计学第七章课后练习答案
大学计算机基础 第7章 习题参考答案
习题七一、用适当内容填空1.数据库技术是①数据处理的核心和基础,数据库以②文件形式存储在计算机系统中,主要由③表之间的联系构成,此外还包含索引、数据有效性规则和④安全控制规则等信息。
数据库表必须是⑤二维表。
是一种⑥描述实体,⑦实体联系的表格。
2. 计算机数据管理技术主要分①人工管理,②文件系统,③数据库系统,④分布式数据库系统4个阶段,⑤人工管理阶段数据不能共享,⑥分布式数据库系统阶段并行访问数据效率最高,⑦人工管理阶段处理数据量最小,集中式数据库管理是指⑧数据库系统阶段。
3. 数据库系统的英文简称为①DBS,它由计算机硬件、软件和相关②人员组成,计算机硬件搭建了系统运行和存储③数据库的硬件环境,④计算机软件除用于管理、控制和分配计算机资源外,还用于建立、管理、维护和使用⑤数据库。
软件主要包括⑥数据库,操作系统和⑦数据库管理系统。
4. 在DBMS中,通过①数据定义语言建立数据库中的表、视图和索引,用②数据操纵语言进行数据插入、修改和删除操作,用③数据查询语言进行数据查询。
5. 从用户角度来看,事务是完成某一任务的①操作集合。
多个事务并发更新数据容易引起数据②不一致性问题,实现数据互斥访问要求的常用方法是锁定数据项,常见的数据共享锁定方式是③共享型锁和④排他型锁。
6. 在现实世界到数据世界的转化过程中,中间要经历①信息世界,人们用②概念模型描述信息世界中的对象及其联系,用③实体表示事物,用④实体属性表示事物的特征,用⑤数据模型描述数据世界中的对象及其联系,用⑥一行数据或记录表示事物,用⑦数据项、列或字段表示事物的特征。
7. 在数据安全性控制方面,DBMS所采取的措施有①并发控制,②数据安全性控制,③数据备份与恢复。
8. 在数据模型中,除了描述实体本身以外,还要对①实体间的联系进行描述,实体之间存在②一对一,③一对多,④多对多三种联系,对于学生实体而言,“姓名”是⑤属性名,“李明”是⑥属性值。
9. 在数据模型中,常见的数据模型有①层次数据模型,②网状数据模型,③关系数据模型,④面向对象数据模型,基本层次数据模型用于描述⑤两个实体,数据库管理系统的类型由它支持的⑥数据模型决定。
《会计学》第七章 成本计算(练习及答案)
《第七章成本计算》单选题共17道【题目】.成本属于价值的范畴,是新增( )。
(A)成本的组成部分(B)资产价值的组成部分(C)利润的组成部分(D)费用的组成部分【答案】B【题目】.下列各项费用中,不能直接记入“生产成本”账户的是( )。
(A)构成产品实体的原材料费用(B)生产工人的工资(C)车间管理人员的薪酬(D)生产工人的福利费【答案】C【题目】.下列的各种成本中,被称为主营业务成本的是( )。
(A)材料采购成本(B)产品生产费用(C)产品生产成本(D)产品销售成本【答案】D【题目】.下列各项中,不属于材料采购成本构成项目的是( )。
(A)材料的买价(B)外地运杂费(C)运输途中的合理损耗(D)采购机构经费【答案】D【题目】.产品制造成本的成本项目不包括( )。
(A)直接材料(B)直接人工(C)制造费用(D)期间费用【答案】D【题目】.生产车间发生的制造费用经过分配之后,一般应记入( )。
(A)“库存商品”账户(B)“本年利润”账户(C)“生产成本”账户(D)“主营业务成本”账户【答案】C【题目】.决定商品价格,同时也影响商品竞争能力的基本条件是( )。
(A)商品的外观(B)商品的数量(C)商品的成本(D)商品的生产周期【答案】C【题目】.在企业经营过程中,当可以直接确定某种费用是为某项经营活动产生时,我们称这种费用为该成本计算对象的( )。
(A)生产费用(B)直接费用(C)间接费用(D)期间费用【答案】B【题目】.企业购入材料发生的运杂费等采购费用,应计入( )。
(A)管理费用(B)材料采购成本(C)生产成本(D)销售费用【答案】B【题目】.下列项目中,不属于材料采购费用的是( )。
(A)材料的运输费(B)材料的装卸费(C)材料入库前的挑选整理费用(D)材料的买价【答案】D【题目】.下列费用中,不可以计入产品生产成本的是( )。
(A)直接材料(B)管理费用(C)直接人工(D)制造费用【答案】B【题目】.某企业本期已销产品的生产成本为50 000元,销售费用为4 000元,税金及附加为6 000元,其产品销售成本(即主营业务成本)为( )。
第7章习题参考答案
第7章习题参考答案1.计算机的外围设备是指 D 。
A.输入/输出设备 B.外存储器 CPU和内存以外的其他设备C.输入/输出设备及外存储器D.除了2.打印机根据印字方式可以分为 C 和 D 两大类,在 C 类打印机中,只有 A 型打印机能打印汉字,请从下面答案中选择填空。
A.针型打印机 B.活字型打印机C.击打式D.非击打式3.一光栅扫描图形显示器,每帧有1024×1024像素,可以显示256种颜色,问刷新存储器容量至少需要多大?解:因为28=256,一个像素存储256色需8位,所以一帧的存储空间至少需要1024×1024×8bit=1MB4. 一个双面CD-ROM光盘,每面有100道,每道9个扇区,每个扇区512B,请求出光盘格式化容量。
解:格式化容量=盘面数×每面道数×每道扇区数×每扇区字节数=2×100×9×512=900KB5. 试推导磁盘存储器读写一块信息所需总时间的公式。
答:磁盘存储器读写一块信息所需总时间为Ta=平均找道时间+平均等待时间+一块数据的写入(或读出)时间设磁盘转速为r转/s,每个磁道存储的信息量为N个字节,则平均等待时间为磁盘旋转半圈所用的时间,即1/(2r);设要传送的数据块大小为b个字节,则有:磁盘旋转一周读出一个磁道的信息,即,每秒钟读出rN个字节,所以传输b个字节多用的时间为b/(rN);由此,可得磁盘读写一块信息所需的时间公式为:Ta?Ts?12r?brN秒,其中Ts为平均找道时间6. 一个双面磁盘,每面有220道,已知磁盘转速r=4000转/分,数据传输率为185000B/S,求磁盘总容量。
解:格式化容量为:因为转速r=4000转/分,所以每秒400/6转数据传输率为185000B/S,所以磁道容量为 185000/(400/6)=2775B双面,每面220道,所以总容量为2×220×2775=1221000B?1.16MB7.某磁盘存储器转速为3000转/分,共有4个记录面,每道记录信息为12288B,最小磁道直径为230mm,共有275道,道密度为5道/mm。
基础会计学 第七章习题及答案
第七章习题复习思考题1.什么是账务处理程序?其意义如何?2.账务处理程序的种类有哪些?企业中普遍采用的有哪几种?3.各种账务处理程序的特点是什么?它们有哪些优缺点?其适用范围如何?4.简述各种账务处理程序的基本步骤。
5.区别不同账务处理程序的主要标志是什么?6.记账凭证账务处理程序需要采用哪些凭证和账簿?他们有哪些格式要求?名词解释账务处理程序科目汇总表一、判断题1.汇总记账凭证账务处理程序下,总分类账帐页格式一般采用三栏式()2.记账凭证账务处理程序登记总账的依据是原始凭证()3.汇总记账凭证账务处理程序的适用范围是规模较大、业务量较少的单位。
()4.账务处理程序中最基本的处理程序是科目汇总表账务处理程序。
()5.为了便于汇总转账凭证,在编制转账凭证时,其账户的对应关系应是一借一贷或多借一贷。
()6.采用科目汇总表账务处理程序,不仅可简化登记总账的工作,而且便于检查和分析经济业务。
()7.账务处理程序不同,现金日记账、银行存款日记账登记的依据也不同。
()8.各种账务处理程序的区别主要在于编制会计报表的依据和方法不同。
()9.企业总分类账采用何种格式取决于账务处理程序。
()10.各种账簿都是直接根据记账凭证进行登记的。
()二、单项选择题1.各种会计核算程序的主要区别是()A.填制会计凭证的依据和方法不同B.登记总账的依据和方法不同C.编制会计报表的依据和方法不同D.登记明细账的依据和方法不同2.汇总记账凭证核算程序下,总分类账账页格式一般采用()A.三栏式B.多栏式C.设有“对应科目”栏的三栏式D.数量金额式3.编制科目汇总表的直接依据是()A.原始凭证B.原始凭证汇总表C.记账凭证D.汇总记账凭证4.各种账务处理程序中最基本的是()A. 记账凭证账务处理程序B. 汇总记账凭证账务处理程序C. 科目汇总表账务处理程序D. 多栏式日记账账务处理程序5.特定的会计凭证账簿组织和特定的记账程序相结合的方式称为()A. 会计核算前提B. 会计核算原则C. 会计核算方法D. 会计核算形式6. 直接根据记账凭证,逐笔登记总分类账的形式是()A. 日记总账账务处理程序B. 汇总记账凭证账务处理程序C. 记账凭证账务处理程序D. 科目汇总表账务处理程序7. 科目汇总表账务处理程序的主要缺点是()A. 加大了登记总账的工作量B. 据此登帐易产生错误C. 不具有试算平衡作用D. 不便于查对账目8. 科目汇总表账务处理程序和汇总记账凭证账务处理程序的主要相同点是()A. 登记总账的依据相同B. 记账凭证都需要汇总并且记账步骤相同C. 汇总凭证格式相同D. 记账凭证汇总的方向相同9. 记账凭证账务处理程序的适用范围是()A. 规模较大、业务较多的单位B. 规模较小、业务较少的单位C. 规模较大、业务较少的单位D. 规模较小、业务较多的单位10. 汇总记账凭证账务处理程序的主要缺点是()A. 登记总账的工作量大B. 不利于会计人员分工C. 体现不了账户的对应关系D. 明细账与总账无法核对三、多项选择题1. 汇总记账凭证核算程序的优点是()A.总账能反映账户对应关系,便于对经济业务进行分析和检查B.减少登记总账的工作量C.同一贷方科目的转账凭证不多时,可减少核算工作量D.有利于对全部账户的发生额进行试算平衡E.有利于会计人员分工2. 在采用汇总记账凭证核算程序时,编制记账凭证的要求是()A.收款、付款、转账凭证均可一借一贷B.转账凭证可一借多贷C.转账凭证可一贷多借D.收款凭证可一借多贷E.付款凭证可一贷多借3. 科目汇总表的作用有()A.减少总分类账的记账工作量B.进行登记总账前的试算平衡C.反映账户的对应关系D.汇总有关账户的本期借、贷方发生额E.汇总有关账户的余额4. 会计核算程序的内容包括()A.账簿组织B.报表体系C.记账程序及方法D.编制报表的方法5. 登记总分类账的根据可以是()A.记账凭证B.汇总记账凭证C.科目汇总表D.多栏式现金、银行存款日记账E.日记总账6.在下列会计凭证中,可以作为登记总分类账簿的直接依据的有()A. 记账凭证B. 原始凭证C. 汇总记账凭证D. 原始凭证汇总表E. 科目汇总表7.科目汇总表的缺点有()A. 不能反映账户之间的对应关系B. 编制科目汇总表的工作量较大C. 加大登记总账的工作量D. 不便于查对账目E. 不便于了解经济业务的来龙去脉四、业务题自力公司本月发生经济业务如下:(1) 6月2日,通过银行缴纳上月应交的税金67600元。
计算机组成原理第七章课后部分答案
7.1 什么叫机器指令?什么叫指令系统?为什么说指令系统与机器指令的主要功能以及与硬件结构之间存在着密切的关系?机器指令:是CPU能直接识别并执行的指令,它的表现形式是二进制编码。
机器指令通常由操作码和操作数两部分组成。
指令系统:计算机所能执行的全部指令的集合,它描述了计算机内全部的控制信息和“逻辑判断”能力。
指令系统是计算机硬件和软件的接口部分,是全部机器指令的集合。
7.2 什么叫寻址方式?为什么要学习寻址方式?寻址方式:指确定本条指令的数据地址以及下一条将要执行的指令地址的方法,它与硬件结构紧密相关,而且直接影响指令格式和指令功能。
学习寻址方式,是为了找到指令中参与操作的数据,然后根据指令,得出结果。
7.3什么是指令字长、机器字长和存储字长?指令字长:是指机器指令中二进制代码的总位数。
指令字长取决于从操作码的长度、操作数地址的长度和操作数地址的个数。
不同的指令的字长是不同的。
机器字长:是指计算机进行一次整数运算所能处理的二进制数据的位数(整数运算即定点整数运算)。
机器字长也就是运算器进行定点数运算的字长,通常也是CPU内部数据通路的宽度。
即字长越长,数的表示范围也越大,精度也越高。
机器的字长也会影响机器的运算速度。
存储字长:一个存储单元存储一串二进制代码(存储字),这串二进制代码的位数称为存储字长,存储字长可以是8位、16位、32位等。
7.6 某指令系统字长为16位,地址码取4位,提出一种方案,使该指令系统有8条三地址指令、16条二地址指令、100条一地址指令。
解:三地址指令格式如下:4 4 4 4OP A1 A2 A3指令操作码分配方案如下:4位OP0000,……, A1,A2,A3:8条三地址指令0111,1000,0000,……,……, A2,A3:16条二地址指令1000,1111,1001,0000,0000,……,……,……, A3:100条一地址指令1001,0110,0011,1001,0110,0100,……,……,……,冗余编码1001,1111,1111,可用来扩充一、零地址指令条数1010,……,冗余编码1111,可用来扩充三、二、一、零地址指令条数7.7 设指令字长为16位,采用扩展操作码技术,每个操作数的地址为6位。
计量经济学第七章答案详解
练习题7.1参考解答(1)先用第一个模型回归,结果如下:22216.4269 1.008106 t=(-6.619723) (67.0592)R 0.996455 R 0.996233 DW=1.366654 F=4496.936PCE PDI =-+==利用第二个模型进行回归,结果如下:122233.27360.9823820.037158 t=(-5.120436) (6.970817) (0.257997)R 0.996542 R 0.996048 DW=1.570195 F=2017.064t t t PCE PDI PCE -=-++==(2)从模型一得到MPC=1.008106;从模型二得到,短期MPC=0.982382,长期MPC= 0.982382+(0.037158)=1.01954 练习题7.2参考答案(1)在局部调整假定下,先估计如下形式的一阶自回归模型:*1*1*0*t t t t u Y X Y +++=-ββα 估计结果如下:122ˆ15.104030.6292730.271676 se=(4.72945) (0.097819) (0.114858)t= (-3.193613) (6.433031) (2.365315)R =0.987125 R =0.985695 F=690.0561 DW=1.518595t t t Y X Y -=-++根据局部调整模型的参数关系,有****11 ttu u αδαβδββδδ===-=将上述估计结果代入得到: *1110.2716760.728324δβ=-=-=*20.738064ααδ==-*0.864001ββδ==故局部调整模型估计结果为:*ˆ20.7380640.864001ttYX =-+ 经济意义解释:该地区销售额每增加1亿元,未来预期最佳新增固定资产投资为0.864001亿元。
运用德宾h 检验一阶自相关:(121(1 1.34022d h =-=-⨯=在显著性水平05.0=α上,查标准正态分布表得临界值21.96h α=,由于21.3402 1.96h h α=<=,则接收原假设0=ρ,说明自回归模型不存在一阶自相关。
计量课后习题第七章答案
习题7.1 解释概念(1)分类变量 (2)定量变量 (3)虚拟变量 ( 4)虚拟变量陷阱 (5)交互项(6)结构不稳定 (7)经季节调整后的时间序列答:(1)分类变量:在回归模型中,我们对具有某种特征或条件的情形赋值1,不具有某种特征或条件的情形赋值0,这样便定义了一个变量D :1,0,D ⎧=⎨⎩具有某种特征不具有某种特征我们称这样的变量为分类变量。
(2)具有数值特征的变量,如工资、工作年数、受教育年数等,这些变量就称为定量变量。
(3)在回归模型中,我们对具有某种特征或条件的情形赋值1,不具有某种特征或条件的情形赋值0,这样便定义了一个变量D :1,0,D ⎧=⎨⎩具有某种特征不具有某种特征 我们称这样的变量为虚拟变量(dummy variable )。
(4)虚拟变量陷阱是指回归方程包含了所有类别(特征)对应的虚拟变量以及截距项,从而导致了完全共线性问题。
(5)交互项是指虚拟变量与定量变量相乘,或者两个定量变量相乘或是两个虚拟变量相乘,甚至更复杂的形式。
比如模型:12345i i i i i i i household lwage female married female married u βββββ=++++⋅+female married ⋅就是交互项。
(6)如果利用不同的样本数据估计同一形式的计量模型,可能会得到1β、2β不同的估计结果。
如果估计的参数之间存在着显著性差异,就称为模型结构不稳定。
(7)一些重要的经济时间序列,如果是受到季节性因素影响的数据,利用季节虚拟变量或者其他方法将其中的季节成分去除,这一过程被称为经季节调整的时间序列。
7.2 如果你有连续几年的月度数据,为检验以下假设,需要引入多少个虚拟变量?如何设定这些虚拟变量?(1)一年中的每一个月份都表现出受季节因素影响;(2)只有2、7、8月表现出受季节因素影响。
答:(1)对于一年中的每个月份都受季节因素影响这一假设,需要引入三个虚拟变量。
统计学答案第七章
1 估计量的含义是指()。
A。
用来估计总体参数的统计量的名称B.用来估计总体参数的统计量的具体数值C。
总体参数的名称D。
总体参数的具体数值2 在参数估计中,要求通过样本的统计量来估计总体参数,评价统计量的标准之一是使它与总体参数的离差越小越好。
这种评价标准称为().A。
无偏性B。
有效性C。
一致性 D.充分性3 根据一个具体的样本求出的总体均值的95%的置信区间().A.以95%的概率包含总体均值B.有5%的可能性包含总体均值C.一定包含总体均值D。
要么包含总体均值,要么不包含总体均值4 无偏估计是指().A.样本统计量的值恰好等于待估的总体参数B。
所有可能样本估计值的数学期望等于待估总体参数C。
样本估计值围绕待估总体参数使其误差最小D。
样本量扩大到和总体单元相等时与总体参数一致5 总体均值的置信区间等于样本均值加减边际误差,其中的边际误差等于所要求置信水平的临界值乘以()。
A.样本均值的抽样标准差B。
样本标准差C.样本方差D。
总体标准差6 当样本量一定时,置信区间的宽度()。
A。
随着置信系数的增大而减小B。
随着置信系数的增大而增大C。
与置信系数的大小无关D.与置信系数的平方成反比7 当置信水平一定时,置信区间的宽度().A。
随着样本量的增大而减小B.随着样本量的增大而增大C。
与样本量的大小无关D。
与样本量的平方根成正比8 一个95%的置信区间是指()。
A。
总体参数有95%的概率落在这一区间内B.总体参数有5%的概率未落在这一区间内C。
在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数D.在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数9 95%的置信水平是指()。
A.总体参数落在一个特定的样本所构造的区间内的概率为95%B.在用同样方法构造的总体参数的多个区间中,包含总体参数的区间比例为95%C.总体参数落在一个特定的样本所构造的区间内的概率为5%D。
在用同样方法构造的总体参数的多个区间中,包含总体参数的区间比例为5%10 一个估计量的有效性是指()。
新编会计学基础练习答案 第七章会计账簿练习答案
第七章会计账簿参考答案一、单项选择题1.B2.B3.C4.A5.C6.C7.D8.D9.C 10.C二、多项选择题1.ACD2.ABC3.ABC4.ABD5.BCD6. ABC7.ABC8.AB9.BC 10.BD 11.BCD三、判断题1.√2.×3.√4.×5.×6.×7.×8.√9.√10.√ 11.√ 12.√ 13.× 14.√四、业务题(一)1.(1)借:银行存款 100 000贷:短期借款 100 000(2)借:原材料—甲材料 24 000应交税费—应交增值税(进项税额) 4 080贷:银行存款 28 080(3)借:应付账款—红星公司 14 600贷:银行存款14 600(4)借:原材料—甲材料400贷:库存现金400(5)借:其他应收款—王放 2 000贷:库存现金 2 000(6)借:库存现金 15 000贷:银行存款15 000(7)借:应付职工薪酬—工资15 000贷:库存现金 15 000(8)借:应付职工薪酬—补贴500贷:库存现金 500(9)借:银行存款 37 440贷:主营业务收入 32 000应交税费—应交增值税(销项税额) 5 440(10)借:销售费用 600贷:银行存款 600(11)借:银行存款18 000贷:应收账款—华夏公司18 000(12)借:管理费用—差旅费 1 900库存现金100贷:其他应收款—王放 2 000(13)借:应交税费28 000贷:银行存款28 0002.登记账簿略(二)(1)红字更正法更正:首先用红字填写一张与原错误凭证相同的记账凭证,用以冲销原错误凭证借:管理费用贷:库存现金然后再用蓝字填写一张正确的记账凭证借:其他应收款 1 000贷:库存现金 1 000最后,再根据这两张凭证登记账簿。
(2)划线更正法将错误金额划掉,在错误金额上面填写正确金额(金额全部划掉,不能只划错误数字)(3)补充登记法将少记金额编制一张记账凭证借:所得税费用30 600贷:应交税费—应交所得税30 600然后根据记账凭证登记账簿。
计量经济学第七章第5,6,7题答案
计量经济学第七章第5,6,7题答案第7章练习5解:根据Eview 软件得如下表:Dependent Variable: YMethod: ML - Binary Logit (Quadratic hill climbing) Date: 05/22/11 Time: 22:19Sample: 1 16Included observations: 16Convergence achieved after 5 iterationsCovariance matrix computed using second derivativesVariableCoefficient Std. Error z-Statistic Prob.C -11.10741 6.124290 -1.813665 0.0697 Q 0.003968 0.008008 0.495515 0.6202 V0.0176960.0087522.0219140.0432 McFadden R-squared 0.468521 Mean dependent var 0.562500 S.D. dependent var 0.512348 S.E. of regression 0.382391 Akaike info criterion 1.103460 Sum squared resid 1.900896 Schwarz criterion 1.248321 Log likelihood-5.827681 Hannan-Quinn criter. 1.110878 Restr. loglikelihood -10.96503LR statistic 10.27469 Avg. log likelihood -0.364230Prob(LR statistic) 0.005873Obs with Dep=0 7 Total obs 16Obs with Dep=19于是,我们可得到Logit 模型为:V Q i0177.0004.0107.11Y ?++-= (-1.81)(0.49)(2.02)685.40R 2MCF = , LR(2)=10.27如果在Binary estination 这⼀栏中选择Probit 估计⽅法,可得到如下表:Dependent Variable: YMethod: ML - Binary Probit (Quadratic hill climbing) Date: 05/22/11 Time: 22:25 Sample: 1 16Included observations: 16Convergence achieved after 5 iterationsCovariance matrix computed using second derivativesVariableCoefficient Std. Error z-Statistic Prob.C -6.634542 3.396882 -1.953127 0.0508 Q 0.002403 0.004585 0.524121 0.6002 V0.0105320.0046932.2442990.0248 McFadden R-squared 0.476272 Mean dependent var 0.562500 S.D. dependent var 0.512348 S.E. of regression 0.381655 Akaike info criterion 1.092836 Sum squared resid 1.893588 Schwarz criterion 1.237696 Log likelihood-5.742687 Hannan-Quinn criter. 1.100254 Restr. loglikelihood -10.96503LR statistic 10.44468 Avg. log likelihood -0.358918Prob(LR statistic) 0.005395Obs with Dep=0 7 Total obs 16Obs with Dep=19于是,我们可得到Probit 模型为:V Q i0105.00024.035.66Y ?++-= (-1.95)(0.52)(2.24)763.40R 2MCF = , LR(2)=10.44第7章练习6 下表列出了美国、加拿⼤、英国在1980~1999年的失业率Y 以及对制造业的补偿X 的相关数解:(1)根据Eview 软件操作得如下表:美国(US ):Dependent Variable: Y Method: Least Squares Date: 05/22/11 Time: 22:38 Sample: 1980 1999 Included observations: 20VariableCoefficientStd. Error t-Statistic Prob.C 10.56858 1.138982 9.278972 0.0000 X-0.0454030.012538-3.6211890.0020R-squared 0.421464 Mean dependent var 6.545000 Adjusted R-squared 0.389323 S.D. dependent var 1.432875 S.E. of regression 1.119732 Akaike infocriterion3.158696 Sum squared resid 22.56840 Schwarz criterion3.258269 Log likelihood -29.58696 Hannan-Quinncriter.3.178133 F-statistic 13.11301 Durbin-Watson stat 0.797022 Prob(F-statistic)0.001953根据上表可得对美国的OLS 估计结果为:tt X 0454.05686.10Y ?-= (9.28)(-3.62) 4215.02=R , 3893.02=R , D.W.=0.797, RSS=22.57加拿⼤(CA):Dependent Variable: Y Method: Least Squares Date: 05/22/11 Time: 22:43Sample: 1980 1999 Included observations: 20。
计学(第六版)第七章课后练习答案
第七章 课后练习答案7.1(1)已知:96.1%,951,25,40,52/05.0==-===z x n ασ。
样本均值的抽样标准差79.0405===n x σσ (2)边际误差55.140596.12/=⨯==n z E σα7.2 (1)已知:96.1%,951,120,49,152/05.0==-===z x n ασ。
样本均值的抽样标准差14.24915===n x σσ(2)边际误差20.4491596.12/=⨯==n z E σα(3)由于总体标准差已知,所以总体均值μ的95%的置信区间为20.4120491596.11202/±=⨯±=±n z x σα即()2.124,8.1157.3 已知:96.1%,951,104560,100,854142/05.0==-===z x n ασ。
由于总体标准差已知,所以总体均值μ的95%的置信区间为144.167411045601008541496.11045602/±=⨯±=±n z x σα即)144.121301,856.87818(7.4(1)已知:645.1%,901,12,81,1002/1.0==-===z s x n α。
由于100=n 为大样本,所以总体均值μ的90%的置信区间为:974.18110012645.1812/±=⨯±=±n s z x α即)974.82,026.79((2)已知:96.1%,951,12,81,1002/05.0==-===z s x n α。
由于100=n 为大样本,所以总体均值μ的95%的置信区间为:352.2811001296.1812/±=⨯±=±n s z x α即)352.83,648.78((3)已知:58.2%,991,12,81,1002/05.0==-===z s x n α。
第七章练习题及参考解答(第四版)计量经济学
第七章练习题及参考解答7.1 表7.4中给出了1981-2015年中国城镇居民人均年消费支出(PCE)和城镇居民人均可支配收入(PDI)数据。
表7.4 1981-2015年中国城镇居民消费支出(PCE)和可支配收入(PDI)数据 (单位:元)估计下列模型:tt t t tt t PCE B PDI B B PCE PDI A A PCE υμ+++=++=-132121(1) 解释这两个回归模型的结果。
(2) 短期和长期边际消费倾向(MPC )是多少?分析该地区消费同收入的关系。
(3) 建立适当的分布滞后模型,用库伊克变换转换为库伊克模型后进行估计,并对估计结果进行分析判断。
【练习题7.1参考解答】(1) 解释这两个回归模型的结果。
Dependent Variable: PCE Method: Least Squares Date: 03/10/18 Time: 09:12 Sample: 1981 2005Variable Coefficient Std. Error t-Statistic Prob.C 149.0975 24.56734 6.068933 0.0000R-squared 0.998965 Mean dependent var 2983.768Adjusted R-squared 0.998920 S.D. dependent var 2364.412S.E. of regression 77.70773 Akaike info criterion 11.62040Sum squared resid 138885.3 Schwarz criterion 11.71791Log likelihood -143.2551 F-statistic 22196.24Durbin-Watson stat 0.531721 Prob(F-statistic) 0.000000收入跟消费间有显著关系。
计量经济学第七章第5,6,7题答案
第7章练习5在申请出国读学位的16名学生中有如下GRE数量与词汇分数。
解:根据Eview软件得如下表:Dependent Variable: YMethod: ML - Binary Logit (Quadratic hill climbing)Date: 05/22/11 Time: 22:19Sample: 1 16Included observations: 16Convergence achieved after 5 iterationsCovariance matrix computed using second derivativesVariable Coefficient Std. Error z-Statistic Prob.CQVMcFadden R-squared Mean dependent var. dependent var . of regression Akaike info criterion Sum squared resid Schwarz criterionLog likelihoodHannan-Quinn criter. Restr. loglikelihoodLR statistic Avg. log likelihoodProb(LR statistic)Obs with Dep=0 7 Total obs 16Obs with Dep=19于是,我们可得到Logit 模型为:V Q i0177.0004.0107.11Y ˆ++-= () () ()685.40R 2MCF = , LR(2)=如果在Binary estination 这一栏中选择Probit 估计方法,可得到如下表:Dependent Variable: YMethod: ML - Binary Probit (Quadratic hill climbing) Date: 05/22/11 Time: 22:25 Sample: 1 16Included observations: 16Convergence achieved after 5 iterationsCovariance matrix computed using second derivativesVariable Coefficient Std. Error z-Statistic Prob.C QVMcFadden R-squared Mean dependent var . dependent var . of regression Akaike info criterion Sum squared resid Schwarz criterionLog likelihoodHannan-Quinn criter. Restr. loglikelihoodLR statistic Avg. log likelihoodProb(LR statistic)Obs with Dep=0 7 Total obs 16Obs with Dep=19于是,我们可得到Probit 模型为:V Q i0105.00024.035.66Y ˆ++-= () () ()763.40R 2MCF = , LR(2)=第7章练习6下表列出了美国、加拿大、英国在1980~1999年的失业率Y 以及对制造业的补偿X 的相关数据资料。
第七章 习题及答案
第七章 相关与回归分析一、单项选题题1、当自变量X 减少时,因变量Y 随之增加,则X 和Y 之间存在着( ) A 、线性相关关系 B 、非线性相关关系 C 、正相关关系 D 、负相关关系2、下列属于函数关系的有( )A 、身高与体重之间B 、广告费用支出与商品销售额之间C 、圆面积与半径之间D 、施肥量与粮食产量之间 3、下列相关程度最高的是( )A 、r=0.89B 、r=-0.93C 、r=0.928D 、r=0.8 4、两变量x 与y 的相关系数为0.8,则其回归直线的判定系数为( ) A 、0.80 B 、0.90 C 、0.64 D 、0.50 5、在线性回归模型中,随机误差项被假定服从( )A 、二项分布B 、t 分布C 、指数分布D 、正态分布6、物价上涨,销售量下降,则物价与销售量之间的相关属于( ) A 、无相关 B 、负相关 C 、正相关 D 、无法判断7、相关分析中所涉及的两个变量( )A 、必须确定哪个是自变量、哪个是因变量B 、都不能为随机变量C 、都可以是随机变量D 、不是对等关系 8、单位产品成本y (元)对产量x (千件)的回归方程为:t t x y 2.0100-=∧,其中“—0.2”的含义是( )A 、产量每增加1件,单位成本下降0.2元B 、产量每增加1件,单位成本下降20%C 、产量每增加1000件,单位成本下降20%D 、产量每增加1000件,单位成本平均下降0.2元E 、产量每增加1000件,单位成本平均下降20% 二、多项选择题1、下列说法正确的有( )A 、相关分析和回归分析是研究现象之间相关关系的两种基本方法B 、相关分析不能指出变量间相互关系的具体形式,也无法从一个变量的变化来推测另一个变量的变化情况 C、回归分析可以不必确定变量中哪个是自变量,哪个是因变量 D、相关分析必须事先研究确定具有相关关系的变量中哪个为自变量,哪个为因变量 E、相关分析中所涉及的变量可以都是随机变量,而回归分析中因变量是随机的,自变量是非随机的2、判定现象之间有无相关关系的方法有()A、计算回归系数B、编制相关表C、绘制相关图D、计算相关系数E、计算中位数3、相关关系按相关的形式可分为()A、正相关B、负相关C、线性相关D、非线性相关E、复相关4、在直线回归方程∧yt=∧β1+∧β2Xt中,回归系数∧β2的数值()A、表明两变量之间的平衡关系B、其正、负号表明两变量之间的相关方向C、表明两变量之间的密切程度D、表明两变量之间的变动比例E、在数学上称为斜率5、下列那些项目属于现象完全相关()A、r=0B、r= —1C、r= +1D、y的数量变化完全由X的数量变化所确定E、r=0.986、在回归分析中,要求所涉及的两个变量x和y()A、必须确定哪个是自变量、哪个是因变量B、不是对等关系C、是对等关系D、一般来说因变量是随机的,自变量是非随机变量E、y对x的回归方程与x对y的回归方程是一回事7、下列有相关关系的是()A、居民家庭的收入与支出B、广告费用与商品销售额C、产量与单位产品成本D、学生学习的时间与学习成绩E、学生的身高与学习成绩8、可决系数2r=86.49%时,意味着()A 、自变量与因变量之间的相关关系密切B 、因变量的总变差中,有80%可通过回归直线来解释 C 、因变量的总变差中,有20%可由回归直线来解释 D 、相关系数绝对值一定是0.93 E 、相关系数绝对值一定是0.8649 三、填空题1、相关系数r 的取值范围为 。
大学统计学第七章练习题及答案
第7章参数估计练习题7.1 从一个标准差为5的总体中抽出一个样本量为40的样本,样本均值为25。
(1)样本均值的抽样标准差等于多少?(2)在95%的置信水平下,边际误差是多少?解:⑴已知样本均值的抽样标准差⑵已知,,,,边际误差7.2 某快餐店想要估计每位顾客午餐的平均花费金额,在为期3周的时间里选取49名顾客组成了一个简单随机样本。
(1)假定总体标准差为15元,求样本均值的抽样标准误差;(2)在95%的置信水平下,求边际误差;(3)如果样本均值为120元,求总体均值的95%的置信区间。
解.已知.根据查表得=1.96(1)标准误差:(2).已知=1.96所以边际误差=*1。
96*=4。
2(3)置信区间:7.3 从一个总体中随机抽取的随机样本,得到,假定总体标准差,构建总体均值的95%的置信区间.置信区间:(87818。
856,121301.144)7.4 从总体中抽取一个的简单随机样本,得到,。
(1)构建的90%的置信区间.(2)构建的95%的置信区间.(3)构建的99%的置信区间.解;由题意知, ,。
(1)置信水平为,则。
由公式即则置信区间为79。
026~82。
974(2)置信水平为,由公式得=81即81=(78.648,83。
352),则的95%的置信区间为78。
648~83。
352(3)置信水平为,则。
由公式=即则置信区间为7.5 利用下面的信息,构建总体均值的置信区间。
(1),,,置信水平为95%。
(2),,,置信水平为98%.(3),,,置信水平为90%。
⑴置信水平为95%解:置信下限:置信上限:⑵解:置信下限:置信上限:⑶=3.419,s=0。
974,n=32,置信水平为90%根据t=0。
1,查t 分布表可得。
所以该总体的置信区间为(=3.4190.283即3.4190.283=(3.136 ,3。
702)所以该总体的置信区间为3.136~3.702.7.6 利用下面的信息,构建总体均值的置信区间。
计量经济学 卡特版课后第七章答案
CHAPTER 7Exercise Solutions141Chapter 7, Exercise Solutions, Principles of Econometrics, 3e 142EXERCISE 7.1(a) When a GPA is increased by one unit, and other variables are held constant, averagestarting salary will increase by the amount $1643 ( 4.66t =, and the coefficient is significant at α = 0.001). Students who take econometrics will have a starting salary which is $5033 higher, on average, than the starting salary of those who did not take econometrics (11.03t =, and the coefficient is significant at α = 0.001). The intercept suggests the starting salary for someone with a zero GPA and who did not take econometrics is $24,200. However, this figure is likely to be unreliable since there would be no one with a zero GPA . The R 2 = 0.74 implies 74% of the variation of starting salary is explained by GPA and METRICS(b) A suitably modified equation is 1234SAL GPA METRICS FEMALE e =β+β+β+β+ Then, the parameter 4β is an intercept dummy variable that captures the effect of genderon starting salary, all else held constant.()()1231423if = 0if = 1GPA METRICSFEMALE E SAL GPA METRICS FEMALE β+β+β⎧⎪=⎨β+β+β+β⎪⎩(c) To see if the value of econometrics is the same for men and women, we change the modelto 12345SAL GPA METRICS FEMALE METRICS FEMALE e =β+β+β+β+β×+ Then, the parameter 4β is an intercept dummy variable that captures the effect of genderon starting salary, all else held constant. The parameter 5β is a slope dummy variable that captures any change in the slope for females, relative to males.()()()12314235if = 0if = 1GPA METRICSFEMALE E SAL GPA METRICS FEMALE β+β+β⎧⎪=⎨β+β+β+β+β⎪⎩Chapter 7, Exercise Solutions, Principles of Econometrics, 3e 143EXERCISE 7.2(a) Considering each of the coefficients in turn, we have the following interpretations.Intercept : At the beginning of the time period over which observations were taken, on a day which is not Friday, Saturday or a holiday, and a day which has neither a full moon nor a half moon, the estimated average number of emergency room cases was 93.69.T : We estimate that the average number of emergency room cases has been increasing by 0.0338 per day, other factors held constant. This time trend has a t -value of 3.058 and a p -value = 0.0025 < 0.01.HOLIDAY : The average number of emergency room cases is estimated to go up by 13.86on holidays. The “holiday effect” is significant at the 0.05 level of significance. FRI and SAT : The average number of emergency room cases is estimated to go up by 6.9and 10.6 on Fridays and Saturdays, respectively. These estimated coefficients are both significant at the 0.01 level. FULLMOON : The average number of emergency room cases is estimated to go up by2.45 on days when there is a full moon. However, a null hypothesis stating that a full moon has no influence on the number of emergency room cases would not be rejected at any reasonable level of significance. NEWMOON : The average number of emergency room cases is estimated to go up by 6.4on days when there is a new moon. However, a null hypothesis stating that a new moon has no influence on the number of emergency room cases would not be rejected at the usual 10% level, or smaller. Therefore, hospitals should expect more calls on holidays, Fridays and Saturdays, and also should expect a steady increase over time.(b)There are very little changes in the remaining coefficients, or their standard errors, when FULLMOON and NEWMOON are omitted. The equation goodness-of-fit statistic decreases slightly, as expected when variables are omitted. Based on these casual observations the consequences of omitting FULLMOON and NEWMOON are negligible. (c) The null and alternative hypotheses are067:0H β=β= 167: or is nonzero.H ββThe test statistic is()2(2297)R U U SSE SSE F SSE −=−whereR SSE = 27424.19 is the sum of squared errors from the estimated equation with FULLMOON and NEWMOON omitted and U SSE = 27108.82 is the sum of squared errors from the estimated equation with these variables included. The calculated value of the F statistic is 1.29. The .05 critical value is (0.95,2,222) 3.307F =, and corresponding p -value is0.277. Thus, we do not reject the null hypothesis that new and full moons have no impact on the number of emergency room cases.Chapter 7, Exercise Solutions, Principles of Econometrics, 3e 144EXERCISE 7.3(a) The estimated coefficient of the price of alcohol suggests that, if the price of pure alcohol goes up by $1 per liter, the average number of days (out of 31) that alcohol is consumed will fall by 0.045.(b) The price elasticity at the means is given by24.780.0450.3203.49q pp q∂=−×=−∂(c) To compute this elasticity, we need q for married black males in the 21-30 age range. It is given by4.0990.04524.780.00005712425 1.6370.8070.0350.5803.97713q =−×+×+−+−=Thus, the price elasticity is24.780.0450.2803.97713q p p q ∂=−×=−∂ (d)The coefficient of income suggests that a $1 increase in income will increase the averagenumber of days on which alcohol is consumed by 0.000057. If income was measured in terms of thousand-dollar units, which would be a sensible thing to do, the estimated coefficient would change to 0.057.(e) The effect of GENDER suggests that, on average, males consume alcohol on 1.637 moredays than women. On average, married people consume alcohol on 0.807 less days than single people. Those in the 12-20 age range consume alcohol on 1.531 less days than those who are over 30. Those in the 21-30 age range consume alcohol on 0.035 more days than those who are over 30. This last estimate is not significantly different from zero, however. Thus, two age ranges instead of three (12-20 and an omitted category of more than 20), are likely to be adequate. Black and Hispanic individuals consume alcohol on 0.580 and 0.564 less days, respectively, than individuals from other races. Keeping in mind that the critical t -value is 1.960, all coefficients are significantly different from zero, except that for the dummy variable for the 21-30 age range.Chapter 7, Exercise Solutions, Principles of Econometrics, 3e 145EXERCISE 7.4(a) The estimated coefficient for SQFT suggests that an additional square foot of floor spacewill increase the price of the house by $72.79. The positive sign is as expected, and the estimated coefficient is significantly different from zero. The estimated coefficient for AGE implies the house price is $179 less for each year the house is older. The negative sign implies older houses cost less, other things being equal. The coefficient is significantly different from zero.(b) The estimated coefficients for the dummy variables are all negative and they becomeincreasingly negative as we move from D92 to D96. Thus, house prices have been steadily declining in Stockton over the period 1991-96, holding constant both the size and age of the house.(c) Including a dummy variable for 1991 would have introduced exact collinearity unless theintercept was omitted. Exact collinearity would cause least squares estimation to fail. The collinearity arises between the dummy variables and the constant term because the sum of the dummy variables equals 1; the value of the constant term.Chapter 7, Exercise Solutions, Principles of Econometrics, 3e 146EXERCISE 7.5(a)The estimated marginal response of yield to nitrogen is()()8.0112 1.9440.5677.444 3.888when 16.877 3.888when 26.310 3.888when 3E YIELD NITRO PHOS NITRO NITRO PHOS NITRO PHOS NITROPHOS ∂=−××−×∂=−==−==−=The effect of additional nitrogen on yield depends on both the level of nitrogen and the level of phosphorus. For a given level of phosphorus, marginal yield is positive for small values of NITRO but becomes negative if too much nitrogen is applied. The level of NITRO that achieves maximum yield for a given level of PHOS is obtained by setting the first derivative equal to zero. For example, when PHOS = 1 the maximum yield occurs when NITRO = 7.444/3.888 = 1.915. The larger the amount of phosphorus used, the smaller the amount of nitrogen required to attain the maximum yield. (b)The estimated marginal response of yield to phosphorous is()()4.80020.7780.5674.233 1.556when 13.666 1.556when 23.099 1.556when 3E YIELD PHOS NITRO PHOS PHOS NITRO PHOS NITRO PHOSNITRO ∂=−××−×∂=−==−==−= Comments similar to those made for part (a) are also relevant here.(c)(i) We want to test 0246:20H β+β+β= against the alternative 1246:20.H β+β+β≠The value of the test statistic is ()24624627.367se 2b b b t b b b ++===++At a 5% significance level, the critical t -value is c t ± where (0.975,21) 2.080c t t ==. Since t > 2.080 we reject the null hypothesis and conclude that the marginal product ofyield to nitrogen is not zero when NITRO = 1 and PHOS = 1.(ii) We want to test 0246:40H β+β+β= against the alternative 1246:40H β+β+β≠.The value of the test statistic is()2462464 1.660se 4b b b t b b b ++===−++Since |t| < 2.080 (0.975,21)t =, we do not reject the null hypothesis. A zero marginal yieldwith respect to nitrogen is compatible with the data when NITRO = 1 and PHOS = 2.Chapter 7, Exercise Solutions, Principles of Econometrics, 3e 147Exercise 7.5(c) (continued)(c)(iii) We want to test 0246:60H β+β+β= against the alternative 1246:60H β+β+β≠.The value of the test statistic is()24624668.742se 6b b b t b b b ++===−++Since |t| > 2.080 (0.975,21)t =, we reject the null hypothesis and conclude that themarginal product of yield to nitrogen is not zero when NITRO = 3 and PHOS = 1.(d) The maximizing levels NITRO ∗ and PHOS ∗ are those values for NITRO and PHOS suchthat the first-order partial derivatives are equal to zero.()()35620E YIELD PHOS NITRO PHOS ∗∗∂=β+β+β=∂()()24620E YIELD NITRO PHOS NITRO ∗∗∂=β+β+β=∂The solutions and their estimates are 253622645228.011(0.778) 4.800(0.567)1.7014(0.567)4( 1.944)(0.778)NITRO ∗ββ−ββ××−−×−===β−ββ−−×−−34262264522 4.800( 1.944)8.011(0.567)2.4654(0.567)4( 1.944)(0.778)PHOS ∗ββ−ββ××−−×−===β−ββ−−×−−The yield maximizing levels of fertilizer are not necessarily the optimal levels. Theoptimal levels are those where the marginal cost of the inputs is equal to the marginal value product of those inputs. Thus, the optimal levels are those for which()()PHOS PEANUTS E YIELD PRICE PHOS PRICE ∂=∂ and ()()NITROPEANUTSE YIELD PRICE NITRO PRICE ∂=∂Chapter 7, Exercise Solutions, Principles of Econometrics, 3e 148EXERCISE 7.6(a) The model to estimate is()()112323ln +PRICE UTOWN SQFT SQFT UTOWN AGE POOL FPLACE e=β+δ+β+γ×β+δ+δ+The estimated equation, with standard errors in parentheses, isn ()()()()()()ln 4.46380.33340.035960.003428(se)0.02640.03590.001040.001414PRICE UTOWN SQFT SQFT UTOWN =++−×()()()20.0009040.018990.0065560.86190.0002180.005100.004140AGE POOL FPLACER −++=(b) In the log-linear functional form 12ln(),y x e =β+β+ we have21dy dx y=β or 2dydx y =β Thus, a 1 unit change in x leads to a percentage change in y equal to 2100×β.In this case2311PRICE UTOWNSQFT PRICE PRICE AGE PRICE∂=β+γ∂∂=β∂Using this result for the coefficients of SQFT and AGE , we find that an additional 100 square feet of floor space increases price by 3.6% for a house not in University town; a house which is a year older leads to a reduction in price of 0.0904%. Both estimated coefficients are significantly different from zero. (c) Using the results in Section 7.5.1a,()2ln()ln()100100%poolnopool PRICEPRICE PRICE −×=δ×≈Δan approximation of the percentage change in price due to the presence of a pool is 1.90%. Using the results in Section7.5.1b,()21001100pool nopool nopool PRICE PRICE e PRICE δ⎛⎞−×=−×⎜⎟⎜⎟⎝⎠the exact percentage change in price due to the presence of a pool is 1.92%.Chapter 7, Exercise Solutions, Principles of Econometrics, 3e 149Exercise 7.6 (continued)(d) From Section 7.5.1a,()3ln()ln()100100%fireplacenofireplace PRICEPRICE PRICE −×=δ×≈Δan approximation of the percentage change in price due to the presence of a fireplace is 0.66%.From Section 7.5.1b,()31001100fireplace nofireplace nofireplace PRICE PRICE e PRICE δ⎛⎞−×=−×⎜⎟⎜⎟⎝⎠the exact percentage change in price due to the presence of a fireplace is also 0.66%. (e)In this case the difference in log-prices is given by()n ()n ()2525ln ln 0.33340.003428250.33340.003428250.2477utown noutown SQFT SQFT PRICE PRICE UTOWN UTOWN ==−=−××=−×= and the percentage change in price attributable to being near the university, for a 2500square-feet home, is()0.2477110028.11%e−×=Chapter 7, Exercise Solutions, Principles of Econometrics, 3e 150EXERCISE 7.7(a) The estimated equation isn ()()()()()()()2ln 8.9848 3.7463 1.1495 1.2880.4237 (se)0.64640.57650.44860.60530.1052 1.4313 0.84280.1562SAL1APR1APR2APR3DISP DISPAD R =−++++=(b) The estimates of2β, 3β and 4β are all significant and have the expected signs. The sign of 2β is negative, while the signs of the other two coefficients are positive. These signs imply that Brands 2 and 3 are substitutes for Brand 1. If the price of Brand 1 rises, then sales of Brand 1 will fall, but a price rise for Brand 2 or 3 will increase sales of Brand 1. Furthermore, with the log-linear function, the coefficients are interpreted as proportionalchanges in quantity from a 1-unit change in price. For example, a one-unit increase in the price of Brand 1 will lead to a 375% decline in sales; a one-unit increase in the price of Brand 2 will lead to a 115% increase in sales. These percentages are large because prices are measured in dollar units. If we wish toconsider a 1 cent change in price – a change more realistic than a 1-dollar change – then the percentages 375 and 115 become 3.75% and 1.15%, respectively. (c) There are three situations that are of interest. (i) No display and no advertisement{}11234exp SAL1APR1APR2APR3Q =β+β+β+β=(ii) A display but no advertisement{}{}2123455exp exp SAL1APR1APR2APR3Q =β+β+β+β+β=β(iii) A display and an advertisement{}{}3123466exp exp SAL1APR1APR2APR3Q =β+β+β+β+β=βThe estimated percentage increase in sales from a display but no advertisement isn n n 210.423751exp{}100100(1)10052.8%Q b Q SAL1SAL1e Q SAL1−−×=×=−×=Chapter 7, Exercise Solutions, Principles of Econometrics, 3e 151Exercise 7.7(c) (continued)(c) The estimated percentage increase in sales from a display and an advertisement isn n n 311.431361exp{}100100(1)100318%Q b Q SAL1SAL1e Q SAL1−−×=×=−×=The signs and relative magnitudes of 5b and 6b lead to results consistent with economiclogic. A display increases sales; a display and an advertisement increase sales by an even larger amount.(d) The results of these tests appear in the table below.Part 0H Test Value Degrees of Freedom 5% Critical ValueDecision(i) β5 = 0 t = 4.03 46 2.01 Reject H 0 (ii) β6 = 0 t = 9.17 46 2.01 Reject H 0 (iii) β5 = β6 = 0 F = 42.0 (2,46) 3.20 Reject H 0 (iv)β6 ≤ β5t = 6.8646 1.68 Reject H 0(e) The test results suggest that both a store display and a newspaper advertisement will increase sales, and that both forms of advertising will increase sales by more than a store display by itself.Chapter 7, Exercise Solutions, Principles of Econometrics, 3e 152EXERCISE 7.8(a) The estimated equation, with standard errors in parentheses, isn 215.45970.2698 2.35820.4391(se) (0.2537)(0.0868)(0.2629)PRICEAGE NET R =+−=All estimated coefficients are significantly different from zero. The intercept suggests thatthe average price of CDs that have a 1999 copyright and are not sold on the internet is $15.46. For every year the copyright date is earlier than 1999, the price increases by 27 cents. For CDs sold through the internet, the price is $2.36 cheaper. The positive coefficient of AGE supports Mixon and Ressler’s hypothesis. (b) The estimated equation, with standard errors in parentheses, isn 215.52880.7885 2.35690.4380(se) (0.2424)(0.2567) (0.2632)PRICEOLD NET R =+−=Again, all estimated coefficients are significantly different from zero. They suggest thatthe average price of new releases, not sold on the internet, is $15.53. If the CD is not a new release, the price is 79 cents higher. If it is purchased over the internet, the price is $2.36 less. The positive coefficient of OLD supports Mixon and Ressler’s hypothesis.Chapter 7, Exercise Solutions, Principles of Econometrics, 3e 153EXERCISE 7.9The estimated coefficients and their standard errors (in parenthesis) for the various parts ofthis question are given in the following table.Variable (a) (b) (c) (f) (g) Constant (β1) 128.98* 342.88* 161.47 109.72 98.48(34.59) (72.34) (120.7) (135.6) (179.1)2()AGE β −7.5756* −2.9774 −2.0383 −1.7200 (2.317) (3.352) (3.542) (4.842) 3()INC β 1.4577* 2.3822* 9.0739* 18.325 22.104(0.5974) (0.6036) (3.670) (11.49) (40.26)4()AGE INC ×β −0.1602 −0.6115 −0.9087 (0.0867) (0.5381) (3.079)25()AGE INC ×β 0.0055 0.0131 (0.0064) (0.0784)36()AGE INC ×β −0.000065 (0.000663) SSE 819286 635637 580609 568869 568708 N K − 38 37 36 35 34* indicates a t -value greater than 2.(a) See table.(b) The signs of the estimated coefficients suggest that pizza consumption responds positivelyto income and negatively to age, as we would expect. All estimated coefficients are greater than twice their standard errors, indicating they are significantly different from zero using one or two-tailed tests. We note that scaling the income variable (dividing by 1000) has increased the coefficient 1000 times. (c) To comment on the signs we need to consider the marginal effects()()24E PIZZA INC AGE ∂=β+β∂()34E PIZZA AGE INC∂=β+β∂We expect β3 > 0 and β4 < 0 implying that the response of pizza consumption to incomewill be positive, but that it will decline with age. The estimates agree with these expectations. Negative signs for b 2 and b 4 imply that, as someone ages, his or her pizza consumption will decline, and the decline will be greater the higher the level of income.Chapter 7, Exercise Solutions, Principles of Econometrics, 3e 154Exercise 7.9(c) (continued)(c) The t value for the age-income interaction variable is t = −0.1602/0.0867 = −1.847.Critical values for a 5% significance level and one and two-tailed tests are, respectively, (0.05,36) 1.688t =− and (0.025,36) 2.028t =−. Thus, if we use the prior information β4 < 0, thenwe find the interaction coefficient is significant. However, if a two-tailed test is employed, the estimated coefficient is not significant. The coefficients of INC and (INC × AGE ) have increased 1000 times due to the effects of scaling.(d) The hypotheses areH 0: β2 = β4 = 0andH 1: β2 ≠ 0 and/or β4 ≠ 0The value of the F statistic under the assumption that H 0 is true is()()()81928658060927.4058060936R U U SSE SSE J F SSE T -K −−===The 5% critical value for (2, 36) degrees of freedom is F c = 3.26 and the p -value of the testis 0.002. Thus, we reject H 0 and conclude that age does affect pizza expenditure. (e) The marginal propensity to spend on pizza is given by()34E PIZZA AGE INC∂=β+β∂Point estimates, standard errors and 95% interval estimates for this quantity, for different ages, are given in the following table.Point Standard Confidence Interval AgeEstimate Error Lower Upper20 5.870 1.977 1.861 9.878 30 4.268 1.176 1.882 6.653 40 2.665 0.605 1.439 3.892 50 1.063 0.923 −0.8092.935The interval estimates were calculated using (0.975,36) 2.0281c t t ==. As an example of how the standard errors were calculated, consider age 30. We have()n ()n ()n ()n ()23434344var 30var 30var 230cov ,13.4669000.0075228600.31421 1.38392se 30 1.1763b b b b b b b b +=++×=+×−×=+==The corresponding interval estimate is4.268 ± 2.028 × 1.176 = (1.882, 6.653)Chapter 7, Exercise Solutions, Principles of Econometrics, 3e 155Exercise 7.9(e) (continued)(e)The point estimates for the marginal propensity to spend on pizza decline as age increases, as we would expect. However, the confidence intervals are relatively wide indicating that our information on the marginal propensities is not very reliable. Indeed, all the confidence intervals do overlap. (f) This model is given by212345+PIZZA INC AGE AGE INC AGE INC e =ββ+β+β×+β×+The marginal effect of income is now given by()2245+E PIZZA AGE AGE INC∂=β+ββ∂If this marginal effect is to increase with age, up to a point, and then decline, then β5 < 0. The sign of the estimated coefficient b 5 = 0.0055 did not agree with this anticipation. However, with a t value of t = 0.0055/0.0064 = 0.86, it is not significantly different from zero.(g)Two ways to check for collinearity are (i) to examine the simple correlations between each pair of variables in the regression, and (ii) to examine the R 2 values from auxiliary regressions where each explanatory variable is regressed on all other explanatory variables in the equation. In the tables below there are 3 simple correlations greater than 0.94 in part (f) and 5 in part (g). The number of auxiliary regressions with R 2s greater than 0.99 is 3 for part (f) and 4 for part (g). Thus, collinearity is potentially a problem. Examining the estimates and their standard errors confirms this fact. In both cases there are no t -values which are greater than 2 and hence no coefficients are significantly different from zero. None of the coefficients are reliably estimated. In general, including squared and cubed variables can lead to collinearity if there is inadequate variation in a variable.Simple CorrelationsAGE AGE INC ×2AGE INC × 3AGE INC ×INC 0.4685 0.9812 0.9436 0.8975 AGE0.5862 0.6504 0.6887 AGE INC × 0.9893 0.9636 2AGE INC ×0.9921R 2 Values from Auxiliary RegressionsLHS variableR 2 in part (f) R 2 in part (g)INC0.99796 0.99983 AGE0.68400 0.82598 AGE INC × 0.99956 0.99999 2AGE INC × 0.99859 0.999993AGE INC × 0.99994Chapter 7, Exercise Solutions, Principles of Econometrics, 3e 156EXERCISE 7.10(a) The estimated equation with gender (FEMALE ) included, and with standard errors written in parentheses, isn ()()()()461.86408.18280.0024190.2581 (se)51.3441 1.55010.000427.7681PIZZA AGE INCOME FEMALE =−+−The t -value for gender is 190.258127.7681 6.8517t =−=− indicating that it is a relevantexplanatory variable. Including it in the model has led to substantial changes in the coefficients of the remaining variables.(b) When level of educational attainment is included the estimated model, with the standarderrors in parentheses, becomesn ()()()()317.38988.30140.002990.7944 (se)83.3909 2.32630.000757.8402PIZZAAGE INCOME HS =−++()()1.680273.204762.662192.0859COLLEGE GRAD−−None of the dummy variable coefficients are significant, casting doubt on the relevance of education as an explanatory variable. Also, including the education dummies has had little impact on the remaining coefficient estimates. To confirm the lack of evidence supporting the inclusion of education, we need to use an F test to jointly test whether the coefficients of HS, COLLEGE and GRAD are all zero. The value of this statistic is()()()63563753944632.020*********R U U SSE SSE J F SSE N K −−===−The 5% critical value for (3, 34) degrees of freedom is F c = 3.05; the p -value is 0.13. Wecannot conclude that level of educational attainment influences pizza consumption. (c) To test this hypothesis we estimate a model where the dummy variable gender (FEMALE ) interacts with every other variable in the equation. The estimated equation, with standard errors in parentheses, isn ()()()()451.36059.36320.0036208.3393 (se)63.9450 1.91550.000796.5078PIZZA AGE INCOME FEMALE =−+−()()2.83370.00183.08710.0008AGE×FEMALE INCOME×FEMALE−Chapter 7, Exercise Solutions, Principles of Econometrics, 3e 157Exercise 7.10(c) (continued)(c)To test the hypothesis that the regression equations for males and females are identical, we test jointly whether the coefficients of FEMALE , AGE ×FEMALE , INCOME ×FEMALE are all zero. Note that individual t tests on each of these coefficients do not suggest gender is relevant. However, when we take all variables together, the F value for jointly testing their coefficients is()()()635636.7244466.5318.1344244466.534R U U SSE SSE J F SSE N K −−===−This value is greater than F c = 2.866 which is the 5% critical value for (3, 36) degrees offreedom. The p -value is 0.0000. Thus, we reject the null hypothesis that males and females have identical pizza expenditure equations. This result implies different equations should be used to model pizza expenditure for males, and that for females. It does not say how the equations differ. For example, all their coefficients could be different, or simply modelling different intercepts might be adequate.Chapter 7, Exercise Solutions, Principles of Econometrics, 3e 158EXERCISE 7.11(a) The estimated result, with standard errors in parentheses, isn ()()()()161.4654 2.97740.009070.00016(se)120.6634 3.35210.003670.0000867PIZZA AGE INCOME INCOME×AGE =−+−This is identical to the result reported in 7.4.(b) From the sample we obtain average age = 33.475 and average income = 42,925. Thus, the required marginal effect of income isn ()0.009070.0001633.4750.00371E PIZZA INCOME∂=−×=∂Using computer software, we find the standard error of this estimate to be 0.000927, and the t value for testing whether the marginal effect is significantly different from zero is t =0.003710.000927 4.00=. The corresponding p -value is 0.0003 leading us to conclude that the marginal income effect is statistically significant at a 1% level of significance.(c) A 95% interval estimate for the marginal income effect is given by0.00371 ± 2.0281 × 0.000927 = (0.00183, 0.00559)(d) The marginal effect of age for an individual of average income is given byn ()()E PIZZA AGE ∂∂= −2.9774 − 0.00016INCOME = −2.9774 − 0.00016 × 42,925 = −9.854 Using computer software, we find the standard error of this estimate to be 2.5616, and thet value for testing whether the marginal effect is significantly different from zero is 9.8542.5616 3.85t =−=−The p -value of the test is 0.0005, implying that the marginal age effect is significantlydifferent from zero at a 1% level of significance. (e) A 95% interval estimate for the marginal age effect is given by −9.854 ± 2.0281 × 2.5616 = (−15.05, −4.66)Chapter 7, Exercise Solutions, Principles of Econometrics, 3e 159Exercise 7.11 (continued)(f)Important pieces of information for Gutbusters are the responses of pizza consumption to age and income. It is helpful to know the demand for pizzas in young and old communities and in high and low income areas. A good starting point in an investigation of this kind is to evaluate the responses at average age and average income. Such an evaluation will indicate whether there are noticeable responses, and, if so, give some idea of their magnitudes. The two responses are estimated asn ()E PIZZA INCOME ∂∂ = 0.0037n ()()E PIZZA AGE ∂∂ = −9.85Both these estimates are significantly different from zero at a 1% level of significance. They suggest that increasing income will increase pizza consumption, but, as a community ages, its demand for pizza declines. Interval estimates give an indication of the reliability of the estimated responses. In this context, we estimate that the income response lies between 0.0018 and 0.0056, while the age response lies between −15.05 and −4.66.。
高级会计学第七章课后参考答案
高级会计学第七章课后参考答案(仅供参考)1.从题意可知,本题所述期货交易属于投机套利业务,期货价格变动直接计入期货损益。
再就是,经营者是买入期货合同,期货合同价格走高为有利变动。
(1)购进期货合同时的会计处理。
1)购入期货合同。
购进期货合同金额=100000×10=1000000借:购进期货合同 1000000贷:期货交易清算 10000002)按规定交付保证金和手续费。
应交纳的保证金=1×5%=50 000(元)应交纳的手续费=1000000×1%=10 000(元)借:期货保证金 50 000期货损益 10 000贷:银行存款 60 000(2)第一个价格变动日。
有利价格变动额=1000000×4%=40 000(元)借:期货保证金 40 000贷:期货损益 40 000(3)第二个价格变动日。
有利价格变动额=1000000×2%=20 000(元)借:期货保证金 20 000贷:期货损益 20 000(4)期货合同到期日的价格变动。
不利价格变动额=(1000000+40 000+20 000)×(-8%)=-84 800(元)期末应补交的保证金金额=84800-40000-20000=24800(元)借:期货损益 84 800贷:期货保证金 84 800借:期货保证金 24800贷:银行存款 24800(5)期货到期日卖出合同平仓,收回保证金。
a卖出期货合同平仓。
卖出期货合同金额=(1000000+40 000+20 000)×(1-8%)=975200(元)借:期货交易清算 975 200贷:卖出期货合同 975200借:卖出期货合同 975200期货交易清算 24800贷:购进期货合同 1000000b.交付手续费。
交付手续费金额=975 200×1%=9 752(元)借:期货损益 9752贷:银行存款 9752c.收回保证金。
第七章课后习题答案
第七章课后习题答案问题1:请简述第七章中讨论的主要概念。
答案:第七章主要讨论了[具体概念],它涉及到[概念的详细解释]。
此概念在[相关领域或情境]中具有重要意义,因为它[解释了什么或如何应用]。
问题2:如何计算[特定数学公式或计算过程]?答案:要计算[特定数学公式或计算过程],首先需要确定所有必要的变量。
然后,按照以下步骤进行计算:1. [第一步计算过程]2. [第二步计算过程]3. [以此类推,直至最终结果]问题3:分析[案例研究或实际情境],并讨论其对[相关概念]的影响。
答案:在[案例研究或实际情境]中,我们可以看到[相关概念]的应用。
具体来说,[案例或情境描述]展示了[概念如何影响结果]。
通过这个案例,我们可以更好地理解[概念]在实际生活中的应用和重要性。
问题4:解释[特定术语或理论],并给出一个例子。
答案: [特定术语或理论]是指[术语或理论的定义]。
例如,在[相关领域]中,[术语或理论]可以用来[具体应用或解释]。
一个具体的例子是[例子描述],它清楚地展示了[术语或理论]的实际应用。
问题5: [选择题或判断题]。
答案: [正确答案]。
这个问题的答案是[正确答案],因为[解释为什么这是正确答案]。
总结:第七章的习题涵盖了对[章节主题]的深入理解,包括理论概念、实际应用和计算技能。
通过解答这些问题,学生可以更好地掌握章节内容,并将其应用于解决实际问题。
请注意,以上内容仅为模板,具体答案需要根据实际的章节内容和习题进行定制。
如果需要针对特定章节的具体习题答案,请提供相关章节的详细内容和习题,以便我能够提供更准确的答案。
统计学原理 第七章课后习题及答案(2020年7月整理).pdf
第七章 相关和回归 一、单项选择题1.相关关系中,用于判断两个变量之间相关关系类型的图形是( )。
(1)直方图 (2)散点图 (3)次数分布多边形图 (4)累计频率曲线图 2.两个相关变量呈反方向变化,则其相关系数r( )。
(1)小于0 (2)大于0 (3)等于0 (4)等于13.在正态分布条件下,以2yx S (提示:yx S 为估计标准误差)为距离作平行于回归直线的两条直线,在这两条平行直线中,包括的观察值的数目大约为全部观察值的( )。
(1)68.27% (2)90.11% (3)95.45% (4)99.73% 4.合理施肥量与农作物亩产量之间的关系是( )。
(1)函数关系 (2)单向因果关系 (3)互为因果关系 (4)严格的依存关系 5.相关关系是指变量之间( )。
(1)严格的关系 (2)不严格的关系(3)任意两个变量之间关系 (4)有内在关系的但不严格的数量依存关系 6.已知变量X 与y 之间的关系,如下图所示:其相关系数计算出来放在四个备选答案之中,它是( )。
(1)0.29 (2)-0.88 (3)1.03 (4)0.997.如果变量z 和变量Y 之间的相关系数为-1,这说明两个变量之间是( )。
(1)低度相关关系 (2)完全相关关系 (3)高度相关关系 (4)完全不相关 8.若已知2()x x −∑是2()y y −∑的2倍,()()x x y y −−∑是2()y y −∑的1.2倍,则相关系数r=( )。
(1)21.2 2(3)0.92 (4)0.65 9.当两个相关变量之问只有配合一条回归直线的可能,那么这两个变量之间的关系是( )。
(1)明显因果关系 (2)自身相关关系(3)完全相关关系 (4)不存在明显因果关系而存在相互联系 10.在计算相关系数之前,首先应对两个变量进行( )。
(1)定性分析 (2)定量分析 (3)回归分析 (4)因素分析 11.用来说明因变量估计值代表性高低的分析指标是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 课后练习答案7.1(1)已知:96.1%,951,25,40,52/05.0==-===z x n ασ。
样本均值的抽样标准差79.0405===n x σσ (2)边际误差55.140596.12/=⨯==n z E σα7.2 (1)已知:96.1%,951,120,49,152/05.0==-===z x n ασ。
样本均值的抽样标准差14.24915===n x σσ(2)边际误差20.4491596.12/=⨯==n z E σα(3)由于总体标准差已知,所以总体均值μ的95%的置信区间为20.4120491596.11202/±=⨯±=±n z x σα即()2.124,8.1157.3 已知:96.1%,951,104560,100,854142/05.0==-===z x n ασ。
由于总体标准差已知,所以总体均值μ的95%的置信区间为144.167411045601008541496.11045602/±=⨯±=±n z x σα即)144.121301,856.87818(7.4(1)已知:645.1%,901,12,81,1002/1.0==-===z s x n α。
由于100=n 为大样本,所以总体均值μ的90%的置信区间为:974.18110012645.1812/±=⨯±=±n s z x α即)974.82,026.79((2)已知:96.1%,951,12,81,1002/05.0==-===z s x n α。
由于100=n 为大样本,所以总体均值μ的95%的置信区间为:352.2811001296.1812/±=⨯±=±n s z x α即)352.83,648.78((3)已知:58.2%,991,12,81,1002/05.0==-===z s x n α。
由于100=n 为大样本,所以总体均值μ的99%的置信区间为:096.3811001258.2812/±=⨯±=±n s z x α即)096.84,940.77(7.5(1)已知:96.1%,951,5.3,25,602/05.0==-===z x n ασ。
由于总体标准差已知,所以总体均值μ的95%的置信区间为:89.025605.396.1252/±=⨯±=±n z x σα即)89.25,11.24((2)已知:33.2%,981,89.23,6.119,752/02.0==-===z s x n α。
由于75=n 为大样本,所以总体均值μ的98%的置信区间为:43.66.1197589.2333.26.1192/±=⨯±=±n s z x α即)03.126,17.113((3)已知:645.1%,901,974.0,419.3,322/1.0==-===z s x n α。
由于32=n 为大样本,所以总体均值μ的90%的置信区间为:283.0419.332974.0645.1419.32/±=⨯±=±n s z x α即)702.3,136.3(7.6(1)已知:总体服从正态分布,96.1%,951,500,8900,152/05.0==-===z x n ασ。
由于总体服从正态分布,所以总体均值μ的95%的置信区间为:03.25389001550096.189002/±=⨯±=±n z x σα即)03.9153,97.8646((2)已知:总体不服从正态分布,96.1%,951,500,8900,352/05.0==-===z x n ασ。
虽然总体不服从正态分布,但由于35=n 为大样本,所以总体均值μ的95%的置信区间为:65.16589003550096.189002/±=⨯±=±n z x σα即)65.9065,35.8734((3)已知:总体不服从正态分布,σ未知,645.1%,901,500,8900,352/1.0==-===z s x n α。
虽然总体不服从正态分布,但由于35=n 为大样本,所以总体均值μ的95%的置信区间为:03.139890035500645.189002/±=⨯±=±n s z x α即)03.9039,97.8760((4)已知:总体不服从正态分布,σ未知,58.2%,991,500,8900,352/01.0==-===z s x n α。
虽然总体不服从正态分布,但由于35=n 为大样本,所以总体均值μ的95%的置信区间为:05.21889003550058.289002/±=⨯±=±n s z x α即)05.9118,95.8681(7.7已知:36=n ,当α为0.1,0.05,0.01时,相应的58.2,96.1,645.12/01.02/05.02/1.0===z z z 。
根据样本数据计算得:61.1,32.3==s x 。
由于36=n 为大样本,所以平均上网时间的90%的置信区间为:44.032.33661.1645.132.32/±=⨯±=±n s z x α即)76.3,88.2(平均上网时间的95%的置信区间为:53.032.33661.196.132.32/±=⨯±=±n s z x α即)85.3,79.2(平均上网时间的99%的置信区间为:69.032.33661.158.232.32/±=⨯±=±n s z x α即)01.4,63.2(7.8已知:总体服从正态分布,但σ未知,8=n 为小样本,365.2)18(,05.02/05.0=-=t α。
根据样本数据计算得:46.3,10==s x 。
总体均值μ的95%的置信区间为:89.210846.3365.2102/±=⨯±=±n s t x α即)89.12,11.7(7.9已知:总体服从正态分布,但σ未知,16=n 为小样本,131.2)116(,05.02/05.0=-=t α。
根据样本数据计算得:113.4,375.9==s x 。
从家里到单位平均距离的95%的置信区间为:191.2375.914113.4131.2375.92/±=⨯±=±n s t x α即)57.11,18.7(7.10已知: 96.1%,951,93.1,5.149,362/05.0==-===z s x n α。
由于35=n 为大样本,所以总体均值μ的95%的置信区间为:63.05.1493693.196.15.1492/±=⨯±=±n s z x α即)13.150,87.148((2)使用了中心极限定理。
7.11(1)已知:总体服从正态分布,但σ未知,50=n 为大样本,96.1,05.02/05.0==z α。
根据样本数据计算得:63.11)(,32.101121=--===∑∑==n f x M s nf M x k i i i k i i i 。
该种食品平均重量的95%的置信区间为: 45.032.1015063.196.132.1012/±=⨯±=±n s z x α即)77.101,87.100((2)根据样本数据可知,样本合格率为9.05045==p ,该种食品合格率的95%的置信区间为: 08.09.050)9.01(9.096.19.0)1(2/±=-⨯±=-±n p p z p α 即)98.0,82.0(7.12已知:总体服从正态分布,但σ未知,25=n 为小样本,797.2)125(,01.02/01.0=-=t α。
根据样本数据计算得:871.0,128.16==s x 。
总体均值μ的95%的置信区间为:487.0128.1625871.0797.2128.162/±=⨯±=±n s t x α即)62.16,64.15(7.13已知:总体服从正态分布,但σ未知,18=n 为小样本,740.1)118(,1.02/1.0=-=t α。
根据样本数据计算得:80.7,56.13==s x 。
平均每周加班时间的95%的置信区间为:20.356.131880.7740.156.132/±=⨯±=±n s t x α即)76.16,36.10(7.14(1)已知:58.2,01.0,51.0,442/01.0====z p n α。
总体比例π的99%的置信区间为:19.051.044)51.01(51.058.251.0)1(2/±=-⨯±=-±n p p z p α 即)70.0,32.0((2)已知:96.1,05.0,82.0,3002/05.0====z p n α。
总体比例π的95%的置信区间为:04.082.0300)82.01(82.096.182.0)1(2/±=-⨯±=-±n p p z p α 即)86.0,78.0((3)已知:645.1,1.0,48.0,11502/1.0====z p n α。
总体比例π的90%的置信区间为:02.048.01150)48.01(48.0645.148.0)1(2/±=-⨯±=-±n p p z p α 即)50.0,46.0(7.15已知:96.1,645.1,05.0;1.0,23.0,2002/05.02/1.0=====z z p n α。
总体比例π的90%的置信区间为:05.023.0200)23.01(23.0645.123.0)1(2/±=-⨯±=-±n p p z p α 即)28.0,18.0(总体比例π的95%的置信区间为:06.023.0200)23.01(23.096.123.0)1(2/±=-⨯±=-±n p p z p α即)29.0,17.0(7.16已知:58.2,01.0,200,10002/01.0====z E ασ。
应抽取的样本容量为:167200100058.2)(2222222/=⨯==E z n σα 7.17(1)已知:05.2,04.0,40.0,02.02/04.0====z E απ。