MATLAB求解非线性规划good (1)
非线性规划的MATLAB解法及其应用
题 目 非线性规划的MATLAB 解法及其应用(一) 问题描述非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。
非线性规划是20世纪50年代才开始形成的一门新兴学科。
70年代又得到进一步的发展。
非线性规划在工程、管理、经济、科研、军事等方面都有广泛的应用,为最优设计提供了有力的工具。
在经营管理、工程设计、科学研究、军事指挥等方面普遍地存在着最优化问题。
例如:如何在现有人力、物力、财力条件下合理安排产品生产,以取得最高的利润;如何设计某种产品,在满足规格、性能要求的前提下,达到最低的成本;如何确定一个自动控制的某些参数,使系统的工作状态最佳;如何分配一个动力系统中各电站的负荷,在保证一定指标要求的前提下,使总耗费最小;如何安排库存储量,既能保证供应,又使储存 费用最低;如何组织货源,既能满足顾客需要,又使资金周转最快等。
对于静态的最优化 问题,当目标函数或约束条件出现未知量的非线性函数,且不便于线性化,或勉强线性化后会招致较大误差时,就可应用非线性规划的方法去处理。
具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。
非线性规划研究一个n 元实函数在一组等式或不等式的约束条件下的极值问题,且目标函数和约束条件至少有一个是未知量的非线性函数。
目标函数和约束条件都是线性函数的情形则属于线性规划。
本实验就是用matlab 软件来解决非线性规划问题。
(二) 基本要求掌握非线性规划的MATLAB 解法,并且解决相关的实际问题。
题一 :对边长为3米的正方形铁板,在四个角剪去相等的正方形以制成方形无盖水槽,问如何剪法使水槽的容积最大?题二: 某厂生产一种产品有甲、乙两个牌号,讨论在产销平衡的情况下如何确定各自的产量,使总利润最大. 所谓产销平衡指工厂的产量等于市场上的销量.符号说明:z(x 1,x 2)表示总利润;p 1,q 1,x 1分别表示甲的价格、成本、销量; p 2,q 2,x 2分别表示乙的价格、成本、销量; a ij ,b i ,λi ,c i (i ,j =1,2)是待定系数.题三:设有400万元资金, 要求4年内使用完, 若在一年内使用资金x 万元, 则可得效益x 万元(效益不能再使用),当年不用的资金可存入银行, 年利率为10%. 试制定出资金的使用计划, 以使4年效益之和为最大.(三) 数据结构题一:设剪去的正方形的边长为x ,则水槽的容积为:x x )23(2-;建立无约束优化模型为:min y=-x x )23(2-, 0<x<1.5题二:总利润为: z(x1,x2)=(p1-q1)x1+(p2-q2)x2若根据大量的统计数据,求出系数b1=100,a11=1,a12=0.1,b2=280,a21=0.2,a22=2,r1=30,λ1=0.015,c1=20, r2=100,λ2=0.02,c2=30,则问题转化为无约束优化问题:求甲,乙两个牌号的产量x1,x2,使总利润z 最大.为简化模型,先忽略成本,并令a12=0,a21=0,问题转化为求:z1 = ( b1 - a11x1 ) x1 + ( b2 - a22x2 ) x2的极值. 显然其解为x1 = b1/2a11 = 50, x2 = b2/2a22 = 70,我们把它作为原问题的初始值.题三:设变量i x 表示第i 年所使用的资金数,则有 4,3,2,1,04.5321.121.1331.14841.121.14401.1400..max 43213212114321=≥≤+++≤++≤+≤+++=i x x x x x x x x x x x t s x x x x z i(四) 源程序题一:编写M 文件fun0.m:function f=fun0(x)f=-(3-2*x).^2*x;主程序为wliti2.m:[x,fval]=fminbnd('fun0',0,1.5);xmax=xfmax=-fval题二:建立M-文件fun.m:function f = fun(x)y1=((100-x(1)- 0.1*x(2))-(30*exp(-0.015*x(1))+20))*x(1); y2=((280-0.2*x(1)- 2*x(2))-(100*exp(-0.02*x(2))+30))*x(2); f=-y1-y2;输入命令:x0=[50,70];x=fminunc(‘fun ’,x0),z=fun(x)题三:建立M 文件 fun44.m,定义目标函数:function f=fun44(x)f=-(sqrt(x(1))+sqrt(x(2))+sqrt(x(3))+sqrt(x(4)));建立M 文件mycon1.m 定义非线性约束:function [g,ceq]=mycon1(x)g(1)=x(1)-400;g(2)=1.1*x(1)+x(2)-440;g(3)=1.21*x(1)+1.1*x(2)+x(3)-484;g(4)=1.331*x(1)+1.21*x(2)+1.1*x(3)+x(4)-532.4;ceq=0主程序youh4.m 为:x0=[1;1;1;1];vlb=[0;0;0;0];vub=[];A=[];b=[];Aeq=[];beq=[];[x,fval]=fmincon('fun44',x0,A,b,Aeq,beq,vlb,vub,'mycon1')(五) 运行结果题一:运算结果为: xmax = 0.5000,fmax =2.0000.即剪掉的正方形的边长为0.5米时水槽的容积最大,最大容积为2立方米.题二:运行结果为:x=23.9025, 62.4977, z=6.4135e+003即甲的产量为23.9025,乙的产量为62.4977,最大利润为6413.5.题三:运行结果为:x1=86.2;x2=104.2;x3=126.2;x4=152.8;z=43.1(六) 相关知识用Matlab 解无约束优化问题一元函数无约束优化问题21),(m in x x x x f ≤≤常用格式如下:(1)x= fminbnd (fun,x1,x2)(2)x= fminbnd (fun,x1,x2 ,options)(3)[x ,fval]= fminbnd (...)(4)[x ,fval ,exitflag]= fminbnd (...)(5)[x ,fval ,exitflag ,output]= fminbnd (...)其中(3)、(4)、(5)的等式右边可选用(1)或(2)的等式右边。
Matlab中的非线性优化算法技巧
Matlab中的非线性优化算法技巧在数学和工程领域中,非线性优化是一个非常重要的问题。
它涉及到求解一个具有非线性约束条件的最优化问题。
Matlab作为一种强大的数值计算工具,为我们提供了多种非线性优化算法。
本文将探讨一些在Matlab中使用非线性优化算法时的一些技巧和经验。
首先,我们来了解一下什么是非线性优化。
简单来说,非线性优化是指在给定一组约束条件下,寻找使得目标函数达到最小或最大值的变量取值。
与线性优化问题不同,非线性优化问题中的目标函数和约束条件可以是非线性的。
这使得问题的求解变得更加复杂和困难。
在Matlab中,有多种非线性优化算法可供选择。
其中最常用的算法是Levenberg-Marquardt算法和拟牛顿算法。
Levenberg-Marquardt算法是一种迭代算法,通过不断近似目标函数的线性化形式来求解。
它在处理高度非线性的问题时表现出色。
拟牛顿算法则是一种基于梯度的优化算法,通过估计Hessian矩阵的逆来进行迭代优化。
它在处理大规模问题时效果比较好。
在使用这些算法时,我们需要注意一些技巧和经验。
首先,选择合适的初始点非常重要。
初始点的选取直接影响了算法的收敛性和求解效率。
通常情况下,我们可以通过采用随机化初始点的方法来增加算法的稳定性和鲁棒性。
其次,我们需要注意选择合适的迭代终止条件。
防止算法陷入无限循环是非常重要的。
通常我们可以根据目标函数值的变化幅度或者梯度的大小来判断算法是否收敛。
此外,合理设置迭代步长和学习率也是非常重要的。
过大的学习率可能导致算法发散,而过小的学习率可能导致收敛速度过慢。
此外,Matlab中还提供了一些辅助函数来帮助我们使用非线性优化算法。
其中最常用的是fmincon函数,它可以求解带约束条件的非线性优化问题。
我们可以通过设置输入参数来指定目标函数、约束条件、算法类型等。
此外,Matlab还提供了一些可视化函数,如plot函数和contour函数,可以方便我们观察目标函数的形状和初始点的选择。
如何使用MATLAB进行非线性优化
如何使用MATLAB进行非线性优化简介:非线性优化是在给定约束条件下求解最优解的一种数学方法。
MATLAB是一款功能强大的科学计算软件,它提供了多种非线性优化算法,方便用户进行优化问题的求解。
本文将介绍如何使用MATLAB进行非线性优化。
一、准备工作在使用MATLAB进行非线性优化之前,我们需要安装MATLAB软件并了解一些基本的概念与术语。
1. 安装MATLAB访问MathWorks官方网站,下载并安装合适版本的MATLAB软件。
2. 了解基本概念在进行非线性优化前,我们需要了解一些基本概念,如优化问题、目标函数、约束条件等。
二、MATLAB中的非线性优化工具箱MATLAB中提供了多种非线性优化工具箱,包括优化工具箱、全局优化工具箱和混合整数优化工具箱。
根据具体问题的特点选择适合的工具箱进行优化。
1. 优化工具箱优化工具箱包含了用于求解非线性优化问题的函数和算法,如fminunc、lsqnonlin等。
其中,fminunc函数用于无约束非线性优化问题的求解,lsqnonlin函数用于带约束的非线性最小二乘问题的求解。
2. 全局优化工具箱全局优化工具箱适用于求解全局最优解的问题,其中常用的函数有ga、patternsearch等。
这些算法能在大范围搜索解空间,以克服局部最优解的问题。
3. 混合整数优化工具箱混合整数优化工具箱主要用于带有整数变量的优化问题,适用于求解组合优化问题、调度问题等。
三、使用MATLAB进行非线性优化的步骤下面将以一个实例来讲解使用MATLAB进行非线性优化的步骤。
实例:假设我们要通过非线性优化来求解一个函数的最小值,目标函数为f(x)=x^2+2x-3,其中x为实数。
1. 定义目标函数在MATLAB中,我们可以通过定义一个.m文件来表示目标函数。
例如,我们可以创建一个名为objFunc.m的文件,其中写入以下代码:function y = objFunc(x)y = x^2 + 2*x - 3;2. 设置初始点在进行非线性优化之前,我们需要设置一个初始点,作为优化算法的起始点。
数学应用软件作业5 用MATLAB求解非线性规划问题
佛山科学技术学院上 机 报 告课程名称 数学应用软件上机项目 用MATLAB 求解非线性规划问题 专业班级 姓 名 学 号一. 上机目的1.了解非线性规划的基本理论知识。
2.对比Matlab 求解线性规划,学习用Matlab 求解非线性规划的问题。
二. 上机内容1、用quadprog 求解二次规划问题min f(x):2、求解优化问题:min 321)(x x x x f -= S.T.72220321≤++≤x x x注:取初值为(10,10,10)。
3、求表面积为常数150 m 2的体积最大的长方体体积及各边长。
注:取初值为(4,5,6)。
三. 上机方法与步骤 1、可用两种方法解题: 方法一:Matlab 程序:H=[1 -1;-1 2]; c=[-2;-6];A=[1 1;-1 2;2 1];b=[2;2;3];Aeq=[];beq=[];vlb=[0;0];vub=[];[x,z]=quadprog(H,c,A,b,Aeq,beq,vlb,vub)方法二:Matlab程序如下:先建立fun.m文件,程序为:function f=fun(x);f=1/2*x(1)^2+x(2)^2-x(1)*x(2)-2^x(1)-6*x(2);再建立chushi.m文件,程序为:x0=[1;1];A=[1 1;-1 2;2 1];b=[2;2;3];Aeq=[];beq=[];vlb=[0;0];vub=[];[x,fval]=fmincon('fun',x0,A,b,Aeq,beq,vlb,vub)2、Matlab程序:先建立fun1.m文件,程序为:function f=fun1(x);f=-x(1)*x(2)*x(3);再建立chushi1.m文件,程序为:x0=[10;10;10];A=[1 2 2;-1 -2 -2];b=[72;0];Aeq=[];beq=[];vlb=[];vub=[];[x,fval]=fmincon('fun1',x0,A,b,Aeq,beq,vlb,vub)四.上机结果1、结果:(1)方法一结果:x =0.66671.3333z =-8.2222(2)方法二结果:x =0.66671.3333fval =-8.47632、结果:x =24.000012.000012.0000fval =-3.4560e+0033、结果:x =5.00005.00005.0000 fval =-125.0000 f =125.0000。
MATLAB求解非线性规划
MATLAB求解非线性规划非线性规划是一类涉及非线性目标函数或非线性约束条件的数学规划问题。
MATLAB是一种强大的数学计算软件,可以用来求解非线性规划问题。
本文将介绍MATLAB中求解非线性规划问题的方法。
1. 目标函数和约束条件在MATLAB中,非线性规划问题可以表示为以下形式:minimize f(x)subject to c(x)≤0ceq(x)=0lb≤x≤ub其中f(x)是目标函数,c(x)和ceq(x)是不等式和等式约束条件,lb和ub是变量的下限和上限。
2. 求解器MATLAB提供了多种求解器可以用来求解非线性规划问题。
其中常用的有fmincon和lsqnonlin。
lsqnonlin可以用来求解非线性最小二乘问题。
它使用的是Levenberg-Marquardt算法,能够有效地求解非线性最小二乘问题,并且具有较好的收敛性。
3. 示例下面我们来看一个求解非线性规划问题的示例。
假设我们要求解以下非线性规划问题:首先,我们需要定义目标函数和约束条件。
在MATLAB中,我们可以使用anonymous function来定义目标函数和约束条件。
代码如下:f = @(x)x(1)^2+2*x(2)^2+3*x(3)^2;c = @(x)[x(1)+x(2)+x(3)-4, x(1)*x(2)+x(1)*x(3)+x(2)*x(3)-3];ceq = [];lb = [0,0,0];接下来,我们使用fmincon求解非线性规划问题。
代码如下:[x,fval,exitflag,output] = fmincon(f,[1,1,1],[],[],[],[],lb,[],@(x)c(x));其中,第一个参数是目标函数,第二个参数是变量的初值,第三个参数是不等式约束条件,第四个参数是等式约束条件,第五个参数是变量的下限,第六个参数是变量的上限,第七个参数是非线性约束条件,最后一个参数是opts,可以设置其他求解参数。
非线性规划问题的Matlab实现求解
本科毕业论文(设计)论文题目:非线性规划问题的建模与Matlab求解实现的案例分析学生:许富豪学号:1204180137专业:信息与计算科学班级:计科1201指导教师:王培勋完成日期:2015年6月25日非线性规划问题的建模与Matlab求解实现的案例分析容摘要非线性规划问题通常极其抽象,并且求解计算极其复杂,本文举个别非线性规划问题案例,通过对抽象的非线性规划问题先建立数学模型,再利用Matlab软件高效快捷的实现非线性规划问题的求解,最后分析利用Matlab软件得出的案例结果。
关键词:非线性规划建立数学模型Matlab目录(三号黑体居中)空一行空一行一、※※※※※※ (1)(一)※※※※※※ (1)1.※※※※※※※※※※※※※ (1)2.※※※※※※※ (4)(二)※※※※ (7)(三)※※※※※※※※ (12)二、※※※※ (16)(一)※※※※※ (16)(二)※※※※※ (24)1.※※※※ (24)2.※※※※※ (30)3.※※※※ (31)(三)※※※※ (33)三、※※※※ (36)(一)※※※※※ (38)(二)※※※※ (43)四、※※※※ (45)参考文献 (48)附录 (50)(标题顺序号、容及其开始页码均为四号宋体,一级标题为黑体四号)序 言非线性规划问题通常难以用人力计算,所以我们一般利用Matlab 软件代替人去计算抽象的非线性规划问题,解决了耗费时间、耗费精力的问题,快速准确的得出计算结果。
因此,善于利用Matlab 实现非线性规划问题的求解非常重要,而求解非线性规划问题之前必须先对问题进行建立数学模型,才能准确的理解题意并快速的运用Matlab 求解。
一、非现性规划的基本概念(一)定义如果目标函数或约束条件中至少有一个是非线性函数,则最优化问题就叫做非线性规划问题,简记为NP 。
(二)一般形式min (),n f x x E ∈,()=0(=1,2,..()0(j=1,2i jh x j m s t g x l ⋯≤⎩⋯⎧⎨),,)其中:1,2,n =()Tx x x x ⋯称为模型(NP )的决策变量,f 称为目标函数,(=1,...,)i h i m 和(=1,...,)j g j l 称为约束函数;()=0(=1,...,)i h x i m 称为等式约束;()0(=1,...,)j g x j l ≤称为不等式约束。
非线性规划matlab求解
在matlab 中非线性规划的数学模型可写成一下形式:minf(X)s.t. Ax ≪B Aeq .x =Beq C (x )≪0Ceq x =0其中,f(x)是标量函数;A,B,Aeq,Beq 是相应维数的矩阵和向量;C(x),Ceq(x)是非线性向量函数。
Matlab 中的命令是X=FMINCON(FUN,X0,A,B,Aeq,Beq,LB,UB,NONLCON,OPTIONS)它的返回值是向量x 。
其中,FUN 是用M 文件定义的函数f(x)。
X0是X 的初始值。
A ,B ,Aeq ,Beq 定义了线性约束AX ≪B ,Aeq*X=Beq ,如果没有线性约束,则A=[],B=[],Aeq=[],Beq=[]。
LB 和UB 是变量x 的下界和上界,如果上界和下界没有约束,则LB=[],UB=[];如果X 无下界,则LB=-inf;如果X 无上界,则UB=inf 。
NONLCON 是用M 文件定义的非线性向量函数C(x),Ceq(x)。
OPTIONS 定义了优化函数,可以使用MATLAB 默认的参数设置。
例求解下列非线性规划问题:max z= X 1+ X 2+ X 3+ X 4 s.t.x 1≪4001.1x 1+x 2≪4401.21x 1+1.1x 2+x 3≪4841.331x 1+1.21x 2+1.1x 3+x 4≪532.4X i≫0,i =1,2,3,4(1)编写M 文件,定义目标函数:function f=fun44(x)f=-(sqrt(x(1))+sqrt(x(2))+sqrt(x(3))+sqrt(x(4)) );(2)编写M 文件,定义约束条件function[g,ceq]=mycon1(x)g(1)=x(1)-400;g(2)=1.1*x(1)+x(2)-440;g(3)=1.21*x(1)+1.1*x(2)+x(3)-484;g(4)=1.331*x(1)+1.21*x(2)+1.1*x(3)+x(4)-532.4;ceq=0(3)编写主程序x0=[1;1;1;1];lb=[0;0;0;0];ub=[];A=[];b=[];Aeq=[];beq=[];[x,fval] = fmincon('fun44',x0,A,b,Aeq,beq,lb,ub,'mycon1')输出结果x =86.1883104.2879 126.1883 152.6879fval =-43.0860。
matlab解决非线性规划问题(凸优化问题)
matlab解决⾮线性规划问题(凸优化问题)当⽬标函数含有⾮线性函数或者含有⾮线性约束的时候该规划问题变为⾮线性规划问题,⾮线性规划问题的最优解不⼀定在定义域的边界,可能在定义域内部,这点与线性规划不同;例如:编写⽬标函数,定义放在⼀个m⽂件中;编写⾮线性约束条件函数矩阵,放在另⼀个m⽂件中;function f = optf(x);f = sum(x.^2)+8;function [g, h] = limf(x);g = [-x(1)^2+x(2)-x(3)^2x(1)+x(2)^2+x(3)^3-20]; %⾮线性不等式约束h = [-x(1)-x(2)^2+2x(2)+2*x(3)^2-3]; %⾮线性等式约束options = optimset('largescale','off');[x y] = fmincon('optf',rand(3,1),[],[],[],[],zeros(3,1),[],...'limf',options)输出为:最速下降法(求最⼩值):代码如下:function [f df] = detaf(x);f = x(1)^2+25*x(2)^2;df = [2*x(1)50*x(2)];clc,clear;x = [2;2];[f0 g] = detaf(x);while norm(g)>1e-6 %收敛条件为⼀阶导数趋近于0p = -g/norm(g);t = 1.0; %设置初始步长为1个单位f = detaf(x+t*p);while f>f0t = t/2;f = detaf(x+t*p);end %这⼀步很重要,为了保证最后收敛,保持f序列为⼀个单调递减的序列,否则很有可能在极值点两端来回震荡,最后⽆法收敛到最优值。
x = x+t*p;[f0,g] = detaf(x);endx,f0所得到的最优值为近似解。
MATLAB中的非线性优化算法实现
MATLAB中的非线性优化算法实现1. 引言在工程和科学领域,我们经常会遇到需要优化某个目标函数的问题。
优化是指在给定的约束条件下,找到能够使目标函数取得最大或最小值的变量值。
而非线性优化则是指目标函数和约束条件都不是线性的情况下的优化问题。
在MATLAB中,有多种非线性优化算法可供选择。
本文将介绍几种常用的非线性优化算法以及它们在MATLAB中的实现。
2. 一维优化算法在讨论多维优化算法之前,我们先介绍一维优化算法。
一维优化算法主要用于解决单变量目标函数的极值问题。
MATLAB中常用的一维优化算法有黄金分割法、抛物线插值法和斐波那契法。
这些算法都是通过不断迭代来逼近最优解的。
3. 无约束多维优化算法对于没有约束条件的多维优化问题,MATLAB提供了几种有效的算法,如共轭梯度法、拟牛顿法和模拟退火算法等。
这些算法在不同的问题中都有着各自的优势。
共轭梯度法适用于求解大规模无约束问题,而拟牛顿法则对于Hessian矩阵难以计算的问题更为适用。
模拟退火算法则常用于全局优化问题,可以避免陷入局部最优解。
4. 有约束多维优化算法在实际问题中,往往会伴随着各种约束条件。
MATLAB提供了多种算法来解决有约束的多维优化问题,如线性规划法、SQP方法和遗传算法等。
线性规划法适用于目标函数和约束条件都是线性的情况。
SQP方法则通过近似二次规划的方式来求解非线性约束问题。
遗传算法是一种启发式算法,适用于复杂的非线性优化问题,并能够在全局范围内搜索最优解。
5. 优化算法性能比较不同的优化算法在不同的问题中表现出不同的性能。
为了评估各个算法的优劣,可以使用一些性能指标进行比较,如收敛速度、收敛精度、计算复杂度等。
通过对比实验,可以选择最适合特定问题的算法,并进行参数调优以获得更好的结果。
6. MATLAB中的优化工具箱MATLAB提供了强大的优化工具箱,其中包含了大量的优化函数和算法。
通过使用这些函数和算法,我们可以方便地进行各种优化问题的求解。
用Matlab求解非线性规划
用Matlab 求解非线性规划1.无约束优化问题)(min x f n Rx ∈,其中向量x 的n 个分量i x 都是决策变量,称)(x f 目标函数。
用Matlab 求解:先建立函数文件mbhs.m ,内容是)(x f 的表达式;再回到Matlab 命令区输入决策变量初值数据x0,再命令[x,fmin]=fminunc(@mbhs,x0) 如:)32(m in 22212x x R x +∈的最优解是.)0,0(T x = 用Matlab 计算,函数文件为 function f=mbhs(x)f=2*x(1)^2+3*x(2)^2;再输入初值 x0=[1;1]; 并执行上述命令,结果输出为 x =? fmin =? 略。
2.约束优化问题.),,...,2,1(,0)(),,...,2,1(,0)(..)(min U x L m i x h p i x g t s x f i i Rx n ≤≤===≤∈其中:向量x 的n 个分量i x 都是决策变量,称)(x f 目标函数、)(x g i 等式约束函数、)(x h i 不等式约束函数、L 下界、U 上界。
用Matlab 求解:先把模型写成适用于Matlab 的标准形式.,0)(,0)(,,..)(min U x L x h x g beq x Aeq b Ax t s x f n Rx ≤≤=≤=≤∈ 约束条件中:把线性的式子提炼出来得前两个式子;后三个式子都是列向量。
(如:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡===⨯⨯)()()([],[],,,11262x g x g x g beq Aeq b A p )再建立两个函数文件:目标函数mbhs.m ;约束函数yshs.m再回到Matlab 命令区,输入各项数据及决策变量初值数据x0,执行命令[x,fmin]=fmincon(@mbhs,x0,A,b,Aeq,beq,L,U,@yshs)例:单位球1222≤++z y x 内,曲面xy y x z 1.05.022--+=的上方,平面008.0=-++z y x 之上(不是上面),满足上述三个条件的区域记为D ,求函数)1cos()sin(2-+-+-z e z y x e xy xyz 在D 上的最大值、最大值点。
MATLAB中的非线性优化算法
MATLAB中的非线性优化算法引言:MATLAB是一种著名的科学计算软件,拥有丰富的工具箱和算法,可用于各种数学和工程应用。
其中,非线性优化算法是MATLAB中一个重要的应用领域。
非线性优化问题在实际应用中广泛存在,例如机器学习、金融建模和工程优化等。
在这篇文章中,我将介绍MATLAB中的一些常用的非线性优化算法及其应用。
一、非线性优化问题非线性优化问题是指目标函数和约束条件均为非线性的优化问题。
目标函数可以是最大化或最小化的某一指标,约束条件则是对变量的限制条件。
非线性优化问题在实际应用中非常普遍,例如用于优化机器学习模型的参数、金融投资组合优化和工程设计等。
在MATLAB中,有多种算法可供选择来解决这些问题。
二、MATLAB中的非线性优化算法1. fmincon函数fmincon函数是MATLAB中一种通用的非线性约束优化算法。
它可以处理有等式约束、不等式约束以及无约束的优化问题。
该函数基于内点法和序列二次规划算法,通过迭代优化目标函数来求解最优解。
在使用fmincon函数时,需要提供目标函数、约束函数和初始解等输入。
2. fminunc函数fminunc函数是MATLAB中用于无约束非线性优化的算法。
它采用拟牛顿方法的变体,通过估计目标函数的二阶导数信息来迭代优化。
与fmincon函数不同的是,fminunc函数只适用于无约束问题,在处理有约束问题时需要先转化为无约束问题。
使用fminunc函数时,需要提供目标函数和初始解等输入。
3. lsqnonlin函数lsqnonlin函数是MATLAB中用于无约束非线性最小二乘问题的算法。
最小二乘问题是指寻找最小化残差的参数。
该函数通过非线性最小二乘法迭代地优化目标函数,求解最优的参数估计。
在使用lsqnonlin函数时,需要提供目标函数和初始解等输入。
三、非线性优化算法的应用1. 机器学习中的参数优化机器学习算法中的模型参数优化是一个典型的非线性优化问题。
matlab非线性方程的解法(含牛拉解法)
非线性方程的解法(含牛拉解法)1引 言数学物理中的许多问题归结为解函数方程的问题,即,0)(=x f (1.1) 这里,)(x f 可以是代数多项式,也可以是超越函数。
若有数*x 为方程0)(=x f 的根,或称函数)(x f 的零点。
设函数)(x f 在],[b a 内连续,且0)()(<b f a f .根据连续函数的性质知道,方程0)(=x f 在区间],[b a 内至少有一个实根;我们又知道,方程0)(=x f 的根,除了极少简单方程的根可以用解析式表达外,一般方程的根很难用一个式子表达。
即使能表示成解析式的,往往也很复杂,不便计算。
所以,具体求根时,一般先寻求根的某一个初始近似值,然后再将初始近似值逐步加工成满足精度要求为止.如何寻求根的初始值呢?简单述之,为了明确起见,不妨设)(x f 在区间],[b a 内有一个实的单根,且0)(,0)(><b f a f .我们从左端出点a x =0出发,按某一预定的步长h 一步一步地向右跨,每跨一步进行一次根的“搜索”,即检查每一步的起点k x 和1+k x (即,h x k +)的函数值是否同号。
若有:0)(*)(≤+h x f x f k k (1.2) 那么所求的根必在),(h x x k k +内,这时可取k x 或h x k +作为根的初始近似值。
这种方法通常称为“定步长搜索法"。
另外,还是图解法、近似方程法和解析法。
2 迭代法2。
1 迭代法的一般概念迭代法是数值计算中一类典型方法,不仅用于方程求根,而且用于方程组求解,矩阵求特征值等方面。
迭代法的基本思想是一种逐次逼近的方法。
首先取一个精糙的近似值,然后用同一个递推公式,反复校正这个初值,直到满足预先给定的精度要求为止。
对于迭代法,一般需要讨论的基本问题是:迭代法的构造、迭代序列的收敛性天收敛速度以及误差估计。
这里,主要看看解方程迭代式的构造。
对方程(1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4) x=fmincon(‘fun’,X0,A,b,Aeq,beq,VLB,VUB,’nonlcon’) (5)x=fmincon(‘fun’,X0,A,b,Aeq,beq,VLB,VUB,’nonlcon’,options)
输出极值点
M文件
迭代的初值
变量上下限
参数说明
(6) [x,fval]= fmincon(...) (7) [x,fval,exitflag]= fmincon(...) (8)[x,fval,exitflag,output]= fmincon(...)
例1
max
s.t.
z 0.4x1 0.28x2 0.32x3 0.72x4 0.64x5 0.6x6 0.01x1 0.01x2 0.01x3 0.03 x4 0.03 x5 0.03 x6 850 0.02x1 0.05x4 700 0.02x2 0.05x5 100 0.03x3 0.08x6 900 xj 0 j 1,2,,6
3. 运算结果为: x = -1.2250 1.2250 fval = 1.8951
例4
min f X 2 x1 x2
2 s.t. g1 X 25 x12 x2 0
g2 X 7
2 x1
2 x2
0
0 x1 5, 0 x2 10
目标函数为: min f
2 2 X ( x a ) ( y b ) ij j i j i j 1 i 1 2 6
工地位置(a,b)及水泥日用量 d 2 3 4 8.75 0.5 5.75 0.75 4.75 5 5 4 7
a b d
1 1.25 1.25 3
5 3 6.5 6
6 7.25 7.25 11
(一)、建立模型
记工地的位置为(ai,bi),水泥日用量为di,i=1,…,6;料场位置为 (xj,yj),日储量为ej,j=1,2;从料场j向工地i的运送量为Xij。
例3
f ( x) e
s.t.
x
1
2 (4 x1
2 2 x2
4 x1 x2 2 x2 1)
x1+x2=0 1.5+x1x2 - x1 - x2 0 -x1x2 –10 0
1.先建立M文件 fun4.m,定义目标函数:
function f=fun4(x); f=exp(x(1)) *(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1);
2、先建立M-文件 fun3.m: function f=fun3(x); f=-x(1)-2*x(2)+(1/2)*x(1)^2+(1/2)*x(2)^2
3、再建立主程序youh2.m: x0=[1;1]; A=[2 3 ;1 4]; b=[6;5]; Aeq=[];beq=[]; VLB=[0;0]; VUB=[]; [x,fval]=fmincon('fun3',x0,A,b,Aeq,beq,VLB,VUB) 4、运算结果为: x = 0.7647 1.0588 fval = -2.0294
Aeq=[]; beq=[];
vlb=[0;0;0;0;0;0]; vub=[];
To MATLAB (xxgh1)
[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)
例2
min z 6x1 3x2 4x3 s.t. x1 x2 x3 120 x1 30 0 x2 50 x3 20
min z (6
3
x1 4) x2 x 3
s.t.
解: 编写M文件xxgh2.m如下: c=[6 3 4]; A=[0 1 0]; b=[50]; Aeq=[1 1 1]; beq=[120]; To MATLAB (xxgh2) vlb=[30,0,20]; vub=[]; [x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)
3. 模型:min z=cX s.t. AX b Aeq A,b,Aeq,beq, VLB,VUB)
[2] x=linprog(c,A,b,Aeq,beq, VLB,VUB, X0) 注意:[1] 若没有等式约束: Aeq X beq , 则令Aeq=[ ], beq=[ ]. [2]其中X0表示初始点 4. 命令:[x,fval]=linprog(…) 返回最优解x及x处的目标函数值fval.
VLB≤X≤VUB
用MATLAB软件求解,其输入格式如下:
1. 2. 3. 4. 5. 6. 7. 8.
x=quadprog(H,C,A,b); x=quadprog(H,C,A,b,Aeq,beq); x=quadprog(H,C,A,b,Aeq,beq,VLB,VUB); x=quadprog(H,C,A,b, Aeq,beq ,VLB,VUB,X0); x=quadprog(H,C,A,b, Aeq,beq ,VLB,VUB,X0,options); [x,fval]=quaprog(...); [x,fval,exitflag]=quaprog(...); [x,fval,exitflag,output]=quaprog(...);
1
x 6 x 2 2 2
s.t.
2、 输入命令:
1 1 x1 2 1 2 x2 2 0 x1 x 0 2
H=[1 -1; -1 2]; c=[-2 ;-6];A=[1 1; -1 2];b=[2;2]; Aeq=[];beq=[]; VLB=[0;0];VUB=[]; [x,z]=quadprog(H,c,A,b,Aeq,beq,VLB,VUB)
1.先建立M-文件fun.m定义目标函数: function f=fun(x); f=-2*x(1)-x(2);
2.再建立M文件mycon2.m定义非线性约束: function [g,ceq]=mycon2(x) g=[x(1)^2+x(2)^2-25;x(1)^2-x(2)^2-7]; ceq=[];
3、运算结果为: x =0.6667 1.3333
z = -8.2222
标准型为: min F(X) Aeq X beq G(X) 0 s.t AX<=b Ceq(X)=0 VLB X VUB
2、一般非线性规划
其中X为n维变元向量,G(X)与Ceq(X)均为非线性函数组成 的向量,其它变量的含义与线性规划、二次规划中相同.用 Matlab求解上述问题,基本步骤分三步: 1. 首先建立M文件fun.m,定义目标函数F(X): function f=fun(X); f=F(X);
解 编写M文件xxgh1.m如下: c=[-0.4 -0.28 -0.32 -0.72 -0.64 -0.6]; A=[0.01 0.01 0.01 0.03 0.03 0.03;0.02 0 0 0.05 0 0;0 0.02 0 0 0.05 0;0 0 0.03 0 0 0.08]; b=[850;700;100;900];
注意:
[1] fmincon函数提供了大型优化算法和中型优化算法。默认 时,若在fun函数中提供了梯度(options参数的GradObj设置 为’on’),并且只有上下界存在或只有等式约束,fmincon函 数将选择大型算法。当既有等式约束又有梯度约束时,使用中型 算法。 [2] fmincon函数的中型算法使用的是序列二次规划法。在每 一步迭代中求解二次规划子问题,并用BFGS法更新拉格朗日 Hessian矩阵。 [3] fmincon函数可能会给出局部最优解,这与初值X0的选取 有关。
3. 主程序fxx.m为: x0=[3;2.5]; VLB=[0 0];VUB=[5 10]; [x,fval,exitflag,output] =fmincon('fun',x0,[],[],[],[],VLB,VUB,'mycon2')
4. 运算结果为: x= 4.0000 3.0000 fval =-11.0000 exitflag = 1 output = iterations: 4 funcCount: 17 stepsize: 1 algorithm: [1x44 char] firstorderopt: [] cgiterations: []
例2
1 2 1 2 min f x1 2 x2 x1 x2 2 2 2x1+3x2 6 s.t x1+4x2 5 x1,x2 0
1、写成标准形式:
1 2 1 2 min f x1 2 x2 x1 x2 2 2
s.t.
2 x1 3x2 6 0 x1 4 x2 5 0 0 x1 0 x2
2.再建立M文件mycon.m定义非线性约束:
function [g,ceq]=mycon(x) ceq=[x(1)+x(2)]; g=[1.5+x(1)*x(2)-x(1)-x(2);-x(1)*x(2)-10];
3.主程序youh3.m为: x0=[-1;1]; A=[];b=[]; Aeq=[1 1];beq=[0]; vlb=[];vub=[]; [x,fval]=fmincon('fun4',x0,A,b,Aeq,beq,vlb,vub,'mycon')
2. 若约束条件中有非线性约束 :G(X) 0 或 Ceq(X)=0, 则建立M文件nonlcon.m定义函数G(X)与Ceq(X): function [G,Ceq]=nonlcon(X) G=... Ceq=...