线线角-线面角的向量求法
专题03 利用向量法求线线角、线面角、二面角及距离问题(知识梳理+专题过关)(解析版)
专题03利用向量法求线线角、线面角、二面角及距离问题【知识梳理】(1)异面直线所成角公式:设a ,b 分别为异面直线1l ,2l 上的方向向量,θ为异面直线所成角的大小,则cos cos ,⋅==a b a b a bθ.(2)线面角公式:设l 为平面α的斜线,a 为l 的方向向量,n 为平面α的法向量,θ为l 与α所成角的大小,则sin cos ,⋅==a n a n a nθ.(3)二面角公式:设1n ,2n 分别为平面α,β的法向量,二面角的大小为θ,则12,=n n θ或12,-n n π(需要根据具体情况判断相等或互补),其中1212cos ⋅=n n n n θ.(4)异面直线间的距离:两条异面直线间的距离也不必寻找公垂线段,只需利用向量的正射影性质直接计算.如图,设两条异面直线,a b 的公垂线的方向向量为n ,这时分别在,a b 上任取,A B 两点,则向量在n 上的正射影长就是两条异面直线,a b 的距离.则||||||||⋅=⋅=n AB n d AB n n 即两异面直线间的距离,等于两异面直线上分别任取两点的向量和公垂线方向向量的数量积的绝对值与公垂线的方向向量模的比值.(5)点到平面的距离A 为平面α外一点(如图),n 为平面α的法向量,过A 作平面α的斜线AB 及垂线AH .|n ||n |||||sin |||cos ,|=||nn⋅⋅=⋅=⋅<>=⋅AB AB AH AB AB AB n AB AB θ||||⋅=AB n d n (6)点A 与点B 之间的距离可以转化为两点对应向量AB 的模AB 计算.(7)在直线l 上找一点P ,过定点A 且垂直于直线l 的向量为n ,则定点A 到直线l 的距离为PA n d PA cos PA,n n⋅=〈〉=.【专题过关】【考点目录】考点1:异面直线所成角考点2:线面角考点3:二面角考点4:点到直线的距离考点5:点到平面的距离、直线到平面的距离、平面到平面的距离考点6:异面直线的距离【典型例题】考点1:异面直线所成角1.(2022·贵州·遵义市第五中学高二期中(理))在三棱锥P —ABC 中,PA 、PB 、PC 两两垂直,且PA =PB =PC ,M 、N 分别为AC 、AB 的中点,则异面直线PN 和BM 所成角的余弦值为()A 33B .36C .63D .66【答案】B【解析】以点P 为坐标原点,以PA ,PB ,PC 方向为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系,令2PA =,则()0,0,0P ,()0,2,0B ,()1,0,0M ,()1,1,0N ,则(1,1,0)PN =,(1,2,1)BM =-,设异面直线PN 和BM 所成角为θ,则||3cos 6||||PN BM PN BM θ⋅==.故选:B.2.(2022·四川省成都市新都一中高二期中(理))将正方形ABCD 沿对角线BD 折起,使得平面ABD ⊥平面CBD ,则异面直线AB 与CD 所成角的余弦值为()A .12B 2C .12-D .2【答案】A【解析】取BD 中点为O ,连接,AO CO ,所以,AO BD CO BD ⊥⊥,又面ABD ⊥面CBD 且交线为BD ,AO ⊂面ABD ,所以AO ⊥面CBD ,OC ⊂面CBD ,则AO CO ⊥.设正方形的对角线长度为2,如图所示,建立空间直角坐标系,()()()(0,0,1),1,0,0,0,1,0,1,0,0A B C D -,所以()()=1,0,1,=1,1,0AB CD ---,1cos ,222AB CD AB CD AB CD⋅==-⨯.所以异面直线AB 与CD 所成角的余弦值为12.故选:A3.(2022·新疆·乌苏市第一中学高二期中(理))如图,在直三棱柱111ABC A B C -中,3AC =,4BC =,13CC =,90ACB ∠=︒,则1BC 与1AC 所成角的余弦值为()A .3210B .3210-C .24D 5【答案】A【解析】因为111ABC A B C -为直三棱柱,且90ACB ∠=︒,所以建立如图所示的空间直角坐标系,()()()()110,4,0,0,0,0,0,0,3,3,0,3B C C A ,所以()()110,4,3,3,0,3BC AC =-=--,115,992BC A C ==+设1BC 与1AC 所成角为θ,所以11932cos cos ,532BC A Cθ-===⨯.则1BC 与1AC 32故选:A.4.(2022·福建宁德·高二期中)若异面直线1l ,2l 的方向向量分别是()1,0,2a =-,()0,2,1b =,则异面直线1l 与2l 的夹角的余弦值等于()A .25-B .25C .255-D 255【答案】B【解析】由题,()22125a =+-=,22215b =+=,则22cos 555a b a bθ⋅-==⋅⋅,故选:B5.(2022·河南·焦作市第一中学高二期中(理))已知四棱锥S ABCD -的底面ABCD 是边长为1的正方形,SD ⊥平面ABCD ,线段,AB SC 的中点分别为E ,F ,若异面直线EC 与BF 5SD =()A .1B .32C .2D .3【答案】C【解析】如图示,以D 为原点,,,DA DC DS 分别为x 、y 、z 轴正方向联立空间直角坐标系.不妨设(),0SD t t =>.则()0,0,0D ,()1,0,0A ,()1,1,0B ,()0,1,0C ,()0,0,S t ,11,,02E ⎛⎫⎪⎝⎭,10,,22t F ⎛⎫ ⎪⎝⎭.所以11,,02EC ⎛⎫=- ⎪⎝⎭,11,,22t BF ⎛⎫=-- ⎪⎝⎭.因为异面直线EC 与BF 55211054cos ,1111444EC BF EC BF EC BFt -+==⨯+⨯++,解得:t =2.即SD =2.故选:C6.(2021·广东·深圳市龙岗区德琳学校高二期中)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2DC SD ==,点M 是侧棱SC 的中点,2AD =则异面直线CD 与BM 所成角的大小为___________.【答案】3π【解析】由题知,底面ABCD 为矩形,SD ⊥底面ABCD 所以DA 、DC 、DS 两两垂直故以D 为原点,建立如图所示的空间直角坐标系因为2DC SD ==,2AD =,点M 是侧棱SC 的中点,则()0,0,0D ,()0,2,0C ,)2,2,0B ,()0,0,2S ,()0,1,1M 所以()0,2,0DC =,()2,1,1BM =--设异面直线CD 与BM 所成角为θ则21cos 22211DC BM DC BMθ⋅-===⨯++⋅因为异面直线的夹角为0,2π⎛⎤⎥⎝⎦所以3πθ=故答案为:3π.7.(2021·广东·江门市广雅中学高二期中)如图,在正三棱柱111ABC A B C -中,1 2.AB AA ==E 、F 分别是BC 、11AC 的中点.设D 是线段11B C 上的(包括两个端点......)动点,当直线BD 与EF 所10BD 的长为_______.【答案】【解析】如图以E为坐标原点建立空间直角坐标系:则()()10,0,0,,2,0,1,0,22E F B ⎛⎫- ⎪ ⎪⎝⎭设(0,,2)(11)D t t -≤≤,则()1,2,0,1,22EF BD t ⎫==+⎪⎪⎝⎭,设直线BD 与EF 所成角为θ所以cos ||||EF BD EF BD θ⋅==22314370t t +-=,解得1t =或3723t =-(舍去),所以BD ==故答案为:8.(2021·福建省厦门集美中学高二期中)如图,在正四棱锥V ABCD -中, E 为BC 的中点,2AB AV ==.已知F 为直线VA 上一点,且F 与A 不重合,若异面直线BF 与VE 所成角为余弦值为216,则VF VA =________.【答案】23【解析】连接AC 、BD 交于点O ,则AC BD ⊥,因为四棱锥V ABCD -为正四棱锥,故VO ⊥底面ABCD ,以点O 为坐标原点,OA 、OB 、OV 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则)A、E ⎛⎫ ⎪ ⎪⎝⎭、(V、()B ,设),0,VF VA λλ===-,其中01λ≤≤,(0,BV =,则)),1BF BV VF λ=+=-,22,22VE ⎛=- ⎝,由已知可得21cos ,6BF VE BF VE BF VE ⋅<>==⋅,整理可得2620λλ--=,因为01λ≤≤,解得23λ=,即23VF VA =.故答案为:23考点2:线面角9.(2022·山东·东营市第一中学高二期中)如图,在正方体1111ABCD A B C D -中,棱长为2,M 、N 分别为1A B 、AC 的中点.(1)证明://MN 平面11BCC B ;(2)求1A B 与平面11A B CD 所成角的大小.【解析】(1)如图,以点D 为坐标原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴建立空间直角坐标系.则()2,0,0A ,()0,2,0C ,()12,0,2A ,(2,2,0)B ,()12,2,2B ,()2,1,1M ,()1,1,0N .所以()1,0,1MN =--,因为DC ⊥平面11BCC B ,所以平面11BCC B 的一个法向量为(0,2,0)DC =,因为0MN DC ⋅=,所以MN DC ⊥,因为MN ⊂平面11BCC B ,所以//MN 平面11BCC B (2)()0,2,0DC =,()12,0,2DA =,()10,2,2A B =-.设平面11A B CD 的一个法向量为(),,n x y z =则122020DA n x z DC n y ⎧⋅=+=⎨⋅==⎩,令1z =,则1x =-,0y =,所以()1,0,1n =-设1A B 与平面11A B CD 所成角为θ,则1111sin cos ,2A B n A B n A B nθ⋅===⋅.因为0180θ︒≤<︒,所以1A B 与平面11A B CD 所成角为30°.10.(2021·黑龙江·哈尔滨七十三中高二期中(理))如图,已知正四棱柱1111ABCD A B C D -中,底面边长2AB =,侧棱1BB 的长为4,过点B 作1B C 的垂线交侧棱1CC 于点E ,交1B C 于点F.(1)求证:1A C ⊥平面BED ;(2)求1A B 与平面BDE 所成的角的正弦值.【解析】(1)连接AC ,因为1111ABCD AB C D -是正四棱柱,即底面为正方形,则BD AC ⊥,又1AA ⊥平面ABCD ,BD ⊂平面ABCD ,则1BD AA ⊥,又1AC AA A =∩,1,AC AA ⊂平面1A AC ,故BD ⊥平面1A AC ,而1AC ⊂平面1A AC ,则1BD AC ⊥,同理得1BE AC ⊥,又BD BE B ⋂=,,BD BE ⊂平面BDE ,所以1A C ⊥平面BDE ;(2)以DA 、DC 、1DD 分别为,,x y z 轴,建立直角坐标系,则()2,2,0B ,()()12,0,4,0,2,0A C ,∴()10,2,4A B =-,()12,2,4AC =--,由题可知()12,2,4AC =--为平面BDE 的一个法向量,设1A B 与平面BDE 所成的角为α,则1130sin cos 62024,C A B A α==⋅,即1A B 与平面BDE 所成的角的正弦值为306.11.(2021·河北唐山·高二期中)如图(1),△BCD 中,AD 是BC 边上的高,且∠ACD =45°,AB =2AD ,E 是BD 的中点,将△BCD 沿AD 翻折,使得平面ACD ⊥平面ABD ,得到的图形如图(2).(1)求证:AB⊥CD;(2)求直线AE与平面BCE所成角的正弦值.【解析】(1)证明:由图(1)知,在图(2)中AC⊥AD,AB⊥AD,∵平面ACD⊥平面ABD,平面ACD∩平面ABD=AD,AB⊂平面ABD,∴AB⊥平面ACD,又CD⊂平面ACD,∴AB⊥CD;(2)由(1)可知AB⊥平面ACD,又AC⊂平面ACD,∴AB⊥AC.以A为原点,AC,AB,AD所在直线分别为x,y,z轴建立空间直角坐标系,不妨设AC=1,则A(0,0,0),B(0,2,0),C(1,0,0),D(0,0,1),E(0,1,12),∴A E=10,1,2⎛⎫,⎪⎝⎭BC=(120),BE,-,=10,1,2⎛⎫-,⎪⎝⎭设平面BCE的法向量为n=(x,y,z),由20102BC n x yn BE y z⎧⋅=-=⎪⎨⋅=-+=⎪⎩,令y=1,得x=2,z=2,则n=(2,1,2),……设直线AE与平面BCE所成角为θ,则245 sin|cos,|15532AE nθ==⨯故直线AE与平面BCE4512.(2022·贵州·遵义市第五中学高二期中(理))如图,在四棱锥P-ABCD中,AD⊥平面ABP,BC//AD,∠PAB=90°,PA=AB=2,AD=3,BC=1,E是PB的中点.(1)证明:PB ⊥平面ADE ;(2)求直线AP 与平面AEC 所成角的正弦值.【解析】(1)因AD ⊥平面ABP ,PB ⊂平面ABP ,则AD ⊥PB ,又PA =AB =2,E 是PB 的中点,则有AE ⊥PB ,而AE AD A =,,AE AD ⊂平面ADE ,所以PB ⊥平面ADE .(2)因AD ⊥平面ABP ,∠PAB =90°,则直线,,AB AD AP 两两垂直,以点A 为原点,射线,,AB AD AP 分别为x ,y ,z 轴非负半轴建立空间直角坐标系,如图,则(0,0,0),(1,0,1),(0,0,2),(2,1,0)A E P C ,(1,0,1),(2,1,0),(0,0,2)AE AC AP ===,令平面AEC 的一个法向量为(,,)n x y z =,则020n AE x z n AC x y ⎧⋅=+=⎨⋅=+=⎩,令1x =-,得(121)n ,,=-,令直线AP 与平面AEC 所成角的大小为θ,则||26sin |cos ,|||||62n AP n AP n AP θ⋅=〈〉==⨯所以直线AP 与平面AEC 613.(2022·四川省成都市新都一中高二期中(理))如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,AD BC ∥,90ABC ∠=︒,2PA AB BC ===,1AD =,点M ,N 分别为棱PB ,DC 的中点.(1)求证:AM ∥平面PCD ;(2)求直线MN 与平面PCD 所成角的正弦值.【解析】(1)证明:以A 为坐标原点建立如图所示的空间直角坐标系,则()()()0,0,0,0,2,0,2,2,0A B C ,()()()1,0,0,0,0,2,0,1,1D P M ,则()()0,1,1,1,0,2AM PD ==-,()1,2,0CD =--,设平面PCD 的一个法向量为(),,n x y z =r,则2020n PD x z n CD x y ⎧⋅=-=⎨⋅=--=⎩,令1z =,则2,1x y ==-,则平面PCD 的一个法向量为()2,1,1n =-,0110,n AM n AM∴⋅=-+=∴⊥//AM ∴平面PCD(2)由(1)得3,1,02N ⎛⎫ ⎪⎝⎭,3,0,12MN ⎛⎫=- ⎪⎝⎭设直线MN 与平面PCD 所成角为θ.sin cos ,n MN MN n n MNθ⋅∴==⋅39=∴直线MN 与平面PCD 所成角的正弦值为27839.14.(2021·福建·厦门大学附属科技中学高二期中)如图,在四棱锥P ABCD -中,PA ABCD ⊥平面,,//AB AD BC AD ⊥,点M 是棱PD 上一点,且满足2,4AB BC AD PA ====.(1)求二面角A CD P --的正弦值;(2)若直线AM 与平面PCD所成角的正弦值为3,求MD 的长.【解析】(1)如图建立空间直角坐标系,则(0,0,0)A ,(2,2,0)C ,(0,4,0)D ,(0,0,4)P ,(2,2,0)CD =-,(0,4,4)PD =-,设平面PCD 法向量(,,)n x y z =,则00n CD n PD ⎧⋅=⎨⋅=⎩,即220440x y y z -+=⎧⎨-=⎩,令1x =,111x y z =⎧⎪=⎨⎪=⎩,即(1,1,1)n =,又平面ACD 的法向量(0,0,1)m =,cos ,3m n m n m n⋅〈〉=,故二面角A CD P --3=.(2)设MD PD λ=(01λ≤≤),(0,4,4)MD λλ=-,点(0,4,44)M λλ-,∴(0,4,44)AM λλ=-,由(1)得平面PCD 法向量(1,1,1)n =,且直线AM 与平面PCD∴6cos ,3AM n AM n AM n⋅〈〉==,解得12λ=,即12=MD PD ,又PD 12==MD PD 15.(2022·北京市第十二中学高二期中)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,PD ⊥平面ABCD ,E 是棱PC 的中点.(1)证明://PA 平面BDE ;(2)若1,90PD AD BD ADB ===∠=︒,F 为棱PB 上一点,DF 与平面BDE 所成角的大小为30°,求PFPB的值.【解析】(1)如图,连接AC 交BD 于点M ,连接EM ,因为M 是AC 的中点,E 是PC 的中点,所以//PA EM 又ME ⊂平面BDE ,PA ⊄平面BDE ,所以//PA 平面BDE(2)因为1,90PD AD BD ADB ===∠=︒,所以AD BD ⊥,故以D 为坐标原点,DA 为x 轴,DB 为y 轴,DP 为z轴建立空间直角坐标系,则()()()()()1110,0,0,1,0,0,0,1,0,0,0,1,1,1,0,,,222D A B P C E ⎛⎫-- ⎪⎝⎭,()111,,,0,1,0222DE DB ⎛⎫=-= ⎪⎝⎭,设平面BDE 的法向量为(),,n x y z =r ,则00n DE n DB ⎧⋅=⎨⋅=⎩,即11102220x y z y ⎧-++=⎪⎨⎪=⎩,故取()1,0,1n =,设(01)PF PB λλ=<<,则()()0,,1,0,,1F DF λλλλ-=-因为直线DF 与平面BDE 所成角的大小为30,所以1sin302DF n DF n⋅==12=解得12λ=,故此时12PF PB =.16.(2022·江苏·东海县教育局教研室高二期中)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,2PD AD ==,AD PC ⊥,点E 在线段PC 上(不与端点重合),30PCD ∠=︒.(1)求证:AD ⊥平面PCD ;(2)是否存在点E 使得直线PB 与平面ADE 所成角为30°?若存在,求出PEEC的值;若不存在,说明理由.【解析】(1)证明:在正方形ABCD 中,可得AD CD ⊥,又由AD PC ⊥,且CDPC C =,CD ⊂平面PCD ,PC ⊂平面PCD ,根据线面垂直的判定定理,可得AD ⊥平面PCD .(2)在平面PCD 中,过点D 作DF CD ⊥交PC 于点F .由(1)知AD ⊥平面PCD ,所以AD DF ⊥,又由AD DC ⊥,以{},,DA DC DF 为正交基底建立空间直角坐标系D xyz -,如图所示,则()(0,0,0),2,0,0D A ,()2,2,0B ,()0,2,0C,(0,P -,设PEEC λ=,则PE EC λ=,所以212,,11AE AP PE λλλ⎛⎫-=+=- ++⎝⎭,()2,0,0AD =-,(2,3,PB =uu r设平面ADE 的一个法向量为(),,n x y z =,则2120120AE n x y AD n x λλ⎧-⋅=-++=⎪⎨+⎪⋅=-=⎩,取y =0,12x z λ==-,所以平面ADE的一个法向量()2n λ=-,因为直线PB 与平面ADE 所成角为30,所以1sin 30cos ,2PB n ︒==,解得5λ=±综上可得,存在点E 使得直线PB 与平面ADE 所成角为30,且5PEEC=±考点3:二面角17.(2022·云南·罗平县第一中学高二期中)如图,在直三棱柱111ABC A B C -中,D 为1AB 的中点,1B C 交1BC 于点E ,AC BC ⊥,1CA CB CC ==.(1)求证:DE ∥平面11AAC C ;(2)求平面1AB C 与平面11A B C 的夹角的余弦值.【解析】(1)证明:因为111ABC A B C -为三棱柱,所以平面11BCC B 是平行四边形,又1B C 交1BC 于点E ,所以E 是1B C 的中点.又D 为1AB 的中点,所以//DE AC ,又AC ⊂平面11AAC C ,DE ⊂/平面11AAC C ,所以//DE 平面11AAC C ;(2)在直三棱柱111ABC A B C -中,1CC ⊥平面111A B C ,又AC BC ⊥,所以11C A 、11C B 、1C C 两两互相垂直,所以以1C 为坐标原点,分别以11C A 、11C B 、1C C 为x 、y 、z 轴建立空间直角坐标系1C xyz -,如图所示.设11CA CB CC ===,则1(0,0,0)C ,1(1,0,0)A ,1(0,1,0)B ,(1,0,1)A ,(0,0,1)C ,所以1(1,1,1)AB =--,(1,0,0)=-AC ,11(1,1,0)=-A B ,1(1,0,1)AC =-.设平面1AB C 的一个法向量为(,,)n x y z =,则100n AB n AC ⎧⋅=⎨⋅=⎩,所以00x y z x -+-=⎧⎨-=⎩,不妨令1y =,则(0,1,1)n =,设平面11A B C 的一个法向量为(,,)m x y z =,则11100m A B m A C ⎧⋅=⎪⎨⋅=⎪⎩,所以00x y x z -+=⎧⎨-+=⎩,不妨令1y =,则(1,1,1)m =.所以cos ||||m n m n m n ⋅〈⋅〉===⋅所以平面1AB C 与平面11A B C18.(2022·江苏·宝应县教育局教研室高二期中)如图,已知三棱锥O ABC -的侧棱,,OA OB OC 两两垂直,且1,2OA OB OC ===,E 是OC的中点.(1)求异面直线BE 与AC 所成角的余弦值;(2)求二面角A BE C --的正弦值.【解析】(1)以O 为原点,OB ,OC ,OA 分别为,,x y z 轴建立如图所示空间直角坐标系,则有()0,0,1A ,()2,0,0B ,()0,2,0C ,()0,1,0E .()()()2,0,00,1,02,1,0EB =-=-,()0,2,1AC =-.2cos 5EB AC =-,.由于异面直线BE 与AC 所成的角是锐角,故其余弦值是25.(2)()()2,0,10,1,1AB AE =-=-,.设平面ABE 的法向量为()1,,n x y z =,则由11n AB n AE ⊥⊥,,得200x z y z -=⎧⎨-=⎩,取()11,2,2n =.由题意可得,平面BEC 为xOy 平面,则其一个法向量为()20,0,1n =u u r,1212122cos 3n n n n n n ⋅===⋅,,则12sin 3n n =,,即二面角A BE C --的正弦值为3.19.(2021·福建·厦门一中高二期中)如图,在平行四边形ABCD中,AB =,2BC =,4ABC π∠=,四边形ACEF 为矩形,平面ACEF ⊥平面ABCD ,1AF =,点M 在线段EF 上运动.(1)当AE DM ⊥时,求点M 的位置;(2)在(1)的条件下,求平面MBC 与平面ECD 所成锐二面角的余弦值.【解析】(1)2AB =2AD BC ==,4ABC π∠=,∴222cos 2AC AB BC AB BC ABC +-⋅∠∴222AB AC BC +=,∴90BAC ∠=︒,AB AC ∴⊥,又AF AC ⊥,又平面ACEF ⊥平面ABCD ,平面ACEF 平面ABCD AC =,AF ⊂平面ACEF ,AF ∴⊥平面ABCD ,所以以AB ,AC ,AF 为x ,y ,z 轴建立空间直角坐标系,则(0,0,0),(2,0,0),(0,2,0),(2,2,0),(0,2,1),(0,0,1)A B C D E F-,设(0,,1),02M y y 则2,1)AE =,(2,2,1)DM y =-AE DM ⊥,∴2(2)10AE DM y ⋅=-+=,解得22y =,∴12FM FE =.∴当AE DM ⊥时,点M 为EF 的中点.(2)由(1)可得(2,,1)2BM =,(BC =设平面MBC 的一个法向量为111(,,)m x y z =,则111112020m BM y z m BC ⎧⋅=+=⎪⎨⎪⋅==⎩,取12y =,则m =,易知平面ECD 的一个法向量为(0,1,0)n =,∴cos |cos ,|||||m n m n m n θ⋅=<>=⋅∴平面MBC 与平面ECD 所成锐二面角的余弦值为105.20.(2022·四川省内江市第六中学高二期中(理))如图,直角三角形ABC 中,60BAC ∠=,点F 在斜边AB 上,且4AB AF =,AD ⊥平面ABC ,BE ⊥平面ABC ,3AD =,4AC BE ==.(1)求证:DF ⊥平面CEF ;(2)点M 在线段BC 上,且二面角F DM C --的余弦值为25,求CM 的长度.【解析】(1)90ACB ∠=,60BAC ∠=,4AC =,8AB ∴=,又4AB AF =,2AF ∴=;2222cos 2016cos6012CF AC AF AC AF BAC ∴=+-⋅∠=-=,解得:CF =,222AF CF AC ∴+=,则AF CF ⊥;DA ⊥平面ABC ,CF ⊂平面ABC ,CF AD ∴⊥;又,AF AD ⊂平面ADF ,AFA AD =,CF ∴⊥平面ADF ,DF ⊂平面ADF ,DF CF ∴⊥;连接ED ,在四边形ABED 中,作DH BE ⊥,垂足为H,如下图所示,DF ==EF ==,DE =222DF EF DE ∴+=,则DF EF ^;,CF EF ⊂平面CEF ,CF EF F ⋂=,DF ⊥∴平面CEF .(2)以C 为坐标原点,,CA CB 正方向为,x y 轴,以BE 的平行线为z 轴,可建立如图所示空间直角坐标系,设CM m =,则()0,,0M m ,()0,0,0C ,()4,0,3D,()F ,()4,,3MD m ∴=-,()4,0,3CD =,()1,FD =,设平面DMF 的法向量(),,n x y z =,则43030MD n x my z FD n x z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,令9y =,解得:3x m =-z m =,()3n m m ∴=--;设平面CDM 的法向量(),,m a b c =,则430430CD m a c MD m a mb c ⎧⋅=+=⎨⋅=-+=⎩,令3a =,解得:0b =,4c =-,()3,0,4m ∴=-;二面角F DM C --的余弦值为25,2cos ,5m n m n m n ⋅∴<>==⋅,25=,((()222134381m m m ⎡⎤∴-=-++⎢⎥⎣⎦,解得:m;当m F DM C --为钝二面角,不合题意;则二面角F DM C --的余弦值为25时,CM =21.(2022·江苏徐州·高二期中)如图所示,在四棱锥中P ABCD -,2AB DC=,0AB BC ⋅=,AP BD ⊥,且AP DP DC BC ====(1)求证:平面ADP ⊥平面ABCD ;(2)已知点E 是线段BP 上的动点(不与点P 、B 重合),若使二面角E AD P --的大小为4π,试确定点E 的位置.【解析】(1)连接BD ,由2AB DC =,0AB BC ⋅=知242,//,AB DC AB DC CD BC ==⊥,在Rt BCD 中,22216,4BD CD BC BD =+==,设AB 的中点为Q ,连接DQ ,则//,CD QB QB CD =,所以四边形BCDQ 为平行四边形,又,CD BC DC BC ⊥=,所以四边形BCDQ 为正方形,所以,22DQ AB DQ AQ ⊥==Rt AQD 中,22216AD AQ DQ =+=,在Rt ABD 中,222161632AD BD AB +=+==,所以AD BD ⊥,又,AP BD AP AD A ⊥⋂=,,AP AD ⊂平面ADP ,所以BD ⊥平面ADP ,又BD ⊂平面ABCD ,所以平面ADP ⊥平面ABCD ;(2)在APD △中,2228816AP PD AD +=+==,所以AP PD ⊥,在Rt APD 中,过点P 作PF AD ⊥,垂足为F ,因为PA PD =,所以F 为AD 中点,所以2PF DF ==,由(1)得BD ⊥平面ADP ,PF ⊂平面ADP ,则BD PF ⊥,,AD BD ⊂平面ABCD ,ADBD D =,则PF ⊥平面ABCD .以D 为原点,分别以,DA DB 所在直线为,x y 轴,以过点D 与平面ABCD 垂直的直线为z 轴,建立如图所示空间坐标系,则(0,0,0),(4,0,0),(0,4,0),(2,0,2),(4,0,0),(2,4,2)D A B P DA PB ==--,设()(2,4,2),0,1PE PB λλλλλ==--∈,则(22,4,22)DE DP PE λλλ=+=--,易知平面PAD 的一个法向量为(0,1,0)m =,设平面EAD 的法向量为(,,)n x y z =,则()()40224220n DA x n DE x y z λλλ⎧⋅==⎪⎨⋅=-++-=⎪⎩,令1z =,则1(0,,1)2n λλ-=,所以221cos ,cos 4211m n m n m nλπλλλ⋅-===⎛⎫+ ⎪-⎝⎭,即2122521λλλ-=-+,即23210λλ+-=,解得1λ=-(舍)或13λ=,所以,当点E 在线段BP 上满足13PE PB =时,使二面角E AD P --的大小为4π.22.(2021·湖北十堰·高二期中)如图所示,正方形ABCD 所在平面与梯形ABMN 所在平面垂直,//,2,4,23AN BM AB AN BM CN ====(1)证明:BM ⊥平面ABCD ;(2)在线段CM 上是否存在一点E ,使得二面角E BN M --的余弦值为33,若存在求出CE EM 的值,若不存在,请说明理由.【解析】(1)正方形ABCD 中,BC AB ⊥,因为平面ABCD ⊥平面ABMN ,平面ABCD平面,ABMN AB BC =⊂平面ABCD ,所以BC ⊥平面ABMN ,所以BC BM ⊥,且BC BN ⊥,2,23BC CN ==所以2222BN CN BC -,又因为2AB AN ==,所以222BN AB AN =+,所以AN AB ⊥,又因为AN //BM ,所以BM AB ⊥,BC BA B =,所以BM ⊥平面ABCD .(2)由(1)知,BM ⊥平面,ABCD BM AB ⊥,以B 为坐标原点,,,BA BM BC 所在直线分别为,,x y z 轴建立空间直角坐标系.()()()()0,0,0,0,0,2,2,2,0,0,4,0B C N M 设点(),,,,E x y z CE CM λ=[0,λ∈1],则()(),,20,4,2x y z λ-=-,所以0422x y z λλ=⎧⎪=⎨⎪=-⎩,所以()0,4,22E λλ-,所以()()2,2,0,0,4,22BN BE λλ==-,设平面BEN 的法向量为(),,m x y z =,()2204220m x y m y z λλ⋅=+=⎧∴⎨⋅=+-=⎩令1x =,所以21,1y z λλ=-=-,所以2(1,1,)1m λλ=--,显然,平面BMN 的法向量为()0,0,2BC =,所以cos ,BC m BC m BC m⋅=⋅3==即2642λλ=-+,即23210λλ+-=,解得13λ=或1-(舍),则存在一点E ,且12CE EM =.考点4:点到直线的距离23.(2021·云南大理·高二期中)鳖臑是指四个面都是直角三角形的三棱锥.如图,在鳖臑P ABC -中,PA ⊥平面ABC ,2AB BC PA ===,D ,E 分别是棱AB ,PC 的中点,点F是线段DE 的中点,则点F 到直线AC 的距离是()A .38B 6C .118D .224【答案】B 【解析】因为AB BC =,且ABC 是直角三角形,所以AB BC ⊥.以B 为原点,分别以BC ,BA 的方向为x ,y 轴的正方向,建立如图所示的空间直角坐标系B xyz -.因为2AB BC PA ===,所以()0,2,0A ,()2,0,0C ,()0,1,0D ,()1,1,1E ,则()2,2,0AC =-,11,1,22AF ⎛⎫=- ⎪⎝⎭.故点F到直线AC 的距离2221136144422AF AF AC AC d ⎛⎫⋅⎛⎫⎪=-++-= ⎪ ⎪⎝⎭⎝⎭.故点F 到直线AC 的距离是6424.(2021·河北·石家庄市第十二中学高二期中)已知直线l 的方向向量为(1,0,2)n =,点()0,1,1A 在直线l 上,则点()1,2,2P 到直线l 的距离为()A .230B 30C 3010D 305【答案】D【解析】由已知得(1,1,1)PA =---,因为直线l 的方向向量为(1,0,2)n =,所以点()1,2,2P 到直线l 的距离为2222212930335512PA n PA n ⎛⎫⎛⎫⋅-----= ⎪ ⎪ ⎪+⎝⎭⎝⎭故选:D25.(2021·北京·牛栏山一中高二期中)在空间直角坐标系中,已知长方体1111ABCD A B C D -的项点()0,0,0D ,()2,0,0A ,()2,4,0B ,()10,4,2C =,则点1A 与直线1BC 之间的距离为()A .B .2C .125D .52【答案】A【解析】如图,由题意知,建立空间直角坐标系D xyz -,1(000)(200)(240)(042)D A B C ,,,,,,,,,,,,则1422AB BC CC ===,,,连接111A B AC ,,所以1111A B A C BC ===得11A BC V 是等腰三角形,取1BC 的中点O ,连接1OA ,则1OA ⊥1BC ,即点1A 到直线1BC 的距离为1OA ,在1Rt A OB 中,有1OA ==故选:A26.(2021·北京市昌平区第二中学高二期中)已知空间中三点(1,0,0)A -,(0,1,1)B -,(2,1,2)C --,则点C 到直线AB 的距离为()A B C D 【答案】A【解析】依题意得()()1,1,2,1,1,1AC AB =--=-则点C 到直线AB 的距离为63d =故选:A27.(2022·江西南昌·高二期中(理))如图,在棱长为4的正方体1111ABCD A B C D -中,E 为BC 的中点,点P 在线段1D E 上,点Р到直线1CC 的距离的最小值为_______.【答案】5【解析】在正方体1111ABCD A B C D -中,建立如图所示的空间直角坐标系,则11(0,4,0),(0,0,4),(2,4,0),(0,4,4)C D E C ,11(2,0,0),(0,0,4),(2,4,4)CE CC ED ===--,因点P 在线段1D E 上,则[0,1]λ∈,1(2,4,4)EP ED λλλλ==--,(22,4,4)CP CE EP λλλ=+=--,向量CP 在向量1CC 上投影长为11||4||CP CC d CC λ⋅==,而||CP =,则点Р到直线1CC的距离4525h =,当且仅当15λ=时取“=”,所以点Р到直线1CC的距离的最小值为5.28.(2022·福建龙岩·高二期中)直线l 的方向向量为()1,1,1m =-,且l 过点()1,1,1A -,则点()0,1,1P -到l 的距离为___________.【解析】(1,0,2)AP =-,直线l 的方向向量为()1,1,1m =-,由题意得点P 到l的距离d =29.(2021·山东·嘉祥县第一中学高二期中)在棱长为2的正方体1111ABCD A B C D -中,O 为平面11A ABB 的中心,E 为BC 的中点,则点O 到直线1A E 的距离为________.【答案】3【解析】如图,以D 为原点建系,则()()()12,0,2,2,1,1,1,2,0A O E ,则()()110,1,1,1,2,2AO A E =-=--,则111111cos ,3A O A E A O A E A O A E⋅==,又[]11,0,A O A E π∈,所以111sin ,3A O A E =,所以点O 到直线1A E的距离为1111sin ,33A O A O A E ==.故答案为:23.考点5:点到平面的距离、直线到平面的距离、平面到平面的距离30.(2020·山东省商河县第一中学高二期中)如图,在正四棱柱1111ABCD A B C D -中,已知2AB AD ==,15AA =,E ,F 分别为1DD ,1BB 上的点,且11DE B F ==.(1)求证:BE ⊥平面ACF :(2)求点B 到平面ACF 的距离.【解析】(1)以D 为坐标原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴建立空间直角坐标系,如下图所示:则()()()()()2,0,0,2,2,0,0,2,0,0,0,1,2,2,4A B C E F ,设面ACF 的一个法向量为()=,,n x y z ,()()=2,2,0,0,2,4AC AF -=,可得00n AC n AF ⎧⋅=⎪⎨⋅=⎪⎩,即220240x y y z -+=⎧⎨+=⎩,不妨令1z =则()=2,2,1n BE --=,BE ∴⊥平面ACF .(2)()=0,2,0AB ,则点B 到平面ACF 的距离为43AB nn⋅=.31.(2022·江苏·2的正方形ABCD 沿对角线BD 折成直二面角,则点D 到平面ABC 的距离为______.【答案】33【解析】记AC 与BD 的交点为O ,图1中,由正方形性质可知AC BD ⊥,所以在图2中,,OB AC OD AC ⊥⊥,所以2BOD π∠=,即OB OD⊥如图建立空间直角坐标系,易知1OA OB OC OD ====则(0,0,1),(0,1,0),(1,0,0),(0,1,0)A B C D -则(0,1,1),(1,0,1),(0,2,0)AB AC BD =--=-=设(,,)n x y z =为平面ABC 的法向量,则00AB n y z AC n x z ⎧⋅=--=⎨⋅=-=⎩,取1x =,得(1,1,1)n =-所以点D 到平面ABC 的距离22333BD n d n⋅===故答案为:23332.(2022·河南·濮阳一高高二期中(理))如图,在棱长为1的正方体1111ABCD A B C D -中,若E ,F 分别是上底棱的中点,则点A 到平面11B D EF 的距离为______.【答案】1【解析】以1D 为坐标原点,11111,,D A D C D D 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则()1,0,1A ,()11,1,0B ,10,,12E ⎛⎫⎪⎝⎭,()10,0,0D ,设平面11B D EF 的法向量(),,m x y z =,则有1111020m D E y z m D B x y ⎧⋅=+=⎪⎨⎪⋅=+=⎩,令2y =得:2,1x z =-=-,故()2,2,1m =--,其中()10,1,1AB =-,则点A 到平面11B D EF 的距离为11AB m d m⋅===故答案为:133.(2022·山东·济南外国语学校高二期中)在棱长为1的正方体1111ABCD A B C D -中,平面1AB C 与平面11AC D 间的距离是________.【解析】以点A 为坐标原点,AB 、AD 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,0,0A 、()11,0,1B 、()1,1,0C 、()0,1,0D 、()10,0,1A 、()11,1,1C ,设平面1AB C 的法向量为()111,,m x y z =,()11,0,1AB =,()1,1,0AC =,由1111100m AB x z m AC x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取11x =,可得()1,1,1m =--,设平面11AC D 的法向量为()222,,n x y z =,()10,1,1DA =-,()11,0,1DC =,由12212200n DA y z n DC x z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,取21x =,可得()1,1,1n =--r ,因为m n =,平面1AB C 与平面11AC D 不重合,故平面1//AB C 平面11AC D ,()0,1,0AD =uuu r ,所以,平面1AB C 与平面11AC D 间的距离为1333AD m d m⋅==故答案为:33.34.(多选题)(2020·辽宁·大连八中高二期中)已知正方体1111ABCD A B C D -的棱长为1,点,E O 分别是11A B ,11AC 的中点,P 在正方体内部且满足1132243AP AB AD AA =++,则下列说法正确的是()A .点A 到直线BE 255B .点O 到平面11ABCD 的距离是24C .平面1A BD 与平面11B CD 3D .点P 到直线AD 的距离为56【答案】ABCD【解析】如图,建立空间直角坐标系,则(0,0,0)A ,(1,0,0)B ,(0,1,0)D ,1(0,0,1)A ,1(1,1,1)C ,()10,1,1D ,1,0,12E ⎛⎫⎪⎝⎭,所以1(1,0,0),,0,12BA BE ⎛⎫=-=- ⎪⎝⎭.设ABE θ∠=,则||5cos 5||||BA BE BA BE θ⋅==,25sin 5θ==.故A 到直线BE的距离1||sin 1d BA θ===,故选项A 正确.易知111111,,0222C O C A ⎛⎫==-- ⎪⎝⎭,平面11ABC D 的一个法向量1(0,1,1)DA =-,则点O 到平面11ABC D 的距离11211||224||DA C O d DA ⋅===,故选项B 正确.1111(1,0,1),(0,1,1),(0,1,0)A B A D A D =-=-=.设平面1A BD 的法向量为(,,)n x y z =,则110,0,n A B n A D ⎧⋅=⎪⎨⋅=⎪⎩所以0,0,x z y z -=⎧⎨-=⎩令1z =,得1,1y x ==,所以(1,1,1)n =.所以点1D 到平面1A BD的距离113||||A D n d n ⋅===因为平面1//A BD 平面11B CD ,所以平面1A BD 与平面11B CD 间的距离等于点1D 到平面1A BD 的距离,所以平面1A BD 与平面11B CD 间的距离为3.故选项C 正确.因为1312423AP AB AD AA =++,所以312,,423AP ⎛⎫= ⎪⎝⎭,又(1,0,0)AB =,则34||AP AB AB ⋅=,所以点P 到AB 的距离56d ==.故选项D 正确.故选:ABCD.考点6:异面直线的距离35.(2021·安徽·合肥市第六中学高二期中)如图正四棱柱1111ABCD A B C D -中,1AB BC ==,12AA =.动点P ,Q 分别在线段1C D ,AC 上,则线段PQ 长度的最小值是()A .13B .23C .1D .43【答案】B【解析】由题意可知,线段PQ 长度的最小值为异面直线1C D 、AC 的公垂线的长度.如下图所示,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则点()1,0,0A 、()0,1,0C 、()10,1,2C 、()0,0,0D ,所以,()1,1,0AC =-,()10,1,2=DC ,()1,0,0DA =,设向量(),,n x y z =满足n AC ⊥,1⊥n DC ,由题意可得1020n AC x y n DC y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,解得2x yy z =⎧⎪⎨=-⎪⎩,取2y =,则2x =,1z =-,可得()2,2,1n =-,因此,min 23DA n PQ n⋅==.故选:B .36.(2021·辽宁沈阳·高二期中)定义:两条异面直线之间的距离是指其中一条直线上任意一点到另一条直线距离的最小值.在长方体1111ABCD A B C D -中,1AB =,2BC =,13AA =,则异面直线AC 与1BC 之间的距离是()A 5B 7C 6D .67【答案】D【解析】如图,以D 为坐标原点建立空间直角坐标系,则()()()()12,0,0,0,1,0,2,1,0,0,1,3A C B C ,则()2,1,0AC =-,()12,0,3BC =-,设AC 和1BC 的公垂线的方向向量(),,n x y z =,则100n AC n BC ⎧⋅=⎪⎨⋅=⎪⎩,即20230x y x z -+=⎧⎨-+=⎩,令3x =,则()3,6,2n =,()0,1,0AB =,67AB n d n⋅∴==.故选:D.37.(2021·上海交大附中高二期中)在正方体1111ABCD A B C D -中,4AB =,则异面直线AB 和1AC 的距离为___________.【答案】【解析】如图,以D 为坐标原点,分别以1,,DA DC DD 为,,x y z 轴建立空间直角坐标系,由1(4,0,0),(4,4,0),(0,4,0),(4,0,4)A B C A ,则1(0,4,0),(4,4,4)AB CA ==-,1(0,0,4)AA =设(,,)m x y z =是异面直线AB 和1AC 的公垂线的一个方向向量,则1404440m AB y m CA x y z ⎧⋅==⎪⎨⋅=-+=⎪⎩,令1x =,则(1,0,1)m =-,所以异面直线AB 和1AC的距离为1AA m m ⋅==故答案为:38.(2021·广东·广州市第二中学高二期中)如图,在三棱锥P ABC -中,三条侧棱PA ,PB ,PC 两两垂直,且3PA PB PC ===,G 是PAB △的重心,E ,F 分别为BC ,PB 上的点,且::1:2BE EC PF FB ==.(1)求证:平面GEF ⊥平面PBC ;(2)求证:EG 是直线PG 与BC 的公垂线;(3)求异面直线PG 与BC 的距离.【解析】(1)建立如图所示空间直角坐标系,()()()()()()3,0,0,0,3,0,0,0,3,0,1,0,0,2,1,1,1,0A B C F E G ,()1,0,0GF =-,0,0GF PC GF PB ⋅=⋅=,所以,,GF PC GF PB PC PB P ⊥⊥⋂=,所以GF ⊥平面PBC ,由于GF ⊂平面GEF ,所以平面GEF ⊥平面PBC .(2)()()1,1,1,0,3,3EG BC =--=-,0,0EG PG EG BC ⋅=⋅=,所以EG 是直线PG 与BC 的公垂线.(3)2221113EG =++=所以异面直线PG 与BC39.(2021·全国·高二期中)如下图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,,2,12ABC BAD PA AD AB BC π∠=∠=====.(1)求平面PAB 与平面PCD 所成夹角的余弦值;(2)求异面直线PB 与CD 之间的距离.【解析】以A 为原点,,,AB AD AP 所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系A xyz -,则()()()()()0,0,0,1,0,0,1,1,0,0,2,0,0,0,2A B C D P .(1)因为PA ⊥平面ABCD ,且AD ⊂平面ABCD ,所以PA AD ⊥,又AB AD ⊥,且PAAB A =,所以AD ⊥平面PAB ,所以()0,2,0AD =是平面PAB 的一个法向量.易知()()1,1,2,0,2,2PC PD =-=-uu u r uu u r ,设平面PCD 的法向量为(),,m x y z =,则0,0,m PC m PD ⎧⋅=⎨⋅=⎩即20,220,x y y z +-=⎧⎨-=⎩,令1y =解得1,1z x ==.所以()1,1,1m =是平面PCD 的一个法向量,从而3cos ,AD m AD m AD m⋅==uuu r u r uuu r u r uuu r u r PAB 与平面PCD 所成夹角为锐角所以平面PAB 与平面PCD 所成夹角的余弦值为33.(2)()1,0,2BP =-,设Q 为直线PB 上一点,且(),0,2BQ BP λλλ==-,因为()0,1,0CB =-,所以(),1,2CQ CB BQ λλ=+=--,又()1,1,0CD =-,所以点Q 到直线CD 的距离()22cos d CQ CQ CQ CD =-⋅uu u r uu u r uu u r uu u r===,因为22919144222999λλλ⎛⎫++=++≥⎪⎝⎭,所以23d≥,所以异面直线PB与CD之间的距离为2 3.。
空间向量求角
空间的角常见的有:线线角、线面角、面面角
一、复习引入
用空间向量解决立体几何问题的“三步曲”。
(1)建立立体图形与空间向量的联系,用空间向 量表示问题中涉及的点、直线、平面,把立体几何 问题转化为向量问题;(化为向量问题) (2)通过向量运算,研究点、直线、平面之间的 位置关系以及它们之间距离和夹角等问题;
再次演示课件
法向量法
n1,n2
n2
n1,n2 n2
n1
n1
l
l
cos cos n1, n2 cos cos n1, n2
结论:cos cos n1, n2
注意法向量的方向:同进 同出,二面角等于法向量
夹角的补角;
关键:观察二面角的范围
一进一出,二面角等于法 向量夹角
四3 、实教践学操过作程的设计与实施
问题1:
二面角的平面角AOB 能否转化成向量的夹角?
B
O l
A
AOB OA,OB
二面角 OA,OB
四、教学过程的设计与实施
2 探究方法
二面角 n1, n2
要点梳理
②方向向量法:
将二面角转化为二面角的两个面的方向向量(在 二面角的面内且垂直于二面角的棱)的夹角.
设二面角α-l-β的大小为θ,其中
z
S
O
Cy
B
sin cos OS, n OS n 2 6
OS n 1 6 3
C(0,1,0); O(0,0,0);
S(0,0,1), 于是我们有
SA =(2,0,-1);AB =(-1,1,0);
OB =(1,1,0);OS =(0,0,1);
高中数学 空间中线线角,线面角,面面角成法原理与求法思路
DBA C α空间中线线角,线面角,面面角成法原理与求法思路空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。
1、异面直线所成的角(1)异面直线所成的角的范围是2,0(π。
求两条异面直线所成的角的大小一般方法是通过平行移动直线,把异面问题转化为共面问题来解决。
具体步骤如下:①利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选择在特殊的位置上;②证明作出的角即为所求的角;③利用解三角形来求角。
简称为“作,证,求” 2、线面夹角直线与平面所成的角的范围是]2,0[π。
求直线和平面所成的角用的是射影转化法。
具体步骤如下:(若线面平行,线在面内,线面垂直,则不用此法,因为角度不用问你也知道)①找过斜线上一点与平面垂直的直线;②连结垂足和斜足,得出斜线在平面的射影,确定出所求的角; ③把该角置于三角形中计算。
也是简称为“作,证,求”注:斜线和平面所成的角,是它和平面内任何一条直线所成的一切角中的最小角,即若θ为线面角,β为斜线与平面内任何一条直线所成的角,则有θβ≤;(这个证明,需要用到正弦函数的单调性,请跳过。
在右图的解释为 BAD CAD ∠>∠) )2.1确定点的射影位置有以下几种方法:①斜线上任意一点在平面上的射影必在斜线在平面的射影上;②如果一个角所在的平面外一点到角的两边距离相等,那么这一点在平面上的射影在这个角的平分线上;已知:如图,BAC ∠在一个平面α内,,,PN AC PM AB PN PM ⊥⊥且=(就是点P 到角两边的距离相等)过P 作PO α⊥(说明点O 为P 点在面α内的射影)求证:OAN OAM ∠∠=(OAN OAM ∠∠=,所以AO 为BAC ∠的角平分线,所以点O 会在BAC ∠的角平分线上)证明: PA =PA ,PN =PM ,90PNA PMA ∠∠︒==PNA PMA ∴∆≅∆(斜边直角边定理) AN AM ∴=①(PO NO MO PN PM α⊥⎫⇒=⎬⎭斜线长相等推射影长相等)= O AN AM AO AO AMO ANO NAO MAO OM N ⎫⎪⇒∆≅∆⇒∠∠⎬⎪⎭==== 所以,点P 在面的射影为BAC ∠的角平分线上。
立体几何-空间角求法题型(线线角、线面角、二面角)
空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现,也是历年来高考命题者的热点,几乎年年必考。
空间角是线线成角、线面成角、面面成角的总称。
其取值范围分别是:0°< θ ≤90°、0°≤ θ ≤90°、0°< θ ≤180°。
空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转化为空间向量的坐标运算来解。
空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正余弦定理)和向量法。
下面举例说明。
一、异面直线所成的角:例1如右下图,在长方体1111ABCD A B C D -中,已知4AB =,3AD =,12AA =。
E 、F 分别是线段AB 、BC 上的点,且1EB FB ==。
求直线1EC 与1FD 所成的角的余弦值。
思路一:本题易于建立空间直角坐标系,把1EC 与1FD 所成角看作向量EC 1与FD 的夹角,用向量法求解。
思路二:平移线段C 1E 让C 1与D 1重合。
转化为平面角,放到三角形中,用几何法求解。
(图1)解法一:以A 为原点,1AB AD AA 、、分别为x 轴、y 轴、z 轴的正向建立空间直角坐标系,则有 D 1(0,3,2)、E (3,0,0)、F (4,1,0)、C 1(4,3,2),于是11(1,3,2),(4,2,2)EC FD ==-设EC 1与FD 1所成的角为β,则:112222221121cos 14132(4)22EC FD EC FD β⋅===⋅++⨯-++ ∴直线1EC 与1FD 所成的角的余弦值为2114解法二:延长BA 至点E 1,使AE 1=1,连结E 1F 、DE 1、D 1E 1、DF , 有D 1C 1//E 1E , D 1C 1=E 1E ,则四边形D 1E 1EC 1是平行四边形。
则E 1D 1//EC 1 于是∠E 1D 1F 为直线1EC 与1FD 所成的角。
向量法求空间的距离和角
所以异面直线BD与D1A间的距离为
3 。 3
(2) A1 B1 = (0,1, 0), 设n = ( x, y, z )是平面A1DB的一 个法向量,因为DA1 = (1, 0,1), DB = (1,1, 0), ì ì x +z = 0 nDA1 = 0 镲 由眄 即 取x = - 1, 镲 î x+y =0 î nDB = 0 | nA1 B1 | 1 2 于是n = (-1,1,1, ),且 = = 。 2 |n| 2 2 所以点B1到平面A1 BD的距离为 。 2
例1:如图1所示: 三棱柱ABC - A1 B1C1中,CA=CB, AB = AA1, ? BAA1 60o, ( 1)求证:AB^ A1C (2)若平面ABC ^ 平面AA1 B1 B, AB =CB,求直线A1C与平面BB1C1C 所成角的正弦值。
C C1
B A A1
B1
图1
C
C1
O
B A1
Z
解:由(1)知OC ^ AB,OA1 ^ AB, 又平面ABC ^ 平面AA1 B1 B,交线 为AB,所以OC ^ 平面AA1 B1 B, 故OA、OA1、OC两两相互垂直。 建立如图所示的空间直角坐标系 A
O
C
C1
B A1
B1 图1-2
X o - xyz 设AB = 2,由题设知A(1, 0, 0)、B(- 1, 0, 0)、C (0, 0, 3)、A1 (0, 3, 0), 则BC = (1, 0, 3)、 BB1 = AA1 = (- 1, 3, 0)、 A1C = (0, - 3, 3). 设n = ( x, y, z )是平面BBCC的法向量,则 ì x + 3z = 0 ì nBC = 0 镲 即 可取n = ( 3,1, -1), 眄 镲 î nBB1 = 0 î - x + 3y = 0 nA1C 10 故 cos < n, A1C >= =. 5 | n | ×| A1C |
线线角-线面角的向量求法--
线线角-线面角的向量求法--
在几何中,线段与面的角度是指两个线段在空间上的夹角,一条线段穿过一个平面,产生了一个线面角。
它的计算是利用空间线段的垂直向量来求解的,它与传统的线线角的求法有所不同。
线面角的求法主要有以下三种:
(1)直接求解线段的垂直向量。
利用空间线段的垂直向量,可以比较容易地求出线面角,其具体步骤是:(1)确定两个空间线段,并计算出每条线段的斜率;(2)由斜率计算出线段的垂直向量;(3)通过两个垂直向量的夹角来求出线面角的余弦值,然后将余弦值转化为角度值,即,线面角的值。
(2)转换为线线角的求法。
首先,由空间线段可以构造出一个平面;然后,可以将两个空间线段在这个平面上展开,其中一条线段是斜45°展开,另一条线段则与它垂直,这样,就可以计算出展开后的两条线段间的夹角,这个夹角就是原来空间中的线面角。
(3)空间坐标描述求解法。
空间线段可以根据它的端点坐标来描述,给定每条线段的端点坐标,可以用端点坐标计算出空间线段的方向向量,由此可以计算出这两条线段的夹角,即空间中的线面角。
12 空间中线线角、线面角的求法
专题12空间中线线角、线面角的求法【高考地位】立体几何是高考数学命题的一个重点,空间中线线角、线面角的考查更是重中之重.其求解的策略主要有两种方法:其一是一般方法,即按照“作——证——解”的顺序进行;其一是空间向量法,即建立直角坐标系进行求解.在高考中常常以解答题出现,其试题难度属中高档题.【方法点评】类型一空间中线线角的求法方法一平移法使用情景:空间中线线角的求法解题模板:第一步首先将两异面直线平移到同一平面中;第二步然后运用余弦定理等知识进行求解;第三步得出结论.例1正四面体ABCD 中,E F ,分别为棱AD BC ,的中点,则异面直线EF 与CD 所成的角为A.6π B.4π C.3π D.2π【变式演练1】如图,四边形ABCD 是矩形,沿直线BD 将ABD ∆翻折成'A BD ∆,异面直线CD 与'A D 所成的角为α,则()A.'A CA α<∠B.'A CA α>∠ C.'A CD α<∠D.'A CDα>∠【变式演练2】在棱长为1的正方体1111ABCD A B C D -中,点E ,F 分别是侧面11AA D D 与底面ABCD 的中心,则下列命题中错误的个数为()①//DF 平面11D EB ;②异面直线DF 与1B C 所成角为60︒;③1ED 与平面1B DC 垂直;④1112F CDB V -=.A.0 B.1 C.2 D.3【变式演练3】设三棱柱111ABC A B C -的侧棱与底面垂直,90BCA ∠=︒,2BC CA ==,若该棱柱的所有顶点都在体积为323π的球面上,则直线1B C 与直线1AC 所成角的余弦值为()A .23-B.23C.53-D.53【变式演练4】如图所示,正四棱锥P ABCD -的底面面积为3,体积为22,E 为侧棱PC 的中点,则PA 与BE 所成的角为()A.30︒B.45︒C.60︒D.90︒方法二空间向量法使用情景:空间中线线角的求法解题模板:第一步首先建立适当的直角坐标系并写出相应点的空间直角坐标;第二步然后求出所求异面直线的空间直角坐标;第三步再利用b a ba ⋅=θcos 即可得出结论.例2、如图,直三棱柱111ABC A B C -中,13AC BC AA ===,AC BC ⊥,点M 在线段AB 上.(1)若M 是AB 中点,证明:1//AC 平面1B CM ;(2)当2BM =时,求直线11C A 与平面1B MC 所成角的正弦值例3、如图,正方形AMDE 的边长为2,B C 、分别为线段AM MD 、的中点,在五棱锥P ABCDE -中,F 为棱PE 的中点,平面ABF 与棱PD PC 、分别交于点G H 、.(1)求证://AB FG ;(2)若PA ⊥底面ABCDE ,且PA AE =,求直线BC 与平面ABF 所成角的大小.【变式演练4】已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为______.【变式演练5】如图,在三棱柱111ABC A B C -中,底面为正三角形,侧棱垂直底面,4AB =,16AA =.若E ,F 分别是棱1BB ,1CC 上的点,且1BE B E =,1113C F CC =,则异面直线1A E 与AF 所成角的余弦值为()A .36B.26C.310D.210类型二空间中线面角的求法方法一垂线法使用情景:空间中线面角的求法解题模板:第一步首先根据题意找出直线上的点到平面的射影点;第二步然后连接其射影点与直线和平面的交点即可得出线面角;第三步得出结论.例3如图,四边形ABCD 是矩形,1,AB AD ==,E 是AD 的中点,BE 与AC 交于点F ,GF ⊥平面ABCD .(Ⅰ)求证:AF ⊥面BEG ;(Ⅱ)若AF FG =,求直线EG 与平面ABG 所成角的正弦值.【变式演练6】已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC 的中心,则1AB 与底面ABC 所成角的正弦值为()A .31B.32C.33D.32【变式演练7】在四面体ABCD 中,AB AD ⊥,1AB AD BC CD ====,且ABD BCD ⊥平面平面,M 为中点,则与平面ABD 所成角的正弦值为()A .22B.33C.32D.63方法二空间向量法使用情景:空间中线面角的求法解题模板:第一步首先建立适当的直角坐标系并写出相应点的空间直角坐标;第二步然后求出所求异面直线的空间直角坐标以及平面的法向量坐标;第三步再利用=θsin 即可得出结论.例4如图,在四棱锥中,底面为直角梯形,其中,,侧面平面,且,动点在棱上,且.(1)试探究的值,使平面,并给予证明;(2)当时,求直线与平面所成的角的正弦值.【变式演练8】如图,四棱锥,底面为菱形,平面,,为的中点,.(I )求证:直线平面;(II )求直线与平面所成角的正弦值.【高考再现】1.已知直三棱柱111C C AB -A B 中,C 120∠AB = ,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为()A .2B .5C .5D .32.如图,已知正四面体D –ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP=PB ,2BQ CR QC RA==,分别记二面角D–PR–Q ,D–PQ–R ,D–QR–P 的平面角为α,β,γ,则A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α3.a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60°角时,AB 与b 成30°角;②当直线AB 与a 成60°角时,AB 与b 成60°角;③直线AB 与a 所成角的最小值为45°;④直线AB 与a 所成角的最小值为60°.其中正确的是________.(填写所有正确结论的编号)4.如图,在四棱锥中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,点M 在线段PB 上,PD//平面MAC ,PA =PD ,AB=4.(I )求证:M 为PB 的中点;(II )求二面角B -PD -A 的大小;(III )求直线MC 与平面BDP 所成角的正弦值.5.如图,已知四棱锥P –ABCD ,△PAD 是以AD 为斜边的等腰直角三角形,AD BC //,CD ⊥AD ,PC =AD =2DC =2CB ,E 为PD 的中点.(Ⅱ)求直线CE 与平面PBC 所成角的正弦值.P A B C D E 6.如图,在平行六面体ABCD-A 1B 1C 1D 1中,AA 1⊥平面ABCD ,且AB =AD =2,AA 1=3,120BAD ∠=︒.(1)求异面直线A 1B 与AC 1所成角的余弦值;7.如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,AD BC ∥,PD PB ⊥,1AD =,3BC =,4CD =,2PD =.(I )求异面直线AP 与BC 所成角的余弦值;(II )求证:PD ⊥平面PBC ;(Ⅲ)求直线AB 与平面PBC 所成角的正弦值.【反馈练习】1.如图,长方体1111ABCD A B C D -的底面是边长为1的正方形,高为2,M N 、分别是四边形11BB C C 和正方形1111A B C D 的中心,则直线BM 与DN 的夹角的余弦值是()A.31010 B.71030 C.53434 D.1062.已知三棱锥P ABC -的各棱长均相等,O 是ABC ∆的中心,D 是PC 的中点,则直线PO 与直线BD 所成角的余弦值为()A.23 B.73 C.12 D.133.已知正方体1111ABCD A B C D -,E 是棱CD 的中点,则直线1A E 与直线1BC 所成角的余弦值为()A.0 B.13 C.33 D.234.如图,四边形ABCD 与BDEF 均为菱形,60DAB DBF ∠=∠=︒,且FA FC =.(1)求证:AC ⊥平面BDEF ;(2)求直线AF 与平面BCF 所成角的正弦值.5.四棱锥S ABCD -中,AD ∥BC ,,BC CD ⊥060SDA SDC ∠=∠=,AD DC =1122BC SD ==,E 为SD 的中点.(1)求证:平面AEC ⊥平面ABCD ;(2)求BC 与平面CDE 所成角的余弦值.6.如图,在四棱柱1111ABCD A B C D -为长方体,点P 是CD 上的一点.(2)若2AB =,11BC CC ==,当(01)DP DC λλ=<< 时,直线1AC 与平面1PBC 所成角的正弦值是否存在最大值?若存在,求出λ的值;若不存在,请说明理由.8.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,2AB BC ==,AD CD ==,PA =,120ABC ∠= ,G 为线段PC 上的点.(1)证明:BD ⊥平面PAC ;(2)若G 是PC 的中点,求DG 与平面APC 所成的角的正切值.9.如图,在三棱柱111ABC A B C -中,011,90,BA BC BB ABC BB ==∠=⊥平面ABC ,点E 是1A B 与1AB 的交点,点D 在线段AC 上,1//B C 平面1A BD .(1)求证:1BD A C ⊥;(2)求直线1AC 与平面11A B D 所成的角的正弦值.10.在三棱柱111ABC A B C -中,侧面11ABB A 为矩形,2AB =,1AA =,D 是1AA 的中点,BD 与1AB 交于点O ,且CO ⊥平面11ABB A .(1)证明:平面1AB C ⊥平面BCD ;(2)若OC OA =,1AB C ∆的重心为G ,求直线GD 与平面ABC 所成角的正弦值.11.如图所示,在四棱锥P ABCD -中,四边形ABCD 为菱形,PAD ∆为正三角形,且,E F 分别为,AD AB 的中点,PE ⊥平面ABCD ,BE ⊥平面PAD .(1)求证:BC ⊥平面PEB ;(2)求EF 与平面PDC 所成角的正弦值.12.如图,四棱锥底面为正方形,已知平面,,点、分别为线段、的中点.(1)求证:直线平面;(2)求直线与平面所成的角的余弦值.。
立体几何中的向量方法-人教版高中数学
知识图谱-利用向量方法求线线角与线面角-利用向量方法求二面角-利用向量方法求距离直线与直线的夹角直线与平面的夹角向量法求二面角含有参数的二面角求法点到点线面的距离线与线面的距离第03讲_立体几何中的向量方法错题回顾利用向量方法求线线角与线面角知识精讲一.用向量方法求线线角与线面角1.两条异面直线所成的角(1)定义:设是两条异面直线,过空间任一点作直线,则与所夹的锐角或直角叫做所成的角;(2)范围:两异面直线所成的角的取值范围是;(3)向量求法:设直线的方向向量为,其夹角为,则有.2.直线与平面所成的角(1)定义:直线与平面所成的角,是指直线与它在这个平面内的射影所成的角;(2)斜线和它在平面内的射影所成的角,是斜线和这个平面内所有直线所称角中最小的角;(3)范围:直线和平面所成角的取值范围是;(4)向量求法:设直线的方向向量为,平面的法向量为,直线与平面所成的角为,与的夹角为,则有或,此外还可以根据定义得到直线与平面所成的角如下图:.三点剖析一.方法点拨1.在用向量法求两条直线的夹角时,如果两条直线方向向量的夹角余弦值是负数时,则取绝对值,要正数,因为两条直线的夹角范围是.2.在用向量法求直线与平面的夹角时,如果算出的是负值时,则线面角的正弦值也需要取正值.题模精讲题模一直线与直线的夹角例1.1、已知是异面直线,,且,则所成的角是( )B、A、C、D、例1.2、如图,在四棱锥P-ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,A B=,BC=1,PA=2,E为PD的中点.(Ⅰ)求直线AC与PB所成角的余弦值;(Ⅱ)在侧面PAB内找一点N,使NE⊥面PAC,并求出N点到AB和AP的距离.例1.3、如图所示,正四面体的高的中点为的中点为.(1)求证:两两垂直;(2)求.题模二直线与平面的夹角例2.1、若斜线段的长度是它在平面内的射影长的倍,则与所成角的正切值为__________.例2.2、直三棱柱中,底面是等腰直角三角形,,侧棱,分别是的中点,点在平面上的射影是.求与平面所成角的大小(结果用正弦值表示).例2.3、已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,PA=AC=AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.(Ⅰ)证明:CM⊥SN;(Ⅱ)求SN与平面CMN所成角的大小.例2.4、如图,在三棱锥中,底面,,为的中点,为的中点,,.(1)求证:平面;(2)求与平面成角的正弦值;(3)设点在线段上,且,平面,求实数的值.随堂练习随练1.1、若异面直线的方向向量分别是,则异面直线与的夹角的余弦值等于( )A、B、C、D、随练1.2、在棱长为1的正方体中,分别是的中点,在棱上,且,的中点,应用空间向量方法求解下列问题。
向量法求线面角
向量法求线面角
嘿,咱今天来聊聊向量法求线面角呀!这可是个超有趣的事儿呢!你想想看,线面角就像是一个隐藏在几何世界里的小秘密,而向量法就是我们解开这个秘密的神奇钥匙。
向量,那可真是个神奇的东西呀!它就像一把利剑,能帮我们在复杂的几何图形中披荆斩棘。
当我们面对线面角的时候,向量法就闪亮登场啦!通过建立合适的坐标系,把线和面都用向量来表示,这就好比给它们贴上了独特的标签。
然后呢,我们就可以计算向量之间的夹角啦!这就好像在玩一个拼图游戏,我们要把这些向量的碎片拼在一起,找到那个关键的角度。
这难道不神奇吗?
你说,如果没有向量法,我们得费多大的劲儿去求线面角啊!可能会绞尽脑汁,还不一定能找到正确答案呢。
但有了向量法,一切都变得简单明了啦!
比如说,有一条直线和一个平面,它们看起来错综复杂,但只要我们用向量法,就能轻松找到它们之间的夹角。
这就像是在黑暗中找到了一盏明灯,指引着我们前进的方向。
而且呀,向量法还特别准确,不会有模糊不清的地方。
只要我们按照步骤一步一步来,就能得到确切的结果。
这可比我们瞎猜靠谱多了吧!
再想想,我们在生活中不也经常遇到类似的情况吗?有时候面对复杂的问题,我们需要找到一个合适的方法来解决,就像用向量法求线面角一样。
只要我们善于发现和运用,就能轻松应对各种挑战。
所以啊,向量法求线面角真的是太重要啦!它让我们在几何的世界里畅游无阻,让我们能更好地理解和掌握空间关系。
难道你不觉得这是一个超级厉害的方法吗?
总之,向量法求线面角就是几何世界里的一颗璀璨明珠,它让我们看到了数学的魅力和力量。
让我们一起好好利用它,去探索更多的几何奥秘吧!。
立体几何-空间角求法题型(线线角、线面角、二面角)
空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现, 也是历年来高考命题者的热点, 几乎年年必考。
空间角是线线成角、线面成角、面面成角的总称。
其取值范围分别是:0° < 90°、0°< < 90°、0° < 180°。
空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转 化为空间向量的坐标运算来解。
空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正 余弦定理)和向量法。
下面举例说明。
一、异面直线所成的角:例1如右下图,在长方体 ABCD A i BiGD i 中,已知AB 4 , AD 3, AA 2。
E 、F 分别是线段AB 、BC 上的点,且EB FB 1。
求直线EC i 与FD i 所成的角的余弦值。
思路一:本题易于建立空间直角坐标系,uuu uuu把EC i 与FD i 所成角看作向量 EC 与FD 的夹角,用向量法求 解。
思路二:平移线段C i E 让C i 与D i 重合。
转化为平面角,放到 三角形中,用几何法求解。
(图I )uuu uju umr解法一:以A 为原点,ABAD'AA 分别为x 轴、y 轴、z 轴的•••直线EC i 与FD i 所成的角的余弦值为 --- I4解法二: 延长 BA 至点 E i ,使 AE i =I ,连结 E i F 、DE i 、D i E i 、DF , 有D i C i //E i E , D i C i =E i E ,则四边形 D i E i EC i 是平行四边形。
则 E i D i //EC i 于是/ E i D i F 为直线EC i 与FD i 所成的角。
在 Rt △ BE i F 中, E i F -J E i F 2 BF 2「5 2 i 2 「‘莎。
专题六 立体几何 第三讲 利用空间向量证明平行与垂直关系——2024届高考数学二轮复习
的值为( )
A. 11
6
√B. 11 6
C. 1
2
D. 1
3
设 D(x, y, z) ,则 AD (x 1, y 1, z 2), AB (2, 1, 3), DB (1 x, y, 1 z) . AD 2DB ,
x 1 2(1 x),
x
1 3
,
y
z
1 2
2 y, 2
2z.
y
z
1, 3 0,
D
1 3
,
1 3
,0
, CD
1 3
,
,
1
.
CD
AB,CD
AB
2
1 3
3(1
)
0,
11 6
.故选
B.
(二)核心知识整合
考点 2:向量法求线线角、线面角、面面角 1.向量法求空间角 (1)异面直线所成的角:设 a,b 分别为异面直线 a,b 的方向向量,
则两异面直线所成的角满足 cos = | a b | .
则 B(0,0,0) , A(1,0,1) ,C(0,1,1) ,N(1,1,0) ,因此 BA (1, 0,1) ,BC (0,1,1) ,BN (1,1,0) .设平面 ABC
的一个法向量为
n
(
x,
y,
z)
,则
n
BA
x
z
0,
令
x
1,得
n
(1,1,
1)
.易知三棱锥
S
ABC
的外
n BC y z 0
√A.-1
B.1
C.2
D.3
a c ,a c 2x 4 2 0 ,解得 x 1,又 b//c , 1 y 1 ,
用空间向量法研究线线角和线面角
(4)判断直线和平面所成的角 θ 和〈l,n〉的关系,求出角 θ.
当堂检测:
如图所示,直三棱柱 ABC-A1B1C1,∠BCA=90°,点 F1
是 A1C1 的中点,BC=CA=2,CC1=1.
(1)求异面直线 AF1 与 CB1 所成角的余弦值;
(2)求直线 AF1 与平面 BCC1B1 所成的角.
= ,
2 2 2
π
所以 θ= ,
4
π
所以直线 AF1 与平面 BCC1B1 所成的角为 .
4
课堂小结:
作业布置:
练习册 分层精炼33
高考链接:
(2022全国甲卷)18. 在四棱锥 P-ABCD中,PD⊥ 底
面ABCD,CD//AB,AD=DC=CB=1,AB=2,DP= .
(1)证明:BD ⊥ PA ;
n BP 3 y 3z 0
则 cos n, DP
n DP
n DP
3, 3 , DP 0,0, 3 ,
5
,
5
所以 PD 与平面 PAB 所成角的正弦值为
5
.
5
,则 l1 与 l2 所成的角
6
为( A )
π
A.
6
5π
B.
6
π 5π
C. 或
6 6
D.以上均不对
解析 l1 与
故选 A.
π
l2 所成的角与其方向向量的夹角相等或互补,且异面直线所成角的范围为0, ,
2
学以致用
正方体ABCD-A1B1C1D1中,E、F分别是
A1D1、A1C1的中点,求异面直线AE与CF所成角
立体几何典型问题的向量解法
立体几何中几类典型问题的向量解法空间向量的引入为求立体几何的空间角和距离问题、证线面平行与垂直以及解决立体几何的探索性试题提供了简便、快速的解法。
它的实用性是其它方法无法比拟的,因此应加强运用向量方法解决几何问题的意识,提高使用向量的熟练程度和自觉性,注意培养向量的代数运算推理能力,掌握向量的基本知识和技能,充分利用向量知识解决图形中的角和距离、平行与垂直问题。
一、利用向量知识求点到点,点到线,点到面,线到线,线到面,面到面的距离(1)求点到平面的距离除了根据定义和等积变换外还可运用平面的法向量求得,方法是:求出平面的一个法向量的坐标,再求出已知点P 与平面内任一点M 构成的向量MP u u u r的坐标,那么P 到平面的距离cos ,n MP d MP n MP n •=•<>=r u u u r u u u r r u u u rr(2)求两点,P Q 之间距离,可转化求向量PQ uuu r的模。
(3)求点P 到直线AB 的距离,可在AB 上取一点Q ,令,AQ QB PQ AB λ=⊥u u u r u u u r u u u r u u u r或PQ u u u r 的最小值求得参数λ,以确定Q 的位置,则PQ u u u r为点P 到直线AB 的距离。
还可以在AB 上任取一点Q 先求<AB ,cos ,再转化为><,sin ,则PQ u u u r><,sin 为点P 到直线AB 的距离。
(4)求两条异面直线12,l l 之间距离,可设与公垂线段AB 平行的向量n r,,C D 分别是12,l l 上的任意两点,则12,l l 之间距离CD nAB n•=u u u r r r例1:设(2,3,1),(4,1,2),(6,3,7),(5,4,8)A B C D --,求点D 到平面ABC 的距离例2:如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直。
向量方法求线面角
当堂检测
如图,M、N分别是棱长为1旳正方体ABCD-A1B1C1D1 旳棱BB1、B1C1 旳中点.
1 求异面直线MN与CD1 所成旳角 2 MN与平面AMC所成角旳大小
探究2:线面角
斜线与平面所成角旳范围:
思索:
结论:
例2:正方体
旳棱长为1.
解:以点A为坐标原点建立空间直角 z 坐标系A—xyz
y
x
小结:
1.异面直线所成角:
2.直线与平面所成角:
这条直线和这个平面所成旳角, 尤其地,若Lᅩα则L与α所成 旳角是直角,若L//α或 L α , 则L与α所成旳角是0角。
图形
AL
o
αθB探究1:来自线角异面直线所成角旳范围:
思索:
结论:
探究2:线面角
斜线与平面所成角旳范围:
思索:
结论:
例1:正方体ABCD—A1B1C1D1中,E、F分别是 A1D1、A1C1旳中点.求:异面直线AE与CF所成角旳 余弦值.
例2:正三棱柱ABC—A1B1C1旳底面边长为1,侧棱 长为 ,求AC1与侧面ABB1A1所成旳角.
变式:如图所示,已知直角梯形ABCD,其中AB =BC=2AD,AS⊥平面ABCD,AD∥BC,AB⊥BC ,且AS=AB.求直线SC与底面ABCD旳夹角θ旳余弦
.
例3.如图所示,四棱锥P—ABCD中,AB AD, CD AD,PA垂直于底面ABCD, PA=AD=CD=2AB=2,M为PC旳中点。 (1)求证:BM∥平面PAD; (2)在侧面PAD内找一点N,使MN平面PBD ; (3)求直线PC与平面PBD所成角旳正弦。
3.2.1利用向量措施求角
一、概念
名称
定义
立体几何-空间角求法题型(线线角、线面角、二面角)
空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现, 也是历年来高考命题者的热点, 几乎年年必考。
空间角是线线成角、线面成角、面面成角的总称。
其取值范围分别是:0° < 90°、0°< < 90°、0° < 180°。
空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转 化为空间向量的坐标运算来解。
空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正 余弦定理)和向量法。
下面举例说明。
一、异面直线所成的角:例1如右下图,在长方体 ABCD A i BiGD i 中,已知AB 4 , AD 3, AA 2。
E 、F 分别是线段AB 、BC 上的点,且EB FB 1。
求直线EC i 与FD i 所成的角的余弦值。
思路一:本题易于建立空间直角坐标系,uuu uuu把EC i 与FD i 所成角看作向量 EC 与FD 的夹角,用向量法求 解。
思路二:平移线段C i E 让C i 与D i 重合。
转化为平面角,放到 三角形中,用几何法求解。
(图I )uuu uju umr解法一:以A 为原点,ABAD'AA 分别为x 轴、y 轴、z 轴的•••直线EC i 与FD i 所成的角的余弦值为 --- I4解法二: 延长 BA 至点 E i ,使 AE i =I ,连结 E i F 、DE i 、D i E i 、DF , 有D i C i //E i E , D i C i =E i E ,则四边形 D i E i EC i 是平行四边形。
则 E i D i //EC i 于是/ E i D i F 为直线EC i 与FD i 所成的角。
在 Rt △ BE i F 中, E i F -J E i F 2 BF 2「5 2 i 2 「‘莎。
利用向量知识求线线角,线面角,二面角的大小
直线和平面所成的角、二面角都是教学大纲和高考考纲要求掌握的,是立体几何的重点内容,也是高考的必考内容.要熟练掌握它们,需要从以下四个方面入手。
一、1个公式公式12cos cos cos q q q =中涉及三个角,q 是指平面的斜线l 与平面内过斜足且不同于射影的直线m 所在所成的角,1q 是指l 与其射影'l 所成的角,2q 是指'l 与m 所成的角.其中210cos 1,.q q q <<<由此可得最小角定理.二、2个定义1.线面角:一个平面的斜线和它在这个平面内的射影所成的角,叫做斜线和这个平面所成的角(斜线和平面的夹角).如果直线和平面垂直,那么就说直线和平面所成的角是直角;如果直线和平面平行或直线在平面内,那么说直线和平面所成的角是零度的角.直线和平面所成的角的取值范围为[0,90]鞍,斜线和平面所成角的取值范围为(0,90)鞍.2.二面角:从一条直线出发的两个半平面所组成的图形叫做二面角,其中直线、半平面分别叫做二面角的棱和面.一个平面垂直于二面角l a b --的棱l ,且与两个半平面的交线分别是射线OA OB 、,O 为垂足,则AOB Ð叫做二面角l a b --的平面角.它决定着二面角的大小.其中平面角是直角的二面角叫做直二面有,相交成直二面角的两个平面叫做互相垂直的平面.二面角的取值范围为[0,180]鞍.三、3个定理1.最小角定理:平面的斜线和它在平面内的射影所成的角,是这条斜线和这个平面内任一条直线所成的角中最小的角.2.平面与平面垂直的判定定理:如果一个平面过另一个平面的一条垂线,那么这两个平面互相垂直.3.平面与平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直它们交线的直线垂直于另一个平面.四、4类求法1.几何法求直线和平面的夹角:根据直线和平面所成角的定义,先找出或作出直线在平面内的射影,然后把直线、射影对应的线段放在三角形中进行求解,其中能够寻找到垂直关系用直角三角形求解更佳.2.向量法求直线和平面的夹角:主要适用于图形比较规则,容易建立空间直角坐标系或容易选择空间向量的基底(要求作为基底的三个向量的模及夹角已知)的题目.(1)平面向量法:在斜线上取向量a 和其射影上取向量'a (注意方向,夹角为锐角),则|'|c o s ,'|||'|a a a a a a ×<>=×,这里a 、'a 形式上在同一个平面内;(2)法向量法:在斜线上取向量a ,并求出平面的法向量n ,所求夹角记为q ,则||sin |cos ,|||||a n a n a n q ×=<>=×,所以||arcsin ||||a n a n q ×=×.需要注意的是,当法向量与坐标平面平行或垂直时,可以直接给出法向量,当法向量与坐标平面不平行也不垂直时,由于法向量不唯一,不妨设横坐标、纵坐标、竖坐标中的某一个坐标为1,而且尽量让1以外的坐标在点乘中与0相乘,这样计算量较小.3.几何法求二面角的大小:(1)定义法(垂面法):过二面角内的一点作棱的垂面,垂面与二个半平面的交线形成所求平面角. (2)等价定义法:在二面角的棱上取一点(中点等特殊点) ,分别在两个半平面内作棱的垂线,得出平面角.(3)三垂线法:先作(或找)出二面角的一个面内一点到另一个面的垂线,用三垂线定理或逆定理作出平面角.(4)射影面积法:利用面积射影公式cos S S q =射投其中 为平面角的大小,特点在于不需要画出平面角,也不需要找出棱,尤其适用于没有画出棱的二面角问题.4.向量法求二面角的大小:图形比较规则,又不容易直接作出平面角的具体顶点时,可采用此法.(1)平面向量法:在棱上取一平面角的顶点,利用向量垂直时点乘等于零,求出平面角顶点的坐标,进而转化为向量夹角问题,此时两个向量形式上在同一个平面内.(2)空间向量法:方法基本同(1),此时两个向量形式上不在同一个平面内,思维量、运算都小一些,试题更具有一般性.(3)法向量法:建立空间直角坐标系后,分别求出两个平面的法向量,,利用公式||||,cos n m ⋅>=<.另外:证明两个平面垂直的关键是面面垂直转化为线面垂直;两个平面垂直的性质应用关键是在一个平面内找出两个平面交线的垂线.利用向量知识求线线角,线面角,二面角的大小。
线线角-线面角的向量求法
04 向量求法在解题中的应用
解题思路
向量表示
首先,将线线角或线面角用向 量表示出来,通常是通过两个
向量的点乘或叉乘来表示。
建立方程
根据向量的性质和题目条件, 建立关于这些向量的方程。
求解方程
解方程以找到未知数,这通常 涉及到向量模长、角度等。
得出结论
根据解得的向量,计算出线线 角或线面角。
实例解析
线线角-线面角的向量求法
目录
• 引言 • 线线角的向量求法 • 线面角的向量求法 • 向量求法在解题中的应用 • 结论
01 引言
主题简介
01
02
03
线线角
两条直线之间的夹角,通 常用角度或弧度表示。
线面角
一条直线与一个平面之间 的夹角,通常用角度或弧 度表示。
向量求法
利用向量的数量积、向量 的点积等性质来求解线线 角和线面角的方法。
解题步骤 2. 根据点乘结果,确定$theta$的范围并求出其值。
问题描述:求两条直线$l_1$和$l_2$之间的线 线角,已知两直线的方向向量分别为$vec{a}$ 和$vec{b}$。
1. 计stheta = frac{vec{a} cdot vec{b}}{|vec{a}| cdot |vec{b}|}$。
理论完善
深入研究向量求法的理论基础,完 善相关定理和推论,为未来的研究 提供更有力的支撑。
THANKS FOR WATCHING
感谢您的观看
向量表示法
直线向量的表示
直线的方向向量可以用两个非共线向 量的线性组合来表示。
平面向量的表示
平面的法向量可以用三个非共线向量 的线性组合来表示。
计算方法
• 公式法:利用向量的点积和叉积,可以推导出线面角的计算公式。具体公式为 cosθ=∣∣→a⋅→n∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣→a⋅→n→a⋅→n→a⋅→n→a⋅→n→a⋅→n→a⋅→n→ a⋅→n→a⋅→n→a⋅→n→a⋅→n→a⋅→n→a⋅→n→a⋅→n→a⋅→n→a⋅→n→a⋅ →n→a⋅→n→a⋅→n→a⋅→n→a⋅→n→a⋅→n→a⋅→n| → | → | → | → | → | → |→|→|→|→|→|→|→|→|→|→|→|→|→|→|→|→|→|→| →|→|→|→|→|→|→|→|→|→|→|→|→|→|→|→|→|→|→ | → | →| nT| nT| nT| nT| nT| nT| nT| nT| nT| nT| nT| nT| nT| nT| nT| nT| nT| nT| nT| nT| nT| nT| nT| nT| nT| nT| nT| nT| nT| nT| nT| nT| nT| nT| nT| nT| nT| nT| nT| nT| nT| nT| nT| nT| nT| nT| nT| nT|| · || · || · || · || · || · || · || · || · || · || · || · || · || · || · || · || · || · || · || · || · || · || · || · || · || · || · || · || · || · || · || · || · || · || · || · || · || · || · || · || · || · || · || · || ·||
线线角、线面角的向量求法
)p ×a b 1)11(,,0)1)1(,,)1(,,0)-1EF CF ×=´´÷EF C F ^,即1(1,0,,0,)CG 1152,||||1111104444EF CG EF CG EF CG ´ç÷×èø=++´++2BB AB C B AB B C 111111111||c o s 60||||||A B C B A B C B B B B B A B B B B B B ×=×+×=°-=-11AB C B 所成角为90°.2BB 2)2)3,0,0)2)AB 3,1,2)C B AB C BBCO zy1B1ACA1D1BD FGEA 1A1D 1C1BC BD FGEzy 1522222AC AA AB AD AA AB AD AA AB AB AD AD AA 22AA b 222AB AD a AA AB AA AD AB AD 1cos120AA AB ba ×=-1cos120AA AD ba ab A B A D 2222a b ab =+-A C A B A D ,BD AA AD AB 22AC BD AB AD AA AD AB AB AA AB AD AB AB AA AD AB AD ab 2AC a =222222BD AA AD AB AA AD AB AA AD AD AB AB AA a 222BD a b =+122||||2BD ACBD AC a b ×=+2242a b +O 作O A ,O B ,O V 的方向为2a 2a 2a -2)2a 2(2)a a -2(2)a -. 0BE VC ,所以22a a -2a 222BE a a a --222DE a a a -2233a aa aáñ=´ ||||||×a u.1BD1C1DOEDzyxO EDV1BDP=,1(0,0,1)CC >,由已知,60DH DA áñ=°,由||||cos ,DA DH DA DH DH DA ×=áñ, 可得2221m m =+.解得22m =,所以22(,,1)22DH =.(1)因为122011222cos ,212DH CC ´+´+´áñ==´,所以1,45DH CC áñ=°,即DP 与 1CC 所成的角为45°.(2)平面11AAD D220110122cos ,212DH DC ´+´+´áñ==´,所以1,60DH CC áñ=°,可得DP 与 平面11AAD D所成的角为60°.例2 SA ^平面ABCD ,1SA 解:以A 为原点,建立如图所示的空间直角坐标系A xyz -,由题设得(0,0,0)A ,(0,1(0,1,0),0)B , (1,1,0)C ,1(,0,0)2D ,(0,0,1(0,0,1))S . 所以1(,1,1,0),0)2DC =,1(,0,1)2SD =-,(0,0,1)SA 3 解:如图所示,以D 为原点,DA 为单位长度建立空间为单位长度建立空间直角坐标直角坐标系D xyz -.则(1,0,0)DA =,连接BD ,11B D .在.在平面平面11BB D D 中,延长DP 交11B D 于H . 设(,,1)(0)DH m m m =的一个的一个法向量法向量是(0,1,0)DC =. 因为 如图,在底面是直角如图,在底面是直角梯形梯形的四棱锥S ABCD -中,90ABC Ð=°,AB BC ===,12AD =.求直线SA 与平面SCD所成的角的所成的角的正弦正弦值.值.=-.设平面SCD 的一个法向量为(,,1)x y =n ,则102D C x y ×=+=n ,1102SD x ×=-=n .所以2x =,1y =-,即(2,1,1)=-n .设SA 与平面SCD 所成的角为q .则|1|6sin |cos ,6||||6SA SA SA q ×-=áñ===n n n .所以直线SA 与平面SCD 所成的角的正弦值为6sin 6q =.自主体验自主体验 (2014福建)在平面福建)在平面四边形四边形ABCD 中,1AB BD CD ===,AB BD ^, CD BD ^.将ABD △沿BD 折起,使得平面ABD ^平面BCD ,如图.,如图. (1)求证:AB CD ^;(2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.所成角的正弦值.解:(1)因为平面ABD ^平面BCD ,平面ABD平面BCD BD =,AB Ì平面ABD ,所以AB ^平面BCD .又CD Ì平面BCD ,所以AB CD ^.(2)过点B 在平面BCD 内作BE BD ^,如图.由(1)知AB ^平面BCD ,BE Ì平面BCD ,BD Ì平面BCD ,所以AB BE ^,AB BD ^.以B 为坐标原点,分别以BE ,BD ,BA 的方向为x 轴,y 轴,z 轴的正方向建立空 间直角坐标系.依题意得(0,0,0)B ,(1,1,0)C ,(0,1(0,1,0),0)D ,(0,0,1(0,0,1))A ,11(0,,)22M ,则(1,1,0)BC =,11(0,,)22BM =,yxzCS BDADM CBAxy zEDMCB AA H1A1D 1C1BCBD PxzyAD 即||6||AD 0,BC =AD ñ==n 6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
u
例 3、
的棱长为 1.
求B1C1与平面AB1C所成的角的正弦值.
解1 建立直角坐标系.
则B1C1 (0,-1 , 0),
z
D1 C1
D B1 E
A1
平面AB1C的一个法向量为 D1B = (1,1, 1)
0 1 0 3 cos BD1, B1C1 3 1 3
F
x
30 所以 BD1与 AF1 所成角的余弦值为 10
A x
By
2. 线面角
设n为平面 的法向量,直线AB与平面 所 成的角为 1 ,向量 AB 与n所成的角为 2 , 则
1
2 2
(0 1
1 2 2
,0 2 )
n B
而利用 cos 2 从而再求出 1.
0
平 面 A B C 的 法 向 量 平 移 到 A1 B 1 C 1 位 置 , 已 知
取 A1 B 1、 A1 C 1的 中 点 D 1、 F1, B C C A C C 1,
求 B D 1 与 A F1 所 成 的 角 的 余 弦 值 .
F 1
C1
C
B 1
D1
A 1
A
B
解:以点C为坐标原点建立空间直角坐标系 C x y z 如图所示,设 C C 1 1 则: z
B
x
0 1 0 3 cos n, B1C1 得y = z = -1,故n = (1, -1, -1), 3 1 3 3 所以B1C1与面AB1C所成的角的正弦值为 。 3
练习:
已知两平面的法向量分别m=(0,1,0),n=(0,1,1),则两 平面所成的钝二面角为______ .
求职: B1C1与平面AB1C所成角的正弦值
z
D1
设平面AB1C的法向量为n ( x,y,z ) A
则n AB1 0, n AC 0 x z 0 所以 ,取x = 1, x y 0
AB1 (1 , 01) ,, AC (11 , , 0)
C1
y
D
C
立体几何中的向量方法
线线角,线面角,二面角的求法
问题:如何求平面的法向量?
(1)设出平面的法向量为 n ( x, y, z)
(2)找出(求出)平面内的 两个不共线的 向量的坐标a (a1, b1, c1 ),b (a2 , b2 , c2 )平面的法向
(3)根据法向量的定义建立关于x , y , z的 n a 0 a1 x b1 y c1 z 0 方程组 n b 0 a2 x b2 y c2 z 0
A (1, 0 , 0 ), B ( 0 ,1, 0 ),
1 1 1 F1 ( , 0, a ), D1 ( , ,1) 2 2 2 1 所以: AF1 ( , 0,1), 2
1 1 BD1 ( , ,1) 2 2
F 1
C1
B 1
A 1
C
D1
1 1 AF1 BD1 30 4 co s A F1 , B D 1 . 10 5 3 | AF1 || BD1 | 4 2
2 AB n
AB n可求2 ,A21
n
2. 线面角
设直线l的方向向量为 a , 平面 的法向量为u ,且 直线 l 与平面 所成的角为 (0 ≤ ≤ ), 则
2
cos u, a
sin
au a u
2
1
a u
a
l
1 2
量不惟一, 合理取值即 可。
(4)解方程组,取其中的一 个解,即得法向量。
空间“夹角”问题
1.异面直线所成角
设直线 l , m 的方向向量分别为a , b
若两直线 l , m 所成的角为 (0 ≤ ≤
2
), 则
cos
ab a b
l
l
a
m
a b
m
例2 R t A B C 中 , B C A 9 0 , 现 将 A B C 沿 着
A y
C
B
3 所以B1C1与面AB1C所成的角的正弦值为 。 3
练习: 正方体ABCD-A1B1C1D1的棱长为1。
求职: B1C1与平面AB1C所成角的正弦值
A1
B1 C1
D1
A B
C
D
练习: 正方体ABCD-A1B1C1D1的棱长为1。
以AB, AD, AA1为单 解:设正方体棱长为1, A1 0,, 0) B1 (1, 位正交基底,可得 A(0, 0,, 1) B1 , ,, 0) C (11 , ,, 0) C1 (111) , ,,则B1C1 (01