高等数学重积分总结
重积分的积分性质和计算规则
重积分的积分性质和计算规则重积分是高等数学中的一种重要概念,指对于一个二元函数而言,将其在一个二维区域上进行积分的过程。
与单积分类似,重积分也有其特定的积分性质和计算规则。
本文将详细介绍重积分的这些性质和规则,以帮助读者更好地理解和应用重积分的相关知识。
一、积分性质1. 线性性质:重积分具有线性性,即对于常数c与两个可积函数f(x,y)和g(x,y),有如下式子成立:∬ (c*f(x,y) + g(x,y)) dxdy = c * ∬ f(x,y) dxdy + ∬g(x,y)dxdy2. 可积性与非负性:如果函数f(x,y)在一个有限二维区域上是可积的,那么它在该区域上的积分一定存在;而如果函数g(x,y)在该区域上非负,则其积分也是非负的。
3. 积分次序可交换:如果二元函数f(x,y)在一个矩形区域上是可积的,则对于该区域内的任意两个积分限定,这两个积分的次序可以任意交换而不影响结果,即:∬ f(x,y) dxdy = ∬ ( ∬f(x,y)dy ) dx = ∬(∬f(x,y) dx)dy二、计算规则1. Fubini定理:Fubini定理是重积分中的一个重要定理,可以将对二元函数在一个区域上的重积分转化为两个一元函数相应区域上的积分,即:∬f(x,y)dxdy = ∫a∫b f(x,y)dxdy = ∫b∫a f(x,y)dydx = ∫a∫b f(x,y)dydx其中f(x,y)为被积函数,a和b分别为区域在x和y轴上的积分限。
2. 直角坐标系下的计算规则:在直角坐标系下,重积分可以用二重积分的形式表示,即:∬f(x,y)dxdy = ∫c∫d f(x,y)dxdy其中 c 和 d 分别为区域在x和y轴上的积分限,这个积分区域可以是矩形、梯形、三角形等形状。
在进行计算时,通常需先用对x或y的积分公式进行计算,再对另一个变量进行积分。
3. 极坐标系下的计算规则:在极坐标系下,重积分可以用二重积分的极坐标形式表示,即:∬f(x,y)dxdy = ∫α∫β f(r*cosθ,r*sinθ)rdrdθ其中α和β为对应极角的积分限,r是到极点的距离,θ是到x轴的角度。
高数大一知识点总结重积分
高数大一知识点总结重积分高数大一知识点总结:重积分高等数学中的重积分是一种扩展了二重积分的概念,它在多变量函数的积分中扮演重要的角色。
本文将对高数大一课程中的重积分进行总结和讲解。
一、重积分的概念和性质重积分是定义在三维空间内的函数的积分,通常用来计算多变量函数在某个区域上的累积效应。
与二重积分类似,重积分可以通过分割区域,将其近似为无穷小的小区域,然后对每个小区域进行积分,再将这些积分进行累加而得到。
重积分的计算通常与坐标系的选择有关,常见的坐标系有直角坐标系、极坐标系和柱坐标系等。
根据实际问题的特点和对称性的分析,选择合适的坐标系可以简化计算过程。
在计算重积分时,需要注意积分顺序的选择。
根据题目给定的区域和函数的特点,可以选择先对哪个自变量进行积分,这样有助于简化计算,并得到准确的结果。
重积分具有一些重要的性质,例如线性性、划分性和保号性等。
这些性质在具体计算过程中可以灵活运用,简化计算和分析。
二、重积分的计算方法1. 直角坐标系下的重积分计算方法直角坐标系下的重积分计算通常通过多次积分来实现。
根据题目给定的区域和函数的特点,可以选择先对哪个自变量进行积分,再对另一个自变量进行积分。
通过逐步积分,最终可以得到准确的结果。
2. 极坐标系下的重积分计算方法极坐标系下的重积分计算常常适用于具有旋转对称性的问题。
在极坐标系下,将函数和区域表示成极坐标形式,通过选择合适的积分顺序和极角范围,可以简化计算过程,得到准确的结果。
3. 柱坐标系下的重积分计算方法柱坐标系下的重积分计算通常应用于具有柱对称性的问题。
在柱坐标系下,将函数和区域表示成柱坐标形式,通过选择合适的积分顺序和柱角范围,可以简化计算过程,得到准确的结果。
三、重积分的应用领域重积分在科学和工程领域有广泛的应用。
例如,在物理学中,用重积分可以计算物体的质量、质心和转动惯量等;在电磁学中,可以用重积分计算电荷、电场和电势等;在流体力学中,可以用重积分计算流体的质量、流速和流量等。
高等数学定积分及重积分的方法与技巧
高等数学定积分及重积分的方法与技巧第一部分 定积分的计算一、定积分的计算例1 用定积分定义求极限. )0(21lim 1>++++∞→a nn a a a a n . 解 原式=∫∑=⋅=∞→1011lim a ani n x n n i dx =aa x a +=++11111. 例2 求极限 ∫+∞→121lim xx n n dx .解法1 由10≤≤x ,知nn x x x ≤+≤210,于是∫+≤1210x x n ∫≤1n x dx dx .而∫10nx ()∞→→+=+=+n n n x dx n 0111101,由夹逼准则得∫+∞→1021lim xx n n dx =0. 解法2 利用广义积分中值定理()()x g x f ba ∫()()∫=b ax g f dx x dx (其中()x g 在区间[]b a ,上不变号), ().1011112102≤≤+=+∫∫n n nn dx x dx xx x x由于11102≤+≤nx,即211nx+有界,()∞→→+=∫n n dx x n01110,故∫+∞→1021lim x x n n dx =0. 注 (1)当被积函数为()22,x a x R +或()22,a x x R −型可作相应变换.如对积分()∫++3122112xxdx,可设t x tan =;对积分()02202>−∫a dx x ax x a,由于()2222a x a x ax −−=−,可设t a a x sin =−.对积分dx e x ∫−−2ln 021,可设.sin t e x =−(2)()0,cos sin cos sin 2≠++=∫d c dt td t c tb t a I π的积分一般方法如下:将被积函数的分子拆项,[分子]=A[分母]+B[分母]′,可求出22dc bdac A ++=,22dc adbc B +−=. 则积分 ()220cos sin ln 2cos sin cos sin πππtd t c B A dt td t c t d t c B A I ++=+′++=∫.ln2dc B A +=π例3 求定积分()dx x x x ∫−1211arcsin分析 以上积分的被积函数中都含有根式,这是求原函数的障碍.可作适当变换,去掉根式. 解法1 ()dxx x x ∫−1211arcsin 2tx x t ==12121211212arcsin arcsin arcsin 21arcsin 2tt d t dt tt ==−∫∫.1632π=解法2 ()dx x x x∫−1211arcsin .163cos sin cos sin 2sin 2242242πππππ==⋅=∫u du u u uu u u x 小结 (定积分的换元法)定积分与不定积分的换元原则是类似的,但在作定积分换元()t x ϕ=时还应注意:(1)()t x ϕ=应为区间[]βα,上的单值且有连续导数的函数; (2)换限要伴随换元同时进行;(3)求出新的被尽函数的原函数后,无需再回代成原来变量,只要把相应的积分限代入计算即可.例4 计算下列定积分(1)∫+=2031cos sin sin πx x xdx I , dx xx xI ∫+=2032cos sin cos π;(2).1cos 226dx e xx ∫−−+ππ解 (1)∫+=2031cos sin sin πxx xdx I)(sin cos cos 2023du u u uu x −+−=∫ππ=.sin cos cos 223∫=+πI dx xx x故dx xx xx I I ∫++==203321cos sin cos sin 21π=()41cos cos sin sin 212022−=+−∫ππdx x x x x . (2)=I .1cos 226dx e x x ∫−−+ππ()dxe xdu e uu x x u ∫∫−−+=−+−=2262261cos 1cos ππππ+++=∫∫−−2222661cos 1cos 21ππππdx e x dx e x e I x x x.3252214365cos cos 21206226πππππ=×××===∫∫−xdxxdx这里用到了偶函数在对称取间上的积分公式以及公式:dx xdx n n∫∫=2020cos sin ππ()()()()()()=⋅×−×−−=×−×−−=偶数奇数n n n n n n n n n n ,22421331,1322431π小结 (1)常利用线性变换把原积分化为可抵消或可合并的易于积分的形式。
重积分知识点总结(一)
重积分知识点总结(一)前言重积分是高等数学中的重要知识点,是对多重积分进行研究的内容。
它在物理学、工程学和计算机科学等领域都有广泛的应用。
本文将针对重积分的知识点进行总结,以帮助读者更好地理解和掌握这部分知识。
正文一、重积分的定义与性质1.重积分的定义:对于二重积分来说,可以将其理解为将被积函数在某个有界闭区域上的“总体积”。
而对于三重积分来说,则是将被积函数在某个有界闭区域上的“总体积”。
2.交换积分次序:在某些情况下,交换积分次序可以简化重积分计算的复杂程度。
3.重积分的性质:包括线性性质、保号性质、次可加性质等。
这些性质在进行重积分计算时非常重要。
二、二重积分的计算方法1.二重积分的计算方法主要有面积法、直角坐标法和极坐标法。
在具体的计算过程中,可以根据题目要求和被积函数的形式选择合适的计算方法。
2.面积法:将被积函数看做是一片平面上每一点的贡献,通过对整个区域的累加求和来计算二重积分。
3.直角坐标法:根据被积函数在直角坐标系内的表达式,利用基本积分计算公式进行计算。
4.极坐标法:将被积函数用极坐标系表示,通过变量代换进行计算。
对于具有旋转对称性的问题,极坐标法可以简化计算过程。
三、三重积分的计算方法1.三重积分的计算方法主要有体积法、直角坐标法和柱坐标法。
在具体的计算过程中,同样需要根据题目要求和被积函数的形式选择合适的计算方法。
2.体积法:将被积函数看做是空间内每一点的贡献,通过对整个区域的累加求和来计算三重积分。
3.直角坐标法:根据被积函数在直角坐标系内的表达式,利用基本积分计算公式进行计算。
4.柱坐标法:将被积函数用柱坐标系表示,通过变量代换进行计算。
对于具有旋转对称性的问题,柱坐标法可以简化计算过程。
结尾重积分是数学中重要而复杂的知识点,在实际应用中具有广泛的价值。
通过本文的总结,希望读者们能够对重积分的定义、性质和计算方法有更深入的理解,从而更好地应对相关问题的解决和应用。
前言重积分是高等数学中的重要知识点,是对多重积分进行研究的内容。
高等数学-重积分的 计算 及应用
D
例如计算: I x2d
D:
D
I y2d
D
I 1
(x2 y2 )d
a4
2D
4
14
x2 y2 a2
例6
d
D (a2 x2 y2 )3/ 2
其中 D : 0 x a ; 0 y a
y yx
a
解:如图D是关于直线 y x 对称。
D2
D1
r a
cos
原式 2
D1
o 4
D1 D2 D
x
连续, 所以
6
D (x y) d D2 (x y) d D1 (x y) d
4
dy
6
12 y
y2 (x y)d x
2
dy
4
4 y
y2 (x y)d x
2
2
54311 15
9
例2. 计算 x2 y2 4 d , 其中 D : x2 y2 9
F(0) 0
利用洛必达法则与导数定义,得
lim
t0
F
(t ) t4
lim
t 0
4 f (t) 4 t3
t
2
lim
t 0
f (t) t
f
(0)
f (0)
33
f (x, y, z) d v
x
D
z2 (x, y) f (x, y, z)dz dxdy
z1( x, y)
记作 dxdy z2 (x, y) f (x, y, z)dz
D
z1( x, y)
20
y D
dxd y
微元线密度≈
f (x, y, z) dxdy
方法2. 截面法 (“先二后一”)
高等数学重积分总结
高等数学重积分总结重积分是高等数学中的一个重要章节,包括了二重积分和三重积分。
本文将对重积分的相关概念、性质、计算方法等进行总结。
一、重积分的定义和性质重积分可以看作是对多元函数在一个区域内的积分,其中二重积分和三重积分分别对应了二元函数和三元函数。
对于一个区域D,其可以用极限值对角线的方法划分成n个微小的小区域Di,其中i的取值范围为1到n。
设函数f(x,y)在小区域Di上的面积为S,且S趋近于0,则重积分可以表示为:$$\iint_D f(x,y)dxdy=\lim_{\substack{n,m\to \infty}} \sum_{i=1}^n\sum_{j=1}^m f(x_{ij},y_{ij})\Delta S$$其中$\Delta S$为小区域Di的面积,$(x_{ij},y_{ij})$为小区域Di的任意一点。
与一元函数的积分类似,重积分也具有线性性、可加性、区间可减性和保号性等数学特征。
同时,由于重积分的定义,其也满足如下性质:1.积分与被积函数与积分区域的连续性,即对于在区域D上连续的函数f(x,y),有:2.积分与区域的可加性,即对于一个区域D可以分割成两个没有公共点的子区间,则:同时还有极坐标和柱面坐标下的重积分公式:对于极坐标,有:$$\iint_D f(x,y)dxdy=\iint_D f(rcos\theta,rsin\theta)rdrd\theta$$$$\iiint_W f(x,y,z)dxdydz=\int_a^b\int_{\varphi_1}^{\varphi_2}\int_{\rho_1}^{\rho_2} f(\rho cos\varphi,\rho sin\varphi, z)\rho d\rho d\varphi dz$$其中W为三维区域,$(\rho,\varphi,z)$为柱面坐标系。
三、重积分的计算方法对于重积分的具体计算,常用的有以下几种方法:1.累次积分法累次积分法就是将多重积分化为多个一元积分,以二重积分为例,若:$$\iint_D f(x,y)dxdy$$其中D为一个平面区域,那么可以先将y作为常数,对x进行积分,再将x作为常数,对y积分,即可得到:其中a、b、c、d为D中x、y坐标的极值。
重积分
重积分的理解引言:在高等数学中,重积分是多元函数积分学的内容,在一元函数积分学中我们知道定积分是某种确定形式的和的极限。
这种和的概念推广到定义在区域、曲线及曲面上多元函数的情形,便得到重积分、曲线积分及曲面积分的概念。
高等数学讨论的重积分主要包括二重积分和三重积分两部分,引起二重积分概念的过程是测量曲顶柱体体积的过程的反映,三重积分概念是作为二重积分概念的推广而引出的,但事实上三重积分也是某些具体现实过程的反映。
在本章中将介绍重积分的概念、计算法以及它们的一些应用。
重积分在各种知识领域中的应用非常广阔,我们将在理论力学,材料力学,水力学及其它一些工程学科中碰到它们。
摘要:重积分是大学高等数学学习过程中很重要的一部分,在一元函数积分学中,定积分的定义是将定义在区间[],a b 上的一元函数()f x 采用划分,近似,求和,取极限等四个步骤,得到某种确定形式的和的极限,这就是定积分()()ba f x d dx ⎰. 若将一元函数分别推广成平面区域和空间区域,这就得到了二重积分和三重积分的概念。
本篇论文主要讲述了重积分的性质,计算,应用以及所涉及的习题,这些事我对重积分学习的一个总结。
关键词:重积分,二重积分,三重积分,性质,应用二重积分的定义:设(),f x y 为有界闭区间D 上的有界函数,将D 任意划分为n 个小闭区域12,,...,n σσσ∆∆∆并以i σ∆表示第i 块闭区域的面积,在第i 块上任意取点(),i i ξη。
令λ为所有i σ∆的直径的最大值,若()01lim ,ni i i i f f λξησ→=∆∑.存在,则成(),f x y 在闭区间D 上可积,并把上述极限称为(),f x y 在D 上的二重积分,记为(),Df x y d σ⎰⎰.即(),Df xy d σ⎰⎰()01l i m ,ni ii i f λξησ→==∆∑.其中()1,ni i i i f ξησ=∆∑. 称为积分和,(),f x y . 称为被积函数,d σ称为面积元,(),f x y d σ称为被积表达式D 称为积分区域。
高等数学重积分(思维导图)
dA =
1
+
fx2
(x,
y)
+
fy2
(x,
y)dσ为曲面S的面积元素,以它为被积表达式
在闭区域D上的积分,得A = ∬D
1
+
fx2
(x,
y)
+
fy2
(x,
y)dσ
曲面的面积
1
1
若薄片面密度为常量,则A= A ∬D xdσ,y= A ∬D ydσ
x= My = ∬D xμ(x, y)dσ ,y= Mx = ∬D yμ(x, y)dσ ,其中
6.(二重积分的中值定理)设函数f(x,y)在闭区域D上连续,σ是D的面积,则在D上 至少存在一点(ξ,η),使得∬D f (x, y) dσ = f (η, ξ)σ
柱面坐标计算三重积分
三重积分的计算
0 ≤ ρ < +∞,0 ≤ θ ≤ 2π,−∞ < z < +∞,ρ=常数,即以z轴为轴的圆柱面;θ= 常数,即过z轴的半圆面;z=常数,即与xOy面平行的平面。dv=ρdρdθdz为柱面坐标
f
(x,
y)dx
b
∫a
dx
∫ φ2 (x)
φ1 (x)
f (x,
y)dy=
d
∫c
dy∫ ψ2(y)
ψ1 (y)
f (x,
y)dx
极坐标计算二重积分
ρdρdρ
为极坐标中的面积元素,φ1
(θ
ห้องสมุดไป่ตู้
)
≤
φ2
重积分知识点
重积分知识点重积分是数学分析中的一个重要概念,是对多元函数在三维空间中的积分,也称为三重积分。
它是高等数学、微积分、物理学等领域中必须掌握的基本知识点。
下面将从定义、性质、计算方法和应用四个方面详细介绍重积分知识点。
一、定义重积分是对三元函数在三维空间中某一区域内的积分,表示为:$$\iiint_{\Omega}f(x,y,z)dV$$其中,$\Omega$表示被积区域,$dV$表示体积元素。
二、性质1.线性性质:若$f(x,y,z)$和$g(x,y,z)$在$\Omega$上可积,则有:$$\iiint_{\Omega}(af+bg)dV=a\iiint_{\Omega}f(x,y,z)dV+b\iiint_{ \Omega}g(x,y,z)dV$$其中$a,b$为常数。
2.可加性质:若将$\Omega$划分成若干个互不相交的子区域$\Omega_1,\Omega_2,...,\Omega_n$,则有:$$\iiint_{\Omega}f(x,y,z)dV=\sum^n_{i=1}\iiint_{\Omega_i}f(x,y,z )dV$$3.保号性质:若$f(x,y,z)\geq0$在$\Omega$上成立,则有:$$\iiint_{\Omega}f(x,y,z)dV\geq0$$4.单调性质:若$f(x,y,z)\leq g(x,y,z)$在$\Omega$上成立,则有:$$\iiint_{\Omega}f(x,y,z)dV\leq\iiint_{\Omega}g(x,y,z)dV$$三、计算方法1.直接计算法:将被积函数$f(x,y,z)$转化为三元积分的形式,然后按照定积分的方法进行计算。
2.累次积分法:将三重积分转化为三个定积分的累次积分,然后按照定积分的方法进行计算。
3.极坐标法:适用于旋转对称的区域,可以通过极坐标系下的面积元素$dS$和体积元素$dV$来简化计算。
4.柱面坐标法:适用于柱面对称的区域,可以通过柱面坐标系下的面积元素$dS$和体积元素$dV$来简化计算。
高考数学知识点精讲重积分与曲线积分的计算
高考数学知识点精讲重积分与曲线积分的计算高考数学知识点精讲:重积分与曲线积分的计算在高考数学中,重积分与曲线积分是较为复杂但又十分重要的知识点。
理解和掌握它们的计算方法,对于解决许多数学问题以及在后续的高等数学学习中都具有关键意义。
一、重积分重积分包括二重积分和三重积分。
1、二重积分二重积分的几何意义是计算以给定的二元函数为曲顶的曲顶柱体的体积。
其计算的基本思想是将区域分割成小的矩形,然后对每个小矩形上的函数值进行近似求和,当分割越来越细时,这个和就趋近于二重积分的值。
在直角坐标系下,计算二重积分通常有两种积分顺序:先对 x 积分再对 y 积分,或者先对 y 积分再对 x 积分。
选择合适的积分顺序往往能简化计算。
例如,对于函数\(f(x,y)\)在区域\(D\)上的二重积分,若\(D\)可以表示为\(a\leq x\leq b\),\(\varphi_1(x)\leqy\leq \varphi_2(x)\),则先对\(y\)积分,化为累次积分:\\iint_D f(x,y)dxdy =\int_a^b\!\!\left\int_{\varphi_1(x)}^{\varphi_2(x)} f(x,y)dy\rightdx\若\(D\)可以表示为\(c\leq y\leq d\),\(\psi_1(y)\leq x\leq \psi_2(y)\),则先对\(x\)积分,化为累次积分:\\iint_D f(x,y)dxdy =\int_c^d\!\!\left\int_{\psi_1(y)}^{\psi_2(y)} f(x,y)dx\rightdy\在极坐标系下,若\(f(x,y) = f(\rho\cos\theta, \rho\sin\theta)\),区域\(D\)由极坐标方程表示,则二重积分可以化为:\\iint_D f(x,y)dxdy =\int_{\alpha}^{\beta}\!\!\int_{r_1(\theta)}^{r_2(\theta)} f(\rho\cos\theta, \rho\sin\theta)\rho d\rho d\theta\2、三重积分三重积分的几何意义是计算空间立体的质量。
大一高数重积分知识点
大一高数重积分知识点重积分是高等数学中的重要概念,主要是对二重积分的推广和拓展。
在本篇文章中,将介绍一些大一高数课程中涉及的重积分的基本知识点和相关概念。
一、重积分的概念重积分是对多变量函数在某个区域上的积分,主要用于计算空间内的体积、重心以及质心等物理量。
在二维情况下,重积分被称为二重积分,表示对平面上的区域进行积分;在三维情况下,重积分被称为三重积分,表示对空间内的区域进行积分。
二、二重积分的计算对于二重积分的计算,常用的方法有直角坐标法和极坐标法。
1. 直角坐标法通过将二重积分化为两个一重积分的形式来计算。
例如,对于函数f(x, y),其在矩形区域D上的二重积分可以表示为:∬D f(x, y) dxdy通过确定积分的上下限,将二重积分转化为两个单变量函数的积分。
2. 极坐标法对于具有极坐标对称性的函数,可以采用极坐标来进行计算。
通过将二重积分转化为极坐标下的一重积分,可以简化计算过程。
三、三重积分的计算对于三重积分的计算,也可以采用直角坐标法或柱坐标法进行计算。
1. 直角坐标法对于函数f(x, y, z),其在空间内的三重积分可以表示为:∭E f(x, y, z) dxdydz通过逐次进行积分,将三重积分转化为三个一重积分的形式。
2. 柱坐标法对于具有柱坐标对称性的函数,可以采用柱坐标来进行计算。
通过将三重积分转化为柱坐标下的一重积分,可以简化计算过程。
四、变量替换法在计算重积分时,有时可以通过变量替换法来简化积分的计算过程。
通过适当选择变量替换,可以将原先复杂的积分问题转化为更简单的形式。
变量替换法在求解一些特殊的积分问题时非常有用。
五、应用领域重积分在物理学、工程学等领域中具有广泛的应用。
在物理学中,通过重积分可以计算物体的质量、质心、转动惯量等物理量。
在工程学中,通过重积分可以计算流体的流量、电荷分布等问题。
总结:大一高数课程中的重积分是深入学习积分学的重要内容,涵盖了二重积分和三重积分的计算方法,以及变量替换法的应用。
高等数学《重积分的概念与性质》
f ( x, y)d f ( x, y)d .
D
D
性质5 (二重积分估值定理)
设M 、m 分别是 f ( x, y)在闭区域 D 上的最
大值和最小值, 为 D 的面积,则
m f ( x, y)d M
D
性质6 (二重积分中值定理)
设函数 f ( x, y)在闭区域 D 上连续, 为 D 的面积,则在 D 上至少存在一点( ,) 使得
D
D
三、比较下列积分的大小:
1、 ( x 2 y 2 )d与 ( x y)3 d ,其中D 是由圆
D
D
( x 2)2 ( y 1)2 2所围成 .
2、 ln( x y)d与[ln( x y)]2 d ,其中D 是矩形
D
闭区域:3 x 5,0 y 1 .
四、估计积分I ( x 2 4 y 2 9)d 的值,其中D 是圆
( k ) max P1P2 P1,P2 k
令
max 1 k n
( k )
n
V
lim
0 k1
f (k , k ) k
f (k , k )
D (k ,k ) k
2. 平面薄片的质量
有一个平面薄片,在 xoy 平面上占有区域 D ,其面密
度为
计算该薄片的质量 M .
设D 的面积为 ,则
设 f ( x, y, z)是空间有界闭区域 上的有界 函数,将闭区域 任意分成n 个小闭区域V1,
V2,, Vn ,其中Vi 表示第i 个小闭区域,也
表示它的体积, 在每个Vi 上任取一点(i ,i , i ) 作乘积 f (i ,i , i ) Vi ,(i 1,2,, n),并作和,
如果当各小闭区域的直径中的最大值 趋近于
同济大学(高等数学)_第十章_重积分
第十章重积分一元函数积分学中,我们曾经用和式的极限来定义一元函数()f x在区间,a b⎡⎤⎣⎦上的定积分,并已经建立了定积分理论,本章将把这一方法推广到多元函数的情形,便得到重积分的概念. 本章主要讲述多重积分的概念、性质、计算方法以及应用.第1节二重积分的概念与性质二重积分的概念下面我们通过计算曲顶柱体的体积和平面薄片的质量,引出二重积分的定义.1.1.1. 曲顶柱体的体积曲顶柱体是指这样的立体,它的底是x Oy平面上的一个有界闭区域D,其侧面是以D的边界为准线的母线平行于z轴的柱面,其顶部是在区域D上的连续函数(),=,且z f x y (),0f x y≥所表示的曲面(图10—1).图10—1现在讨论如何求曲顶柱体的体积.分析这个问题,我们看到它与求曲边梯形的面积问题是类似的.可以用与定积分类似的方法(即分割、近似代替、求和、取极限的方法)来解决(图10—2).图10—2(1)分割闭区域D 为n 个小闭区域,n σσσ∆∆∆12,,,同时也用i Δσ表示第i 个小闭区域的面积,用()i d Δσ表示区域i Δσ的直径(一个闭区域的直径是指闭区域上任意两点间距离的最大值),相应地此曲顶柱体被分为n 个小曲顶柱体.(2)在每个小闭区域上任取一点()()()1122,, ,,, ,n n ξηξηξη对第i 个小曲顶柱体的体积,用高为,()i i f ξη而底为i Δσ的平顶柱体的体积来近似代替.(3)这n 个平顶柱体的体积之和1(,)niiii f ξησ=∆∑就是曲顶柱体体积的近似值.(4)用λ表示n 个小闭区域i Δσ的直径的最大值,即()max 1i i nλd Δσ≤≤=.当0λ→ (可理解为iΔσ收缩为一点)时,上述和式的极限,就是曲顶柱体的体积:1lim (,).ni i i i V f λξησ→==∆∑1.1.2 平面薄片的质量设薄片在x Oy 平面占有平面闭区域D ,它在点,()x y 处的面密度是,()ρρx y =.设()0x y ρ>,且在D 上连续,求薄片的质量(见图10-3).图10-3先分割闭区域D 为n 个小闭区域n σσσ∆∆∆12,,,在每个小闭区域上任取一点()()()1122,, ,,, ,n n ξηξηξη近似地,以点,()i i ξη处的面密度,()i i ρξη代替小闭区域i Δσ上各点处的面密度,则得到第i 块小薄片的质量的近似值为,()i i i ρξηΔσ,于是整个薄片质量的近似值是1(,)niiii ρξησ=∆∑用()max 1i i nλd Δσ≤≤=表示n 个小闭区域i Δσ的直径的最大值,当D 无限细分,即当0λ→时,上述和式的极限就是薄片的质量M ,即1lim (,)ni i i λi M ρξηΔσ→==∑.以上两个具体问题的实际意义虽然不同,但所求量都归结为同一形式的和的极限.抽象出来就得到下述二重积分的定义.定义1 设D 是x Oy 平面上的有界闭区域,二元函数,()z f x y =在D 上有界.将D 分为n 个小区域n σσσ∆∆∆12,,,同时用i Δσ表示该小区域的面积,记i Δσ的直径为()i d Δσ,并令()max 1i i nλd Δσ≤≤=.在i Δσ上任取一点,, 1,2,,()()i i ξηi n =,作乘积()Δ,i i i f ξησ并作和式Δ1(,)ni i i i n S f ξησ==∑.若0λ→时,n S 的极限存在(它不依赖于D 的分法及点(,)i i εη的取法),则称这个极限值为函数,()z f x y =在D 上的二重积分,记作(,)d Df x y σ⎰⎰,即1(,)d lim (,)Δniiii Df x y f λσξησ→==∑⎰⎰, (10-1-1)其中D 叫做积分区域,,()f x y 叫做被积函数,d σ叫做面积元素,,d ()f x y σ叫做被积表达式,x 与y 叫做积分变量,Δ1(,)ni i i i f ξησ=∑叫做积分和.在直角坐标系中,我们常用平行于x 轴和y 轴的直线(y =常数和x =常数)把区域D 分割成小矩形,它的边长是x ∆和Δy ,从而ΔΔΔσx y =⋅,因此在直角坐标系中的面积元素可写成d dx dy σ=⋅,二重积分也可记作1(,)d d lim (,)niiii Df x y x y f λξησ→==∆∑⎰⎰.有了二重积分的定义,前面的体积和质量都可以用二重积分来表示.曲顶柱体的体积V 是函数,()z f x y =在区域D 上的二重积分(,)d DV f x y σ=⎰⎰;薄片的质量M 是面密度,()ρρx y =在区域D 上的二重积分(,)d DM x y ρσ=⎰⎰.因为总可以把被积函数,()z f x y =看作空间的一曲面,所以当,()f x y 为正时,二重积分的几何意义就是曲顶柱体的体积;当,()f x y 为负时,柱体就在x Oy 平面下方,二重积分就是曲顶柱体体积的负值. 如果,()f x y 在某部分区域上是正的,而在其余的部分区域上是负的,那么,()f x y 在D 上的二重积分就等于这些部分区域上柱体体积的代数和.如果,()f x y 在区域D 上的二重积分存在(即和式的极限(10-1-1)存在),则称,()f x y 在D 上可积.什么样的函数是可积的呢与一元函数定积分的情形一样,我们只叙述有关结论,而不作证明.如果,()f x y 是闭区域D 上连续,或分块连续的函数,则,()f x y 在D 上可积.我们总假定,()z f x y =在闭区域D 上连续,所以,()f x y 在D 上的二重积分都是存在的,以后就不再一一加以说明.1.1.3 二重积分的性质设二元函数,,,()()f x y g x y 在闭区域D 上连续,于是这些函数的二重积分存在.利用二重积分的定义,可以证明它的若干基本性质.下面列举这些性质.性质1 常数因子可提到积分号外面.设k 是常数,则(,)d (,)d DDkf x y k f x y σσ=⎰⎰⎰⎰.性质2 函数的代数和的积分等于各函数的积分的代数和,即[]()()d ()d ()d DDDf x yg x y f x y g x y σσσ±=±⎰⎰⎰⎰⎰⎰,,,,.性质3 设闭区域D 被有限条曲线分为有限个部分闭区域,则D 上的二重积分等于各部分闭区域上的二重积分的和.例如D 分为区域1D 和2D (见图10-4),则12(,)d (,)d (,)d DD D f x y f x y f x y σσσ=+⎰⎰⎰⎰⎰⎰. (10-1-2)图10-4性质3表示二重积分对积分区域具有可加性.性质4 设在闭区域D 上,1()f x y =,σ为D 的面积,则1d d DDσσσ==⎰⎰⎰⎰.从几何意义上来看这是很明显的.因为高为1的平顶柱体的体积在数值上就等于柱体的底面积.性质5 设在闭区域D 上有,,()()f x y g x y ≤,则(,)d (,)d DDf x yg x y σσ≤⎰⎰⎰⎰.由于 (,)(,)(,)f x y f x y f x y -≤≤ 又有(,)d (,)d DDf x y f x y σσ≤⎰⎰⎰⎰.这就是说,函数二重积分的绝对值必小于或等于该函数绝对值的二重积分.性质6 设、M m 分别为()f x y ,在闭区域D 上的最大值和最小值,σ为D 的面积,则有(,)d Dm f x y M σσσ≤≤⎰⎰.上述不等式是二重积分估值的不等式.因为()m f x y M ≤≤,,所以由性质5有d (,)d d DDDm f x y M σσσ≤≤⎰⎰⎰⎰⎰⎰,即 d (,)d d DDDm m f x y M M σσσσσ=≤≤=⎰⎰⎰⎰⎰⎰.性质7 设函数,()f x y 在闭区域D 上连续,σ是D 的面积,则在D 上至少存在一点,()ξη使得(,)d ()Df x y f σξησ=⋅⎰⎰,.这一性质称为二重积分的中值定理. 证 显然0σ≠.因,()f x y 在有界闭区域D 上连续,根据有界闭区域上连续函数取到最大值、最小值定理,在D 上必存在一点()11x y ,使()11f x y ,等于最大值M ,又存在一点22()x y ,使22()f x y ,等于最小值m ,则对于D 上所有点,()x y ,有()()()2211.m f x y f x y f x y M =≤≤=,,,由性质1和性质5,可得d (,)d d DDDm f x y M σσσ≤≤⎰⎰⎰⎰⎰⎰.再由性质4得(,)d Dm f x y M σσσ≤≤⎰⎰,或1(,)d Dm f x y M σσ≤≤⎰⎰.根据闭区域上连续函数的介值定理知,D 上必存在一点,()ξη,使得1(,)d ()Df x y f σξησ=⎰⎰,,即(,)d ()Df x y f σξησ=⎰⎰,, ,()ξηD ∈.证毕.二重积分中值定理的几何意义可叙述如下:当:,()S z f x y =为空间一连续曲面时,对以S 为顶的曲顶柱体,必定存在一个以D 为底,以D 内某点,()ξη的函数值,()f ξη为高的平顶柱体,它的体积,()f ξησ⋅就等于这个曲顶柱体的体积.习题10—11.根据二重积分性质,比较ln()d Dx y σ+⎰⎰与[]2ln()d Dx y σ+⎰⎰的大小,其中(1)D 表示以10,()、1,0()、1,1()为顶点的三角形; (2)D 表示矩形区域(){}|35,2,0x y x y ≤≤≤≤. 2.根据二重积分的几何意义,确定下列积分的值: (1)(22d Da x y σ+⎰⎰,()222{|}D x y x y a =+≤,;(2)222d Da x y σ--,()222{|}D x y x y a =+≤,.3.设(),f x y 为连续函数,求201lim (,)d πr Df x y rσ→⎰⎰,()()()22200{,}D x y x x y y r =-+-≤|.4.根据二重积分性质,估计下列积分的值:(1)4+d DI xy σ=,()22{|00}D x y x y =≤≤≤≤,,;(2)22sin sin d DI x y σ=⎰⎰,()ππ{,|00}D x y x y =≤≤≤≤,; (3)()2249d DI x y σ=++⎰⎰, ()224{,|}D x y x y =+≤.5.设[][]0,10,1D =⨯,证明函数()()()()1,,,,,为内有理点即均为有理数,,为内非有理点0x y D x y f x y x y D ⎧⎪=⎨⎪⎩在D 上不可积.第2节 二重积分的计算只有少数二重积分(被积函数和积分区域特别简单)可用定义计算外,一般情况下要用定义计算二重积分相当困难.下面我们从二重积分的几何意义出发,来介绍计算二重积分的方法,该方法将二重积分的计算问题化为两次定积分的计算问题.直角坐标系下的计算在几何上,当被积函数(),0f x y ≥时,二重积分(,)d Df x y σ⎰⎰的值等于以D 为底,以曲面,()z f x y =为顶的曲顶柱体的体积.下面我们用“切片法”来求曲顶柱体的体积V .设积分区域D 由两条平行直线,x a x b ==及两条连续曲线()()y x y x ϕϕ==12,(见图10—5)所围成,其中()()a b x x ϕϕ<<12,,则D 可表示为()()(){}12,,|D x y a x b φx y φx =≤≤≤≤.图10—5用平行于yOz 坐标面的平面()00x x a x b =≤≤去截曲顶柱体,得一截面,它是一个以区间()()1020x x φφ⎡⎤⎣⎦,为底,以,0()z f x y =为曲边的曲边梯形(见图10—6),所以这截面的面积为()d 2010()0()0(,)φx φx f x y y A x =⎰.图10—6由此,我们可以看到这个截面面积是0x 的函数.一般地,过区间[,]a b 上任一点且平行于yOz 坐标面的平面,与曲顶柱体相交所得截面的面积为()d 21()()(,)φx φx f x y A y x =⎰,其中y 是积分变量,x 在积分时保持不变.因此在区间[,]a b 上,()A x 是x 的函数,应用计算平行截面面积为已知的立体体积的方法,得曲顶柱体的体积为d d d 21()()()(,)b b φx a a φx A x x f x y V y x ⎡⎤=⎢⎥⎣=⎦⎰⎰⎰,即得21()()(,)d (,)d d b x a x Df x y f x y y x ϕϕσ⎡⎤=⎢⎥⎣⎦⎰⎰⎰⎰,或记作21()()(,)d d (,)d bx ax Df x y x f x y y ϕϕσ=⎰⎰⎰⎰.上式右端是一个先对y ,后对x 积分的二次积分或累次积分.这里应当注意的是:做第一次积分时,因为是在求x 处的截面积()A x ,所以x 是,a b 之间任何一个固定的值,y 是积分变量;做第二次积分时,是沿着x 轴累加这些薄片的体积()A x dx ⋅,所以x 是积分变量.在上面的讨论中,开始假定了,()0f x y ≥,而事实上,没有这个条件,上面的公式仍然正确.这里把此结论叙述如下:若,()z f x y =在闭区域D 上连续,()():D a x b x y x ϕϕ≤≤≤≤12,,则21()()(,)d d d (,)d bx ax Df x y x y x f x y y ϕϕ=⎰⎰⎰⎰. (10-2-1)类似地,若,()z f x y =在闭区域D 上连续,积分区域D 由两条平行直线y a y b ==,及两条连续曲线()()x y x y ϕϕ==12,(见图10—7)所围成,其中()()c d x x ϕϕ<<12,,则D 可表示为()()(){},|D x y c y d y x y ϕϕ=≤≤≤≤12,.则有21()()(,)d d d (,)d dx cx Df x y x y y f x y x ϕϕ=⎰⎰⎰⎰. (10-2-2)图10—7以后我们称图10-5所示的积分区域为X 型区域,X 型区域D 的特点是:穿过D 内部且平行于y 轴的直线与D 的边界的交点不多于两个.称图10—7所示的积分区域为Y 型区域,Y 型区域D 的特点是:穿过D 内部且平行于x 轴的直线与D 的边界的交点不多于两个.从上述计算公式可以看出将二重积分化为两次定积分,关键是确定积分限,而确定积分限又依赖于区域D 的几何形状.因此,首先必须正确地画出D 的图形,将D 表示为X 型区域或Y 型区域.如果D 不能直接表示成X 型区域或Y 型区域,则应将D 划分成若干个无公共内点的小区域,并使每个小区域能表示成X 型区域或Y 型区域,再利用二重积分对区域具有可加性相加,区域D 上的二重积分就是这些小区域上的二重积分之和(图10—8).图10-8例1 计算二重积分d Dxy σ⎰⎰,其中D 为直线y x =与抛物线2y x =所包围的闭区域.解 画出区域D 的图形,求出y x =与2y x =两条曲线的交点,它们是()0,0及()1,1.区域D (图10—9)可表示为:20.x x y x ≤≤≤≤1,图10—9因此由公式(10-2-1)得()221120d d d 2x x xxDx xy x x ydy y x σ==⎰⎰⎰⎰⎰d 135011()224x x x -==⎰.本题也可以化为先对x ,后对y 的积分,这时区域D 可表为:1,0y y y x ≤≤≤≤.由公式(10-2-2)得10d d d y yDxy y y x x σ=⎰⎰⎰⎰.积分后与上面结果相同.例2 计算二重积分221d Dy x y σ+-⎰⎰,其中D 是由直线,1y x x ==-和1y =所围成的闭区域.解 画出积分区域D ,易知D :11,1x x y -≤≤≤≤ (图10-10),若利用公式(10-2-1),得图10-1011222211d (1d )d xDy x yy x y y x σ-+-=+-⎰⎰⎰⎰ ()d 1312221113xx y x -⎡=⎤-+-⎢⎥⎣⎦⎰ ()d d 113310121(1)33x x x -=--=--⎰⎰x 12=.若利用公式(10-2-2),就有()12222111d 1d d yDy x y y x y x y σ--+-=+-⎰⎰⎰⎰,也可得同样的结果.例3 计算二重积分22d Dx y σ⎰⎰,其中D 是直线2,y y x ==和双曲线1x y =所围之闭区域. 解 求得三线的三个交点分别是1,(1,1)2,2⎛⎫ ⎪⎝⎭及2,2().如果先对y 积分,那么当121x ≤≤时,y 的下限是双曲线1y x=,而当12x ≤≤时,y 的下限是直线y x =,因此需要用直线x =1把区域D 分为1D 和2D 两部分(图10—11).1211, 21:D x y x≤≤≤≤; 22, 2:1D x x y ≤≤≤≤.图10—11于是12222221222112222212d d d d d d d x x D D D x x x x x x y x y y y y y y σσσ=+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ d d 2222121112x xx x x x y y ⎡⎤⎡⎤=-+-⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰d d 2212311222x x x x x x ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭⎰⎰1243231124626x x x x ⎡⎤⎡⎤=-+-⎢⎥⎢⎥⎣⎦⎣⎦812719264==. 如果先对x 积分,那么:12, 1 D y x y y≤≤≤≤,于是223221222111d d d d 3yy y Dyx x x y x y y y y σ⎡⎤==⎢⎥⎣⎦⎰⎰⎰⎰⎰d 22254111136312y y y y y ⎡⎤⎡⎤=-=+⎢⎥⎢⎥⎣⎦⎣⎦⎰2764=. 由此可见,对于这种区域D ,如果先对y 积分,就需要把区域D 分成几个区域来计算.这比先对x 积分繁琐多了.所以,把重积分化为累次积分时,需要根据区域D 和被积函数的特点,选择适当的次序进行积分.例4 设,()f x y 连续,求证d d d d (,)(,)bx b baaayx f x y y y f x y x =⎰⎰⎰⎰.证 上式左端可表为d d d (,)(,)bxaaDx f x y y f x y σ=⎰⎰⎰⎰,其中,:D a x b a y x ≤≤≤≤ (图10—12)区域D 也可表为:,a y b y x b ≤≤≤≤,图10—12于是改变积分次序,可得(,)d d (,)d b bayDf x y y f x y xσ=⎰⎰⎰⎰由此可得所要证明的等式.例5 计算二重积分d sin D x σx ⎰⎰,其中D 是直线y x =与抛物线2y x =所围成的区域.解 把区域D 表示为x 型区域,即(){}2D =x ,y |0x 1,x y x ≤≤≤≤.于是d d d d 221100sin sin sin xx x x Dx x x σx y y x x x x ⎛⎫== ⎪⎝⎭⎰⎰⎰⎰⎰ ()sin d 11x x x =-⎰()1cos cos sin x x x x =-+-1sin10.1585=-≈注:如果化为y 型区域即先对x 积分,则有d d d 10sin sin y y Dx x σy x x x =⎰⎰⎰⎰. 由于sin xx的原函数不能由初等函数表示,往下计算就困难了,这也说明计算二重积分时,除了要注意积分区域D 的特点(区分是x 型区域,还是y 型区域)外,还应注意被积函数的特点,并适当选择积分次序.二重积分的换元法与定积分一样,二重积分也可用换元法求其值,但比定积分复杂得多.我们知道,对定积分()d baf x x ⎰作变量替换()x φt =时,要把()f x 变成()()f φt ,d x 变成d ()φt t ',积分限,a b 也要变成对应t 的值.同样,对二重积分(),d Df x y σ⎰⎰作变量替换()(),,,,x x u v y y u v ⎧=⎪⎨=⎪⎩时,既要把(),f x y 变成()()(),,,f x u v y u v ,还要把x Oy 面上的积分区域D 变成uOv 面上的区域uv D ,并把D 中的面积元素d σ变成uv D 中的面积元素d *σ.其中最常用的是极坐标系的情形.2.2.1 极坐标系的情形下面我们讨论利用极坐标变换,得出在极坐标系下二重积分的计算方法.把极点放在直角坐标系的原点,极轴与x 轴重合,那么点P 的极坐标(),P r θ与该点的直角坐标(),P x y 有如下互换公式:πcos ,sin ;0,02x r θy r θr θ==≤<+∞≤≤; 22,arctan;,yr x y θx y x=+=-∞<<+∞. 我们知道,有些曲线方程在极坐标系下比较简单,因此,有些二重积分(),d Df x y σ⎰⎰用极坐标代换后,计算起来比较方便,这里假设(),z f x y =在区域D 上连续.在直角坐标系中,我们是以平行于x 轴和y 轴的两族直线分割区域D 为一系列小矩形,从而得到面积元素d d d σx y =.在极坐标系中,与此类似,我们用“常数r =”的一族同心圆,以及“常数θ=”的一族过极点的射线,将区域D 分成n 个小区域(),1,2,,ij σi j n ∆=,如图10—13所示.图10—13小区域面积()2212ij i i j i j σr r θr θ⎡⎤∆=+∆∆-∆⎣⎦212i i j i j r r θr θ=∆∆+∆∆.记 ()()()22,,1,2,,ij i jρr θi j n ∆=∆+∆=,则有()ij i i j ij σr r θορ∆=∆∆+∆,故有d d d σr r θ=.则()()d d d ,cos ,sin DDf x y σf r θr θr r θ=⎰⎰⎰⎰.这就是直角坐标二重积分变换到极坐标二重积分的公式.在作极坐标变换时,只要将被积函数中的,x y 分别换成cos ,sin r θr θ,并把直角坐标的面积元素d d d σx y =换成极坐标的面积元素d d r r θ即可.但必须指出的是:区域D 必须用极坐标系表示.在极坐标系下的二重积分,同样也可以化为二次积分计算.下面分三种情况讨论: (1) 极点O 在区域D 外部,如图10—14所示.图10—14设区域D 在两条射线,θαθβ==之间,两射线和区域边界的交点分别为,A B ,将区域D 的边界分为两部分,其方程分别为()()12,r r θr r θ==且均为[],αβ上的连续函数.此时()()(){}12,|,D r θr θr r θαθβ=≤≤≤≤.于是()()()()d d d d 21cos ,sin cos ,sin βr θαr θDf r θr θr r θθf r θr θr r =⎰⎰⎰⎰(2) 极点O 在区域D 内部,如图10—15所示.若区域D 的边界曲线方程为()r r θ=,这时积分区域D 为()(){}π,|0,02D r θr r θθ=≤≤≤≤,且()r θ在π0,2⎡⎤⎣⎦上连续.图10—15于是()()()πd d d d 20cos ,sin cos ,sin r θDf r θr θr r θθf r θr θr r =⎰⎰⎰⎰.(3) 极点O 在区域D 的边界上,此时,积分区域D 如图10—16所示.图10—16()(){},|,0D r θαθβr r θ=≤≤≤≤,且()r θ在π0,2⎡⎤⎣⎦上连续,则有()()()d d d d 0cos ,sin cos ,sin βr θαDf r θr θr r θθf r θr θr r =⎰⎰⎰⎰.在计算二重积分时,是否采用极坐标变换,应根据积分区域D 与被积函数的形式来决定.一般来说,当积分区域为圆域或部分圆域,及被积函数可表示为()22f x y +或y f x ⎛⎫⎪⎝⎭等形式时,常采用极坐标变换,简化二重积分的计算.例6 计算二重积分22221d d 1Dx y I x y x y --=++⎰⎰,其中()(){}222,|01D x y x y a a =+≤<<.解 在极坐标系中积分区域D 为(){}π,|0,02D r θr a θ=≤≤≤≤,则有2222π2220011d d d d 11Dx y r I x y r r x y r θ---==+++⎰⎰2222211πd πd 11aa t r t r r r t r t--=+-=⎰⎰令()()22220πarcsin 1πarcsin 11a t ta a =+-=+--.例7 计算二重积分2d Dxy σ⎰⎰,其中D 是单位圆在第I 象限的部分.解 采用极坐标系. D 可表示为π, 1002θr ≤≤≤≤(图10-17),图10-17于是有π12222d d cos sin d Dxy r r r r σθθθ=⋅⋅⎰⎰⎰⎰ πd d 12421cos sin 15θθθr r ==⎰⎰.例8 计算二重积分Dx σ⎰⎰2d ,其中D 是二圆221x y +=和224x y +=之间的环形闭区域.解 区域D :2,120θπr ≤≤≤≤,如图10—18所示.图10—18于是2π22π22230111cos215d cos d d d π24Dx r r r r r θσθθθ+=⋅==⎰⎰⎰⎰⎰⎰2d . 2.2.2. 直角坐标系的情形 我们先来考虑面积元素的变化情况.设函数组,,,()()x x u v y y u v ==为单值函数,在uv D 上具有一阶连续偏导数,且其雅可比行列式(,)0(,)J x y u v ∂≠∂=,则由反函数存在定理,一定存在着D 上的单值连续反函数,,,()()u u x y v v x y ==.这时uv D 与D 之间建立了一一对应关系,uOv 面上平行于坐标轴的直线在映射之下成为x Oy 面上的曲线,,,00()()u x y u v x y v ==.我们用uOv 面上平行于坐标轴的直线,1,,,1,,, (2;2)i j u u v v i n j m ====将区域uv D 分割成若干个小矩形,则映射将uOv 面上的直线网变成x Oy 面上的曲线网(图10—19).图10—19在uv D 中任取一个典型的小区域Δuv D (面积记为*Δσ)及其在D 中对应的小区域ΔD (面积记为Δσ),如图10—20所示.图10—20设ΔD 的四条边界线的交点为1211322,,,,,000000()()()P x y P x x y y P x x y y +∆+∆+∆+∆和ΔΔ433,00()P x x y y ++.当ΔΔ,u v 很小时,()ΔΔ123,,,i i x y i =也很小,ΔD 的面积可用12P P 与14P P 构成的平行四边形面积近似.即Δ1214P P P P σ⨯≈.而()()ΔΔ1112x y P P =+i j()()()ΔΔ[][]00000000,,,(,x u u v x u v y u u v y u v =+-++-i j()()ΔΔ[][]0000,,u u x u v u y u v u ≈'+'i j .同理()()ΔΔ[][]001400,,v v P P x u v v y u v v ≈'+'i j .从而得ΔΔΔΔΔ1214y xu u u u P P P σP y x v v vv∂∂∂∂⨯=∂∂∂=∂的绝对值 *(,)(,)(,)(,)x y x y Δu Δv u v u v Δσ∂∂==∂∂.因此,二重积分作变量替换,,,()()x x u v y y u v ==后,面积元素d σ与d *σ的关系为*(,),(,)x y d d u v σσ∂=∂ 或(,)(,)x y dxdy dudv u v ∂=∂. 由此得如下结论:定理1 若,()f x y 在x Oy 平面上的闭区域D 上连续,变换:,,,()()T x x u v y y u v ==,将uOv 平面上的闭区域uv D 变成x Oy 平面上的D ,且满足:(1),,,()()x u v y u v 在uv D 上具有一阶连续偏导数, (2)在uv D 上雅可比式(0(,),)x y J u v ∂∂=≠;(3)变换:uv T D D →是一对一的,则有[](,)d d (,),(,)d d .uvDD f x y x y f x u v y u v J u v =⎰⎰⎰⎰例9 计算二重积分ed d y x y xDx y -+⎰⎰,其中D 是由x 轴,y 轴和直线2x y +=所围成的闭区域. 解 令,u y x v y x =-=+,则,22x y v u v u-==+.在此变换下,x Oy 面上闭区域D 变为uOv 面上的对应区域D '(图10—21).图10—21雅可比式为11(,)122(,)21122x y u v J -∂==-∂=,则得1ed de d d 2y x u y xvDD x y u v -+'=-⎰⎰⎰⎰-1d e d (e e)d 22001122uv v v v u v v -==-⎰⎰⎰e e 1=--.例10 设D 为x Oy 平面内由以下四条抛物线所围成的区域:222,,x ay x by y px ===,2y qx =,其中<<, <<00a b p q ,求D 的面积.解 由D 的构造特点,引入两族抛物线22,y ux x vy ==,则由u 从p 变到q ,v 从a 变到b 时,这两族抛物线交织成区域D '(图10—22).图10—22雅可比行列式为(,)1(,)(,)(,)J x y u v u v x y ∂=∂∂∂=222211322y yx xx x y y==---,则所求面积()()11d d d d 33D D S x y u v b a q p '===--⎰⎰⎰⎰.习题10—21.画出积分区域,把(,)d Df x y σ⎰⎰化为二次积分:(1)()1,1,{,0}D x y x y y x y =+≤-≤≥|; (2)()22{,}D x y y x x y =≥-≥|,. 2.改变二次积分的积分次序:(1)20d d 22(,)yy y f x y x ⎰⎰;(2)e 1d d ln 0(,)xx f x y y ⎰⎰; (3)()220,xxdx f x y dy ⎰⎰;(4)1-1d (,)d x f x y y ⎰.3.设(,)f x y 连续,且(,)(,)d Df x y xy f x y σ=+⎰⎰,其中D 是由直线0,1y x ==及曲线2y x =所围成的区域,求(,).f x y4.计算下列二重积分:(1)()22Dx y d σ+⎰⎰,(){},|1,1D x y x y =≤≤;(2)d sin D x σx ⎰⎰,其中D 是直线y x =与抛物线y x π=所围成的区域;(3)Dσ,(){}22,|D x y x y x =+≤;(4)22-y e d d ⎰⎰Dx x y ,D 是顶点分别为()0,0O ,(),11A ,()0,1B 的三角形闭区域. 5.求由坐标平面及2,3,4x y x y z ==++=所围的角柱体的体积.6.计算由四个平面0,0,1,1x y x y ====所围的柱体被平面0z =及236x y z ++=截得的立体的体积.7.在极坐标系下计算二重积分:(1)d Dx y ⎰⎰, ()ππ22224{,|}D x y x y =≤+≤;(2)()d d Dx y x y +⎰⎰, (){},|22D x y xy x y =+≤+;(3)d d Dxy x y ⎰⎰,其中D 为圆域222x y a +≤;(4)22ln(1)d d Dx y x y ++⎰⎰,其中D 是由圆周221x y +=及坐标轴所围成的在第一象限内的闭区域.8. 将下列积分化为极坐标形式:(1) 2d d 2200)x x y y +⎰a;(2) d 0xx y ⎰⎰a .9.求球体2222x y z R ++≤被圆柱面222x y Rx +=所割下部分的体积. 10.作适当坐标变换,计算下列二重积分:(1)22d d D x x y y ⎰⎰,由12,,xy x y x ===所围成的平面闭区域;(2)d d y x yDex y +⎰⎰,(){,|0,0}1,D x y x y x y =+≤≥≥;(3)d Dx y , 其中D 是椭圆22221y x a b+=所围成的平面闭区域;(4)()()sin d d Dx y x y x y +-⎰⎰, (){,|0,0}D x y x y x y ππ=≤+≤≤-≤.11.设闭区域D 由直线100,,x y x y +===所围成,求证:1cos d d sin1.2Dx y x y x y +⎛⎫=⎪-⎝⎭⎰⎰ 12.求由下列曲线所围成的闭区域的面积:(1) 曲线334,8,5,15xy xy xy xy ====所围成的第一象限的平面闭区域; (2) 曲线,,,x y a x y b y x y x αβ+=+===所围的闭区域0,0()a b αβ<<<<.第3节 三重积分三重积分的概念三重积分是二重积分的推广,它在物理和力学中同样有着重要的应用.在引入二重积分概念时,我们曾考虑过平面薄片的质量,类似地,现在我们考虑求解空间物体的质量问题.设一物体占有空间区域Ω,在Ω中每一点,,()x y z 处的体密度为,,()ρx y z ,其中,,()ρx y z 是Ω上的正值连续函数.试求该物体的质量.先将空间区域Ω任意分割成n 个小区域12, ,, n Δv Δv Δv(同时也用i Δv 表示第i 个小区域的体积).在每个小区域i Δv 上任取一点,,()i i i ξηζ,由于,,()ρx y z 是连续函数,当区域i Δv 充分小时,密度可以近似看成不变的,且等于在点,,()i i i ξηζ处的密度,因此每一小块i Δv 的质量近似等于,,()i i i i ρξηζΔv ,物体的质量就近似等于1(,,)niiii ρξηζΔv=∑i.令小区域的个数n 无限增加,而且每个小区域i Δv 无限地收缩为一点,即小区域的最大直径()max 10i i nλd Δv ≤≤=→时,取极限即得该物体的质量1lim (,,)ni i i λi ρξηζΔv M →==∑i .由二重积分的定义可类似给出三重积分的定义:定义1 设Ω是空间的有界闭区域,,,()f x y z 是Ω上的有界函数,任意将Ω分成n 个小区域12,,,n Δv Δv Δv ,同时用i Δv 表示该小区域的体积,记i Δv 的直径为()i d Δv ,并令()max 1i i nλd Δv ≤≤=,在i Δv 上任取一点,,()i i i ξηζ,1,2,,()i n =,作乘积,,()i i i i f ξηζΔv ,把这些乘积加起来得和式1(,,)n i i i i f ξηζΔv =∑i ,若极限01lim (,,)ni i i λi f ξηζΔv →=∑i 存在(它不依赖于区域Ω的分法及点(,,)i i i ξηζ的取法),则称这个极限值为函数,,()f x y z 在空间区域Ω上的三重积分,记作(),,f x y z dv Ω⎰⎰⎰,即 ()01,,lim (,,)ni i i i i f x y z dv f v λξηζ→=Ω=∆∑⎰⎰⎰,其中,,()f x y z 叫做被积函数,Ω叫做积分区域,d v 叫做体积元素.在直角坐标系中,若对区域Ω用平行于三个坐标面的平面来分割,于是把区域分成一些小长方体.和二重积分完全类似,此时三重积分可用符号(),,d d d f x y z x y z Ω⎰⎰⎰来表示,即在直角坐标系中体积元素d v 可记为d d d x y z .有了三重积分的定义,物体的质量就可用密度函数,,()ρx y z 在区域Ω上的三重积分表示,即(),,M x y z dv Ωρ=⎰⎰⎰,如果在区域Ω上,,1()f x y z =,并且Ω的体积记作V ,那么由三重积分定义可知1d v dv V ΩΩ==⎰⎰⎰⎰⎰⎰.这就是说,三重积分dv Ω⎰⎰⎰在数值上等于区域Ω的体积.三重积分的存在性和基本性质,与二重积分相类似,此处不再重述. 三重积分的计算为简单起见,在直角坐标系下,我们采用微元分析法来给出计算三重积分的公式. 三重积分(,,)d f x y z v Ω⎰⎰⎰表示占空间区域Ω的物体的质量.设Ω是柱形区域,其上、下分别由连续曲面()()z z x y z z x y ==12,,,所围成,它们在x Oy 平面上的投影是有界闭区域D ;Ω的侧面由柱面所围成,其母线平行于z 轴,准线是D 的边界线.这时,区域Ω可表示为(){}12,,, ,,,|()()()Ωx y z z x y z z x y x y D =≤≤∈先在区域D 内点,()x y 处取一面积微元d d d σx y =,对应地有Ω中的一个小条,再用与x Oy 面平行的平面去截此小条,得到小薄片(图10—23).图10—23于是以d σ为底,以dz 为高的小薄片的质量为,,d d d ()f x y z x y z .把这些小薄片沿z 轴方向积分,得小条的质量为d d d 21(,)(,)(,,)z x y z x y f x y z z x y ⎡⎤⎢⎥⎣⎦⎰. 然后,再在区域D 上积分,就得到物体的质量21(,)(,)(,,)d d d z x y z x y Df x y z z x y ⎡⎤⎢⎥⎣⎦⎰⎰⎰. 也就是说,得到了三重积分的计算公式(),,f x y z dv Ω⎰⎰⎰=21(,)(,)(,,)d d d z x y z x y Df x y z z x y ⎡⎤⎢⎥⎣⎦⎰⎰⎰21(,)(,)d d (,,)d z x y z x y Dx y f x y z z =⎰⎰⎰.(10-3-1)例1 计算三重积分d d d x x y z Ω⎰⎰⎰,其中Ω是三个坐标面与平面1x y z ++=所围成的区域(图10—24).图10—24解 积分区域Ω在x Oy 平面的投影区域D 是由坐标轴与直线1x y +=围成的区域:10x ≤≤,10y x ≤≤-,所以111100d d d d d d d d d x yxx yDx x y z x y x z x y x z -----Ω==⎰⎰⎰⎰⎰⎰⎰⎰⎰d d 110(1)xx x x y y --=-⎰⎰d 210(1)1224x x x -==⎰. 例2 计算三重积分d z v Ω⎰⎰⎰,其中2222:,,, 000Ωx y z x y z R ≥≥≥++≤(见图10—25).图10—25解 区域Ω在x Oy 平面上的投影区域222:,,00D x y x y R ≥≥+≤.对于D 中任意一点,()x y ,相应地竖坐标从0z =变到222R x z y --=.因此,由公式(10-3-1),得()22222201d d d d d d 2R x y DDz v x y z R x y x y --Ω==--⎰⎰⎰⎰⎰⎰⎰π001d d 2222()R θR ρρρ-=⎰⎰ 221π240224RρρR ⎛⎫⋅⋅- ⎪ ⎪⎭=⎝π416R =. 三重积分化为累次积分时,除上面所说的方法外,还可以用先求二重积分再求定积分的方法计算.若积分区域Ω如图10-26所示,它在z 轴的投影区间为[,]A B ,对于区间内的任意一点z ,过z 作平行于x Oy 面的平面,该平面与区域Ω相交为一平面区域,记作D (z ).这时三重积分可以化为先对区域()D z 求二重积分,再对z 在[]A B ,上求定积分,得()(,,)d d (,,)d d BAD z f x y z v z f x y z x y Ω=⎰⎰⎰⎰⎰⎰. (10-3-2)图10—26我们可利用公式(10-3-2)重新计算例2中的积分.区域Ω在z 轴上的投影区间为[,]0R ,对于该区间中任意一点z ,相应地有一平面区域():,00D z x y ≥≥与2222R x y z +≤-与之对应.由公式(10-3-2),得()zd d d d RD z v z z x y Ω=⎰⎰⎰⎰⎰⎰.求内层积分时,z 可以看作常数:并且()2222:R D z x y z +≤-是14个圆,其面积为()π224R z =-,所以 ()01πzd π416Rv =z R z z R Ω⋅-=⎰⎰⎰⎰224d . 例3 计算三重积分2d z v Ω⎰⎰⎰,其中:1222222y x z a b Ωc +≤+. 解 我们利用公式(10-3-2)将三重积分化为累次积分.区域Ω在z 轴上的投影区间为[,]c c -,对于区间内任意一点z ,相应地有一平面区域()D z :122222222(1)(1)y x z z a b c c --≤+与之相应,该区域是一椭圆(图10—27),其面积为π221z c ab ⎛⎫- ⎪⎝⎭.所以22222()d d d d π1d ccc c D z z z v =z z x y abz z c --Ω⎛⎫=- ⎪⎝⎭⎰⎰⎰⎰⎰⎰⎰π3415abc =π3415abc =.图10—27三重积分的换元法对于三重积分(,,)f x y z dv Ω⎰⎰⎰作变量替换:(,,)(,,)(,,)x x r s t y y r s t z z r s t =⎧⎪=⎨⎪=⎩它给出了Orst 空间到Ox yz 空间的一个映射,若()()(),,,,,,,,x r s t y r s t z r s t 有连续的一阶偏导数,且(,,)(,,)0x y z r s t ∂≠∂,则建立了Orst 空间中区域*Ω和Ox yz 空间中相应区域Ω的一一对应,与二重积分换元法类似,我们有d d d d (,,)(,,)x y z r s t v r s t ∂∂=.于是,有换元公式[]*(,,)(,,)(,,),(,,),(,,)d d d (,,)x y z f x y z dv f x r s t y r s t z r s t r s t r s t ΩΩ∂=⋅∂⎰⎰⎰⎰⎰⎰.作为变量替换的实例,我们给出应用最为广泛的两种变换:柱面坐标变换及球面坐标变换. 3.3.1 柱面坐标变换三重积分在柱面坐标系中的计算法如下: 变换cos ,sin ,x r θy r θz z =⎧⎪=⎨⎪=⎩称为柱面坐标变换,空间点(),,M x y z 与,,()r θz 建立了一一对应关系,把,,()r θz 称为点(),,M x y z 的柱面坐标.不难看出,柱面坐标实际是极坐标的推广.这里,r θ为点M 在x Oy 面上的投影P 的极坐标.π<,2,<<00r θz ≤+∞≤≤-∞+∞(图10—28).图10—28柱面坐标系的三组坐标面为 (1)常数r =,以z 为轴的圆柱面; (2)常数θ=,过z 轴的半平面; (3)常数z =,平行于x Oy 面的平面.由于cos sin 0(,,)sin cos 0(,,)001θr θx y z θr r r θθz -∂==∂,则在柱面坐标变换下,体积元素之间的关系式为:d d d d d d x y z r r θz =.于是,柱面坐标变换下三重积分换元公式为:(,,)d d d (cos ,sin ,)d d d f x y z x y z =f r r z r r z θθθ'ΩΩ⎰⎰⎰⎰⎰⎰. (10-3-3)至于变换为柱面坐标后的三重积分计算,则可化为三次积分来进行.通常把积分区域Ω向x Oy 面投影得投影区域D ,以确定,r θ的取值范围,z 的范围确定同直角坐标系情形.例4 计算三重积分22d d d z x y x y z Ω+⎰⎰⎰,其中Ω是由锥面22z x y =+1z =所围成的区域.解 在柱面坐标系下,积分区域Ω表示为π1,1,200r z r θ≤≤≤≤≤≤ (图10—29).图10—29所以有2π11222d d d d d d rz x y x y z r z r z θΩ+=⋅⎰⎰⎰⎰⎰⎰ d ππ12212202(1)15r r r =-=⎰. 例5 计算三重积分()22d d d x y x y z Ω+⎰⎰⎰,其中Ω是由曲线22,0y z x ==绕z 轴旋转一周而成的曲面与两平面2,8z z ==所围之区域.解 曲线2=2,0y z x =绕z 旋转,所得旋转面方程为222x y z +=.设由旋转曲面与平面2z =所围成的区域为1Ω,该区域在x Oy 平面上的投影为1D ,(){}4221|D x ,y x +y =≤.由旋转曲面与8z =所围成的区域为2Ω,2Ω在x Oy 平面上的投影为2D ,()21622{|}D x ,y x +y =≤.则有21ΩΩΩ=,如图10—30所示.图10—30()21288223322d d d d d d d d d r D D xy x y z r r z r r z θθΩ+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰2d d d 8d222243300026ππθr r θr r ⎛⎫=+- ⎪⎝⎭⎰⎰⎰⎰r π336=. 3.3.2 球面坐标变换三重积分在球面坐标系中的计算法如下: 变换sin cos ,sin sin ,cos x r φθy r φθz r φ=⎧⎪=⎨⎪=⎩称为球面坐标变换,空间点(),,M x y z 与,,()r φθ建立了一一对应关系,把,,()r φθ称为点(),,M x y z 的球面坐标(图10-31),其中ππ<,,2000r φθ≤+∞≤≤≤≤.图10-31球面坐标系的三组坐标面为: (1)常数r =,以原点为中心的球面;(2)常数φ=,以原点为顶点,z 轴为轴,半顶角为φ的圆锥面; (3)常数θ=,过z 轴的半平面. 由于球面坐标变换的雅可比行列式为sin cos cos cos sin sin (,,)sin sin cos sin sin cos (,,)cos sin 0φθr φθr φθx y z φθr φθr φθr φθφr φ-∂=∂-2sin r φ=,则在球面坐标变换下,体积元素之间的关系式为:2d d d sin d d d x y z r φr θφ=.于是,球面坐标变换下三重积分的换元公式为2(,,)d d d (sin cos ,sin sin ,cos )sin d d d f x y z x y z =f r r r r r ϕθϕθϕϕϕθ'ΩΩ⋅⎰⎰⎰⎰⎰⎰. (10-3-4)例6 计算三重积分222()d d d xy z x y z Ω++⎰⎰⎰,其中Ω表示圆锥面222x y z +=与球面2222x y z R z ++=所围的较大部分立体.解 在球面坐标变换下,球面方程变形为2cos r R φ=,锥面为π4φ=(图10—32).这时积分区域Ω表示为π2, , 2cos 4000θπφr R φ≤≤≤≤≤≤,图10—32所以22222()d d d sin d d d xy z x y z =r r r ϕϕθ'ΩΩ++⋅⎰⎰⎰⎰⎰⎰ππd d d 22cos 44sin R φθφr φr =⎰⎰⎰ππd π52cos 0540228sin ()515R φφr φR ==⎰. 例7 计算三重积分22(2)d d d y x z x y z Ω+⎰⎰⎰,其中Ω是由曲面2222x y z a ++=,22224x y z a ++=22x y z +=所围成的区域.解 积分区域用球面坐标系表示显然容易,但球面坐标变换应为sin cos sin sin cos ,,x r φθz r φθy r φ===,这时2d sin d d d v r φr φθ=,积分区域Ω表示为ππ224,00,a r a φθ≤≤≤≤≤≤ (图10—33).图10—33所以π2π2222400(2)d d d d d (2cos sin )sin d a a y x z x y z =r r r r θϕϕϕϕΩ+++⎰⎰⎰⎰⎰⎰ππ41515816a ⎛⎫ ⎪⎝⎭=+.值得注意的是,三重积分的计算是选择直角坐标,还是柱面坐标或球面坐标转化成三次积分,通常要综合考虑积分域和被积函数的特点.一般说来,积分域Ω的边界面中有柱面或圆锥面时,常采用柱面坐标系;有球面或圆锥面时,常采用球面坐标系.另外,与二重积分类似,三重积分也可利用在对称区域上被积函数关于变量成奇偶函数以简化计算.习题10-31.化三重积分(,,)d d d I f x y z x y z Ω=⎰⎰⎰为三次积分,其中积分区域Ω分别是.(1) 由双曲抛物面x y z =及平面100x y z +-==,所围成的闭区域; (2) 由曲面22z x y =+及平面1z =所围成的闭区域. 2.在直角坐标系下计算三重积分:(1)()d d d 2+xy z x y z Ω⎰⎰⎰,其中[][][]-2,5-3,30,1Ω=⨯⨯;(2)23d d d xy z x y z Ω⎰⎰⎰,其中Ω是由曲面z x y =与平面1y x x ==,,和0z =所围成的闭区域;(3)()3d d d 1+++x y zx y z Ω⎰⎰⎰,其中Ω为平面1000x y z x y z ===++=,,,所围的四面体;。
重积分的定义与性质
重积分的定义与性质重积分是高等数学中的一个重要概念,是对多元函数在空间内的积分运算。
在实际应用中,经常需要对物理量、几何量等进行多个变量的积分运算,这时就需要用到重积分。
本文将对重积分的定义和性质进行详细阐述。
一、连续函数的重积分对于连续函数$f(x,y)$,其中$(x,y)$为定义域内的任意一个点,其重积分定义如下:$$\iint_D f(x,y) dxdy$$在上式中,$D$为定义域。
这个式子的含义是在二维平面上对函数$f(x,y)$从定义域$D$内的每个点$(x,y)$到坐标轴正方向的区域进行积分。
其中,$dxdy$表示微元,用来表示积分的范围。
重积分也可以用极坐标系进行表示:$$\iint_D f(x,y) dxdy=\iint_D f(r\cos\theta,r\sin\theta) rdrd\theta$$这里,$r$和$\theta$分别表示极坐标系下的径向坐标和角度坐标。
二、重积分的性质对于重积分,我们要了解一些基本的性质。
1. 线性性:若$f(x,y)$和$g(x,y)$是$D$上的可积函数,$k_1$和$k_2$为常数,则:$$\iint_D (k_1f(x,y)+k_2g(x,y)) dxdy=k_1\iint_D f(x,y)dxdy+k_2\iint_D g(x,y) dxdy$$也就是说,重积分运算具有线性性。
2. 绝对可积性:如果$\iint_D |f(x,y)| dxdy$有定义,则称$f(x,y)$是$D$上的绝对可积函数。
3. 积分中值定理:如果$f(x,y)$在$D$上连续,则存在一点$(\xi,\eta)\in D$,使得:$$\iint_D f(x,y) dxdy=f(\xi,\eta) Area(D)$$这个公式的含义是,若在平面上将定义域$D$分成许多小的矩形,则在每个小矩形上,函数$f(x,y)$的大小是近似相等的。
因此,整个定义域上的积分值与函数的平均值在某个点上相等。
重积分的积分方法和积分公式
重积分的积分方法和积分公式重积分是高等数学中的重要概念,也是应用数学和物理学中使用最广泛的数学工具之一。
重积分包括二重积分和三重积分两种形式,其积分方法和积分公式对于求解各种物理量的大小、均值、中心、惯性矩等、数学物理问题的衍生、傅里叶级数的变换等都有着非常重要的应用价值。
1.二重积分的积分方法在二维空间内,设有一函数$f(x,y)$,在有界区域$D$上有定义,那么$f(x,y)$在$D$上的二重积分可以通过将$D$分成若干个无穷小的小矩形,然后对每个小矩形求面积乘上$f(x,y)$在矩形内的均值得出,公式如下:$\iint_Df(x,y)dxdy=\lim_{\Delta x, \Delta y \to 0} \sum_{i=1}^nf(x_i, y_i) \Delta x_i \Delta y_i$这里,$\Delta x$和$\Delta y$表示$x$和$y$在区域$D$上的最小划分,$n$表示小矩形的个数,而$f(x_i,y_i)$则为小矩形中心点$(x_i,y_i)$处的函数值。
不同的小矩形划分方式会影响到二重积分的精确度,一种常用的划分方式是网格划分方法,即将区域D分成若干格子,然后在每个格子中取其中心点作为较准确的位置来求积分。
2.二重积分的积分公式(1) Fubini定理:对于在矩形域$D$上的二重积分,其积分范围可以交换。
$\iint_Df(x,y)dxdy=\int_{a}^{b}dx\int_{c}^{d}f(x,y)dy=\int_{c}^ {d}dy\int_{a}^{b}f(x,y)dx$(2) 极坐标变换:若对于$f(x,y)$在极坐标下的表示为$f(r,\theta)$,则对于圆域$D$有以下公式成立。
$\iint_Df(x,y)dxdy=\int_{0}^{2\pi}d\theta\int_{0}^{R(\theta)}f(r\c os\theta,r\sin\theta)rdr$其中,$R(\theta)$表示圆$D$在极坐标系下,相对于$\theta$的极径取值范围。
高数大一知识点三重积分
高数大一知识点三重积分高等数学是大学数学专业的一门重要课程,对于数学专业的学生来说,掌握高数知识点是非常重要的。
在大一的高等数学课程中,三重积分是一个非常重要的知识点。
下面将从基本概念、计算方法和应用等几个方面来介绍三重积分。
一、基本概念三重积分是对三维空间中的函数进行积分运算。
如果一个三维空间中的函数在某个区域上是连续的,那么可以对这个函数进行三重积分。
三重积分可以看作是对空间中的体积进行求和的过程。
在三重积分中,我们需要确定积分函数、积分区域、积分方向和积分顺序等要素。
二、计算方法三重积分的计算方法有直接计算法和间接计算法两种。
直接计算法是将积分区域划分成小的立体元,然后对每个立体元进行积分计算,最后将所有立体元的积分结果相加得到最终的积分结果。
间接计算法是利用高斯公式和格林公式来进行计算。
高斯公式是将三重积分转化为对闭合曲面上的二重积分,然后再将二重积分转化为对曲线上的一重积分。
格林公式则是将曲线积分转化为坐标轴上的一重积分。
利用这两个公式,可以将三重积分的计算转化为一重积分的计算,简化了计算的步骤。
三、应用三重积分在物理学、工程学和计算机图形学等领域有着广泛的应用。
在物理学中,三重积分可以用来计算物体的质量、重心、转动惯量等物理量。
例如,在力学中,我们可以通过对物体密度分布函数进行三重积分来计算物体的质量。
在工程学中,三重积分可以用来计算物体的体积、质量、质心等。
例如,在建筑工程中,我们可以通过对建筑结构进行三重积分来计算结构的体积和质量。
在计算机图形学中,三维模型的表面可以通过三重积分来进行渲染和着色。
例如,通过对三维物体的颜色分布进行三重积分,可以得到物体在不同方向上的颜色分布,从而实现逼真的渲染效果。
四、总结三重积分是大一高等数学中的一个重要知识点,掌握三重积分的基本概念、计算方法和应用是非常重要的。
通过对三重积分的学习和应用,可以提高数学建模和问题求解的能力,并在物理学、工程学和计算机图形学等领域中发挥重要作用。
高等数学重积分求解题技巧
高等数学重积分求解题技巧高等数学中的重积分是一种对多变量函数进行积分运算的方法,其求解需要掌握一定的技巧。
下面我将介绍一些常用的高等数学重积分求解题技巧。
一、确定积分区域在求解重积分时,首先需要确定积分区域。
常用的方法有:图形法、参数方程法、立体体积法、坐标轴法等。
根据题目给出的条件,选择合适的方法确定积分区域。
二、确定积分次序在确定积分次序时,需要考虑到函数在积分区域上的表达式。
通常可以将多变量函数的积分次序调整为适合计算的方式。
常用的方法有:先积x后积y、先积y后积x、极坐标系下积分等。
三、利用对称性在一些情况下,积分区域具有对称性,可以利用对称性简化求解过程。
例如,当积分区域关于x轴对称时,可以将积分区域进行对称延拓,然后将求解的结果乘以2。
利用对称性可以减少计算量,加快解题速度。
四、变量代换在求解一些复杂的重积分时,可以采用变量代换的方法进行简化。
变量代换可以将复杂的积分转化为简单的形式。
常见的变量代换有:平铺代换、柱坐标代换、球坐标代换等。
选择合适的变量代换可以使原始的积分更容易计算。
五、利用奇偶性在一些情况下,被积函数具有奇偶性。
可以利用奇偶性进行简化。
例如,当被积函数为奇函数时,其在对称区域上的积分结果为0,只需要计算对称区域上的一个部分即可。
六、利用分部积分在求解重积分时,可以利用分部积分的方法进行简化。
分部积分可以将积分的被积函数分解为两个因子之积,然后进行积分操作。
通过反复应用分部积分法,可以逐步简化积分表达式。
七、利用定积分的性质重积分实际上可以看作多个定积分的组合。
因此,可以运用定积分的性质进行求解。
例如,定积分可以与求导、极限运算交换次序,可以通过定积分的积分区间的变化进行转化等。
八、利用对数、指数性质在一些特殊情况下,重积分可以转化为对数、指数的形式。
可以利用对数、指数的性质进行求解。
例如,当积分的被积函数具有指数型形式时,可以利用指数函数的积分性质进行简化。
九、利用对数函数的导数当被积函数可以表示为某个对数函数的导数时,可以利用对数函数的导数来简化积分过程。
高等数学-第九章 二重积分部分
一. 二重积分的计算 二. 三重积分的计算 三. 重积分的运用
一. 二重积分的计算
1. 二重积分的性质
例. 比较下列积分值的大小关系:
I1 xy dxdy I2 xy dxdy
x2y21
11
xy1
y
I3 xy dxdy
11
1
解: I1,I2,I3被积函数相同, 且非负,
D f (x, y)d
Dr2()
Df(cos,sin) d d
r1()
o
注:若积分区域为圆域、扇形域、环形域、或由 极坐标曲线围成的区域,可考虑选择极坐标;
若 被 积 函 数 为 f( x 2 y 2 ) 或 f(y ) 型 可 考 虑 选 择 极 坐 标 x
例. 计算二重积分
R2x2y2d,
0
2 0
h 1 2
d
h
2 4
d
z
202 h12(h42)d
[1 (4h)ln 1(4h)4h]
4
o x
y
4、球坐标代换
设 M (x,y,z) R 3,其柱坐(标 ,,为 z),令OM r,
ZOM , 则(r,,) 就称为点M 的球坐标.
xrsinco s yrsin sin
zrco s
0 r
z { ( x ,y ,z ) |a z b ,( x ,y ) D z }b
f(x,y,z)dv
b
z a
adzD Zf(x,y,z)dxdy
x
Dz
y
适用范围:
积分区域介于两个平行于坐标面的平面之间;
在平行于坐标面的截面上二重积分易算 典型题目: 被积函数只为某一变量的函数;且截面面积易求
高等数学各类积分总结
关于各类积分的一些总结一、定积分实质:直线上函数的积分,积分对象是直线元 dx 。
二、二重积分实质:平面区域上的二元函数的积分,积分对象是dxdy 。
方法:累次积分,即先固定一个变量,对另一个变量积分,再对另一个变量积分。
三、三重积分实质:对空间上的三元函数积分,积分对象是dxdydz 。
方法:累次积分,可以化成三个一次积分(如球坐标代换),也可化成一个二重积分和一个一次积分(如柱坐标代换)。
四、第一型曲线积分实质:对曲线上的一元函数积分,积分对象是曲线元ds 。
方法:转化成定积分曲线r=(x(t),y(t),z(t)),则dt z y x t z t y t x f ds z y x f s dt t t ⎰⎰⎰⎰'+'+'=222))(),(),((),,(。
五、第一型曲面积分实质:对曲面上的二元函数积分,曲面元dS.方法:转化为二重积分。
曲面r=(x(u,v),y(u,v),z(u,v)), 则(,,)((,),(,),(,))s D dr dr f x y z dS f x u v y u v z u v dudv du dv=⨯⎰⎰⎰⎰特别的dr dr dx dy ⨯= 六、第二型曲线积分实质:变力在曲线上作功,或是对有向线元的积分,即对坐标的积分。
形式:⎰++LRdz Qdy Pdx ①方法:1、拆 ①=⎰⎰⎰++L L L Rdz Qdy Pdx =⎰⎰⎰++121212z z y y x x Pdz Pdy Pdx εεε(化成三个定积分)2、合 用定义化成第一形曲线积分①=dl v dz dy dx R Q P LL τ⋅=⋅⎰⎰),,(),,(3、对于环路积分,一般用斯托克斯公式化去做①=dl v dz dy dx R Q P τ⋅=⋅⎰⎰),,(),,(=⎰⎰⋅Dnds rotv ε七、第二形曲面积分实质:通量,或是对有向面积元的积分,即对坐标的曲面积分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章 二重积分【本章逻辑框架】用性质比较二重积分的大小,估计二重积分的取值范围。
⒉领会将二重积分化为二次积分时如何确定积分次序和积分限,如何改换二次积分的积分次序,并且如何根据被积函数和积分区域的特征选择坐标系。
熟练掌握直角坐标系和极坐标系下重积分的计算方法。
⒊掌握曲顶柱体体积的求法,会求由曲面围成的空间区域的体积。
二重积分的概念与性质【学习方法导引】1.二重积分定义为了更好地理解二重积分的定义,必须首先引入二重积分的两个“原型”,一个是几何的“原型”-曲顶柱体的体积如何计算,另一个是物理的“原型”—平面薄片的质量如何求。
从这两个“原型”出发,对所抽象出来的二重积分的定义就易于理解了。
在二重积分的定义中,必须要特别注意其中的两个“任意”,一是将区域D 成n 个小区域12,,,n σσσ∆∆∆的分法要任意,二是在每个小区域i σ∆上的点(,)i i i ξησ∈∆的取法也要任意。
有了这两个“任意”,如果所对应的积分和当各小区域的直径中的最大值0λ→时总有同一个极限,才能称二元函数(,)f x y 在区域D 上的二重积分存在。
2.明确二重积分的几何意义。
(1) 若在D 上(,)f x y ≥0,则(,)d Df x y σ⎰⎰表示以区域D 为底,以(,)f x y 为曲顶的曲顶柱体的体积。
特别地,当(,)f x y =1时,(,)d Df x y σ⎰⎰表示平面区域D 的面积。
(2) 若在D 上(,)f x y ≤0,则上述曲顶柱体在Oxy 面的下方,二重积分(,)d Df x y σ⎰⎰的值是负的,其绝对值为该曲顶柱体的体积(3)若(,)f x y 在D 的某些子区域上为正的,在D 的另一些子区域上为负的,则(,)d Df x y σ⎰⎰表示在这些子区域上曲顶柱体体积的代数和(即在Oxy 平面之上的曲顶柱体体积减去Oxy 平面之下的曲顶柱体的体积).3.二重积分的性质,即线性、区域可加性、有序性、估值不等式、二重积分中值定理都与一元定积分类似。
有序性常用于比较两个二重积分的大小,估值不等式常用于估计一个二重积分的取值范围,在用估值不等式对一个二重积分估值的时候,一般情形须按求函数(,)f x y 在闭区域D 上的最大值、最小值的方法求出其最大值与最小值,再应用估值不等式得到取值范围。
【主要概念梳理】1.二重积分的定义 设二元函数f(x,y)在闭区域D 上有定义且有界.分割 用任意两组曲线分割D 成n 个小区域12,,,n σσσ∆∆∆,同时用i σ∆表示它们的面积,1,2,,.i n =其中任意两小块i σ∆和()j i j σ∆≠除边界外无公共点。
i σ∆既表示第i 小块,又表示第i 小块的面积. 近似、求和 对任意点(,)i i i ξησ∈∆ ,作和式1(,).ni i i i f ξησ=∆∑取极限 若i λ为i σ∆的直径,记12max{,,,}n λλλλ=,若极限1lim (,)ni i i i f λξησ→=∆∑存在,且它不依赖于区域D 的分法,也不依赖于点(,)i i ξη的取法,称此极限为f (x,y )在D 上的二重积分. 记为称f (x,y )为被积函数,D 为积分区域,x 、y 为积分变元,d σ为面积微元(或面积元素).2.二重积分(,)d Df x y σ⎰⎰的几何意义(1) 若在D 上f (x,y )≥0,则(,)d Df x y σ⎰⎰表示以区域D 为底,以f (x,y )为曲顶的曲顶柱体的体积.(2) 若在D 上f (x,y )≤0,则上述曲顶柱体在Oxy 面的下方,二重积分(,)d Df x y σ⎰⎰ 的值是负的,其绝对值为该曲顶柱体的体积(3)若f (x,y )在D 的某些子区域上为正的,在D 的另一些子区域上为负的,则(,)d Df x y σ⎰⎰表示在这些子区域上曲顶柱体体积的代数和(即在Oxy 平面之上的曲顶柱体体积减去Oxy 平面之下的曲顶柱体的体积).3.二重积分的存在定理若f (x,y )在有界闭区域D 上连续,则f (x,y)在D 上的二重积分必存在(即f (x,y )在D 上必可积).若有界函数f (x,y )在有界闭区域D 上除去有限个点或有限个光滑曲线外都连续,则f (x,y )在D 可积.4.二重积分的性质二重积分有与定积分类似的性质.假设下面各性质中所涉及的函数f (x ,y ),g(x,y)在区域 D 上都是可积的.性质1 有限个可积函数的代数和必定可积,且函数代数和的积分等于各函数积分的代数和,即性质2 被积函数中的常数因子可以提到积分号前面,即 性质3 若D 可以分为两个区域D 1,D 2,它们除边界外无公共点,则性质4 若在积分区域D 上有f (x ,y )=1,且用S (D )表示区域D 的面积,则性质5 若在D 上处处有f (x ,y )≤g (x ,y ),则有 推论(,)d (,)d .DDf x y f x y σσ≤⎰⎰⎰⎰性质6(估值定理) 若在D 上处处有m ≤f (x ,y )≤M ,且S (D )为区域D 的面积,则性质7(二重积分中值定理) 设f (x ,y )在有界闭区域D 上连续,则在D 上存在一点(,)ξη,使【基本问题导引】根据二重积分的几何意义或性质求解下列各题:1.2d Da xdy =⎰⎰ ,其中222{(,)|}D x y x y a =+≤2.设D 是由x 轴,y 轴与直线1x y +=所围成的区域,则21(),DI x y d σ=+⎰⎰32()DI x y d σ=+⎰⎰的大小关系是 .【巩固拓展提高】1.若f (x ,y )在有界闭区域D 上连续,且在D 的任一子区域D *上有*(,)d 0D f x y σ=⎰⎰,试证明在D 内恒有f (x ,y )=02.估计22(y )d DI x xy x xdy =+--⎰⎰的值,其中{(,)|02,01}.D x y x y =≤≤≤≤3.设f (x ,y )是有界闭区域D :222x y a +≤上的连续函数,则201lim (,)a Df x y dxdy a π→⎰⎰的值为多少?【数学思想方法】二重积分是一元函数定积分的推广与发展,它们都是某种形式的和的极限,即分割求和、取极限,故可用微元法的思想来理解二重积分的概念与性质。
在直角坐标系中二重积分的计算【学习方法导引】本章的重点是二重积分的计算问题,而直角坐标系中二重积分的 计算问题关键是如何确定积分区域及确定X 型区域还是Y 型区域,这也是本章的难点。
直角坐标系中二重积分计算的基本技巧:(1)在定积分计算中,如果D 的形状不能简单地用类似12()()x y x a x b ϕϕ≤≤⎧⎨≤≤⎩或12()()y x y c y d φφ≤≤⎧⎨≤≤⎩的形式来表示,则我们可以将D 分成若干块,并由积分性质 对右端各式进行计算。
(2)交换积分次序不仅要考虑到区域D 的形状,还要考虑被积函数 的特点。
如果按照某一积分次序的积分比较困难,若交换积分次序后,由于累次积分的积分函数(一元积分)形式发生变化,可能会使新的积分次序下的积分容易计算,从而完成积分的求解。
但是无论是先对x 积分,再对y 积分,还是先对y 积分,再对x 积分最终计算的结果应该是相同的。
一般的处理方法是由积分限确定积分区域D ,并按照新的积分次序将二重积分化成二次积分。
具体步骤如下:①确定D 的边界曲线,画出D 的草图;②求出D 边界曲线的交点坐标;③将D 的边界曲线表示为x 或y 的单值函数; ④考虑是否要将D 分成几块; ⑤用x ,y 的不等式表示D .注:在积分次序选择时,应考虑以下几个方面的内容:(ⅰ)保证各层积分的原函数能够求出;(ⅱ)若D 为X 型(Y 型),先对x (y )积分;(ⅲ)若D 既为X 型又为Y 型,且满足(ⅰ)时,要使对D 的分块最少。
(3) 利用对称性等公式简化计算 设f (x ,y )在区域D 上连续,则 ①当区域D 关于x 轴对称若(,)(,)f x y f x y -=-,则(,)d Df x y σ⎰⎰=0;若(,)(,)f x y f x y -=,则(,)d Df x y σ⎰⎰=21(,)d D f x y σ⎰⎰,其中D 1为D 在x 轴上方部分。
②当区域D 关于y 轴对称若(,)(,)f x y f x y -=-,则(,)d Df x y σ⎰⎰=0;若(,)(,)f x y f x y -=,则(,)d Df x y σ⎰⎰=22(,)d D f x y σ⎰⎰,其中D 2为D 在y 轴右侧部分。
③当区域D 关于x 轴和y 轴都对称若(,)(,)f x y f x y -=-或(,)(,)f x y f x y -=-,则(,)d Df x y σ⎰⎰=0;若(,)(,)(,)f x y f x y f x y -=-=,则(,)d Df x y σ⎰⎰=41(,)d D f x y σ⎰⎰,其中D 1为D 在第一象限部分。
④轮换对称式设D 关于直线y x =对称,则(,)d Df x y σ⎰⎰=(,)d Df y x σ⎰⎰.【基本问题导引】一.判断题1.dxdy=Dxy ⎰⎰4122221dxdy,:4;:4,0,0D xy D x y D x y x y +≤+≤≥≥⎰⎰ ( )2. 若f 为连续函数,则21221012(,)(,)(,)x xydx f x y dy dx f x y dy dy f x y dx--+=⎰⎰⎰⎰⎰ ( )【主要概念梳理】直角坐标系中二重积分计算当被积函数f (x ,y )≥0且在D 上连续时,若D 为 X - 型区域 12()():x y x D a x b ϕϕ≤≤⎧⎨≤≤⎩则21()()(,)d d d (,)d bx Dax f x y x y x f x y y ϕϕ=⎰⎰⎰⎰若D 为Y –型区域12()():y x y D c y d ψψ≤≤⎧⎨≤≤⎩,则21()()(,)d d d (,)d dy D c y f x y x y y f x y x ψψ=⎰⎰⎰⎰说明:若积分区域既是X –型区域又是Y –【巩固拓展提高】1.(1992)计算112111224.y y xxy I dy e dx dy e dx =+⎰⎰⎰2.设1()x xyf x e dy =⎰,计算10()f x dx ⎰.在极坐标系中二重积分的计算【学习方法导引】极坐标系中二重积分计算的基本技巧:(1)一般地,如果积分区域是圆域、扇形域或圆环形域,且被积函数为22(),f x y +(),yf x()x f y 等形式时,计算二重积分时,往往采用极坐标系来计算。
【基本问题导引】1.若二重积分的积分区域D 是2214,x y ≤+≤则Ddxdy ⎰⎰= 。