放电等离子体水处理技术中的若干问题

放电等离子体水处理技术中的若干问题
放电等离子体水处理技术中的若干问题

放电等离子体水处理技术中的若干问题X Study on the T echnique of Water-treatment by Dischar ge Plasma

叶齐政,万 辉,雷 燕,张家聪,李 劲

(华中科技大学环境科学与工程学院,武汉430074)

摘 要 根据放电等离子体水处理技术研究现状,认为其基本作用可能存在4个基本过程:原生、次生、再生和附属过程;根据介质的形态将不同的水处理放电形式系统地划分为气相、液相、混合两相3种形式,并作了比较。

Abstr act Non-ther mal plasma processing using electric dischar ge has been investigated as a n alter nat ive met hod for the degr adat ion of or ganic compounds cont ained in water. Four basic pr ocesses:or iginal,secondar y,reprocess and subsidiar y processes ar e pr esented.Thr ee kinds of dischar ge for ms:gas,liquid and two-phase mixture dischar ge for ms ar e pr esent ed for waste-wa ter pr ocessing.Some pr oblems existing in thistechnique ar e discussed in this paper.

关键词 放电 等离子体 废水

Key wor ds discharge plasma wastewater

中图分类号 TM213,TM832 文献标识码 A

0 引 言

放电等离子体水处理技术近20年来得到较快的发展。发展方向体现在4个方面:作用过程和机理、废水处理、放电形式及电源4方面的研究。本文主要介绍前3个方面,并探讨一些基本问题。

1 作用过程和机理

放电反应过程和机理的研究包括两个方面:一是放电反应过程的理论研究,目前主要是化学动力学过程和放电理论模型的结合;二是实验研究,主要是各种活性成分(自由基)的检测。

电子引起的等离子体化学反应机理最早的学说之一是光化学学说,认为放电的化学作用(无声放电中臭氧的生成)仅为放电的紫外线作用。后发展的静离子学说把放电的化学作用归结于气体中正、负离子或电子的再结合,把电离看成化学过程的初始阶段。后来又提出了关于无声放电化学作用的动离子学说,把离子作为活性粒子,其原理是把“临界活化”的概念应用到放电化学反应,认为活化可由热及电的途径传递给分子。有作者提出了能量催化的概念,认为基本的活化过程是由激发分子和离子经由碰撞将能量传递给正常分子(化学活性粒子)[1]。

化学动力学过程及其与放电理论的结合方面研究较少。在计算动力学参数时,一般将受放电影响的化学过程的微分方程简化为代数方程(其它过程仍采用微分方程);或者在解玻尔兹曼方程和物料平衡方程时作了较多的近似,尚无公认的理论模型。

研究自由基的检测方面国外较多,国内限于实验条件开展得较少。脉冲放电中活性物种羟基、过氧化氢、臭氧在水和水溶液中的产生过去已有研究,活性物种羟基、过氧化氢可直接被水中流注电晕放电产生;当氧气以气泡形式通过放电区域时产生大量臭氧。Joshi等在1995年确定了由于脉冲放电形成羟基、过氧化氢、水化电子的反应速率[2]。Bing Sun, Masayuki Sato等在1997年使用光谱分析仪探测了自由基的产生,物化参数、放电条件对自由基产生的影响[3,4]。Masato Kur ahashi等在1997年研究了在水中电解气泡放电产生自由基的过程。他们观测到在水中正直流电压下电解产生气泡,在气泡中产生放电的过程[5]。

目前一般公认存在的理化反应包括:各种自由基、电场、强紫外线辐射、高压激波、臭氧、高能电子的轰击等内容,根据前述资料它们可分4个基本作用于废水的过程:一是原生过程,即基本和初始过程。包括高能电子的冲击(打碎大分子或开环)、强场及电解作用(存在部分放电形式中),放电产物有紫外线、臭氧、自由基等,主要由物理参数决定,例如电压、电流、波形、介电常数和电导率等。二是次生过程,包括紫外线、臭氧、自由基以及它们的联合作用、部分放电形式产生的激波作用,次生过程主要由原生过程的产物产生,且该过程的有无和强弱可调节,例如调节气体可调节紫外线和臭氧的有无和强弱。三是最后产生的再生过程,包括化学反应的产物再次受放电影响的过程及反应产物离开放电区域以后发生的反应过程,主要由废水的化学成分决定。四是附属过程,包括电极和容器材料参与的反应过程。由于有这些过程,目前仅从终产物进行研究,无法搞清反应过程,虽然在线光谱观测具有较好的优势[6],但存在观测的区域问题。不同放电形式中均可观测和检测到上述每种作用废水的过程,但一般未清楚划

·

32

· Apr.2003 HIGH VOLTAGE ENGINEERING Vol.29No.4 X国家自然科学基金资助项目(50237010)

分。只有在对这些过程明确划分的基础上,才能采用正确、有效的研究方法。2 废水处理效果

目前对印染、硝基苯、水中苯乙酮、TN T 、对氯苯酚、4-氯酚和苯酚、味精、垃圾、二氯苯胺等废水的处理研究均有较好的效果,主要指标是有害成分的降解率(但尚无经济指标)[7~15]。目前的处理水平为印染废水处理40s 后脱色率达95%以上,水样上清液COD 降低42.6%[8]

;苯乙酮放电处理30min

的最高降解率达92%

[10]

;硝基苯废水循环放电一次

降解率在50%左右,二次总降解率为80%[11]

;氯苯

酚处理30min 后降解率达96%

[13]

。但对终产物的

研究仅限于废水的成分,而对气相产物研究较少。目

前研究的另一问题仅考虑到放电可降解和分解大分子,而不提放电过程中也存在合成作用过程,放电是否带来新的有害物质也需要给予充分的重视。放电等离子体水处理技术和其它技术联用是一个重要应用途径,放电作用打碎大分子或开环后,小分子的处理由其它技术处理可能更加有效和节能。因此评价指标不能仅从降解率考虑,还要从提高可生物降解性方面考虑,如BOD/COD 指标。放电等离子体水处理技术和催化剂的联用是一个新的研究方向。前者基本上是无选择性过程,后者为有选择性过程,废气处理中研究较多,但未在废水处理中应用。3 放电形式

放电形式按外加电压分直、交流、脉冲3种;按介质参与反应的相态分气相(液膜表面的气体放电)、液相(水中放电)、气液混合两相等几种。有关电极结构、介质等放电形式的研究国内开展得较多。3.1 气相放电形式

液膜表面的气体放电产物作用于液体,同时液体的挥发性气体成分参于反应(图1)。也有利用介质(玻璃容器壁)形成介质阻挡放电,以降低电流(图2)。这种放电形式处理水量少,

一般不采用。

图1 水膜表面无声放电 图2 水膜表面介质阻挡放电

3.

2 液相放电形式

在水中进行高压脉冲放电(液电效应)是上世纪

50年代发展起来的,液中放电一般在极不均匀电场中由尖(线)电极产生。其改进形式是液电空化技术(图3),即在反应器中通入气体,气泡的局部放电增加了反应活性分子(主要放电区域仍在液体中)。这种放电形式提出早

[16]

,研究较多,主要问题是处理

区域有限,电极的浸蚀较为严重。

3.3 混合两相放电形式

混合两相放电基本形式是在气中喷雾状液体或在液体中引入气泡,在气体和液体表面产生放电,目的是有尽可能大的等离子体与水接触的面积。3.3.1 气中喷雾

该种放电形式一般是在极不均匀电场中由尖(线)电极产生,利用机械喷雾形成气液混合两相体(图4),使放电易于发生,同时放电产物和液体有较大的接触面,比较适合工业应用。目前已初步应用于焦化废水和垃圾填埋场渗滤液处理,问题是并非全部水通过电晕区,需要循环多次[17]。

图3 液中放电形式 图4 气中喷雾放电形式

3.3.2 水中气泡

将电极置于水中,同时在水中吹进气泡时的放电(见图5

[18]

),也有利用玻璃器壁形成介质阻挡放电的(见图6

[19]

)。气泡中放电时,高能电子、臭氧以

及紫外线能够充分和水接触,易于产生羟基等自由基而处理废水。但在水中气泡产生放电需要解决两

个问题:1)水、空气的介电常数分别为80、1,电压不易加到这种混合介质中,需要快的上升时间和窄脉宽的高压脉冲。2)要在气泡中而不在水中产生放电,需要气泡中的场强高于水中,要求外加电场较均匀;为使气泡在水中运动的时间较长(处理废水较充分),要加大气泡的路径,必须多组水中电极。3.3.3 气中喷雾EHD

电流体动力学效应(简称EHD )过去主要用于静电喷雾、喷涂、换热和超细粉末制备等,EHD 喷雾过程中会有电晕放电,用它处理废水,形成气液混合两相电流体放电,其优点是:1)使待处理的液体全部

通过强放电区域,提高效率;2)勿需机械喷雾装置

[20]

。补充气体的改进形式见图7

[21]

,也有利用介

质阻挡放电的形式[22]。该种放电形式也存在电极浸

·33·2003年4月 高电压技术 第29卷第4期

蚀的问题,

处理的水量有限。

图5 水中气泡放电 图6 介质阻挡放电 图7 EHD 放电

4 结 语

放电等离子体处理难降解有机废水是效果明显的新技术,具有潜在的应用前景。目前的问题是:1提高降解效果的方法和手段针对性不强,由于放电过程较复杂,加上放电过程易受探测装置的影响和强烈的电磁干扰,物理和化学参数的在线检测困难。o工业应用成本较高,实际应用的报道较少,一则稳定、长时连续工作的高压脉冲电源的成本较高,再则究竟需要什么样的电参数,目前尚无明确的结论(即使对一种废水处理,其规模化应用要求的电参数也没有)。这些问题给该项技术的机理研究提出了深入研究的要求。

1 安得列夫著,金道森译.放电中的有机合成[M].北京,

科学出版社,1959

2 Joshi A A,Locke B R.Format ion of hydr oxyl r adicals,

Hydrogen,per oxide and aqueous electrons by pulsed streamer cor ona dischar ge in aqueous solution,Jour nal of hazar dous mater ials [J ],1995,41:3~30

3 Bing Sun,Masayuki Sat o,Clements J S.Opt ical st udy

active species produced by a pulsed str emer cor ona dis-char ge in water ,Journal of Electr ostatics[J],1997,39:189~202

4 Bing Sun,Sato M,Clements J S.Non-uniform pulse

dischar ge-induced r adical production in dist illed wa ter,Journal of Electrostatics [J ],1998,43:115~126

5 M asato Kurahashi ,Shinji Katsurs ,Akir a Mizuno .R ad-ical format ion due to discharge inside bubble in liquid,Journal of Electrostatics[J],1997,42:93~1056 刘晓春,冯长根,朱祖良等.水中高压脉冲放电的光辐射

研究[J ].北京理工大学学报,1999,19(1):8~127 Willber g D W,La ng P S,Hochemer R H.Degradation

of 4-chlor ophenol ,3,4-dichloroaniline and 2,4,6-tr initr ot oluene in an elecur ohydr aulic discharge reactor [J ],Envir on.Sci.Technol,1996,30:2526~2534

8 李胜利,李 劲.脉冲电晕放电对印染废水脱色效

果的实验研究[J].环境科学,1996,17(1):13~159 Lang P S,Ching W K,Willber g D M et al.Oxida-tive degradation of 2,4,6-trinitr otolene by ozone in an electr ohydr aulic discharge reactor [J],Envi-r on.Sci.Technol.1998,32:3142~3148

10 文岳中,姜玄珍,吴 墨.高压脉冲放电降解水中

苯乙酮的研究[J ].中国环境科学,1999,19(5):406~409

11 李 劲,叶齐政,郭香会等.电流体直流放电降解水中

硝基苯的研究[J ].环境科学,2001,22(5):99~10112 胡祺昊,王黎明,关志成等.脉冲电流处理印染废水的

研究[J].高压电器,2001,37(6):11~13

13 文岳中,姜玄珍,刘维屏.高压脉冲放电与臭氧氧化联

用降解水中对氯苯酚[J ].环境科学,2002,23(2):73~76

14 陈银生,张新胜,袁渭康.高压脉冲电晕放电等离子体

降解废水中苯酚[J].环境科学学报,2002,22(5):566~569

15 张越非,叶齐政,赵 纯等.味精厂废水混合两相体放

电预处理的研究[J].高电压技术2002,28(2):39~4016 Clements J S,Sato M ,Davis R H.Pr eliminar y investi-gation of prebr eakdown phenomena and chemical r eac-tions using a pulsed high-voltage discha rge in water [J].I EEE transactions on indust ry application,1987.IA -23(2):224~235

17 李 劲,王泽文,高秋华等.放电等离子体水处理技术

中的放电问题[J].高电压技术,1997,23(2):7~818 Satoshi Ihar a,Tomoa ki M iichi,Sabur oh Sa toh et al.

Ozone gener ation by a dischar ge in bubbled wat er [J ].Jpn .J .Appl .Phys ,1999,38:4601~4604

19 印永祥,程仕清,吴广军.大气压下交流辉光放电等离

子体气—液相化学反应器[J].核聚变与等离子体物理,1997,17(4):46~49

20 叶齐政,齐军,顾温国等.EHD 喷雾放电现象研究[J].

高压电器,2000,36(5):13~16

21 叶齐政,万 辉,李 劲等.流量对气液混合两相体电

流体放电的影响[J ].高电压技术,2002,28(9):42~4322 孙 明,赵小明,许德玄.水放电极雾化净水技术[J].

高电压技术,2000,26(4):36~37

(收稿日期 2003-02-25)

叶齐政 1965年生,博士,副教授,从事电工与环境工程的研究和教

学。电话:(027)87542224

·34· Apr.2003 HIGH VOLTAGE ENGINEERING Vol.29No.4

辉光放电

辉光放电(Glow discharge) 辉光放电是放电等离子体中最常见的一种放电形式,应用也最广泛。比如,一般的气体激光器(He-Ne 激光器、CO2激光器等)、常用光源(荧光灯)、空心阴极光谱灯等。同时辉光放电也是放电形式中放电最稳定的放电形式,所以有必要对辉光放电进行较为详细的讨论。 §6.1 辉光放电的产生及典型条件 最简单的辉光放电的结构如图6.1(a)。调节电源电压E或限流电阻R,就会得到如图6.1(b)的V-A 特性曲线。管电压U调节到等于着火电压U b时,放电管内就会从非自持放电过渡到自持放电,此时,放电电流I会继续增大,管压降U下降,进入辉光放电区。放电管发出明亮的辉光,其颜色由放电气体决定。限流电阻R应比较大,以保证放电稳定在辉光放电区。如果限流电阻R很小,放电很容易进入弧光放电区。 辉光放电的特点:比较高的放电管电压U(几百~几千V),小的电流I(mA量级); 弧光放电的特点:很低的放电电压U(几十V),大电流放电I(A量级甚至更大)。 辉光放电的典型条件: ①放电间隙中的电场分布比较均匀,至少没有很大的不均匀性;例如He-Ne激光器的放电管内电场近似 均匀。 ②放电管内气体压强不是很高,要求满足(Pd)Ubmin<Pd<200Kpa cm(巴邢曲线的右支),d---放电管内 电极间距,(Pd)Ubmin--巴邢曲线最低点U bmin对应的Pd值。一般P=4Pa~14Kpa时,可出现正常辉光放电,而Pd>200Kpa cm时,非自持放电通常会过渡到火花放电或丝状放电; ③放电回路中的电源电压和限流电阻准许放电管的放电电流工作在mA量级,且电源电压应高于着火电 压U b,否则不能起辉。

辉光放电与等离子体

辉光放电与等离子体 1、辉光放电 通常把在电场作用下气体被击穿而导电的物理现象称之为气体放电。气体放电有“辉光放电”和“弧光放电”两种形式。辉光放电又分为“正常辉光放电”与“异常辉光放电”两种,它们是磁控溅射镀膜工艺过程中产生等离子体的基本环节。 辉光放电(或异常辉光放电)可以由直流或脉冲直流靶电源通过气体放电形成,也可以用交流(矩形波双极脉冲中频电源、正弦波中频与射频)靶电源通过真空市内的气体放电产生。 气体放电时,充什么样的工作气体、气压的高低、电流密度的大小、电场与磁场强度的分布与高低、电极的不同材质、形状和位置特性等多种因素都会影响到放电的过程和性质,也会影响到放电时辐射光的性质和颜色。 (1)直流辉光放电 ①在阴-阳极间加上直流电压时,腔体内工作气体中剩余的电子和离子在电场的作用下作定向运动,于是电流从零开始增加; ②当极间电压足够大时,所有的带电离子都可以到达各自电极,这时电流达到某一最大值(即饱和值); ③继续提高电压,导致带电离子的增加,放电电流随之上升;当电极间的放电电压大于某一临界值(点火起辉电压)时,放电电流会突然迅速上升,阴-阳极间电压陡降并维持在一个较低的稳定值上。工作气体被击穿、电离,并产生等离子体和自持辉光放电,这就是“汤生放电”的基本过程,又称为小电流正常辉光放电。 ④磁控靶的阴极接靶电源负极,阳极接靶电源正极,进入正常溅射时,一定是在气体放电伏-安特性曲线中的“异常辉光放电区段”运行。其特点是,随着调节电源输出的磁控靶工作电压的增加,溅射电流也应同步缓慢上升。 (2)脉冲直流辉光放电 脉冲或正弦半波中频靶电源的单个脉冲的气体放电应与直流气体放电伏-安特性曲线异常辉光放电段及之前段的变化规律相符。可以将其视为气体放电伏-安特性在单个脉冲的放电中的复现。脉冲直流靶电源在脉冲期间起辉溅射,在脉冲间隙自然灭辉(因频率较高,肉眼难以分辨)。 溅射靶起辉放电后,当电源的输出脉冲的重复频率足够高时,由于真空腔体内的导电离子还没有完全被中和完毕,第二个(以后)重复脉冲的复辉电压与溅射靶的工作电压接近或相同。当电源输出脉冲的重复频率很低(例如几百HZ以下)或灭弧时间过长(大于100ms以上),

等离子体-第一部分

等离子体化工导论讲义 前言 等离子体化工是利用气体放电的方式产生等离子体作为化学性生产手段的一门科学。因其在原理与应用方面都与传统的化学方法有着完全不同的规律而引起广泛的兴趣,自20世纪70年代以来该学科迅速发展,已经成为人们十分关注的新兴科学领域之一。 特别是,近年来低温等离子体技术以迅猛的势头在化工合成、材料制备、环境保护、集成电路制造等许多领域得到研究和应用,使其成为具有全球影响的重要科学与工程。例如:先进的等离子体刻蚀设备已成为21世纪目标为0.1μm线宽的集成电路芯片唯一的选择,利用等离子体增强化学气相沉积方法制备无缺陷、附着力大的高品位薄膜将会使微电子学系统设计发生一场技术革命,低温等离子体对废水和废气的处理正在向实际应用阶段过渡,农作物、微生物利用等离子体正在不断培育出新的品种,利用等离子体技术对大分子链实现嫁接和裁剪、利用等离子体实现煤的洁净和生产多种化工原料的煤化工新技术正在发展。可以说,在不久的将来,低温等离子体技术将在国民经济各个领域产生不可估量的作用。 但是,与应用研究的发展相比,被称为年轻科学的等离子体化学的基础理论研究缓慢而且较薄弱,其理论和方法都未达到成熟的地步。例如,其中的化学反应是经过何种历程进行,活性基团如何产生等等。因此,本课程力求介绍这些方面的一些基础理论、研究方法、最新研究成果以及应用工艺。

课程内容安排: 1、等离子体的基本概念 2、统计物理初步 3、等离子体中的能量传递和等离子体的性质 4、气体放电原理及其产生方法 5、冷等离子体中的化学过程及研究方法 6、热等离子体中的化学过程及研究方法 7、当前等离子体的研究热点 8、等离子体的几种工业应用 学习方法: 1、加强大学物理和物理化学的知识 2、仔细作好课堂笔记,完成规定作业 3、大量阅读参考书和科技文献

放电等离子体水处理技术中的若干问题

放电等离子体水处理技术中的若干问题X Study on the T echnique of Water-treatment by Dischar ge Plasma 叶齐政,万 辉,雷 燕,张家聪,李 劲 (华中科技大学环境科学与工程学院,武汉430074) 摘 要 根据放电等离子体水处理技术研究现状,认为其基本作用可能存在4个基本过程:原生、次生、再生和附属过程;根据介质的形态将不同的水处理放电形式系统地划分为气相、液相、混合两相3种形式,并作了比较。 Abstr act Non-ther mal plasma processing using electric dischar ge has been investigated as a n alter nat ive met hod for the degr adat ion of or ganic compounds cont ained in water. Four basic pr ocesses:or iginal,secondar y,reprocess and subsidiar y processes ar e pr esented.Thr ee kinds of dischar ge for ms:gas,liquid and two-phase mixture dischar ge for ms ar e pr esent ed for waste-wa ter pr ocessing.Some pr oblems existing in thistechnique ar e discussed in this paper. 关键词 放电 等离子体 废水 Key wor ds discharge plasma wastewater 中图分类号 TM213,TM832 文献标识码 A 0 引 言 放电等离子体水处理技术近20年来得到较快的发展。发展方向体现在4个方面:作用过程和机理、废水处理、放电形式及电源4方面的研究。本文主要介绍前3个方面,并探讨一些基本问题。 1 作用过程和机理 放电反应过程和机理的研究包括两个方面:一是放电反应过程的理论研究,目前主要是化学动力学过程和放电理论模型的结合;二是实验研究,主要是各种活性成分(自由基)的检测。 电子引起的等离子体化学反应机理最早的学说之一是光化学学说,认为放电的化学作用(无声放电中臭氧的生成)仅为放电的紫外线作用。后发展的静离子学说把放电的化学作用归结于气体中正、负离子或电子的再结合,把电离看成化学过程的初始阶段。后来又提出了关于无声放电化学作用的动离子学说,把离子作为活性粒子,其原理是把“临界活化”的概念应用到放电化学反应,认为活化可由热及电的途径传递给分子。有作者提出了能量催化的概念,认为基本的活化过程是由激发分子和离子经由碰撞将能量传递给正常分子(化学活性粒子)[1]。 化学动力学过程及其与放电理论的结合方面研究较少。在计算动力学参数时,一般将受放电影响的化学过程的微分方程简化为代数方程(其它过程仍采用微分方程);或者在解玻尔兹曼方程和物料平衡方程时作了较多的近似,尚无公认的理论模型。 研究自由基的检测方面国外较多,国内限于实验条件开展得较少。脉冲放电中活性物种羟基、过氧化氢、臭氧在水和水溶液中的产生过去已有研究,活性物种羟基、过氧化氢可直接被水中流注电晕放电产生;当氧气以气泡形式通过放电区域时产生大量臭氧。Joshi等在1995年确定了由于脉冲放电形成羟基、过氧化氢、水化电子的反应速率[2]。Bing Sun, Masayuki Sato等在1997年使用光谱分析仪探测了自由基的产生,物化参数、放电条件对自由基产生的影响[3,4]。Masato Kur ahashi等在1997年研究了在水中电解气泡放电产生自由基的过程。他们观测到在水中正直流电压下电解产生气泡,在气泡中产生放电的过程[5]。 目前一般公认存在的理化反应包括:各种自由基、电场、强紫外线辐射、高压激波、臭氧、高能电子的轰击等内容,根据前述资料它们可分4个基本作用于废水的过程:一是原生过程,即基本和初始过程。包括高能电子的冲击(打碎大分子或开环)、强场及电解作用(存在部分放电形式中),放电产物有紫外线、臭氧、自由基等,主要由物理参数决定,例如电压、电流、波形、介电常数和电导率等。二是次生过程,包括紫外线、臭氧、自由基以及它们的联合作用、部分放电形式产生的激波作用,次生过程主要由原生过程的产物产生,且该过程的有无和强弱可调节,例如调节气体可调节紫外线和臭氧的有无和强弱。三是最后产生的再生过程,包括化学反应的产物再次受放电影响的过程及反应产物离开放电区域以后发生的反应过程,主要由废水的化学成分决定。四是附属过程,包括电极和容器材料参与的反应过程。由于有这些过程,目前仅从终产物进行研究,无法搞清反应过程,虽然在线光谱观测具有较好的优势[6],但存在观测的区域问题。不同放电形式中均可观测和检测到上述每种作用废水的过程,但一般未清楚划 · 32 · Apr.2003 HIGH VOLTAGE ENGINEERING Vol.29No.4 X国家自然科学基金资助项目(50237010)

实验三 接触辉光放电电解阳离子染料废水演示实验

实验三接触辉光放电电解阳离子染料废水演示实验 一、实验目的 1.掌握接触辉光放电法降解原理; 2.熟悉接触辉光放电电解阳离子染料废水演示实验操作; 3.加深对辉光放电电解机理的理解。 二、实验原理 接触辉光放电是在置有板状电极的玻璃管内充入低压(约几毫米汞柱)气体或蒸气,当两极间电压较高(约1000V)时,稀薄气体中的残余正离子在电场中加速,有足够的动能轰击阴极,产生二次电子,经簇射过程产生更多的带电粒子,使气体导电。辉光放电的特征是电流强度较小(约几毫安),温度不高,故电管内有特殊的亮区和暗区,呈现瑰丽的发光现象。 接触辉光放电电解(CGDE)技术是一种新型的产生液相等离子体的电化学方法,兼具等离子体化学和电化学技术的优点,其电解过程不仅包括传统的法拉第电解,而且还包括非法拉第电解,是一类特殊的电化学过程。 在电解过程中,随着工作电压的逐渐升高,通常的法拉第电解将转化为辉光放电电解(非法拉第电解),并且产生大量高能活性粒子(等离子体)。因此,接触辉光放电电解也可以理解为一种产生等离子体的反应过程。等离子体在溶液中与水分子反应生成羟基自由基,而后者极易与有机分子发生氧化反应,破坏有机分子结构。基于该原理,利用接触辉光放电电解技术处理印染废水。 三、实验过程 1.试剂与仪器 亚甲基蓝MB、甲基紫MV(均为指示级)、硫酸钠、氢氧化钠、硫酸MV (均为分析纯);溶液采用二次蒸馏水配制。 UV23400紫外可见分光光度计(日本岛津)、722型可见光分光光度计(上海第三分析仪器厂)、PH23C型pH计(上海日岛)、DL2180超声波清洗器(浙江海天电子仪器厂)。

2. 反应装置 反应装置包括一个高压电源DH172226(北京大华仪器厂)、反应器(自制,见图1)和磁力搅拌器等。高压电源可以提供稳定的直流电压,可调范围为0~1000 V,电流范围为0~300 mA。阳极采用铂丝(直径D =0. 5 mm) ,封闭在石英玻璃管内;阴极采用石墨棒(直径D =10 mm)。反应器外加冷凝水循环装置,以保持反应体系温度不变。通过磁力搅拌器使反应液充分混合,同时调节搅拌器的转速以及支持电解质的浓度,控制反应体系的电流变化范围在0~300 mA。 图1辉光放电电解反应装置 3. 试验方法 试验条件: 阳极直径/mm 阴极直径/mm 反应液体积/mL 反应温度/K 0. 5 10 200 298 阳离子染料废水降解演示试验条件分别为:工作电压值(A)为650V、反应溶液pH值(B)为7、辉光放电时间(C)为10min、电解质Na2SO4浓度(D)为2 g/L。 分别配置200 mg/L的亚甲基蓝、甲基紫水溶液。将电极超声活化5分钟去除表面残留物质。接触辉光放电作用一定时间后,用分光光度计测定两种溶液最大

气体放电中等离子体的研究

气体放电中等离子体的研究 091120*** 一、实验目的 1、了解等离子体的产生和有关参数的物理意义 2、采用探针法测量气体放电等离子体的电子温度和电子密度 二、实验原理 1.等离子体及其物理特性 等离子体(又称等离子区)定义为包含大量正负带电粒子、而又不出现净空间电荷的电离气体。也就是说,其中正负电荷密度相等,整体上呈现电中性。等离子体可分为等温等离子体和不等温等离子体,一般气体放电产生的等离子体属不等温等离子体。 等离子体有一系列不同于普通气体的特性: (1)高度电离,是电和热的良导体,具有比普通气体大几百倍的比热容。 (2)带正电的和带负电的粒子密度几乎相等。 (3)宏观上是电中性的。 虽然等离子体宏观上是电中性的,但是由于电子的热运动,等离子体局部会偏离电中性。电荷之间的库仑相互作用,使这种偏离电中性的范围不能无限扩大,最终使电中性得以恢复。偏离电中性的区域最大尺度称为德拜长度λD。当系统尺度L>λD时,系统呈现电中性,当L<λD时,系统可能出现非电中性。 2.等离子体的主要参量 描述等离子体的一些主要参量为: (1)电子温度Te。它是等离子体的一个主要参量,因为在等离子体中电子碰撞电离是主要的,而电子碰撞电离与电子的能量有直接关系,即与电子温度相关联。 (2)带电粒子密度。电子密度为ne,正离子密度为ni,在等离子体中ne≈ni。 (3)轴向电场强度EL。表征为维持等离子体的存在所需的能量。 (4)电子平均动能Ee。 (5)空间电位分布。 此外,由于等离子体中带电粒子间的相互作用是长程的库仑力,使它们在无规则的热运动之外,能产生某些类型的集体运动,如等离子振荡,其振荡频率Fp称为朗缪尔频率或等离子体频率。电子振荡时辐射的电磁波称为等离子体电磁辐射。 3.稀薄气体产生的辉光放电 本实验研究的是辉光放电等离子体。 辉光放电是气体导电的一种形态。当放电管内的压强保持在10~102Pa时,在两电极上加高电压,就能观察到管内有放电现象。辉光分为明暗相间的8个区域,在管内两个电极间的光强、电位和场强分布如图2.3-1所示。8个区域的名称为(1)阿斯顿区,(2)阴极辉区,(3)阴极暗区,(4)负辉区,(5)法拉第暗区,(6)辉区(即正辉柱),(7)阳极暗区,(8)阳极辉

中国污水处理技术

中国污水处理技术 作者:本网编辑文章来源:本网点击数:0 更新时间:2010-09-09 水污染现状 中国环境状况公报显示,2008年全国地表水污染依然严重,全国七大水系407个国家监控断面中, Ⅰ~Ⅲ类、Ⅳ~Ⅴ类、劣Ⅴ类水质的断面比例分别为49.9%、26.5%和23.6%,七大水系水质总体为中度污染,浙闽区河流水质为轻度污染,西北诸河水质为优,西南诸河水质良好,湖泊(水库)富营养化问题突出;近岸海域水质总体为轻度污染。 “十一五”期间,淮河、海河、辽河、巢湖、滇池、松花江、三峡库区及其上游、黄河中上游等流域水污染防治规划,共安排污染治理项目2712个,投资1600亿元。截至2008年9月,已经建成881个,在建960个,完成投资510亿元。2008年工业废水治理投资194.6亿元。 根据政府对再生水的规划测算,2010年中国城市污水再生设施将达到680万t/d,再生水工程新增投资约100亿元。 废水污染治理新技术 城市生活污水 目前,中国城市污水处理主要采用生物活性污泥法。目前形成的较典型的二级处理工艺有:传统活性污泥法、AB法、A/O工艺、A2/O工艺、氧化沟工艺、ICEAS工艺、CASS工艺、SBBR工艺、BIOLAK工艺等。其中应用较多的为氧化沟工艺和CASS工艺(CASS工艺和BIOLAK工艺为较新型工艺)。 CASS工艺 CASS工艺是一种循环式活性污泥法,是SBR工艺的改进形式,通过曝气和不曝气阶段的交替运行,实现反应器以厌氧—缺氧—好氧—缺氧—厌氧的方式运行。CASS池的变容运行提高了系统对水量水质变化的适应性和操作的灵活性;选择器的设置加强了微生物对磷的释放、反硝化、对有机物的吸附吸收等作用,增加了系统运行的稳定性,能很好地缓冲进水水量与水质的波动,有效去除污水中有机碳源污染物,具有良好的脱氮、除磷功能,排出的剩余污泥稳定化程度较高。同时CASS工艺还能有效防止污泥膨胀。 BIOLAK工艺 BIOLAK工艺是由德国冯?诺顿西公司开发的一种具有脱氮除磷功能的活性污泥处理系统。BIOLAK工艺的曝气头悬挂在浮链上,浮链被松弛地固定在曝气池两侧,每条浮链可在池内一定区域蛇形运动,在曝气链运动过程中自身的自然摆动就可以达到很好的混合效果,节省了混合所需的能耗。BIOLAK工艺采用HDPE 防渗膜衬里的土池结构,减少了投资;其活性污泥负荷较低,污泥回流量大,污泥在曝气池中的停留时间长,减少了污泥量,增加了剩余污泥的稳定性,有利于后续处置。 工业废水处理

射频放电等离子体过程

1、论文(设计)研究目标及主要任务 近些年来,等离子体的研究受到高度关注,由射频放电方式产生的低气压、高密度等离子体在新材料的制备及材料表面改性等工艺中得到了越来越广泛的应用,为了控制离子入射到极板上的行为,通常在极板上施加一射频(RF)偏压,从而在极板附近形成一射频等离子体鞘层。本课题将对离子在射频鞘层中的运动行为进行跟踪研究,力求找到等离子体中各基本粒子随射频频率变化而引起的分布情况。利用流体力学方程,将采用一个自洽的无碰撞射频等离子体鞘层动力学模型实施数值模拟。 2、论文的主要内容 介绍等离子体的概念;等离子体的流体力学理论;对射频等离子体放电的流体动力学模拟射频等离子体鞘层动力学模型给予论述。对模拟结果进行分析研究,为其应用提供理论基础。 3、论文的基础条件及研究路线 根据现有的研究成果,描述任意频率段的射频鞘层演化过程以及对射频放电的物理过程进行分析计算,并指明今后的研究方向。 4、主要参考文献 [1] 居建华.氮对类金刚石薄膜的微观结构内应力与附着力的影响[J].物理学报,2000,49(11):2310-2314. [2] 马锡英.氮化硼薄膜的生长特性粘附性研究[J].物理学报,1998,304(05):3-101. [3] 戴忠玲.射频等离子体鞘层动力学模型[J].物理学报,2001,50(12):2399-2402. [4] Hua-Tan Qiu.Collisional effects on the radio-frequency sheath dynamics[J].Journal of applied physics,2002,51(06):1332-1337. [5] 朱武飚.负偏压射频放电过程的流体力学模拟[J].物理学报,2000,45(07):1138-1145. [6] 马腾才.等离子体物理原理[M].合肥市:中国科学技术大学出版社,1988:1-2 32. 5、计划进度 阶段起止日期 1 收集资料,确定题目2011.01.04-2011.01.15 2 总结资料,撰写开题报告2011.01.16-2011.02.30 3 构思框架,书写论文初稿2011.03.01-2011.03.30 4 完成论文二稿,英文文献翻译2011.04.01-2011.04.30 5 修改并完成论文2011.05.01-2011.05.15指导教师:高书侠 2011 年 1 月 2 日

气体放电中等离子体的研究实验报告 南京大学

南京大学物理系实验报告 题目实验2.3 气体放电中等离子体的研究 姓名朱瑛莺 2014年4月4日学号 111120230 一、引言 等离子体作为物质的第四态在宇宙中普遍存在。在实验室中对等离子体的研究是从气体放电开始的。朗缪尔和汤克斯首先引入“等离子体”这个名称。近年来等离子体物理学有了较快发展,并被应用于电力工业、电子工业、金属加工和广播通讯等部门,特别是等离子体的研究,为利用受控热核反应,解决能源问题提供了诱人的前景。 二、实验目的 1、了解气体放电中等离子体的特性。 2、利用等离子体诊断技术测定等离子体的一些基本参量。 三、实验原理 1、等离子体及其物理特性 等离子体有一系列不同于普通气体的特性: (1)高度电离,是电和热的良导体,具有比普通气体大几百倍的比热容。(2)带正电的和带负电的粒子密度几乎相等。 (3)宏观上是电中性的。 2、等离子体的主要参量 描述等离子体的一些主要参量为: (1)电子温度Te。它是等离子体的一个主要参量,因为在等离子体中电子碰撞电离是主要的,而电子碰撞电离与电子的能量有直接关系,即与电子温度相关联。 (2)带电粒子密度。电子密度为n e ,正离子密度为n i ,在等离子体中n e ≈n i 。 (3)轴向电场强度E L 。表征为维持等离子体的存在所需的能量。 (4)电子平均动能Ee 。 (5)空间电位分布。 3、稀薄气体产生的辉光放电 本实验研究的是辉光放电等离子体。 辉光放电是气体导电的一种形态。当放电管内的压强保持在10-102Pa时,在两电极上加高电压,就能观察到管内有放电现象。辉光分为明暗相间的8个区域。8个区域的名称为(1)阿斯顿区,(2)阴极辉区,(3)阴极暗区,(4)负辉区,(5)法拉第暗区,(6)正辉区(即正辉柱),(7)阳极暗区,(8)阴极辉区。 如图1所示,其中正辉区是我们感兴趣的等离子区。其特征是:气体高度电离;电场强度很小,且沿轴向有恒定值。这使得其中带电粒子的无规则热运动胜过它们的定向运动。所以它们基本上遵从麦克斯韦速度分布律。由其具体分布可得到一个相应的温度,即电子温度。但是,由于电子质量小,它在跟离子或原子作弹性碰撞时能量损失很小,所以电子的平均动能比其他粒子的大得多。这是一种非平衡状态。因此,虽然电子温度很高(约为105K),但放电气体的整体温

等离子体辉光放电 - 河南大学精品课程网

等离子体辉光放电 【实验目的】 1.观察低压气体辉光放电现象。 2.用探针法测量等离子体中电子等效温度、电子浓度、正负离子的平均速度、平均动能。 3.验证等离子体区电子浓度服从麦克斯韦速度分布律。 【教学重点】 1.观察气体辉光放电的现象; 2.等离子体辉光放电的原理; 3.探针法测量等离子体物理参数的方法; 【教学难点】 离子体物理参数的计算步骤 【时间安排】3学时 【教学内容】 一、检查学生预习情况 检查预习报告。 二、学生熟悉实验仪器设备 机械泵、真空放电管、高压电压等。 三、讲述实验目的和要求 1. 检查真空系统是否存在漏点;放电管内真空用机械泵抽至50Pa左右,并保持稳定;缓慢旋转高压电源旋钮,增加高压到1000V左右,应看到放电管被点亮;辨认各个放电区域. 2. 调节高压和气压,使放电管内等离子区稳定,并且颜色均匀(无层状);缓慢降低探极电压, 并且记录探极电压和探极电流;做lg e I V ? 特性曲线,进行数据处理,得到电子等效温度、电子平 均速度、电子平均动能、电子浓度和正离子的浓度. 四、实验原理 一、辉光放电现象 当放电管内的气压降低到几十帕时,两极加以适当的电压,管内气体开始放电,辉光由细到宽,布满整个管子。当压力再降低时,辉光便分为明暗相间的八个区域.

二、用试探电极法研究等离子区 所谓试探电极就是在放电管里引入一个不太大的金属导体,导体的形状有圆柱形、平面形、球形等。我们实验用的是圆柱形。 试探电极是研究等离子区的有力工具,利用探极的伏特——安培曲线,可以决定等离子区的各种参量。测量线路如图2所示。在测量时尽量保持管子的温度和管内气体的压强不变。 实验测得的探极电压和电流曲线如上图3。对这一曲线作如下的解释:AB 段表示加在探极上的电压比探极所在那一点的空间电位负得多,在探极周围形成了正的空间电荷套层,套层的厚度一般小于等离子区中电子的自由路程。这时探极因受正离子的包围,它的电力线都作用在正离子上,不能跑出层外,因此它的电场仅限于层内。根据气体分子运动理论,在单位时间内有eS n v i i 4 1 个正 离子靠热运动达到探极上,形成的负电流 eS n v I i i i 4 1 = 我们对图中BE 段最感兴趣,因此下面将详细地加以讨论。正离子和电子是靠热运动而到达探极上的。在曲线BD 段内,探极电压比空间电位低,因此它的电场是阻止电子运动的,靠近探极的 1阿斯顿暗区 2阴极辉区 3阴极暗区 4负辉区 5法拉第暗区 6 阳辉区 (等离子区) 7阳极暗区 8阳级辉区 图2 图3 e 200 B 100 Vs 1

等离子放电 实验

气体放电中等离子体的研究 摘要:本文阐述了气体放电中等离子体的特性及其测试方法,分别 使用单探针法和双探针法测量了等离子体参量,最后对本实验进行 了讨论。 关键词:等离子体,等离子体诊断,单探针法,双探针法 1. 引言 等离子体作为物质的第四态在宇宙中普遍存在。在实验室中对等离子体的研究是从气体放电开始的。近年来等离子体物理学有了较快发展,并被应用于电力工业、电子工业、金属加工和广播通讯等部门,特别是等离子体的研究,为利用受控热核反应,解决能源问题提供了诱人的前景。 2实验目的 1.了解气体放电中等离子体的特性, 2.利用等离子体诊断技术测定等离子体中的一些基本参量。 3. 等离子体的物理特性 1.等离子体定义为包含大量正负带电粒子、而又不出现净空间电荷的电离气体。也就是说,等离子体中正负电荷的密度相等,整体上呈电中性。 等离子体有一系列不同于普通气体的特性: (1)高度电离,是电和热的良导体,具有比普通气体大几百倍的比热容。 (2)带正电的和带负电的粒子密度几乎相等。 (3)宏观上是电中性的。 2.描述等离子体的一些主要参量为: (1)电子温度Te。它是等离子体的一个主要参量,因为在等离子体中电子碰撞电离是主 要的,而电子碰撞电离与电子的能量有直接关系,即与电子温度相关联。 (2)带电粒子密度。电子密度为ne,正离子密度为ni,在等离子体中ne≈ni。 (3)轴向电场强度EL。表征为维持等离子体的存在所需的能量。 (4)电子平均动能Ee。

(5)空间电位分布。 此外,由于等离子体中带电粒子之间的相互作用力是长程的库伦力,使他们在无规则运动的热运动之外,能产生某些类型的集体运动,如等离子震荡,其震荡频率称为朗缪尔频率或等离子体频率。电子震荡时辐射的电磁波称为等离子体电磁辐射。 3.稀薄气体产生的辉光放电 本实验研究的是辉光放电等离子体。 辉光放电是气体导电的一种形态。当放电管内的压强保持在10~102Pa时,在两电极上加高电压,就能观察到管内有放电现象。辉光分为明暗相间的8个区域,在管内两个电极间的光强、电位和场强分布如图1所示。8个区域的名称为(1)阿斯顿区,(2)阴极辉区,(3)阴极暗区,(4)负辉区,(5)法拉第暗区,(6)正辉区,(7)阳极暗区,(8)阳极辉区。其中正辉区是等离子区。 图1 正辉区的特性是:气体高度电离;电场强度较小,且沿轴向有恒定值,这使得带电粒子的无规则运动胜过定向运动,所以他们基本上遵从麦克斯韦分布。4. 等离子体诊断 测试等离子体的方法被称为诊断。等离子体诊断有探针法,霍尔效应法,微波法,光谱法等。本次实验中采用探针法。探针法分单探针法和双探针法。 (1)单探针法。探针是封入等离子体中的一个小的金属电极(其形状可以是平板形、圆柱形、球形)。其接法如图二所示。以放电管的阳极或阴极作为参考点,改变探针电位,测出相应的探针电流,得到探针电流与其电位之间的关系,即探针伏安特性曲线,如图三所示。

实验三 低压气体辉光放电等离子体的参量测量

实验三低压气体辉光放电等离子体的参量测量 一、实验目的和要求 1.观察直流低气压辉光放电等离子体的唯象结构,通过对辉光等离子体的伏安曲线 的测量,理解辉光等离子体的电学特性; 2.采用Langmuir双探针测量直流辉光放电等离子体的参数,用双探针法测量气体 放电等离子体的电子密度和电子温度。 二、实验基础知识 1. 等离子体 宏观物质存在的形态不限于一般所熟知的固、液、气三态,等离子体被称为第四态。我们知道,物质的温度越高,它的分子或原子就活跃。在固体里,一般温度下,原子和分子按照严格的规律整齐排列。温度升高到熔点以上变为液体时,它们就可以运动,但还要受到一定的限制。温度再升高,蒸发为气体后,分子或原子都能自由运动,不受限制。但原子内部的电子还被束缚在一定轨道上运动,不能脱离原子核。如果温度再升高,电子就可以脱离原子,完全自由地运动。失去电子的原子也成为带电的正离子。由正离子和电子按一定比例组成总电荷为零的物质形态,就称为等离子态。这种物质就称为等离子体,或者等离子区。因此等离子体定义为包含大量正负带电粒子,而又不出现净空间电荷的电离气体。即其中正、负电荷密度相等,整体上呈现电中性。等离子体早就被人们所见到:宏伟的极光、闪电或电网上的火花、五颜六色的霓虹灯、明亮的高压汞灯、钠灯和日光灯都是等离子体在发光;地球周围的电离层、整个太阳以及其它恒星也是由等离子体组成。等离子体可分为等温等离子体和不等温离子体。一般气体放电产生的等离子体属不等温离子体。 等离子体有一系列的不同于普通气体的独特性质:有很高的温度,气体分子高度电离,是电和热的良导体;带正电荷和带负电荷的粒子密度几乎相等,宏观上是电中性的;等离子体可以为外加电场或磁场所支配;等离子体具有很大且复杂的电导率;产生等离子体震荡。虽然等离子体在宏观上是电中性的,但是由于电子的热运动,等离子体局部会偏离电中性。电荷之间的库仑相互作用,使这种偏离电中性

焦化厂熄焦水处理技术方案

熄焦水、污水处理异味治理项目 技 术 方 案

目录 项目概 述 .................................................................. (1) 一企业概况................................................................... (1) 二设计依据................................................................... (1) 三设计原则................................................................... (1) 四工程范围................................................................... (1) 五技术参数、技术规范................................................................... (2) 工艺方 案 .................................................................. (3) 一项目概况................................................................... (3) 二异味治理信息................................................................... (3) 三工艺方

等离子体技术在废水处理中的应用

等离子体技术在废水处理中的应用 纺织行业每年排放废水9亿多吨,居工业废水“排行榜”第六位。其中,印染废水排放量占纺织工业废水排放量80%,耗水回用率仅为7%,为所有行业中最低。针对印染废水处理中存在的问题,环保工作者开发新型印染废水处理技术,主要有氧化絮凝工艺、光催化降解工艺、多相催化臭氧化法、超声强化氧化法、湿式氧化法(WAO)、加压生物氧化法、高压脉冲电流和投加高效降解菌剂等方法。 在这些处理技术中,水高级氧化技术一自由基反应受到研究者的重视。其作用机理是通过产生-OH自由基,诱发一系列自由基链反应,攻击水体中各种污染物,使之降解为二氧化碳、水和其它矿物盐。 等离子体高级氧化技术兼备湿式氧化技术、超临界水氧化法、光催化氧化法和电化学催化降解法等优点,在放电时产生大量-OH自由基,具备大规模链式反应能力,反应迅速而无选择性,具有适用性广、有机物去除率高和无二次污染等特点。 1等离子体特性及发生方法 1.1等离子体种类 (1)自然界中的等离子体 地球是个特别的环境条件,物质以凝聚态存在,能量水平极低。但在大气中,由于宇宙射线等外来高能射线的作用,会有20个离子/cm3-s。雷雨时若有闪电,则可发生很强的电离,形成可观的等离子体。

(2)人工等离子体 人类所利用的火,如火焰本身就是等离子体;爆炸、冲击波也会产生等离子体。人工 放电产生等离子体的主要方式有:辉光(荧光灯)、弧光(电弧)、电晕(高压线周围)。 (3)平衡等离子体和非平衡等离子体 在平衡等离子体中,Te(电子温度)=Ti(离子温度)=Tg(气体温度)。在非平衡等离子体中,Te/Tg(或Ti)≥102K。当等离子体系统温度大于5000K时,体系处于热平衡状态,粒 子平均动能达到一致,称为平衡等离子体。又因整个系统处于高能状态,也称高温等离子体。 低气压放电获得的等离子体,气体分子间距离非常大。自由电子可以在电场方向获得 较快的加速度,具有较高的能量。而质量较大的离子在电场中不会得到电子那样的动能,气体分子的碰撞也较轻,此时电子的平均动能远超过中性粒子和离子的动能,Te可高达10000K,而Ti和Tg可低至300~500K,这种等离子体处在非平衡状态,称为非平衡等离子体或低温等离子体。在难降解染料废水处理方面,低温等离子体技术是目前研究较为活跃的新技术。 1.2等离子体的产生 分子或原子主要由电子和原子核组成。在通常情况下,电子以不同的能级存在于核场 周围,其势能或动能不大。但是当物质受到外加能量(磁、电、热等)激发后,其原子的外层电子势能急速下降,脱离核场的束缚而逃逸,发生电离。此时,原子变成负电荷的电子和正电荷的离子。如果组成物质的分子或原子完全被电离成离子和电子,就成为物质的第四形态——等离子体。物质的等离子体态具有很高的能量,并且所有的粒子都带电荷,宏观上电荷为中性,即ne/ni(ne为电子密度,ni为离子密度),故称等离子体。 1.3等离子体特征参数 等离子体是由带负电的电子和带正电的离子组成的,电子和离子杂乱无章,犹如一团 电离了的气体,因此等离子体可以用以下特征参数来近似地表征。 (1)电离度(α) 式中:ni——离子密度; n——中性粒子密度。 (2)温度特性 从气体运动论和统计力学可知,气体分子的速度分布服从麦氏分布,因此“电子气” 就具有电子温度Te,其由电子无规运动产生的平均动能来确定,而平均动能=1.5kTe(k为

低温等离子体(介质阻挡放电)

低温等离子体技术简介(介质阻挡放电) 所谓等离子体是继固体、气体、液体三态后,列为物质的第四态,由正离子、负离子、电子和中性离子组成,因体系中正负电荷总数相等,故称为“等离子体”。 等离子体按粒子温度可分为平衡态(电子温度=离子温度)与非平衡态(电子温度>>离子温度)两类。 非平衡态等离子体电子温度可上万度,离子及中性离子可低至室温,即体系表观温度仍很低,故称“低温等离子体”,一般由气体放电产生。 气体放电有多种形式,其中工业上使用的主要是电晕放电(在去除废气中的油尘上应用已相当成熟)和介质阻挡放电(用于废气中难降解物质的去除)两种。 低温等离子体技术是近年发展起来的废气处理新技术,低温等离子体处理废气的原理为: 当外加电压达到气体的放电电压时,气体被击穿,产生包括电子、各种离子、原子和自由基在内的混合体。低温等离子体降解污染物是利用这些高能电子、自由基等活性粒子和废气中的污染物作用,使污染物分子在极短的时间内发生分解,以达到降解污染物的目的。 低温等离子体的产生途径很多,我们使用的低温等离子体工业废气处理技术采用的放电形式为双介质阻挡放电(Dielectric Barrier Discharge,简称DBD)。装置示意图如图1所示。 图1 介质阻挡放电示意图

DBD放电净化设备优点: 介质阻挡放电是一种获得高气压下低温等离子体的放电方法,由于电极不直接与放电气体发生接触,从而避免了电极的腐蚀问题。介质阻挡放电等离子体技术具有以下优点: ①介质阻挡放电产生的低温等离子体中,电子能量高,几乎可以和所有的气体分子作用。 ②反应快,不受气速限制。 ③电极与废气不直接接触,不存在设备腐蚀问题。 ④只需用电,操作极为简单,无需专人员看守,基本不占用人工费。 ⑤设备启动、停止十分迅速,随用随开,不受气温的影响。 ⑥气阻小,适用于高流速,大风量的废气处理。 ⑦工艺已相对成熟。 低温等离子体技术(介质阻挡放电)净化原理为: 在外加电场的作用下,介质放电产生的大量携能电子轰击污染物分子,使其电离、解离和激发,然后便引发了一系列复杂的物理、化学反应,使复杂大分子污染物转变为简单小分子安全物质,或使有毒有害物质转变为无毒无害或低毒低害物质,从而使污染物异味得以降解去除。因其电离后产生的电子平均能量在1eV~10eV,适当控制反应条件可以实现一般情况下难以实现或速度很慢的化学反应变得十分快速。其能量传递过程为: 电场+电子高能电子 受激电子 高能电子+受激分子活性基因 自由基 活性基因+分子(或原子)生成物+热

等离子体环保技术

等离子体技术在环境保护方面的应用1.引言 随着环境污染的日益严重,大量传统的废物处理技术已不能适应污染治理的需要,对于复杂的有害混合废料如放射性物质、重金属残渣、污染土壤等,传统的焚烧工艺难于满足环境要求,应用等离子体技术处理环境污染物,尤其是有毒复杂污染物,是近年开发出来的最具有发展前途和引人瞩目的一项环境污染治理的高新技术。上世纪90 年代,美国、德国、瑞士等发达国家将等离子体技术应用到废物处理中,取得了不俗的业绩,至今不同商用的等离子体设备系列在很多国家投入使用。 将等离子体用于处理各类污染物具有处理流程短、效率高、适用范围广等特点,尤其是对于多氯联苯类(PCB)、氟里昂类等难消解含卤化合物及生物技术产业、农药、医院等的特殊废弃物处理,常规的燃料热源技术的处理效率常不能达到国际规定的标准(PCB的消解效率必须大于99.9999%),并且更高毒性的多氯二苯并二(PCDDs) 与多氯二苯并呋喃(PCDFs) 的二次污染问题日益引起人们的重视。等离子体既可用于处理废气又可用于处理废水、固体废物、污泥、甚至放射性废物。本文主要介绍等离子体处理固体危险废物,如医疗垃圾等。 2.等离子体的基本概念和性质 2.1 等离子体的概念 等离子体是物质存在的第四态,它是气体电离后形成的,是由电子、离子、原子、分子或自由基等粒子组成的集合体,它具有宏观尺度内的电中性与高导电性。等离子体是极活泼的反应性物种,使通常条件下难以进行或速度很慢的反应变得快速,尤其有利于难消解污染物的处理。 在人工生成等离子体的方法中,气体放电法比加热的办法更加简便高效,诸如荧光灯、霓虹灯、电弧焊、电晕放电等等。图1是气体通过加热或放电形成等离子体的示意图。 图1 等离子体形成示意图 2.2 等离子体的分类 按粒子的温度等离子体可分为两大类,热平衡等离子体(或热等离子体) 与非热平衡等离子体(或冷等离子体),如图 2 所示。

等离子体分析

等离子体分析 摘要:本文介绍了气体放电中的等离子体的特性和等离子体诊断技术,利用单探针法和双探针法对等离子体的一些基本参量进行了测量,并对结果进行分析。文中还简要介绍了等离子体的发展前景。 关键词:等离子体,等离子体诊断,探针法 一. 引言 等离子体作为物质的第四态在宇宙中普遍存在。在实验室中对等离子体的研究是从气体放电开始的。朗缪尔和汤克斯首先引入“等离子体”这个名称。近年来等离子体物理学有了较快发展,并被应用于电力工业、电子工业、金属加工和广播通讯等部门,特别是等离子体的研究,为利用受控热核反应,解决能源问题提供了诱人的前景。 二. 等离子体的物理特性 等离子体定义为包含大量正负带电粒子、而又不出现净空间电荷的电离气体。等离子体有一系列不同于普通气体的特性: (1)高度电离,是电和热的良导体,具有比普通气体大几百倍的比热容。 (2)带正电的和带负电的粒子密度几乎相等。 (3)宏观上是电中性的。 描述等离子体的一些主要参量为: (1)电子温度。它是等离子体的一个主要参量,因为在等离子体中电子碰撞电离是主 要的,而电子碰撞电离与电子的能量有直接关系,即与电子温度相关联。

(2)带电粒子密度。电子密度为,正离子密度为,在等离子体中 。 (3)轴向电场强度。表征为维持等离子体的存在所需的能量。 (4)电子平均动能。 (5)空间电位分布。 本实验研究的是辉光放电等离子体。 辉光放电是气体导电的一种形态。当放电管的压强保持在10~102Pa时,在两电极上加高电压,就能观察到管有放电现象。辉光分为明暗相间的8个区域,在管两个电极间的光强、电位和场强分布如图1所示。8个区域的名称为(1)阿斯顿区,(2)阴极辉区,(3)阴极暗区,(4)负辉区,(5)法拉第暗区,(6)正辉区,(7)阳极暗区,(8)阳极辉区。其中正辉区是等离子区。

第六章、辉光放电(Glow discharge)

第六章、辉光放电(Glow discharge) 辉光放电是放电等离子体中最常见的一种放电形式,应用也最广泛。比如,一般的气体激光器(He-Ne 激光器、CO2激光器等)、常用光源(荧光灯)、空心阴极光谱灯等。同时辉光放电也是放电形式中放电最稳定的放电形式,所以有必要对辉光放电进行较为详细的讨论。 §6.1 辉光放电的产生及典型条件 最简单的辉光放电的结构如图6.1(a)。调节电源电压E或限流电阻R,就会得到如图6.1(b)的V-A 特性曲线。管电压U调节到等于着火电压U b时,放电管内就会从非自持放电过渡到自持放电,此时,放电电流I会继续增大,管压降U下降,进入辉光放电区。放电管发出明亮的辉光,其颜色由放电气体决定。限流电阻R应比较大,以保证放电稳定在辉光放电区。如果限流电阻R很小,放电很容易进入弧光放电区。 辉光放电的特点:比较高的放电管电压U(几百~几千V),小的电流I(mA量级); 弧光放电的特点:很低的放电电压U(几十V),大电流放电I(A量级甚至更大)。 辉光放电的典型条件: ①放电间隙中的电场分布比较均匀,至少没有很大的不均匀性;例如He-Ne激光器的放电管内电场近似 均匀。 ②放电管内气体压强不是很高,要求满足(Pd)Ubmin<Pd<200Kpa cm(巴邢曲线的右支),d---放电管内 电极间距,(Pd)Ubmin--巴邢曲线最低点U bmin对应的Pd值。一般P=4Pa~14Kpa时,可出现正常辉光放电,而Pd>200Kpa cm时,非自持放电通常会过渡到火花放电或丝状放电; ③放电回路中的电源电压和限流电阻准许放电管的放电电流工作在mA量级,且电源电压应高于着火电 压U b,否则不能起辉。

相关文档
最新文档