机相比,永磁同步电机具有它突出的优势。
本文对永磁同步电机的原理、结构、优缺点进行了介绍,同时分析了它的研究现状、热点和未来的发展趋势。
关键词:永磁同步电机现状热点发展趋势Research Hotspot and Development trend of Permanent Magnet Synchronous MotorGong XiaomaoXi’an Jiaotong University,Class 1005,3111003040AbstractPermanent magnet synchronous motor has its outstanding advantages in contrast to traditional motors.This paper introduces theory, structure and advantages and disadvantages of permanent magnet synchronous motor.Then analyzes its research status,hotspot and development trend in the future.Keywords: permanent magnet synchronous motor,status,hotspot,development trend1.前言由于低碳经济的要求、化石能源的紧缺,我国汽车需求量、保有量稳步增长、电动汽车技术逐渐成熟、国家政策的支持因素,未来电动汽车发展前景相当看好[1-3]。
驱动电机作为动力系统的核心部件,在很大程度上可以说驱动电机性能和控制性能的好坏决定于电动机的主要性能。
而目前在用或开发的电动车用电动机主要有直流电动机(DCM) 、感应电动机( IM) 、永磁电动机( PM) 、开关磁阻电动机( SRM)四类。
大功率盘式无铁芯永磁同步电机
大功率盘式无铁芯永磁同步电机随着科技的不断进步,电机技术也在日益更新。
大功率盘式无铁芯永磁同步电机作为一种高效、节能的电机产品,正逐渐成为市场上的热点。
本文将对这种电机进行简要介绍,并分析其应用领域、市场需求以及我国在该领域的研究与发展现状。
一、大功率盘式无铁芯永磁同步电机简介大功率盘式无铁芯永磁同步电机是一种采用永磁材料作为磁场源,利用同步电机运行原理实现电能转换的高效电机。
与传统的铁芯电机相比,它具有体积小、重量轻、效率高、噪音低等优点。
在实际应用中,这种电机可广泛应用于风力发电、电动汽车、工业传动等领域。
二、电机结构特点及优势1.无铁芯结构:采用高性能永磁材料作为磁场源,取消了传统的铁芯结构,降低了电机重量和体积,提高了电机的运行效率。
2.同步电机:通过同步电机运行原理,实现电能的高效转换,降低了能源损耗。
3.盘式设计:电机采用盘式结构,有利于热量的散发,提高了电机的可靠性和稳定性。
4.高效率:与传统电机相比,大功率盘式无铁芯永磁同步电机具有更高的效率,降低了能源成本。
5.低噪音:由于取消了铁芯结构,使得电机运行时的噪音得到有效降低。
6.宽调速范围:同步电机具有宽调速范围的特点,可满足不同工况的需求。
三、应用领域与市场需求大功率盘式无铁芯永磁同步电机具有广泛的应用领域,如风力发电、电动汽车、工业传动、航空航天、医疗器械等。
随着节能减排政策的推进,以及各行业对高效、节能、环保技术的追求,这种电机在市场上的需求越来越大。
四、我国在该领域的研究与发展现状近年来,我国在大功率盘式无铁芯永磁同步电机领域的研究取得了显著成果。
多家科研院所和企业纷纷加大投入,推动技术研发和产业化进程。
目前,我国已成功研制出多款具有国际先进水平的大功率盘式无铁芯永磁同步电机产品,并在国内外市场取得了一定的市场份额。
五、未来发展趋势与展望展望未来,随着科技的进步和市场需求的不断提高,大功率盘式无铁芯永磁同步电机将呈现出以下发展趋势:1.高性能永磁材料的研发:为了进一步提高电机的性能,未来将加大对高性能永磁材料的研究与开发。
永磁同步电机控制技术的研究与应用
永磁同步电机控制技术的研究与应用第一章:引言永磁同步电机是一种以永磁体作为励磁源的电机,其具有体积小、功率密度高、效率高等优点,因此在工业和交通领域得到了广泛应用。
而永磁同步电机的控制技术则是实现其高效、可靠运行的关键。
第二章:永磁同步电机的基本原理永磁同步电机的基本原理是利用转子中的永磁体产生磁场,与定子中的旋转磁场相互作用,从而产生转矩。
在永磁同步电机中,转子磁场的方向与定子磁场的方向保持同步,这使得电机运行更加稳定和高效。
第三章:永磁同步电机的控制技术1. 传统的电流控制技术传统的永磁同步电机控制技术主要通过控制定子电流来实现对电机的控制。
这种控制技术简单可靠,但是难以满足电机的高效运行需求。
2. 磁链定向控制技术磁链定向控制技术是一种较为先进的永磁同步电机控制技术。
该技术通过控制永磁体的磁链,使得电机能够实现高效、稳定的运行。
磁链定向控制技术具有响应快、抗干扰性强等特点,广泛应用于工业领域。
3. 矢量控制技术矢量控制技术是一种基于转子磁场定向的永磁同步电机控制技术。
该技术通过对电机的电流和磁链进行矢量控制,实现对电机的精确控制。
矢量控制技术具有高动态响应性能和良好的负载适应性,被广泛应用于交通领域。
第四章:永磁同步电机控制技术的应用1. 工业领域永磁同步电机在工业领域的应用非常广泛,如工作在恶劣环境下的泵、风机等设备,需要可靠高效运行的机械传动系统,都可以采用永磁同步电机进行驱动。
控制技术的发展使得永磁同步电机在工业领域的应用更加智能化、高效化。
2. 交通领域永磁同步电机在交通领域的应用也越来越广泛,尤其是在新能源汽车领域。
永磁同步电机具有高功率密度和高效率的特点,可以满足电动汽车对动力系统的高性能要求。
永磁同步电机控制技术的不断创新,使得电动汽车的续航里程和性能得到了显著提升。
第五章:永磁同步电机控制技术的研究进展目前,永磁同步电机控制技术的研究重点主要包括控制策略优化、系统建模和仿真分析等方面。
永磁辅助同步磁阻电机研究现状及发展趋势
永磁辅助同步磁阻电机研究现状及发展趋势下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!摘要:永磁辅助同步磁阻电机作为一种新型的电机,具有结构简单、效率高、响应速度快等优点,在电动汽车、工业自动化等领域具有广阔的应用前景。
永磁同步电机滑模控制的国内外研究
永磁同步电机滑模控制的国内外研究随着电动汽车、风力发电和工业自动化等领域的迅猛发展,永磁同步电机作为一种高效、低噪音的电动机,受到了广泛关注。
而永磁同步电机的控制技术中,滑模控制因其对系统参数变化、外部扰动等因素具有较强的鲁棒性和抗干扰能力,成为了研究热点之一。
本文将围绕永磁同步电机滑模控制的国内外研究现状展开全面的分析和总结,以期为相关研究提供借鉴和参考。
一、国外研究现状1. 研究背景与意义在国外,永磁同步电机滑模控制相关研究已经取得了一系列重要的成果。
随着电动汽车市场的快速发展,美国、日本等国家的学者和企业对永磁同步电机的控制技术进行了深入研究,提出了许多具有重要实用价值的成果和技术方案。
2. 研究现状在永磁同步电机滑模控制研究方面,国外学者主要集中在滑模控制器设计、适用性分析和实验验证等方面展开深入研究。
他们提出了许多针对永磁同步电机特性的滑模控制器设计方法,包括基于模型的滑模控制、基于自适应方法的滑模控制等。
他们也通过仿真和实验验证等手段,验证了永磁同步电机滑模控制的有效性和鲁棒性。
3. 存在问题与展望然而,国外研究在永磁同步电机滑模控制方面仍存在一些问题,如对大功率、高速度永磁同步电机的滑模控制研究较少、对滑模控制参数设计方法的进一步优化等。
展望未来,国外学者希望能够通过更深入的研究,进一步提高永磁同步电机滑模控制的性能和适用性,为电动汽车等应用领域提供更好的控制方案。
二、国内研究现状1. 研究背景与意义在国内,永磁同步电机滑模控制研究也取得了一系列重要的成果。
随着国家对新能源汽车和高效电机的大力支持,国内学者和企业对永磁同步电机的控制技术进行了广泛而深入的研究,取得了一系列重要成果。
2. 研究现状国内研究主要集中在永磁同步电机滑模控制的理论基础研究、滑模控制器设计和应用性能验证等方面。
他们提出了一些针对永磁同步电机特性的滑模控制器设计方法,包括基于模型的滑模控制、基于自适应方法的滑模控制等,并开展了大量的仿真和实验验证工作,验证了滑模控制在永磁同步电机中的有效性和鲁棒性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
永磁同步电机研究的热点及发展方向
一、永磁电机作为驱动电机的优越性
基于当前汽车对驱动电机的特殊要求,不同的电机解决方案都在研究和论证过程中,其中永磁电机作为驱动电机的解决方案已经被越来越多地采用,永磁电机是在Y系列电机的基础上,将电机转子嵌入稀土钕铁硼材料而成,其作为驱动电机具有如下特点[1]。
转矩、功率密度大、起动力矩大。
永磁电机气隙磁密度可大大提高,电机指标可实现最佳设计,使得电机体积缩小、重量减轻,同容量的稀土永磁电机体积、重量、所用材料可以减轻30%左右。
永磁驱动电机起动转矩大,在汽车起动时能够提供有效的起动转矩,满足汽车的运行需求。
力能指标好。
Y系列电机在60%的负荷下工作时,效率下降15% ,功率因数下降30%,力能指标下降40%。
而永磁电机的效率和功率因数下降甚微,当电机只有20%负荷时,其力能指标仍为满负荷的80%以上。
同时永磁无刷同步电机的恒转矩区比较长,一直延伸到电机最高转速的50%左右,这对提高汽车的低速动力性能有很大帮助。
高效节能。
在转子上嵌入稀土永磁材料后,在正常工作时转子与定子磁场同步运行,转子绕组无感生电流,不存在转子电阻和磁滞损耗,提高了电机效率。
永磁电机不但可减小电阻损耗,还能有效地提高功率因数。
如在25% ~120%额定负载范围内永磁同步电机可均可保持较高的效率和功率因素。
结构简单、可靠性高。
用永磁材料励磁,可将原励磁电机中励磁用的极靴及励磁线圈由一块或多块永磁体替代,零部件大量减少,在结构上大大简化。
同时省去了励磁用的基电环和电刷,不但改善了电机的工艺性,而且电机运行的机械可靠性大为增强,寿命增加。
转子绕组中不存在电阻损耗,定子绕组中几乎不存在无功电流,使电机温升低,这样也可以使整车冷却系统的负荷降低,进一步提高整车运行的效率。
二、永磁同步电机研究的热点
在开发高性能永磁同步电机过程中,遇到一些问题,进而成为研究的热点[2]。
1)不可逆退磁问题。
如果设计或使用不当,永磁同步电机在过高(钕铁硼永磁)或过低(铁氧体永磁)温度时,在冲击电流产生的电枢反应作用下,或在剧烈的机械振动时有可能产生不可逆退磁,或叫失磁,使电机性能下降,甚至无法使用。
因此,既要研究开发适用于电机制造厂使用的检查永磁材料热稳定性的方法和装置,又要分析各种不同结构型式的抗去磁能力,以便设计和制造时,采用相应措施保证永磁同步电机不失磁。
2)成本问题。
铁氧体永磁同步电机由于结构工艺简单、质量减轻,总成本一般比电励磁电机低,因而得到了广泛应用。
由于稀土永磁目前的价格还比较贵,稀土永磁电机的成本一般比电励磁电机高,这需要用它的高性能和运行费用的节省来补偿。
在设计时既需要根据具体使用场合和要求进行性能、价格的比较后取舍,又要进行结构工艺的创新和设计优化,以降低成本。
3)控制问题。
永磁同步电机不需外界能量即可维持其磁场,但这也造成从外部调节、控制其磁场极为困难。
但是随着MOSFET、IGBT 等电力电子器件和控制技术的发展,大多数永磁同步电机在应用中,可以不进行磁场控制而只进行电枢控制。
设计时需把永磁材料、电力电子器件和微机控制三项新技术结合起来,使永磁同步电机在崭新的工况下运行。
此外,以永磁同步电机作为执行元件的永磁交流伺服系统,由于永磁同步电机本身是具有一定非线性、强耦合性和时变性的系统,同时其伺服对象也存在较强的不确定性和非线性,加之系统运行时易受到不同程度的干扰,因此采用先进控制策略、先进的控制系统实现方式(如基于DSP控制),从整体上提高系统的智能化和数字化水平,这应是当前发展高性能永磁同步电机伺服系统的一个主要突破口。
三、永磁同步电机的发展趋势
永磁同步电机以其效率高、比功率大、结构简单、节能效果显著等一系列优点在工业生产和日常生活中逐步得到广泛应用。
尤其是近年来高耐热性、高磁性能钕铁硼永磁体的成功开发以及电力电子元件的进一步发展和改进,稀土永磁同步电机的研究开发在国内外又进入了一个新的时期,在理论研究和应用领域都将产生质的飞跃[3]。
它与电力电子技术和微电子控制技术相结合,可以制造出许多新型的、性能优异的机电一体化产品和装备,代表了21世界电机发展方向。
1、向高效节能方向发展
永磁电机是一种高效节能产品,平均节电率高达10%以上,专用稀土永磁电机搞到15%~20%。
根据我国国情,高性能的稀土永磁材料已实现产业化,钕铁硼的产量现已居世界第一位,钕铁硼的价格也趋向合理。
2、机电一体化方向发展
实现机电一体化的基础,是发展各种机电一体化需要的各种高性能稀土永磁电机,如数控机床用伺服电机,计算机用VCM音圈电机等。
变频调速稀土永磁同步电机和无刷直流电机是机电一体化的基础。
3、向高性能方向发展
现代化装备向电机工业提出各种各样的高性能要求,如军事装备要求提供给各种高性能信号电机,移动电站、自动化装备用伺服系统及电机,航空航天用高性能高可靠性永磁电机,化纤设备用高调速精度变频调速同步电动机,数控机床、加工中心、机器人用高调速比稀土永磁伺服电机,计算机用高精度摆动电机及主轴电机等。
4、向专用电机方向发展
电机所驱动的负载千变万化,如全部采用通用型电动机,在某些情况下,技术经济很不合理。
因此国外大力发展专用电机,专用电机约占总产量的80%,通用电机占20%。
而我国恰好相反,专用电机只占20%,通用型电机占80%。
专用电机是根据不同负载特性专门设计的,如油田用抽油机专用永磁电机,节电率高达20%。
这方面的节能潜力很大。
电机工作者不仅要研究电机本身,更应该研究所驱动负载的特性,设计出性能先进、运行可靠、价格合理的稀土永磁电机产品。
5、向轻型化方向发展
航空航天产品,电动车辆、数控机床、计算机、视听产品、医疗器械、便携式光机电一体化产品等,都对电机提出体积小、重量轻的严格要求。
永磁同步电动机以其体积小、节能、控制性能好、又容易做成低速直线驱动,消除齿轮减速装置,可通过频率的变化进行调速等优点,在电梯技术上得以开发应用。
21世纪,科学技术飞速发展,高新技术不断涌现,节电、环保意识日益增强,使得永磁同步电机发展的前途一片光明,尤其是高性能稀土永磁同步电机及其伺服系统,随其技术的快速发展和日渐成熟,结构型式将日趋多样化,也将会赢得更为广泛的发展空间,获得更加广泛的应用。
参考文献
[1]韩永杰,安浩.汽车永磁同步电动机现状及发展趋势[R].上海:上海捷能汽车技术
有限公司,2009.
[2]王鑫,李伟力,程树康.永磁同步电动机发展展望[R].哈尔滨:哈尔滨工业大学:
2007
[3]唐丽婵.永磁同步电机的应用现状及发展趋势[R].上海:上海电气集团股份有限公
司中央研究院,2011.。