金属材料力学性能及实验
金属行业金属材料的力学性能测试方法
金属行业金属材料的力学性能测试方法金属材料的力学性能测试是金属行业中非常重要的一项工作,它可以用来评估金属材料的力学性能,帮助我们了解这些材料在实际应用中的表现和可靠性。
本文将介绍几种常用的金属材料力学性能测试方法,并对其原理和应用进行详细说明。
一、拉伸试验拉伸试验是测量金属材料在拉伸过程中的力学性能的一种常用方法。
它通过施加拉伸载荷并记录应力和应变的变化来评估材料的强度、延展性和韧性等指标。
在拉伸试验中,常用的测试参数包括屈服强度、断裂强度、断裂延伸率等。
二、硬度测试硬度测试是评估金属材料硬度的方法之一,它可以用来衡量金属材料抵抗形变和破坏的能力。
常见的硬度测试方法有洛氏硬度测试、巴氏硬度测试和维氏硬度测试等。
这些测试方法都通过施加一定压力并测量材料表面的印痕或弹痕来评估材料的硬度。
三、冲击试验冲击试验是评估金属材料在受冲击载荷下的抗冲击性能的方法之一。
常用的冲击试验方法包括冲击弯曲试验和冲击拉伸试验等。
这些试验通过施加冲击力并记录材料的断裂形态和断裂能量来评估材料的韧性和抗冲击能力。
四、压缩试验压缩试验是测量金属材料在受压载荷下的力学性能的方法之一。
它可以用来评估金属材料的强度、稳定性和抗压能力等指标。
在压缩试验中,常用的测试参数包括屈服强度、最大压缩应力和压缩模量等。
五、扭转试验扭转试验是测量金属材料在扭转载荷下的力学性能的一种常用方法。
它可以用来评估金属材料的刚度、强度和韧性等指标。
在扭转试验中,通过施加扭矩并记录应力和应变的变化来评估材料的扭转性能。
总结:金属行业中,对金属材料的力学性能进行测试是非常重要的工作。
本文介绍了几种常用的金属材料力学性能测试方法,包括拉伸试验、硬度测试、冲击试验、压缩试验和扭转试验等。
通过这些测试方法,我们可以全面了解金属材料的力学性能,为金属行业的生产和应用提供科学的依据。
在实际应用中,可以根据具体需求选择合适的测试方法,以确保金属材料的安全可靠性。
金属材料的力学性能及其测试方法
金属材料的力学性能及其测试方法金属材料是广泛应用于各种机械、电子、汽车等领域中的材料。
其作为一种材料,具有许多优点,如高强度、高可塑性、热稳定性和化学稳定性等。
在应用中,金属材料的力学性能是十分重要的参数。
因此,本文主要介绍金属材料的力学性能及其测试方法,以期对相关领域的工作者有所帮助。
第一节:金属材料的力学性能金属材料的力学性能通常包括弹性模量、屈服强度、延伸率、断裂韧性和硬度等。
这里从简单到复杂介绍这些性能参数。
1. 弹性模量弹性模量是金属材料在弹性变形范围内受到应力作用时所表现的一种机械性质。
它的表达式为:E = σ / ε其中E为杨氏模量,单位为MPa;σ为所受应力,单位为MPa;ε为所受弹性应变,无量纲。
弹性模量是金属材料的一个重要指标,它可以衡量金属材料抵抗形变能力的大小。
对于不同的金属材料而言,其弹性模量不同。
2. 屈服强度屈服强度是金属材料在单向轴向拉伸状态下特定应变量时所表现出来的应力大小。
它是指材料能承受的最大应力,以使材料不发生塑性变形。
对于各种金属材料而言,其屈服强度不同。
3. 延伸率延伸率是一个指标,它可以衡量金属材料在受到拉伸应力时,其在一定程度内能够进行延伸的能力。
延伸率的计算公式如下:%EL = (L2 - L1) / L1 × 100%其中%EL表示材料的延伸率,L1和L2分别表示金属材料在断裂前和断裂后的长度,单位为毫米。
4. 断裂韧性断裂韧性是指金属材料在受到极限应力作用下未能抗下,而在断裂破裂时所表现出来的承受能力。
这个承受能力在物质的许多特性中是最为重要的指标之一。
金属材料的断裂韧性通常使用KIC值(裂纹扩展韧性指数)来表达。
5. 硬度硬度是材料抵抗硬物的能力。
一般来说,硬度越高的材料,则可以抵御更大的压力,并且更耐磨。
对于金属材料而言,其硬度主要有三种测试方法,分别是洛氏硬度试验、布氏硬度试验和维氏硬度试验。
第二节:金属材料的测试方法要测试金属材料的一些力学性能参数,需要运用不同的测试方法。
金属材料的力学性能
金属材料的力学性能任何机械零件或工具,在使用过程中,往往要受到各种形式外力的作用。
如起重机上的钢索,受到悬吊物拉力的作用;柴油机上的连杆,在传递动力时,不仅受到拉力的作用,而且还受到冲击力的作用;轴类零件要受到弯矩、扭力的作用等等。
这就要求金属材料必须具有一种承受机械荷而不超过许可变形或不破坏的能力。
这种能力就是材料的力学性能。
金属表现来的诸如弹性、强度、硬度、塑性和韧性等特征就是用来衡量金属材料材料在外力作用下表现出力学性能的指标。
钢材力学性能是保证钢材最终使用性能(机械性能)的重要指标,它取决于钢的化学成分和热处理制度。
在钢管标准中,根据不同的使用要求,规定了拉伸性能(抗拉强度、屈服强度或屈服点、伸长率)以及硬度、韧性指标,还有用户要求的高、低温性能等。
金属材料的机械性能1、弹性和塑性:弹性:金属材料受外力作用时产生变形,当外力去掉后能恢复其原来形状的性能。
力和变形同时存在、同时消失。
如弹簧:弹簧靠弹性工作。
塑性:金属材料受外力作用时产生永久变形而不至于引起破坏的性能。
(金属之间的连续性没破坏)塑性大小以断裂后的塑性变形大小来表示。
塑性变形:在外力消失后留下的这部分不可恢复的变形。
2、强度:是指金属材料在静载荷作用下抵抗变形和断裂的能力。
强度指标一般用单位面积所承受的载荷即力表示,单位为MPa。
工程中常用的强度指标有屈服强度和抗拉强度。
拉伸图:金属材料在拉伸过程中弹性变形、塑性变形直到断裂的全部力学性能可用拉伸图形象地表示出来。
材料在常温、静载作用下的宏观力学性能。
是确定各种工程设计参数的主要依据。
这些力学性能均需用标准试样在材料试验机上按照规定的试验方法和程序测定,并可同时测定材料的应力-应变曲线。
对于韧性材料,有弹性和塑性两个阶段。
弹性阶段的力学性能有:比例极限:应力与应变保持成正比关系的应力最高限。
当应力小于或等于比例极限时,应力与应变满足胡克定律,即应力与应变成正比。
弹性极限:弹性阶段的应力最高限。
金属材料力学性能实验报告
金属材料力学性能实验报告姓名:班级:学号:成绩:实验名称实验一金属材料静拉伸试验实验设备1)电子拉伸材料试验机一台,型号HY-100802)位移传感器一个;3)刻线机一台;4)游标卡尺一把;5)铝合金和20#钢。
试样示意图图1 圆柱形拉伸标准试样示意图试样宏观断口示意图图2 铝合金试样常温拉伸断裂图和断口图(和试样中轴线大约成45°角的纤维状断口,几乎没有颈缩,可以知道为切应力达到极限,发生韧性断裂)图3 正火态20#钢常温拉伸断裂图和断口图(可以明显看出,试样在拉断之后在断口附近产生颈缩。
断口处可以看出有三个区域:1.试样中心的纤维区,表面有较大的起伏,有较大的塑性变形;2.放射区,表面较光亮平坦,有较细的放射状条纹;3.剪切唇,轴线成45°角左右的倾斜断口) 原始数据记录表1 正火态20#钢试样的初始直径测量数据(单位:mm ) 左 中 右 平均值 9.90 10.00 10.009.97 9.92 10.00 10.00 10.00 10.00 9.92左 中 右 平均值 8.70 8.72 8.68 8.69 8.68 8.70 8.70 8.64 8.72 8.70 表2 时效铝合金试样的初始直径测量数据(单位:mm )两试样的初始标距为050 L mm 。
表3 铝合金拉断后标距测量数据记录(单位:mm )AB BC AB+2BC 平均 12.32 23.16 58.64 58.7924.0217.4658.94测量20#钢拉断后的平均标距为u L =69.53 mm ,断口的直径平均值为u d =6.00 mm 。
测量得到铝合金拉断后的断面直径平均值为7.96mm 。
数据处理:1.20#钢正火材料(具有明显物理屈服平台的材料)20#钢正火材料试样的载荷-位移曲线试验结果见图4。
(1)由图可得各特征力值及对应的位移值分别为: 比例伸长力20.6 kN p F =;下屈服力24.5 kN el F =;最大力37.2 kN m F =; 断裂载荷27.1 kN F F =; 断裂后塑性伸长21.4 mm F L ∆=; 断裂后弹性伸长 2.4 mm e L ∆=。
金属的力学性能及试验方法
金属的力学性能及试验方法金属是指具有良好导电、导热性能,具有一定塑性和可锻性,通常为固态的元素或化合物。
在工业生产和建筑施工中,常常用到金属材料,因此了解金属的力学性能和试验方法非常重要。
本文将从金属的力学性能、力学试验和金属材料的应用等方面进行阐述。
1. 强度金属材料的强度是指抵抗外力破坏的能力,通常用抗拉、抗压、抗剪等强度来表示。
抗拉强度是指钢材在受到拉应力时发生的拉断应力最大值,抗压强度是指钢材在受到压应力时发生的压缩应力最大值,抗剪强度是指钢材在受到剪应力时发生的剪切应力最大值。
不同的金属材料的强度不同,可以通过力学测试来得到不同金属材料的强度值。
2. 塑性金属材料的塑性是指金属在受到外力作用下发生形变的能力。
通常用屈服点、延伸率和冷弯性能等来表示。
屈服点是指金属在受到拉应力时发生的弹性变形后,开始出现塑性变形的应力值。
延伸率是指金属在拉伸过程中能够完全拉开的长度与原长度之比,冷弯性能是指金属材料在冷弯时所能承受的最大应力值,一般来说,塑性强的金属材料能够承受更大的拉应力,延伸率也会更高,因此在一些需要有一定塑性和可锻性的场合,如汽车制造和机械制造等,常常使用具有良好塑性和可锻性的金属材料。
3. 硬度硬度是指金属材料抵抗刻擦的能力,即金属材料的表面极其内部能够承受的压力的大小。
硬度的测量有多种方法,如布氏硬度、Vickers硬度、洛氏硬度等。
不同的测量方法所得到的硬度值也不同。
1. 拉伸试验拉伸试验是最为常见的一种力学试验方法,用于测量金属材料的强度、塑性和弹性等力学性能。
试样用钳夹好,一头通过万能试验机的拉伸机械臂和传感器连接,另一头通过夹具固定。
在破断前,可以通过读数器和试验机的力值计算出试样在拉伸过程中出现的最大应力值。
2. 压缩试验压缩试验是测量金属材料抵抗压缩力的试验方法,试样一般为柱形。
试样被夹具夹紧,然后放入万能试验机的压缩机械臂下方进行压缩。
通过试验机内的传感器可以测量到试样在压缩过程中的应力值,以及当试样发生变形时所受到的最大压力值。
国家开放大学《材料科学》金属材料的力学性能实验报告
国家开放大学《材料科学》金属材料的力学性能实验报告实验目的1. 掌握金属材料力学性能的基本测试方法。
2. 了解材料在不同温度和加载速度下的力学性能变化。
3. 分析实验结果,探讨材料力学性能与微观结构的关系。
实验原理金属材料的力学性能主要包括抗拉强度、抗压强度、弹性模量等。
本实验通过拉伸试验、压缩试验和硬度试验等方法,测试材料在不同温度和加载速度下的力学性能,分析材料微观结构对其力学性能的影响。
实验材料与设备1. 实验材料:低碳钢、不锈钢、铜等。
2. 实验设备:万能材料试验机、高温炉、硬度计等。
实验方法与步骤1. 拉伸试验:a. 按照国家标准制备试样。
b. 将试样装入万能材料试验机。
c. 以不同的加载速度和温度进行拉伸试验。
d. 记录应力-应变曲线,计算抗拉强度、弹性模量等参数。
2. 压缩试验:a. 按照国家标准制备试样。
b. 将试样装入万能材料试验机。
c. 以不同的加载速度和温度进行压缩试验。
d. 记录应力-应变曲线,计算抗压强度等参数。
3. 硬度试验:a. 按照国家标准制备试样。
b. 使用硬度计在不同温度下进行硬度测试。
c. 记录硬度值,计算硬度系数。
实验结果与分析1. 拉伸试验结果:- 低碳钢:抗拉强度约为400 MPa,弹性模量约为200 GPa。
- 不锈钢:抗拉强度约为500 MPa,弹性模量约为180 GPa。
- 铜:抗拉强度约为200 MPa,弹性模量约为110 GPa。
2. 压缩试验结果:- 低碳钢:抗压强度约为500 MPa。
- 不锈钢:抗压强度约为600 MPa。
- 铜:抗压强度约为300 MPa。
3. 硬度试验结果:- 低碳钢:硬度系数约为0.2。
- 不锈钢:硬度系数约为0.15。
- 铜:硬度系数约为0.1。
结论1. 金属材料的力学性能受微观结构影响显著。
2. 随着温度的升高,材料力学性能降低。
3. 加载速度对材料力学性能有一定影响,加载速度越高,材料力学性能越差。
建议1. 进一步研究材料微观结构与力学性能的关系,为材料设计提供理论依据。
金属材料力学性能测试与分析实验报告
金属材料力学性能测试与分析实验报告摘要:本实验旨在通过对金属材料的力学性能进行测试和分析,以探究其力学行为和性能。
在本实验中,我们选取了一种常见的金属材料进行测试,并使用了相关的测试方法和设备,包括拉伸试验、硬度测试和冲击试验。
通过对实验结果的分析与比较,我们探讨了该金属材料的力学性能表现以及对其应用的影响。
实验结果显示,该金属材料表现出高强度、良好的塑性和韧性,适用于各种工程应用。
1. 引言金属材料是广泛应用于工程领域的重要材料,其力学性能直接关系到其在工程中的可靠性和安全性。
因此,了解金属材料的力学性能是进行工程设计和材料选择的基础。
本实验旨在通过力学性能测试来了解金属材料的力学特性和表现,以提供工程实践的依据。
2. 实验方法和设备2.1 材料样品选择选取了某种常见的金属材料作为研究对象,样品形状和尺寸符合标准要求。
2.2 拉伸试验使用拉伸试验机进行拉伸试验,按照标准规范进行测试,记录载荷-位移曲线,计算材料的弹性模量、屈服强度、抗拉强度和断后延伸率等指标。
2.3 硬度测试使用硬度计对材料进行硬度测试,选择适当的测试方法,如布氏硬度或洛氏硬度,记录测试结果并计算平均硬度值。
2.4 冲击试验利用冲击试验机对材料进行冲击试验,记录冲击能量和冲击韧性等指标。
3. 实验结果与分析3.1 拉伸试验拉伸试验结果显示,该金属材料在加载过程中呈现明显的弹性阶段、塑性阶段和断裂阶段。
载荷-位移曲线呈现出典型的应力-应变曲线特征。
根据试验数据计算得到的材料力学性能指标如下:- 弹性模量:XXX GPa- 屈服强度:XXX MPa- 抗拉强度:XXX MPa- 断后延伸率:XXX %3.2 硬度测试通过硬度测试,我们得到了该金属材料的平均硬度值为XXX。
硬度是材料抵抗局部塑性变形和耐刮削能力的指标,较高的硬度值表示该金属材料具有较好的耐磨性和抗刮削性能。
3.3 冲击试验冲击试验结果显示,该金属材料在受到冲击负荷时具有较高的韧性和抗冲击性能。
金属力学性能测定实验报告
金属力学性能测定实验报告一、实验目的(1)了解硬度测定的基本原理及常用硬度试验法的应用范围。
(2)学会恰当采用硬度计。
二、实验设备(1)布氏硬度计(2)读数放大镜(3)洛氏硬度计(4)硬度试块若干(5)铁碳合金淬火试样若干(ф20×10mm的工业纯铁,20,45,60,t8,t12等)。
(6)ф20×10mm的 20,45,60,t8,t12钢退火态,正火态,淬火及回火态的试样。
三、实验内容1、概述硬度就是指材料抵抗另一较软的物体装入表面抵抗塑性变形的一种能力,就是关键的.力学性能指标之一。
与其它力学性能较之,硬度实验简单易行,又迪代工件,因此在工业生产中被广泛应用。
常用的硬度试验方法存有:布氏硬度试验――主要用于黑色、有色金属原材料检验,也可用于退火、正火钢铁零件的硬度测定。
洛氏硬度试验——主要用作金属材料热处理后产品性能检验。
维氏硬度试验——用于薄板材或金属表层的硬度测定,以及较精确的硬度测定。
显微硬度试验——主要用于测定金属材料的显微组织组分或相组分的硬度。
2、实验内容及方法指导(1)布氏硬度试验测定。
(2)洛氏硬度试验测量。
(3)试验方法指导。
3、实验注意事项(1)试样两端要平行,表面要平整,若有油污或氧化皮,可用砂纸打磨,以免影响测定。
(2)圆柱形试样应当放到具有“v”形槽的工作台上操作方式,以免试样翻转。
(3)加载时应细心操作,以免损坏压头。
(4)测完硬度值,刺破载荷后,必须并使压头全然返回试样后再摘下试样。
(5)金刚钻压头系贵重物品,资硬而脆,使用时要小心谨慎,严禁与试样或其它物件碰撞。
(6)应当根据硬度实验机的采用范围,按规定合理采用相同的载荷和压头,少于采用范围,将无法赢得精确的硬度值。
四、实验步骤1、布氏硬度试验布氏硬度试验是用载荷p把直径为d的淬火钢球压人试件表面,并保持一定时间,而后卸除载荷,测量钢球在试样表面上所压出的压痕直径d,从而计算出压痕球面积a,然后再计算出单位面积所受的力(p/a值),用此数字表示试件的硬度值,即为布氏硬度,用符号hb表示。
金属材料的力学性能及测定材料的硬度
1.2.2 洛氏硬度
压头类型: 淬火钢球压头多用于测定退火件、有色金属等较软 材料的硬度,压入深度较深;金刚石压头多用于测定 淬火钢等较硬材料的硬度,压入深度较浅。
试验规范及表示方法:
采用不同的压头与总试验力,组合成几种不同的洛 氏硬度标尺。我国常用的是HRA、HRB、HRC三种, 其中HRC应用最广。其试验规范见表1.1。洛氏硬度 无单位,须标明硬度标尺符号,在符号前面写出硬度 值,如58HRC、76HRA。
1-3
1.2.1 布氏硬度
布氏硬度试验的优缺点:
优点是测定的数据准确、稳定、数据重复性强,常 用于测定退火、正火、调质钢、铸铁及有色金属的硬 度。
缺点是对不同材料需要更换压头和改变载荷,且压 痕较大,压痕直径的测量也较麻烦,易损坏成品的表 面,.2 洛氏硬度
洛氏硬度是用压痕深度作为洛氏硬度值的计量即, 符号用HR表示,其计算公式为:
1-2
1.2.1 布氏硬度
布氏硬度表示方法: 硬度值一般不标单位。当压头为淬火钢球时,用 HBS表示;当压头为硬质合金时,用HBW表示。符 号HBS或HBW之前写出硬度值,符号后面用数字依 次表示压头直径、试验力及试验力保持时间(10~ 15 s不标)等试验条件。例如, 150HBS10/1000/30。 一般在零件图或工艺文件上标注材料要求的布氏 硬度时,不规定试验条件,只需标出要求的硬度值 范围和硬度符号,如210~230HBS。
1-6
1.2.2 洛氏硬度
洛氏硬度试验的优缺点: 优点是操作迅速、简便,硬度值可从表盘上直接读 出;压痕较小,可在工件表面试验;可测量较薄工件 的硬度,因而广泛用于热处理质量的检验。 缺点是精确性较低,硬度值重复性差、分散度大, 通常需要在材料的不同部位测试数次,取其平均值来 代表材料的硬度。此外,用不同标尺测得的硬度值彼 此之间没有联系,也不能直接进行比较。
金属材料的力学性能
3、FL 段:水平线(略有波动)明显的 塑性变形屈服现象,作用的力基本不变, 试样连续伸长。
4、FL-FM曲线:弹性变形+均匀塑性变形
5、M点:出现缩颈现象,即试样局部截面明显缩小试样承载能力降低, 拉伸力达到最大值,试样即将断裂。 6、K点:试件在缩颈处拉断
19
§1-4 冲击韧度
一般来说,强度、塑性均好的材料,韧度值也高。在实 际工作中常见的是承受多次小能量冲击。对多次冲击 问题: •
•
1) 如果冲击能量低,冲击周次较多时,α KV主 要取决于材料的强度,强度高则冲击韧度较好;
2) 如果冲击能量高,则主要取决于材料的塑性, 材料塑性越高则冲击韧度较好。
1、洛氏硬度试验(洛氏硬度计)
原理: 用金刚石圆锥或淬火钢球,在试验力的作用下压入试样表面, 经规定时间后卸除试验力,用测量的残余压痕深度增量来计算硬度的一 种压痕硬度试验。
12
§1-3 硬度
2、洛氏硬度表示方法
洛氏硬度直接在符号前面写出硬度值。可从表盘上直接读出。
如:50HRC 3、优缺点
(1)试验简单、方便、迅速(2)压痕小,可测成品、薄件(3)数据 不够准确,应测三点取平均值(4)不能测组织不均匀材料,如铸铁。
20
§1-5 疲劳强度
1.5 一、概念
疲劳强度
什么是金属的疲劳? 疲劳强度:在指定寿命下使试样失效的应力水平。
交变应力:大小和方向随时间作周期性变化的应力。 通常规定钢铁材料的循环基数取107,有色金属取108。
21
§1-5 疲劳强度
金属的疲劳强度曲线
22
S0:试件原横截面积。 S1:断裂后颈缩处的横截面积,用卡尺直接量出。
金属材料力学性能实验断裂韧度试验
金属材料力学性能试验断裂韧度试验6.2 断裂韧度试验6.2.1结构线Construction line在J-Δa 和δ-Δa 试验记录上画一条线,代表表观裂纹扩展(即裂纹表面的位移量),包括裂纹端钝化6.2.2裂纹扩展阻力曲线Crack entension resistance curveR-曲线δ 或J 与稳定裂纹扩展Δa 的变化6.2.3裂纹平面取向Crack plane orientation按照裂纹平面的法向方向和试验中裂纹预期的扩展方向处理裂纹,对于锻造产品参考其特征晶粒流动方向6.2.4裂纹嘴张开位移Crack-mouth opening displacement (CMOD)V在裂纹开始缺口附近,测量与原始裂纹平面垂直的裂纹平面的相对位移量6.2.5裂纹尖端张开位移Crack-tip opening displacementδ在原始裂纹尖端(即疲劳预裂纹尖端)测量与原始裂纹平面垂直的裂纹平面的相对位移量6.2.6临界J Critical J对应裂纹扩展开始时的J 值6.2.7临界δ Critical δ对应裂纹扩展开始时的δ 值6.2.8断裂韧度fracture toughness准静态单一加载条件下的裂纹扩展阻力的通用术语6.2.9J-积分J-integral与积分路径无关的闭合回路或表面积分,用来表征裂纹前缘周围地区的局部应力-应变场,在塑性效应不可忽视的地方提供能量释放速率,用来表征对应表观裂纹扩展a 时的势能变化J与J 积分相当的加载参数,当测定力-加载线位移图时特指裂纹尖端塑性变形不可忽视条件下的断裂6.2.10J-R 曲线J-R curveJ-Δa 图,在塑性效应不容忽视的地方,用于描述稳定裂纹扩展阻力6.2.11最大疲劳应力强度因子Maximum fatigue stress intensity factorKf在疲劳预裂纹的最后阶段,K 的最大值6.2.12类型mode裂纹平面位移三种方式之一注:阿拉伯数字1,2 和3 用于通常的例子,分别代表拉伸张开型,平面滑动型,剪切型。
金属材料力学性能测试——拉伸、压索和扭转实验
0/A P =s s σ金属材料力学性能测试——拉伸实验拉伸实验是测定材料力学性质基本的重要实验之一。
根据国家标准金属拉力实验法的规定,拉伸试件必须做成标准试件。
圆截面试件如图1-1所示:长试件L=10d 0,短试件L=5d 0。
拉伸时材料的强度指标和塑性指标测定: 1、强度指标的测定:材料拉伸时的力学性能指标(如s σ,b σ,δ,ψ ),由拉伸破坏实验来确定。
图1-2是低碳钢拉伸实验时的拉伸图。
OA 段为弹性变形阶段,过了A 点,材料进入屈服阶段,材料进入上屈服点,A 点对应上屈服点的载荷Psu ,B 点对应 屈服点的载荷Psl 。
由于上屈服点的值不稳定(对同一批材料而言) ,下屈服点较稳定,因此在没有特别说明的情况下,规定下屈服点的载荷为屈服载荷Ps ,则屈服极限为: MPa 。
其中:A0为试件的初始横截面面积,拉伸图上D 点对应的最大荷载值为Pb,此后试件发生劲缩现象,迅速破坏。
材料的抗拉强度极限为:0/A P =b b σMPa 。
铸铁的拉伸实验图如图1-3所示。
试件变形很小,到达一定的载荷突然断裂,拉断时的最大载荷,即为强度的载荷Pb 铸铁拉伸强度极限为:0/A P =b b σMPa 。
2、塑性指标测定:将拉断后的低碳钢试件拼接后,测量断后标距L1;劲缩处的平均值径d1,由下列公式计算延伸率δ和断面收缩率ψ;%100/)(%100/)(010001⨯A A -=ψ⨯-=A L L L δ其中:A1为试件断开处的横截面积,L 1为试件断后的标距。
拉伸时材料机械性质的测定室温_____℃ 日期____年___月___日实验目的:1.测定低碳钢的屈服极限s σ,极限强度b σ,延伸率δ,面积收缩率ψ,铸铁的极限强度b σ。
2.观察拉伸过程中的实验现象。
实验设备:电子万能试验机。
游标卡尺。
实验主要步骤:1.分别测量两种材料的上、中、下横截面直径并填入表格。
2.安装试件,然后开始实验。
3.记录拉伸载荷,测量断后标距及收缩直径,代入公式计算。
金属材料力学性能检测
§ 1.1 金属材料拉伸试验
§ 1.1 金属材料拉伸试验
2、定标距试样
定标距试样的原始标距与横截面间无比例关
系,一般 L取0 100mm, 200m。m
3、取样与制样
• 通常从产品、压制坯或铸锭切取样坯经机加工 制成试样。但具有恒定横截面的产品(型材、 棒材、线材等)和铸造试样(铸铁和铸造非铁合 金)可以不经机加工而进行试验。
金属材料力学性能检测
▪§ 1.1 拉伸试验 ▪§ 1.2 金属扭转及弯曲试验 ▪§ 1.3 金属硬度试验 ▪§ 1.4 金属冲击韧性试验
§ 概述
金属材料在外力作用下所表现出的诸如强度、 塑性、弹性等等力学特性称为材料的力学性能, 而衡量金属材料力学性能的指标统称为力学(机 械)性能指标,这些指标是通过实验来确定的。 本章就依据国家标准来讨论这些指标的意义及测 定方法。
1)比例极限: p
p
Pp A0
2)弹性极限: e
e
Pe A0
3)屈服极限: s
4)强度极限: b
5)断裂强度: k
s
Ps A0
b
Pb A0
k
Pk A0
§ 1.1 金属材料拉伸试验
各应力指标的定义及测试方法:
1、 比例极限
p
定义:应力与应变成直线关系的最大应力值。
变的应力作为屈服强度,以 0.表2 示
测量方法与弹s 性极限相似。
§ 1.1 金属材料拉伸试验
4、强度极限(抗拉强度) b
定义:曲线上最大应力为强度极限。 标志:出现颈缩现象。
§ 1.1 金属材料拉伸试验
5、断裂强度 k
定义:试样拉断时的真实应力,表征材料对断裂 的抗力。
金属力学性能试验
•
1. 根据测试要求和试样的形状、尺寸选择相应的夹具。
•
⒉ 打开计算机。
•
⒊ 打开试验机控制器电源,等候数秒,以待控制系统检测。
•
⒋ 根据测试要求,在计算机上打开相应的测试程序。
•
⒌ 等候数秒,当计算机桌面上的工具栏所有图标示出来后,按控制器面板上的“ON”按钮以
使 主机和测试程序相连。
•
⒍ 在计算机上打开测试要求的相关测试程序。
二、实验内容
• 1.根据国家标准GB228/T—2002 《金属材料室温拉伸试验方法》测 定低碳钢、灰铸铁、铸铝的E; ReH;ReL;Rp0.1;Rp0.2;Rm;Agt; Ag;At;A;Z。
• 2.分析和讨论试验结果。
三、实验测试原理
三、实验测试原理
低碳钢退火态拉伸曲线 : 弹性变形→屈服变形→均匀塑性变形→集中 塑性变形→断裂
•
⒎ 根据测试要求和试样的尺寸,在计算机桌面上点击“设置参数”,输入相关测试参数。
•
⒏ 点击 “夹具复位”,使横梁到达设置位置。
•
⒐ 夹持试样,输入试样尺寸
•
⒑ 点击“力值清零”。
•
⒒ 点击“开始”,开始测试。
•
⒓ 在弹出的对话框中输入试样尺寸。
•
⒔ 点击“OK”,试验机进入测试状态。
•
⒕ 测试结束后,从夹具上取下试样。
首次下降前的最大应力。 • ReL:下屈服强度 —屈服期间,不计初始
瞬时效应时的最低应力。
高强度钢拉伸应力―应变
Stress in Mpa
1600
1400
1200
1000
800
600
400
200
金属材料的力学性能测试与分析
金属材料的力学性能测试与分析金属材料广泛应用于各个领域,具有优良的力学性能是其重要的特征之一。
为了保证金属材料的质量和可靠性,对其力学性能进行测试与分析是至关重要的。
本文将重点介绍金属材料力学性能测试方法及分析步骤。
一、金属材料的力学性能测试1. 强度测试强度是金属材料抵抗外力的能力,可以通过拉伸试验来进行测试。
该试验的原理是将金属试样放置在拉伸机上,施加逐渐增加的力,直到断裂为止。
在试验过程中,可以测量材料的屈服强度、抗拉强度、延伸率等指标。
这些参数对于评估金属材料的力学性能至关重要。
2. 硬度测试硬度是金属材料抵抗表面压力的能力。
硬度测试可通过使用洛氏硬度计或布氏硬度计进行。
试验时,试样表面受到一定压力,通过测量压印的深度来确定硬度指标。
硬度测试可以帮助判断金属材料的耐磨性和抗变形能力。
3. 韧性测试韧性是金属材料在承受外力时能够吸收能量并发生塑性变形的能力。
冲击试验是测试韧性的常用方法之一。
冲击试验中,将标准试样放置在冲击机上,施加特定冲击载荷,并记录试样失效前所吸收的能量。
韧性测试结果可以评估金属材料在低温环境下的可靠性。
二、金属材料力学性能分析1. 强度分析通过强度测试获得的数据,可以进行强度分析。
通常包括计算应力-应变曲线、屈服强度、抗拉强度、断裂延伸率等参数。
这些数据可用于比较不同金属材料的强度,评估材料的抗拉伸能力以及预测它们在实际应用中的行为。
强度分析对于材料的选择、设计和制造过程中的质量控制具有重要意义。
2. 硬度分析硬度测试结果的分析可用于比较不同金属材料之间的硬度差异。
通过硬度值,可以评估材料的耐磨性和抗变形能力。
硬度分析还可以为金属材料的工艺设计和材料选择提供重要参考。
3. 韧性分析韧性测试结果的分析有助于评估金属材料的抗冲击能力和低温性能。
韧性分析还可以用于指导金属材料的合金设计和淬火工艺的优化。
通过分析韧性参数,可以对材料的破坏机理进行理解,并提供改进金属材料韧性的方法。
金属材料的力学性能
HRB 适用于测量有色金属和退火、正火钢等
HRC 适用于调质钢、淬火钢等
操作简便、迅速
优 点
注:因压痕小,受材料 硬度值可直接从表盘上读出 组织不均匀因素很大,
压痕小,可测量成品件
所以对同一测试件,应 在不同部位测取三点后
取平均值
金属材料及热处理
3.维氏硬度
(1) 试验原理
维氏硬度用符号 HV表示。计算公式如下:
表示方法: αk是在一次试验中,单位截面积上所消耗的冲 击功,单位J/cm2
摆锤式冲击试验
金属材料及热处理
2.小能量多次冲击试验
实践表明,承受冲击载荷的机械零件,很少因一 次大能量冲击而遭破坏,绝大多数是在一次冲击不足 以使零件破坏的小能量多次冲击作用下而破坏的,如 冲模的冲头等。这类零件破坏是由于多次冲击损伤的 积累,导致裂纹的产生与扩展的结果,根本不同于一 次冲击的破坏过程。对于这样的零件,用冲击韧度来 作为设计依据显然是不符合实际的,需要采用小能量 多次冲击试验来检验这类金属材料的抗冲击性能,即 检验其多冲抗力。
必须说明,同一材料的试样长短不同,测得的伸长 率是不同的,因此,比较伸长率时要注意试样规格的 统一。
塑性材料: d ≥ 5 % 例如结构钢与硬铝等 脆性材料: d <5 % 例如灰口铸铁与陶瓷等
金属材料及热处理
2. 断面收缩率 试样拉断后,缩颈处横截面积的缩减量与原始横截
面积的百分比称为断面收缩率,用符号ψ 表示。其计 算公式如下:
σs
Fs A0
对于无明显屈服现象的金属材料,按国标GB/228—1987规定可用规定残余伸长应力 表示:
σ 0.2
F0.2 A0
(2) 抗拉强度 用符号σb表示。计算公式如下:
金属材料力学性能与试验方法
+ 硬度:它是衡量材料软硬的一个指标,是 金属表面抵抗塑性变形和破坏 的能力。检查和控制金属零件的热处理质量
+ 塑性:指金属发生塑性变形而不发生破断的能力。
+ 冲击韧度(冲击韧性):材料抵抗冲击载荷而不破断的能力。
3.6 金属材料弯曲试验
3.6.1 试验标准: GB/T 14452-93 金属弯曲力学性能试验方法
3.6 金属材料弯曲试验
3.6.2试验原理:采用三点弯曲或四 点弯曲方式对圆形或矩形横截面试 样施加弯曲力,一般直至断裂,测 定其弯曲力学性能。
3.6金属材料弯曲试验
6.金属材料弯曲试验
3.6.4 试验参数:
3.3 金属材料硬度试验
3.3.4 金属材料维氏硬度
3.3 金属材料硬度试验
3.3.4 金属材料维氏硬度
3.4 金属材料压缩试验
3.4.1 试验标准: GB/T 7314-2005 金属材料 室温压缩试验方法
3.4金属材料压缩试验
3.4.2 试验设备(同拉伸试验)
电子拉压万能试验机
液压拉压万能试验机
3.3 金属材料硬度试验
3.3.2 金属材料洛氏硬度 (1)试验系统
3.3金属材料硬度试验
3.3.2 金属材料洛氏硬度
(2)原理:将压头(金刚石圆锥、硬质合金 球)按右图分两步骤压入试样表面,经规 定保持时间后,卸除主试验力,测量在初 始试验力下的残余压痕深度h。
根据h值及常数N和S(见表2),用下式计算 洛氏硬度。
号 缩应应力附以。下脚标说明,例如Rτc1.5表示规定总压缩应变为l.5%时的压
3.4金属材料压缩试验
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
HRC
表-2
第三节 韧性和冲击试验
• 冲击力:零件受到突然作用的外力 冲击力: • 韧性:金属在冲击力作用下,断裂前吸收变形能量的 韧性 : 金属在冲击力作用下 , 能力。韧性愈好,代表金属的抗冲击能力愈强。 能力。韧性愈好,代表金属的抗冲击能力愈强。 • 一、摆锤式一次冲击试验 • 按 GB229- 84的规定 , 将被试金属制成标准的冲击试 的规定, - 的规定 样。
12
<140
10
12
非铁金属
>130
6~3 ~ 4~2 ~ <2
30
10.0 5.0 2.5
29.42(3000) 7.355(750) 1.839(187.5)
30
36~130 ~
9~3 ~ 6~3 ~
10
10.0 5.0
9.807(1000) 2.452(250)
30
8~35 ~
>6
2.5
10.0
• 拉伸试样:圆形试样(断面为圆形),根据 拉伸试样:圆形试样(断面为圆形) 根据GB6397- - 86的规定 , 拉伸试样分为长比例试样或短比例试样 。 的规定, 的规定 拉伸试样分为长比例试样或短比例试样。 对圆形试样:长试样l=10d。;短试样 对圆形试样:长试样 。 短试样l=5d。 。
• 拉伸曲线:在开始的 oe 阶段,材料处于弹性变形阶段; 拉伸曲线: 阶段,材料处于弹性变形阶段; 超过e点后, 除弹性变形外,材料开始产生塑性变形,曲 超过 点后, 除弹性变形外, 材料开始产生塑性变形, 点后 线在S点处出现一小段水平 线段,这种现象称为“屈服” 线在 点处出现一小段水平 线段,这种现象称为“屈服”, 标志着材料发生微量塑性变形。 标志着材料发生微量塑性变形。当拉伸力达到 F 后,在 试样的标距长度内某处, 横截面发生局部收缩, 试样的标距长度内某处 , 横截面发生局部收缩 , 即产生 缩颈”现象,此时拉伸力开始减小, “缩颈 ”现象 ,此时拉伸力开始减小, 故 b点为曲线上集 点为曲线上集 中干预部,直至断裂(k点)。 中干预部,直至断裂( 点
第一章 金属的力学性能及试验方法
• 金属材料性能:使用性能和工艺性能 金属材料性能: • 使用性能:为保证机械零件或工具正常工作,材料应具备 使用性能:为保证机械零件或工具正常工作, 的性能,它包括物理性能(如导电性、导热性、 的性能,它包括物理性能(如导电性、导热性、热膨胀性 化学性能(如抗腐蚀性、抗氧化性等)和力学性能。 等)、化学性能(如抗腐蚀性、抗氧化性等)和力学性能。 • 工艺性能:在制造机械零件或工具的过程中,材料适应各 工艺性能:在制造机械零件或工具的过程中, 种冷、热加工和热处理的性能,它包括铸造、锻造、焊接、 种冷、热加工和热处理的性能,它包括铸造、锻造、焊接、 切削加工等工艺性能以及热处理工艺性等。 切削加工等工艺性能以及热处理工艺性等。 • 力学性能:材料在外力作用下所显示的性能,又称机械性 力学性能:材料在外力作用下所显示的性能, 如强度、硬度、塑性、韧性、抗疲劳性等。 能,如强度、硬度、塑性、韧性、抗疲劳性等。
• 试验时 , 根据被测的材料不同 , 压头的类型 、 试验力及按 试验时,根据被测的材料不同, 压头的类型、 选择, 表-2选择,对应的洛氏硬度标尺为 选择 对应的洛氏硬度标尺为HRA、HRB、HRC三种 、 、 三种
符号 压头类型 载荷/k 载荷 g f 硬度有效 使用范围 范围 70~85 0 适用于测量硬质合金、钢表、 适用于测量硬质合金、钢表、 淬火层或渗碳层
二、洛氏硬度实验
• 洛氏硬度试验法原理:根据压痕的塑性变形深度来衡量硬 洛氏硬度试验法原理: 原理 试验时, 度 。试验时 , 先加初始试验力 98N(10kgf), 使压头紧 ( ) 密接触试件表面a,并压入到b处 密接触试件表面 ,并压入到 处,以此作为衡量压入深度 的起点,再加主试验力使压头压入到c处 的起点 , 再加主试验力使压头压入到 处 , 然后去掉主试 验力,由于被试金属弹性变形的消除,压头向上回升到d 验力, 由于被试金属弹性变形的消除,压头向上回升到 洛氏硬度计表盘上读出即可 表盘上读出即可。 处。洛氏硬度计表盘上读出即可。
s σ =F A 屈服强度:工程技术上一般规定, 屈服强度:工程技术上一般规定,以试样产生的塑性变形伸 长量达到0. %时的应力, 长量达到 .2%时的应力,σ0.2 。 σ =F A
0.2 0.2 o
σ
。
σ
b
=
F
b
A
o
• 二、塑性
• 塑性:金属材料断裂前发生永久变形的能力 塑性: • 断后伸长率:试样拉断后标距的伸长量与原始标距的百分 断后伸长率: 比 ( − )
(A
1
−
A
A ) × 100%
0
0
• 强度是表征材料变形抗力指标 , 而塑性是描述变 强度是表征材料变形抗力指标, 形能力的指标。 形能力的指标。
第二节 硬度及硬度试验
• 硬度 : 金属材料抵抗局部变形 , 特别是塑性变形 、 硬度:金属材料抵抗局部变形,特别是塑性变形、 压痕或划痕的能力 • 一、布氏硬度试验法
• 摆锤式一次冲击试验原理:试验在专门的摆锤式冲击试验 摆锤式一次冲击试验原理: 原理 机上进行,把试样放在试验机的支承面上, 机上进行,把试样放在试验机的支承面上,试样的缺口背 向摆锤冲击方向。将质量为m的摆锤安放到规定的高度 的摆锤安放到规定的高度H, 向摆锤冲击方向。 将质量为 的摆锤安放到规定的高度 , 然后下落,将试样打断,并摆过支点升到某一高度h, 然后下落 , 将试样打断, 并摆过支点升到某一高度 ,试 样在冲击试验力一次作用下,折断时所吸收的功为冲击吸 样在冲击试验力一次作用下,折断时所吸收的功为冲击吸 收功为Ak 收功为
• 一、强度 • 强度:金属抵抗永久变形和断裂的能力 强度: • 拉伸试验法:拉伸试验在拉伸试验机上进行 拉伸试验法:拉伸试验在拉伸试验机上进行 拉伸试验机
• 一、强度 • 强度:金属抵抗永久变形和断裂的能力 强度: • 拉伸试验法:拉伸试验在拉伸试验机上进行 拉伸试验法:拉伸试验在拉伸试验机上进行 拉伸试验机
b
• 拉伸曲线:在开始的 oe 阶段,材料处于弹性变形阶段; 拉伸曲线: 阶段,材料处于弹性变形阶段; 超过e点后, 除弹性变形外,材料开始产生塑性变形,曲 超过 点后, 除弹性变形外, 材料开始产生塑性变形, 点后 线在S点处出现一小段水平 线段,这种现象称为“屈服” 线在 点处出现一小段水平 线段,这种现象称为“屈服”, 标志着材料发生微量塑性变形。 标志着材料发生微量塑性变形。当拉伸力达到 F 后,在 试样的标距长度内某处, 横截面发生局部收缩, 试样的标距长度内某处 , 横截面发生局部收缩 , 即产生 缩颈”现象,此时拉伸力开始减小, “缩颈 ”现象 ,此时拉伸力开始减小, 故 b点为曲线上集 点为曲线上集 中干预部,直至断裂(k点)。 中干预部,直至断裂( 点
• 摆锤式一次冲击试验原理:试验在专门的摆锤式冲击试验 摆锤式一次冲击试验原理: 原理 机上进行,把试样放在试验机的支承面上, 机上进行,把试样放在试验机的支承面上,试样的缺口背 向摆锤冲击方向。将质量为m的摆锤安放到规定的高度 的摆锤安放到规定的高度H, 向摆锤冲击方向。 将质量为 的摆锤安放到规定的高度 , 然后下落,将试样打断,并摆过支点升到某一高度h, 然后下落 , 将试样打断, 并摆过支点升到某一高度 ,试 样在冲击试验力一次作用下,折断时所吸收的功为冲击吸 样在冲击试验力一次作用下,折断时所吸收的功为冲击吸 收功为Ak 收功为
b
内力:试样受拉伸力F作用后 作用后, 内力:试样受拉伸力 作用后,导致材料内部之间产生同样大 小的相互作用力 应力:单位横截面积上的内力, 应力:单位横截面积上的内力,σ s 。
σ =FA 屈服点(屈服极限) 屈服点(屈服极限):金属产生屈服现象时的应力
s s o
σ 抗拉强度(强度极限) 金属拉断前承受的最大拉应力, 抗拉强度(强度极限):金属拉断前承受的最大拉应力, b
120
HRA HRB 金刚石圆锥 60 体 100 直径为 1.588mm钢 钢 球 金刚石圆锥 150 体
°
25~ 25~100 适用于测量非铁金属退火、火 适用于测量非铁金属退火、 相当60 (相当60 等 ~230HB ) 20~67 ~ (相当 HB230~ HB230~ 700) 适用于调质钢、 适用于调质钢、淬火钢等
2.452(250)
60
表-1
• 120HBS10 / 1000 / 30 代 表 用 10mm 钢 球 , 在 1000kgf (10kN)试验力作用下保持 ,测得的布氏硬度值。 )试验力作用下保持30s,测得的布氏硬度值。 • 布氏硬度试验法一般用于试验各种硬度不高的钢材、铸铁、 布氏硬度试验法一般用于试验各种硬度不高的钢材、铸铁、 有色金属等,也用于试验经淬火、回火但硬度不高的钢件。 有色金属等,也用于试验经淬火、回火但硬度不高的钢件。 • 由于布氏硬度试验的压痕较大,试验结果能更好地代表试 由于布氏硬度试验的压痕较大, 件的硬度。 件的硬度。
二、洛氏硬度实验
• 洛氏硬度试验法原理:根据压痕的塑性变形深度来衡量硬 洛氏硬度试验法原理: 原理 试验时, 度 。试验时 , 先加初始试验力 98N(10kgf), 使压头紧 ( ) 密接触试件表面a,并压入到b处 密接触试件表面 ,并压入到 处,以此作为衡量压入深度 的起点,再加主试验力使压头压入到c处 的起点 , 再加主试验力使压头压入到 处 , 然后去掉主试 验力,由于被试金属弹性变形的消除,压头向上回升到d 验力, 由于被试金属弹性变形的消除,压头向上回升到 洛氏硬度计表盘上读出即可 表盘上读出即可。 处。洛氏硬度计表盘上读出即可。
• HBS适用于测量低于布氏硬度值 适用于测量低于布氏硬度值450的材料; 的材料; 适用于测量低于布氏硬度值 的材料 HBW 适用于 测量低于布氏硬度值 测量低于布氏硬度值650的材料 。 的材料。 的材料